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Abstract. Wildfires are increasingly impacting social and environmental systems in the United States (US).
The ability to mitigate the adverse effects of wildfires increases with understanding of the social, physical, and
biological conditions that co-occurred with or caused the wildfire ignitions and contributed to the wildfire im-
pacts. To this end, we developed the FPA FOD-Attributes dataset, which augments the sixth version of the Fire
Program Analysis Fire-Occurrence Database (FPA FOD v6) with nearly 270 attributes that coincide with the
date and location of each wildfire ignition in the US. FPA FOD v6 contains information on location, jurisdic-
tion, discovery time, cause, and final size of > 2.3 × 106 wildfires in the US between 1992 and 2020 . For
each wildfire, we added physical (e.g., weather, climate, topography, and infrastructure), biological (e.g., land
cover and normalized difference vegetation index), social (e.g., population density and social vulnerability in-
dex), and administrative (e.g., national and regional preparedness level and jurisdiction) attributes. This publicly
available dataset can be used to answer numerous questions about the covariates associated with human- and
lightning-caused wildfires. Furthermore, the FPA FOD-Attributes dataset can support descriptive, diagnostic,
predictive, and prescriptive wildfire analytics, including the development of machine learning models. The FPA
FOD-Attributes dataset is available at https://doi.org/10.5281/zenodo.8381129 (Pourmohamad et al., 2023).
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1 Introduction

Wildfire (hereafter “fire”) hazards have increased across
many regions of the world in recent decades, increasing the
burden on fire prevention and suppression efforts (Alizadeh
et al., 2021; Modaresi Rad et al., 2023; Rad et al., 2023).
Climatic changes in the past several decades have generally
decreased the fire season moisture content of living and dead
vegetation, lengthened the fire season, and contributed to a
marked increase in the number of critical fire danger days
across much of the United States (US), with distinct geo-
graphical and seasonal trends and patterns (Westerling, 2016;
Dennison et al., 2014; Bowman et al., 2011; Alizadeh et al.,
2023). These changes have overlapped with the impacts of
decade-long fire suppression policies in the US that have re-
sulted in anthropogenic fire deficits and increased fuel loads
in many regions, especially low-elevation forests in the west-
ern US (Bowman et al., 2009). Human-caused ignitions com-
pound the fire burden, particularly near the wildland–urban
interface (WUI), where wildland areas intermingle with hu-
man settlements (Stephens et al., 2013; Wildland Fire Ex-
ecutive Council, 2013). Moreover, increases in the area and
density of human settlement and infrastructure in the WUI
have further increased exposure to fire hazards across the US
(Scott et al., 2012). The intersection of changes in the number
and timing of ignitions and changing environmental condi-
tions has resulted in several fires that have caused substantial
loss of life (e.g., Miller and Ager, 2012).

Studies have focused on understanding the patterns and
drivers of human-caused ignitions, given the potential for
reducing the number of such ignitions and the negative im-
pacts associated with the resulting fires, particularly near the
WUI (Short, 2014; Balch et al., 2017). The primary fac-
tors that are often included in models of human-caused ig-
nitions are social and economic (e.g., demographics), envi-
ronmental (e.g., vegetation, meteorology, and topography),
anthropogenic (e.g., land ownership and distance to roads),
and timing metrics (e.g., holidays and weekends) (Short,
2022). Similarly, advances in the predictive understanding of
lightning-ignited fires have improved the speed and effective-
ness of suppression responses (Ronchi et al., 2017; McGee
et al., 2015). Fuel moisture (Viegas et al., 1992; Meisner et
al., 1993; Pineda et al., 2022), vegetation type and condi-
tion (Dissing and Verbyla, 2003; Wierzchowski et al., 2002),
weather (Wierzchowski et al., 2002; Hély et al., 2001), pre-
fire-season snowpack (Chen and Jin, 2022), duration of light-
ning contact with fuel (Fuquay et al., 1979; Latham and
Williams, 2001), number of lightning strikes (Flannigan and
Wotton, 1991), and topography (Hessilt et al., 2022) are the
main cited factors that affect natural fires. However, the con-
fluence of factors that shape spatial and temporal patterns of
ignitions, especially human-caused ignitions, confounds ef-
forts to predict, prevent, and prepare for the impacts of fires.

The most comprehensive source of georeferenced fire ig-
nition data in the US is the Fire Program Analysis Fire-

Occurrence Database (Short, 2014), which aggregates fire
reports from federal, state, and local entities with fire pro-
tection and reporting responsibilities. All fires in the FPA
FOD database are referenced to a discovery date, final fire
size (area within the fire perimeter), and a point location at
least as precise as a Public Land Survey System section (i.e.,
1 square mile, or 2.6 km2, grid). Most fire records are also as-
sociated with attributes including fire name, discovery time,
reporting agency information, ignition cause, and contain-
ment date and time. The 13 cause classes, as determined by
the reporting agency, are as follows: natural; recreation and
ceremony; equipment and vehicle use; debris and open burn-
ing; smoking; arson, or incendiarism; railroad operations and
maintenance; misuse of fire by a minor; power generation,
transmission, or distribution; fireworks; firearms and explo-
sives use; other causes; and missing data, not specified, or
undetermined (Short, 2021). FPA FOD also includes inci-
dent identification numbers that can be referenced to other
fire databases, such as Monitoring Trends in Burn Severity
(Eidenshink et al., 2007) and the All-hazards dataset (St. De-
nis et al., 2023). The sixth version of FPA FOD includes more
than 2.3 × 106 fire records that correspond to a total of more
than 72.8 × 106 ha (180 × 106 acres) burned from 1992 to
2020 across the US (Short, 2022).

To enable stronger inferences about factors that affect and
predict fire ignitions and outcomes, we augmented the sixth
version of FPA FOD (FPA FOD v6) with 267 attributes as-
sociated with the date and location of ignition across the US.
Major classes of these attributes encompass climate, weather
and fire danger, topography, land cover and vegetation, ju-
risdiction and management, infrastructure, and social con-
text. Although the attributes are associated with the date and
point of ignition, we also included summary statistics within
a temporal buffer (e.g., 5 d centered on the ignition date) and
a spatial buffer (e.g., 1 km) around the ignition point. Addi-
tionally, we included monthly, satellite-derived vegetation in-
dices during the 12 months prior to the ignition. The resultant
FPA FOD-Attributes dataset includes a total of 310 attributes
associated with more than 2.3 × 106 fire incidents across the
US from 1992 to 2020. This rich, tabular dataset can be used
in a variety of hypothesis-driven or data-exploration applica-
tions.

2 Methods

2.1 Data sources

The FPA FOD-Attributes dataset brings together 267 at-
tributes associated with fire ignitions from 24 data sources
(Tables 1, S1). The accuracy, precision, and uncertainty of
each attribute, including spatial and temporal resolution, de-
pends on the source data. Availability of attributes for indi-
vidual fire incidents also depends on the spatial and temporal
coverage of the source data. Table 1 lists general categories
of attributes, their resolution and coverage, and their sources.
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Table S1 lists more detail about individual attributes that are
included in the FPA FOD-Attributes dataset.

Source data were either in raster or vector/point formats.
For raster data, we selected the attribute value of the grid cell
that contained the ignition point recorded in the FPA FOD
dataset. Similarly, for data in vector/shapefile format, we se-
lected the attribute value of the area associated with the ig-
nition point. When distance from the fire location to a vector
was of interest, we estimated the nearest perpendicular dis-
tance. We conducted all analyses with the following Python
libraries: xarray and GDAL (raster data) or GeoPandas (vec-
tor data). Source code is provided along with the FPA FOD-
Attributes dataset to support future use (see the “Code avail-
ability” and “Data availability” sections).

2.2 Data compilation

Here, we briefly discuss the data compilation process and as-
sumptions. Table S1 provides a detailed description of the
variables, their units, and their sources. Unless otherwise
specified, the FPA FOD-Attributes dataset provides a com-
plete record of values of each variable for all fire events from
1992 to 2020.

2.2.1 Weather and climate

Our main source of weather and climate data was gridMET
(Abatzoglou, 2013), which merged gridded climate and re-
analysis data with gauge-based precipitation data to provide
spatially and temporally complete, high-resolution (4 km)
gridded data on surface meteorological variables. gridMET
also provides daily fire danger indices based on Fuel Model
G from the National Fire Danger Rating System 77 (Cohen
and Deeming, 1985). gridMET is widely used in fire-related
studies (Alizadeh et al., 2021, 2023). The weather and cli-
mate data collated in this work are outlined in the following.

Weather and fire danger indices

Attributes associated with each fire ignition in the FPA FOD-
Attributes dataset include daily precipitation, maximum and
minimum temperature (2 m above ground), relative humid-
ity, specific humidity, wind velocity (10 m above ground),
surface downward shortwave radiation, reference evapotran-
spiration, and vapor pressure deficit; all data are for the date
and point of fire ignition. We also derived the following fire
danger indices for the date and point of fire ignition: 100 and
1000 h dead-fuel moisture, energy release component (ERC),
and burning index (BI). ERC and BI are fuel model depen-
dent and, hence, are aligned with a single-fuel model (Fuel
Model G – dense coniferous forest fuel type), but 100 and
1000 h dead-fuel moisture variables are fuel model agnostic.
Additionally, we derived maximum, minimum, and average
values of these variables within a 5 d window centered on
the fire ignition date (i.e., from 2 d prior to 2 d after the ig-

nition date). This arbitrary selection is to allow additional
analyses, especially for fires associated with uncertainty in
detection/reporting of start dates.

Climate normals

A climate normal is defined as the long-term (1990–2020)
average of daily surface meteorological variables. Climate
normals characterize average weather conditions. The at-
tributes include climate normals of all meteorological and
fire danger indices listed above for the location and day of
year of fire ignition.

Climate percentiles

We calculated the percentile range for meteorological and
fire danger indices for the location and the day of year of fire
ignition, relative to values from the same day of the year from
1979 to 2020. The percentile range enables the user to com-
pare the attribute with long-term records. We report the data
in the following discrete percentile ranges: < 10th, 10th–
30th, 30th–50th, 50th–70th, 70–90th, and > 90th. Depending
on the attribute, a higher percentile range might be associ-
ated with higher (e.g., ERC) or lower (e.g., 1000 h dead-fuel
moisture) fire danger.

2.2.2 Land cover and topography

We used data from the US Forest Service (USFS), US Geo-
logical Survey (USGS), LANDFIRE, National Oceanic and
Atmospheric Administration (NOAA), National Aeronautics
and Space Administration (NASA), and US Environmental
Protection Agency (EPA) to derive attributes associated with
land surface conditions at the location and time of fire igni-
tion. We provide multiple land cover data sources to allow
users to select the source that best suits their needs.

Given the potential biases in reporting of the ignition lo-
cation, statistics of variables within a 1 km radius around the
ignition location, especially variables derived from 30 m or
other fine-resolution products, are likely a more accurate rep-
resentation of the ground conditions than values specifically
at the point of ignition. For fires that burn large areas, note
that land cover can vary widely and, thus, may differ from
that at the point of ignition.

Omernik ecoregions

Ecoregions denote areas with similar biotic and abiotic at-
tributes (Omernik, 1987). Ecoregion shapefiles (i.e., vector
data) are available at four levels: 15 Level-1 ecoregions, 50
Level-2 ecoregions, and 182 Level-3 ecoregions across North
America, and 967 Level-4 ecoregions in the CONUS. Many
fire-related studies used Level-2 or Level-3 ecoregions (Den-
nison et al., 2014; Alizadeh et al., 2021, 2023), and we pro-
vide these two ecoregion classifications at the ignition point
of each fire.
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Table 1. Variables in the FPA FOD-Attributes dataset and their data sources. See Table S1 for a detailed description of all variables and
sources.

Variable category Spatial resolution Temporal resolution Temporal extent Spatial extent Source

W
ea

th
er

an
d

cl
im

at
e Weather and fire danger ∼ 4 km Daily 1979–present CONUSa gridMET (Abatzoglou,

2013)

Climate normal ∼ 4 km Daily 1990–2020 CONUS gridMET

Climate percentiles ∼ 4 km Daily 1990–2020 CONUS gridMET

L
an

d
co

ve
ra

nd
to

po
gr

ap
hy Omernik Level-2 and

Level-3 ecoregions
Vector Static NAa North America EPAa

Pyrome Vector Static NA CONUS Short (2022)

Topography 30 m Static NA US U.S. Department of In-
terior et al. (2022c)a

Existing vegetation 30 m Periodic 2001, 2012, 2014,
2016, and 2020

US U.S. Department of In-
terior et al. (2022a)

Fire regime group type 30 m Periodic 2001, 2012, 2014,
2016, and 2020

US U.S. Department of In-
terior et al. (2022b)

Normalized differ-
ence vegetation index
(NDVI)b

5.60 km 16 d 2000–present Global Didan (2021)

NDVIb 5.55 km Daily 1981–present Global Vermote (2019)

Land cover 33.3 m Periodic 1992, 2001, 2004,
2006, 2008, 2011,
2013, 2016, and 2019

US Dewitz (2019)

Rangeland production 30 m Annual 1984–2021 Rangelands
across CONUS

Reeves and Frid (2016)

Exotic annual and na-
tive perennial grasses

30 m Annual 2016–2021 Extended west-
ern US

USGS (2022)a

So
ci

al

Climate and economic
justice screening tool

Census tract Static 2010 US Climate and Economic
Justice Screening Tool
(2023)

Social vulnerability in-
dex

Census tract Periodic 2000, 2010, 2014,
2016, 2018, and 2020

US Flanagan et al. (2018)

Population density 100 m Annual 2000–present Global WorldPop (2018)

Gross domestic product 9.3 km Periodic 1990, 2000, and 2015 Global Kummu et al. (2018)

Global human modifi-
cation

1 km Static NA Global Kennedy et al. (2019)

A
dm

in
is

tr
at

iv
e Risk management as-

sistance
30 m Static NA CONUS Silva et al. (2020)

Fire stations Point Static NA US Home Land Security
(2023)

GACC preparedness
levela

GACC Daily 2007–2021 US Nguyan et al. (2023)

National preparedness
level

National Daily 1990–present US Wildland fire perime-
ters full history (2023)

Conservation status Vector Static NA US USGS (2022)

Distance to road Vector Static NA US TIGER (2023)a

a The abbreviations/acronyms used in the table are as follows: EPA – US Environmental Protection Agency; USGS – US Geological Survey; GACC – Geographic Area Coordination Center;
TIGER – Topologically Integrated Geographic Encoding and Referencing; NA – not applicable; CONUS – contiguous United States.
b The NDVI from Didan (2021) provides monthly mean vegetation health information for the 12 months prior to fire, whereas Vermote (2019) offers the NDVI value on the day prior to the fire
start date as well as the daily mean, max, and min NDVI for each month within 1 year prior to fire.
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Pyrome

Pyromes are regions with relatively homogeneous contem-
porary fire regimes (e.g., start and end date of fire season,
frequency of fire, and modality and large-fire size); 128 py-
romes have been identified in CONUS (Short et al., 2020).
We provide the pyrome associated with the ignition point of
each fire.

Topography

Topography affects the likelihood of fire ignition and fire be-
havior. We derived elevation, slope, aspect, the topographic
position index (TPI), and the terrain ruggedness index (TRI).
Positive and negative TPI values represent locations that are
higher and lower, respectively, than their neighboring grid
cells (Weiss, 2001). TRI indicates the magnitude of elevation
change between neighboring grid cells (Riley et al., 1999).
We derived elevation (above mean sea level), slope, and as-
pect from LANDFIRE products (30 m resolution). We de-
rived TPI and TRI from the LANDFIRE digital elevation
model with the GDAL library in Python. The FPA FOD-
Attributes dataset includes these variables at the fire ignition
point as well as averaged across a 1 km radius around the fire
ignition point.

Existing vegetation

We used existing vegetation cover (EVC), existing vegeta-
tion height (EVH), and existing vegetation type (EVT) data
from LANDFIRE (30 m resolution) to represent vegetation
as close as possible to the point and date of fire ignition.
EVC, EVH, and EVT are available for 2001, 2012, 2014,
2016, and 2020. For each fire ignition, we used the most re-
cent prior data product. For all fires prior to 2001, we used
the 2001 product. We used the codes for vegetation variables
as in the original dataset (https://landfire.gov/vegetation.php,
last access: 16 October 2023). We also report the most fre-
quently occurring EVC, EVH, and EVT classification within
a 1 km radius around each fire ignition point.

Fire regime group

Fire regime group (FRG) characterizes the presumed histor-
ical fire regime in a given location. We report the most fre-
quently occurring FRG within a 1 km radius around each ig-
nition point, for the prior year closest to the date of ignition.
Data on FRG are available through LANDFIRE for 2001,
2012, 2014, and 2016. We used the 2001 product for all igni-
tions prior to 2001. FRG codes in FPA FOD-Attributes cor-
respond to those in LANDFIRE (https://landfire.gov/CSV/
FRG.csv, last access: 16 October 2023).

Normalized difference vegetation index (NDVI) and
enhanced vegetation index (EVI) from NASA’s MODIS
sensor

The NDVI is an index of vegetation greenness (Rouse et
al., 1974) that is closely related to primary productivity and
leaf cover. The EVI is a similar index that is generally more
accurate in regions with high vegetation biomass (Huete et
al., 2002). We obtained the NDVI and EVI from NASA’s
MOD13C2 v6.1 product (5.6 km resolution), which provides
monthly NDVI and EVI indices from 2000 to present. We de-
rived the NDVI and EVI at the point of ignition in the month
prior to the ignition date and the 11 previous months. The
FPA FOD-Attributes dataset does not include the NDVI and
EVI values for ignitions prior to 2000.

NDVI from NOAA

We also obtained the NDVI from NOAA’s daily gridded
NDVI product (5.55 km resolution), which was derived from
the Surface Reflectance Climate Data Record based on Ad-
vanced Very High Resolution Radiometer (AVHRR) and
Visible Infrared Imaging Radiometer Suite (VIIRS) images
(Vermote, 2019). We acquired the NDVI value associated
with the location of ignition on the day prior to the fire
discovery date. FPA FOD-Attributes also includes monthly
mean, maximum, and minimum NDVI for the 12 months
prior to the ignition date.

Land cover

We used the National Land Cover Database (NLCD) to de-
rive the most recent prior land cover type associated with
each point and date of fire ignition. These data are similar to
EVC, and users may opt to select one or the other. NLCD
data are available for 1992, 2001, 2004, 2006, 2008, 2011,
2013, 2016, and 2019. Land cover classes and the method
used to classify land cover from Landsat images differed be-
tween 1992 and all other years (Dewitz, 2019). The attributes
include land cover type at the point of ignition and the three
land cover types with the greatest percentage of cover within
a 1 km radius around the ignition point.

Rangeland production

The rangeland production metric quantifies annual plant
biomass production on 268 × 106 ha (662 × 106 acres) of
rangeland across the CONUS from 1984 to present at a 30 m
resolution. We derived rangeland production values at the
ignition point and within a 1 km radius around the ignition
point for the year of fire. Values of rangeland production are
only provided for ignitions within the domain of the Range-
land Production Monitoring Service (Reeves et al., 2021).
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Exotic annual and native perennial grasses

We used annual fractional cover maps (30 m resolution)
for (1) a group of 17 exotic annual grasses, (2) cheatgrass
(Bromus tectorum), (3) medusahead (Taeniatherum caput-
medusae), and (4) Sandberg bluegrass (Poa secunda) from
2016 to 2021 (USGS, 2022). These data are generated from
on-the-ground observations by the US Bureau of Land Man-
agement and application of a machine learning model to Har-
monized Landsat and Sentinel images (Dahal et al., 2022).
The FPA FOD-Attributes dataset provides the percentage
cover for each of the four abovementioned categories of
grasses on the date and for the location of ignition from 2016
to 2020, within the spatial domain of the source data (ex-
tended western US).

2.2.3 Social and economic context

We used a variety of government and academic data sources
to derive social and economic attributes associated with the
location of fire ignitions. Many of these sources are based on
the US or, in some cases, global census data.

Climate and economic justice screening tool

We used the US Council on Environmental Quality’s Cli-
mate and Economic Justice Screening Tool (CEJST) v.0 to
derive metrics associated with community-level burdens re-
lated to climate change, energy, health, housing, legacy pol-
lution, transportation, water and wastewater, and workforce
development. Because values of CEJST’s 107 variables are
currently static, we assigned values to all fire ignitions in the
entire period of record on the basis of location. CEJST is
derived from 2010 US census data, and values of variables
are available at the tract level. CEJST classifies a community
as disadvantaged if it is “(1) at or above the threshold for
one or more environmental, climate, or other burdens, and
(2) at or above the threshold for an associated socioeconomic
burden” (https://screeningtool.geoplatform.gov/, last access:
10 December 2023).

Social vulnerability index

We used the US Centers for Disease Control and Prevention’s
nested hierarchical social vulnerability index (SVI), which
provides a measure of vulnerability for each census tract in
terms of overall vulnerability, four general dimensions of
vulnerability (socioeconomic status, household composition
and disability, housing type and transportation, and minority
status and language), and 15 subdimensions of vulnerability
(e.g., income, age, minority, and no vehicles). Values of the
SVI range from 0 (low vulnerability) to 1 (high vulnerabil-
ity). SVI estimates are available for 2000, 2010, 2014, 2016,
2018, and 2020. The FPA FOD-Attributes dataset includes
the overall SVI value and values of the dimensions and sub-
dimensions of vulnerability for the location and year of each

fire ignition. We used the most recent SVI prior to the ig-
nition date. We assigned vulnerability attributes to ignitions
prior to 2000 from the 2000 SVI data.

Population density

We obtained population density and its average within a 1 km
radius around the point of ignition from the WorldPop dataset
(Tatem, 2017), which provides annual global population data
from 2000 to present at a 100 m resolution. We did not assign
a population density value to fire ignitions prior to 2000.

Gross domestic product

We derived the per capita gross domestic product (GDP) at
the location of each ignition in the most recent year prior
to the ignition date. Our global data source (Kummu et al.,
2018) provides subnational GDP per capita for 1990, 2000,
and 2015 at a 5 arcmin resolution.

Global human modification

We assigned a static global human modification (GHM) in-
dex, which indicates the cumulative human modification of
lands, to each fire ignition on the basis of its location. We
derived GHM values from data provided by the NASA So-
cioeconomic Data and Applications Center (1 km resolu-
tion at the global level), which were originally developed by
Kennedy et al. (2019).

2.2.4 Administrative

We used a variety of data sources, mostly from the US gov-
ernment, to acquire attributes associated with management.
These sources are outlined in the following.

Risk management assistance program

We used the two static, raster-formatted risk maps provided
by the Risk Management Assistance program to acquire
evacuation time from the fire ignition location to a medical
care facility and the suppression difficulty index (SDI; Silva
et al., 2020) for the fire ignition point. The SDI is a measure
of relative difficulty of fire control given topography, fuels,
expected severe weather fire behavior, firefighter line produc-
tion rates in various vegetation types, and accessibility (e.g.,
distance from roads or trails).

Fire stations

We derived the number of fire stations within a 1, 5, 10, and
20 km radius around each fire ignition point. The location of
fire stations comes from the static Homeland Infrastructure
Foundation-Level Data.

Earth Syst. Sci. Data, 16, 3045–3060, 2024 https://doi.org/10.5194/essd-16-3045-2024
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Geographic area coordination center (GACC)
preparedness level

The nine GACCs in CONUS also have preparedness levels
that are based on the regional availability of wildland fire-
fighting resources and fire activity. We obtained the GACC
preparedness level for all fire ignitions over the period from
2007 to 2020 (Nguyan et al., 2023). Data are not available
for fire ignitions prior to 2007.

National preparedness level (NPL)

The national preparedness level indicates suppression re-
source availability for emerging fires on the basis of fuel and
weather conditions, current fire activity, and resource com-
mitments; there is a single NPL reflecting the entire nation.
We acquired the NPL associated with the date of all fire ig-
nitions from the National Interagency Fire Center (NIFC).
NPLs are determined by the National Multi-Agency Coordi-
nation Group or the National Interagency Coordination Cen-
ter (NICC) daily during the fire season and are published by
NICC as a part of the daily Incident Management Situation
Report (IMSR; Nguyan et al., 2023).

Conservation status

The Gap Analysis Project (GAP) is a USGS-based program
that evaluates whether common species of plants and animals
are adequately protected and tracks the conservation status
of lands and waters nationwide. From GAP’s vector-based
static data, we obtained management jurisdiction and agency
(e.g., US Fish and Wildlife Service), land management des-
ignation (e.g., Wilderness Area, National Recreation Area),
and GAP status code and priority (extent to which conserva-
tion of biological diversity is prioritized) for all fire ignition
points.

Distance to road

We used the vector-based, static Topologically Integrated
Geographic Encoding and Referencing (TIGER) database to
derive the minimum distance (perpendicular) from the point
of fire ignition to primary, secondary, local, and other roads
as well as to all-terrain vehicle and non-motorized vehicle
trails.

3 Data validation

The FPA FOD-Attributes dataset is a derivative dataset;
hence, the accuracy, precision, and uncertainty of the fire at-
tributes reflect those of the source data. We selected reliable
source data to ensure the quality of attribute data associated
with each fire. Our validation process was focused on ensur-
ing the attributes are consistent with the source. We followed
four steps to validate our data:

1. manual comparison of attribute values for selected fires
from the source data to those in the FPA FOD-Attributes
dataset;

2. comparison of the attributes in the FPA FOD-Attributes
dataset and another published study;

3. investigation of the temporal evolution of attributes as-
sociated with selected fires and those in the FPA FOD-
Attributes dataset;

4. comparison of attributes from the FPA FOD-Attributes
dataset with those reported by the news media.

3.1 Manual comparison

We compared values of attributes of 100 randomly selected
fires that spanned the spatial and temporal domain from the
FPA FOD-Attributes dataset and manually extracted source
data in QGIS (raster- and vector-based data) or Excel (tabular
data). We assumed that manual comparison would detect any
systematic errors in the Python code used to develop the FPA
FOD-Attributes dataset. All attribute values for all selected
fire ignitions matched those of the source data.

3.2 Comparison with the literature

We compared the meteorological and fire danger indices as-
sociated with seven fires in Southern California listed in Ta-
ble S6 of Khorshidi et al. (2020) with those in the FPA FOD-
Attributes dataset. Because Khorshidi et al. (2020) also used
gridMET, we expected the two sets of values to match. With
the exception of rounding errors, values of vapor pressure
deficit (VPD), 100 and 1000 h dead-fuel moisture (FM100
and FM1000, respectively), and burning index (BI) from the
two sources matched (Fig. 1, Table S2).

3.3 Temporal evolution of fire attributes

We analyzed the temporal evolution of meteorological and
fire danger indices at the point of ignition between the fire
discovery and containment dates of seven high-impact fires
(Table S3, Figs. 2 and S1–S6) distributed across CONUS.
The FPA FOD-Attributes dataset provides these attributes
on the ignition date and in a 5 d window centered around
the ignition date. Here, we present the results for the Camp
Fire, which started on 8 November 2018, near Paradise, Cal-
ifornia. This fire claimed 85 lives and destroyed more than
18 000 structures. The Camp Fire was ignited by power trans-
mission lines in the coniferous forests of Butte County, Cal-
ifornia, and spread quickly due to strong easterly downslope
winds. The FPA FOD-Attributes dataset indicates that the
fire was ignited in an evergreen forest (NLCD classification)
and that the land cover within a 1 km radius was 50 % ev-
ergreen forest, 41 % shrub/scrub, and 6 % “developed, open
space”. The three most prevalent existing vegetation heights
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Figure 1. Comparison of values of meteorological and fire danger
indices associated with seven fires from FPA FOD-Attributes and
Khorshidi et al. (2020).

within a 1 km radius of the ignition point were 18 m (trees;
43 %), 38 m (trees; 23 %), and 0.8 m (herbaceous plants; 9 %
herb). These data match the official reports and news ac-
counts of the fire (e.g., Maranghides et al., 2021, and ref-
erences therein). The elevation of the fire ignition in the FPA
FOD-Attributes dataset, 608 m, is consistent with the downs-
lope spread of the fire from the ignition point toward the city
of Paradise (elevation 542 m).

We extracted wind velocity (VS), VPD, FM100, FM1000,
energy release component (ERC), and BI from late October
to early December 2018 at the ignition point of the Camp Fire
from gridMET and the FPA FOD-Attributes dataset. Values
of the two sets of variables matched (Fig. 2). Furthermore,
the evolution of meteorological and fire danger variables fol-
lowed the known pattern: the Camp Fire started on a windy
day (Fig. 2a, f) concurrent with dry vegetation (Fig. 2b–e),
and it was contained by the first rainstorm of the water year
on 25 November. The arrival of the storm decreased fire dan-
ger and increased fuel moisture (Fig. 2b–f).

Figures S1–S6 show the evolution of meteorological and
fire danger attributes associated with six additional fires
across the CONUS, also providing evidence of the validity
of the FPA FOD-Attributes dataset.

3.4 Comparison with media reports

We also compared the fire attributes from the FPA FOD-
Attributes dataset with media accounts of two major fires,
the Martin and East Troublesome fires. The 2018 Martin fire

Figure 2. Evolution of meteorological and fire danger indices from
late October to early December 2018 at the ignition point of the
Camp Fire. Fire discovery and containment dates are indicated
with vertical orange lines, the attribute value at the date of igni-
tion is indicated with red asterisks, and the attributes’ 5 d average
and maximum (VS, VPD, ERC, and BI) or minimum (FM100 and
FM1000) values are indicated with green and red horizontal lines.
VS: wind speed; VPD: vapor pressure deficit; ERC: energy release
component; BI: burning index; FM100/FM1000: 100/1000 h dead-
fuel moisture.

burned more than 168 680 ha of shrublands and grasslands in
Paradise Valley, Nevada. High winds and high cover of cheat-
grass are believed to have contributed to the quick spread of
this fire (Rothberg, 2018). The FPA FOD-Attributes dataset
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indicated that the prevalent land cover (derived from NLCD)
in a 1 km radius around the ignition point was shrub/scrub or
grassland/herbaceous and that the majority of existing vege-
tation height (derived from LANDFIRE) was 0.3 m (herba-
ceous), 0.2 m (herbaceous), and 0.8 m (shrubs). Furthermore,
land cover at the point of ignition included 21 % cheatgrass
and 27 % other exotic annual grasses, and daily average wind
speed was in the 70 %–90 % range of historical records for
the day of the year, which is consistent with news reports
(Rothberg, 2018). The FPA FOD-Attributes dataset indicates
an elevation of 1415 m at the point of ignition, which is com-
parable to the Paradise Valley, Nevada, elevation of 1389 m.

The 2020 East Troublesome Fire burned 78 430 ha in the
high elevations of the central Rocky Mountains of Colorado
(above 2740 m). Low relative humidity and high winds en-
abled the fire to spread rapidly through coniferous forest, kill
two people, and destroy more than 400 structures (Colorado
Encyclopedia, 2023). The FPA FOD-Attributes dataset indi-
cates that VPD and VS on the date of ignition were high rel-
ative to their historical range on the same day of the year
(80 %–90 % and > 90 %, respectively) and that the fire ig-
nited at an elevation of 2757 m. Land cover (derived from
NLCD) within a 1 km radius around the ignition point in-
cluded evergreen forest (61 %), shrub/scrub (32 %), and de-
ciduous forest (6 %). Cheatgrass is uncommon at such high
elevations, and the FPA FOD-Attributes dataset did not as-
sign any cheatgrass cover to the ignition point. These metrics
are consistent with the news records.

4 Illustrative analysis

Trends and interannual variability in the number of wild-
fires are apparent over the 1992–2020 time period cov-
ered by the FPA FOD dataset. Human-caused fires in-
creased, whereas lightning-ignited (hereafter “natural”) fires
decreased (Fig. 3). Interannual variability in fire ignitions
is partially explained by seasonal climate and weather con-
ditions, for example, modulated through fuel receptiveness
to ignitions and abundance of outdoor activities (Noonan-
Wright et al., 2011; Finney et al., 2011). Trends are mainly
attributable to fire prevention strategies and climatic changes
(e.g., increases in the number of critical fire danger days)
(Noonan-Wright et al., 2011; Khorshidi et al., 2020; Al-
izadeh et al., 2023). Importantly, fire ignitions have tempo-
ral and spatial structures, enabling the development of tar-
geted fire prevention and response strategies (Douglas et
al., 2001). Figure 4, for example, shows a clear spatial pat-
tern in both human-caused and natural ignitions across the
CONUS. Human-caused fires are close to human settlements
and roads (which can be partially explained by reporting
biases; Fig. 4a), whereas natural fires are associated with
mountains in the western CONUS (Fig. 4b). Figures S7–S19
display the spatial distribution of ignitions associated with

Figure 3. Trends in the annual number of natural (denoted in black)
and human-caused (denoted in red) fires in the contiguous US from
1992 to 2020.

Figure 4. Spatial distribution of human-caused and natural fire ig-
nitions in the contiguous US from 1992 to 2020. Bars on the x and
y axes are histograms of the longitudinal and latitudinal of ignitions,
respectively.

13 specific fire causes (natural and subcategories of human-
caused fires).

We also visualized selected attributes associated with
CONUS fires. Figure 5 shows the total number of fires from
1992 to 2020 in 0.5° grids across CONUS. We differentiated
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Figure 5. Number of fires (a) less than 4 ha (10 acres) and
(b) greater than or equal to 4 ha in 0.5° grid cells.

between small fires (less than 4 ha) and large fires (greater
than or equal to 4 ha). A total of 89 % percent of fires were
smaller than 4 ha, 59 % percent of all fires were smaller than
0.4 ha, and 97 % were smaller than 40 ha, with the latter
two values accounting for 0.08 % and 2.28 % of total burned
area across CONUS, respectively. The number of small fires
(< 4 ha) in the eastern US and California was greater than
that elsewhere in the western US (Fig. 5a). The number of
fires larger than 4 ha, however, was markedly greater in the
western US, the Southern Great Plains, and Florida (Fig. 5b).

Small fires were associated with an average population
density (2.35 people ha−1; Fig. 6a) that was an order of mag-
nitude greater than that associated with large fires (0.24 peo-
ple ha−1; Fig. 6b). Fires in California, the Front Range of
Colorado, and Florida were associated with especially high
population densities. In California, for example, small and
large fires were associated with population densities of 3.88
and 1.04 people ha−1, respectively. Furthermore, the popu-
lation density associated with human-caused fires was more
than 4 times greater than that associated with natural fires
(2.03 and 0.47 people ha−1, respectively).

Consistent with topography across CONUS, the average
elevation of fires west of −102° longitude was 2146 m, com-
pared with 1194 m to the east. The average elevations of

Figure 6. Average population density (people per hectare) associ-
ated with fires that burned less than 4 ha (a) and more than or equal
to 4 ha (b) in each 0.5° grid cell.

the ignition points of natural fires were markedly higher
(1863 m) than those of human-caused fires (571 m).

Values of several attributes of fires varied along a longi-
tudinal gradient across CONUS (Figs. 7, 8). For example,
the ERC and minimum distance to the nearest road were
markedly greater in the western US than in the eastern US.
Human-caused fires were associated with a greater ERC (60
in the western and 34 in the eastern US) than natural fires
(56 in the western and 29 in the eastern US). The mini-
mum distance to the nearest road was much lower in the
eastern compared with the western US, which is consistent
with the eastern US’s higher road density and percentage of
human-caused fires. Minimum distance to the nearest road
did not differ markedly between natural and human-caused
fires (Fig. 7b), which likely reflects a reporting bias.

The elevation and slope associated with natural fires were
higher than those of fires ignited by human causes (Fig. 8b,
d). Natural fires were also associated with a lower population
density, normalized difference vegetation index, and global
human modification index than fires ignited by human causes
(Fig. 8e, f). Differences in the overall social vulnerability
and gross domestic product associated with the ignition lo-
cations of human-caused and natural fires were less notice-
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Figure 7. Box plots of (a) the energy release component (ERC,
fire danger index) and (b) minimum distance to the nearest road
associated with human-caused and natural fires in the eastern and
western US.

able (Fig. 8a, c), partly driven by the spatial resolution of the
source data (Table 1).

5 Data availability

The FPA FOD-Attributes dataset, for 1992–
2020 and for individual years, is available from
https://doi.org/10.5281/zenodo.8381129 (Pourmohamad
et al., 2023) The dataset can be visualized and downloaded
through https://fpafod.boisestate.edu (Boise State University,
2024). Source data used to develop FPA FOD-Attributes are
listed in Table S1.

6 Code availability

All codes that compiled FPA FOD-Attributes were
developed in Python and are available from the
FPA FOD-Attributes GitHub repository: https:
//github.com/YavarPourmohamad/FPA-FOD.git (last access:
26 June 2024) and https://doi.org/10.5281/zenodo.8381129
(Pourmohamad et al., 2023).

7 Discussion

Critical analysis of past fire occurrences and assessment of
the success of prevention and mitigation strategies are key for
improving fire planning, response, adaptation, and mitigation
(Show and Kotok, 1923; Short, 2014). Improved understand-
ing of the causes and impacts of fires is needed to prioritize
cost-effective mitigation and limit adverse fire impacts (Bar-
ros et al., 2021; Houtman et al., 2013; Santos et al., 2023).
Scientific advances in the support of fire management require
comprehensive, easily accessible data that harmonize fire oc-
currence data with potential covariates, causal factors, and
associated impacts. Importantly, by integrating variables that
represent a range of biological, physical, and social factors,
the FPA FOD-Attributes dataset facilitates research that con-
siders fire in the context of social–ecological–technological
systems (Iglesias et al., 2022; Shuman et al., 2022).

The FPA FOD-Attributes dataset includes 310 biologi-
cal, physical, social, and administrative attributes associated
with more than 2.3 × 106 fire records from 1992 to 2020
across the US. These attributes can be used for hypothesis
testing and incorporation into artificial intelligence and ma-
chine learning (AI–ML) models that explain drivers of past
fires or project likelihoods or effects of future fires. We rec-
ommend that future users carefully select variables among
the wealth of information provided in FPA FOD-Attributes.
Specifically for AI–ML modeling, variables have substan-
tial overlap and correlation, which need to be addressed. The
FPA FOD-Attributes dataset potentially could be integrated
with satellite detection of fire starts. Satellites have been in-
creasingly used to identify new fire starts, enabling rapid
deployment of suppression resources (Weaver et al., 2004;
Chuvieco et al., 2020). Satellite detection could be compared
with the FPA FOD-Attributes dataset to identify ignitions
with the potential to become destructive, given the surround-
ing conditions. This information could help prioritize the de-
ployment of limited suppression resources (Roberto Barbosa
et al., 2010; Mazzeo et al., 2022). The FPA FOD-Attributes
dataset also could be used in collaborative planning of for-
est restoration or fuel treatments. In cases where ideas about
prioritization of resources and assets for fire prevention ef-
forts conflict (Butler et al., 2015), robust scientific data such
as the FPA FOD-Attribute dataset can help facilitate a con-
sensus (Colavito, 2017).

A rigorous quality assurance and quality check (QA/QC)
process was applied to the original FPA FOD dataset, but
some uncertainties remain. For example, some smaller fires
are overseen by local jurisdictions that may not have report-
ing standards as strict as those of federal firefighting agen-
cies (Short, 2014). The QA process checks for duplicate fire
records, but it is possible that some duplicates remain due to
the potential for multiple responding agencies to record dif-
ferent information on the same fire. There is also uncertainty
associated with reported ignition locations. As a prerequi-
site for inclusion in the FPA FOD, a fire record’s geographic
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Figure 8. Distribution of the (a) overall social vulnerability index, (b) elevation, (c) gross domestic product, (d) slope, (e) global human
modification index, (f) population density, and (g) normalized difference vegetation index (1 d prior to ignition date) for fires ignited by
natural and human causes.
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location must be at least as precise as a Public Land Sur-
vey System section, which covers 1 square mile (2.6 km2).
In addition, the locations of many smaller fires overseen by
local jurisdictions may reflect the reporting location rather
than the ignition location. For a full description of the fire
selection process for the FPA FOD and potential uncertainty,
see Short (2014). The FPA FOD-Attributes dataset does not
provide details about large fire growth days that may have
occurred days to weeks from the ignition date, and inter-
ested readers are encouraged to pair this dataset with the All-
hazards dataset of St. Denis et al. (2023) for studies that focus
on fire growth rates and intense fire behavior. Furthermore,
the current version of FPA FOD-Attributes dataset does not
directly support analysis of secondary fire impacts, such as
wildfire emissions and smoke that impact downwind com-
munities (Fowler et al., 2019).

Human ignition processes and wildfire impacts are prime
areas for extensive new research, and the FPA FOD-
Attributes dataset is an initial effort to facilitate such knowl-
edge development. The FPA FOD-Attributes dataset also
merits refinements and additions that would further enhance
its utility. For example, some of the socioeconomic variables
(GDP and population) are based on coarse-scale information
gathered through international efforts; thus, using finer-scale
data may enhance the accuracy of the fire attributes. Addi-
tional economic data to include in future versions may cover
personal income and the workforce, also available at sub-
state levels from the US Department of Commerce. Refined
and expanded data could allow for more direct inferences
that connect human-caused ignition processes to fire activ-
ity (e.g., Prestemon and Butry, 2005; Aldersley et al., 2011;
Abt et al., 2015).

Although the entire FPA FOD-Attributes dataset is avail-
able in CSV format, the file is large (over 4 GB). Therefore,
advanced computing resources are necessary to work with
the data. To obtain a data file that is a more manageable size,
the dataset can be filtered by attributes, time period, or loca-
tions from the web portal (https://fpafod.boisestate.edu/, last
access: 16 October 2023) prior to the download.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-3045-2024-supplement.
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