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Abstract. Constructing a highly resolved comprehensive emission dataset for China is challenging due to lim-
ited availability of refined information for parameters in a unified bottom-up framework. Here, by developing
an integrated modeling framework, we harmonized multi-source heterogeneous data, including several up-to-
date emission inventories at national and regional scales and for key species and sources in China to gener-
ate a 0.1° resolution inventory for 2017. By source mapping, species mapping, temporal disaggregation, spa-
tial allocation, and spatial–temporal coupling, different emission inventories are normalized in terms of source
categories, chemical species, and spatiotemporal resolutions. This achieves the coupling of multi-scale, high-
resolution emission inventories with the Multi-resolution Emission Inventory for China (MEIC), forming the
high-resolution INTegrated emission inventory of Air pollutants for China (INTAC). We find that INTAC pro-
vides more accurate representations for emission magnitudes and spatiotemporal patterns. In 2017, China’s emis-
sions of sulfur dioxide (SO2), nitrous oxides (NOx), carbon monoxide (CO), non-methane volatile organic com-
pounds (NMVOCs), ammonia (NH3), PM10 and PM2.5 (particulate matter), black carbon (BC), and organic
carbon (OC) were 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3, and 2.2 Tg, respectively. The proportion of point
source emissions for SO2, PM10, NOx , and PM2.5 increases from 7 %–19 % in MEIC to 48 %–66 % in IN-
TAC, resulting in improved spatial accuracy, especially mitigating overestimations in densely populated areas.
Compared with MEIC, INTAC reduces mean biases in simulated concentrations of major air pollutants by 2–
14 µgm−3 across 74 cities, compared against ground observations. The enhanced model performance by INTAC
is particularly evident at finer-grid resolutions. Our new dataset is accessible at http://meicmodel.org.cn/intac
(last access: 15 April 2024) and https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024), and it will provide
a solid data foundation for fine-scale atmospheric research and air-quality improvement.
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1 Introduction

In recent years China has achieved remarkable progress in
improving air quality and public health through the active
implementation of clean-air policies (Liu et al., 2020; Xiao
et al., 2022; Zhang and Geng, 2019; Q. Zhang et al., 2019).
To further unlock the potential of targeted clean-air actions,
there is an urgent need for an accurate and detailed depiction
of emissions encompassing their magnitudes and spatial–
temporal patterns. Developing a reliable, highly resolved
emission inventory for China is also crucial for studies of
atmospheric chemistry and climate change (Cheng et al.,
2021a; Geng et al., 2021; Q. Zhang et al., 2019).

The construction of high-resolution emission inventories
for China poses significant challenges due to the diversity
and complexity of emission sources and technology distribu-
tions. Additionally, the limited availability of localized mea-
surements for emission factors (EFs) and source profiles,
along with the exact locations of the emission facilities, fur-
ther compounds the difficulties (Li et al., 2017a). The widely
used bottom-up approach involves the establishment of a uni-
fied framework that encompasses source categories, chemi-
cal speciation processes, spatial–temporal allocation profiles,
and emission estimation methods (An et al., 2021; Huang
et al., 2021). However, achieving both wide coverage and
high accuracy in compiling an emission inventory for China
through this approach remains a formidable task for individ-
ual research institutions.

Comprehensive national-scale emission inventories devel-
oped using the unified framework typically provide extensive
coverage of space, species, and sectors (Li et al., 2017a; S. Li
et al., 2023) but tend to exhibit limitations in spatial accuracy
(Wu et al., 2021; Zhao et al., 2015; Zheng et al., 2021; Zhou
et al., 2017b). Previous studies have indicated that the spatial
allocation in large-scale emission inventories relies on spa-
tial proxies (e.g., population and road networks), rather than
latitude–longitude coordinates of emission sources, due to
the unavailability of extensive spatial information (Li et al.,
2017b; Zhang et al., 2009). The assumption of a linear cor-
relation between emissions and spatial proxies might lead to
an overestimation of emissions in urban areas especially at
resolutions finer than 0.25° (Wu et al., 2021; Zheng et al.,
2021, 2017). Biases introduced by the proxy-based method
are found to be propagated as the grid size diminishes, result-
ing in uncertainties for chemical transport models (CTMs)
(Zheng et al., 2021, 2017).

Emission inventories focused on a specific region (An
et al., 2021; Huang et al., 2021; Liu et al., 2018), sector (Chen
et al., 2016; Deng et al., 2020; Zhou et al., 2017a), or key
species (Huang et al., 2012b; Li et al., 2021; Wang et al.,
2023) under the aforementioned unified framework demon-
strate enhanced accuracy but fail to achieve comprehen-
sive coverage. These inventories assimilate substantial de-

tailed foundational data from various statistical datasets, on-
site measurements, or surveys to represent real-world emis-
sion magnitudes, including energy consumption, removal ef-
ficiencies, and localized speciation profile (An et al., 2021;
Huang et al., 2021; Liu et al., 2018). Innovative data, such
as measurements from continuous emission monitoring sys-
tems (Bo et al., 2021; Tang et al., 2023; Wu et al., 2022),
or methodologies like process-based models (Kang et al.,
2016; Zhao et al., 2020), are implemented to enable a more
accurate characterization of complex emission dynamics.
Facility-level geographical location is incorporated to opti-
mize the representation of spatial patterns (F. Liu et al., 2015;
Wang et al., 2019; Wu et al., 2023). The reliability of these
local-scale, sector-specific, or species-specified inventories
has been validated against satellite and ground-based mea-
surements (F. Liu et al., 2016; Zhang et al., 2021; Zheng
et al., 2019).

The other strategy for developing bottom-up emission in-
ventories is commonly known as the integrated method. This
method consolidates multiple emission datasets for specific
regions, species, or sectors into a unified product ensuring
extensive representation (Li et al., 2017b). Taking advantage
of existing inventories derived from localized data and ad-
vanced methods, the integrated method facilitates the effi-
cient generation of highly resolved emission inventories at
large scales. However, the heterogeneity of different emis-
sion datasets presents challenges for the fusion, which are
manifested in diverse data formats, sector categories, species,
and spatial–temporal resolution. In recent years, there has
been growing interest in adopting the integrated approach
to enrich inventories with local insights, particularly at the
global (Crippa et al., 2023; Janssens-Maenhout et al., 2015)
and Asian scales (Kurokawa et al., 2013; M. Li et al., 2024;
Li et al., 2017b; Zhang et al., 2009). Research on establishing
integrated inventories for China is constrained due to the in-
herent complexity and challenging accessibility of the data.
These efforts are concentrated in specific regions such as the
Yangtze River Delta (YRD) (An et al., 2021).

In this work, with the support of several research insti-
tutions, we use an emission integration model to construct
a high-resolution integrated emission inventory at a spatial
resolution of 0.1° for China in 2017, denoted as INTAC (IN-
Tegrated emission inventory of Air pollutants for China).
The challenges associated with coupling multi-source het-
erogeneous data are addressed through the implementation
of an inventory integration framework. Then, leveraging the
strengths of inventories enriched with local knowledge, we
compile a comprehensive, highly resolved emission product
to enhance the accurate representation of emissions from cru-
cial regions, sectors, and species. Finally, the improved accu-
racy of emission magnitude and spatial distribution is evalu-
ated using atmospheric chemistry models.
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Figure 1. Methodology framework of INTAC development.

2 Methodology and data

Figure 1 schematically illustrates the integration process of
INTAC. We collect seven emission inventories: the Multi-
resolution Emission Inventory for China (MEIC) developed
by Tsinghua University (Li et al., 2017a; Zheng et al., 2018),
the industrial point source emission inventory for China by
the MEIC team (Zheng et al., 2021; Zheng et al., 2017),
the YRD air pollutant emission inventory led by Nanjing
University (An et al., 2021; Zhou et al., 2017b), the Pearl
River Delta (PRD) emission inventory by Jinan University
(Huang et al., 2021; Sha et al., 2021), the open biomass
burning emission inventory in China by Peking University
(Huang et al., 2012a; M. Liu et al., 2015; Song et al., 2009;
Yin et al., 2019), the shipping emission inventory in East
Asia by Tsinghua University (H. Liu et al., 2016; Liu et al.,
2019), and the high-resolution ammonia emission inventory
in China (PKU-NH3) by Peking University (Huang et al.,
2012b; Kang et al., 2016). The details of these inventories
and the rationale for choosing them will be described in
Sect. 2.1.

An integration model is then established to merge emis-
sion inventories which have different sectors, species,
spatial–temporal resolutions, and formats (i.e., point, area,
and gridded forms). The integration process consists of five
steps: source mapping, species mapping, temporal disaggre-
gation, spatial allocation, and spatial–temporal coupling, as
detailed in Sect. 2.2. Based on the priority order, multi-
source emission inventories are assembled at the standard-
ized species, sector, and grid levels, yielding a standardized
data cube. Ultimately, the integrated emission inventory IN-
TAC was created for China, featuring a resolution of 0.1° on
a monthly scale and covering nine air pollutants: sulfur diox-
ide (SO2), nitrogen oxides (NOx), carbon monoxide (CO),

non-methane volatile organic compounds (NMVOCs), am-
monia (NH3), PM10 and PM2.5 (particulate matter), black
carbon (BC), and organic carbon (OC).

2.1 Components of the integrated emission inventory
INTAC

Table 1 lists the essential details about the seven invento-
ries and priority order utilized for integration. Given MEIC’s
extensive coverage across species, sectors, and spatial do-
mains, it functions as the default inventory in our integration,
supplementing the missing data in other inventories. The re-
maining six inventories can be categorized into three types
in sequence: point-source-based inventory (ranked sixth), re-
gional inventories (ranked fifth and fourth), and process-
based inventories (ranked third to first). The point-source-
based inventory can directly correct the spatial misalloca-
tion of industrial emissions in MEIC at fine resolutions
(Zheng et al., 2021, 2017). The regional inventories further
enhance local investigations of individual emission sources
and simultaneously refine estimation methods for mobile
and area sources (Gu et al., 2023; Zhao et al., 2018; Zhou
et al., 2017b). Process-based inventories typically adopt ad-
vanced methods to improve the characterization for emis-
sion processes and parameters specific to particular sectors
or species, thereby providing emission totals and distribu-
tions that are more in line with measurements (Huang et al.,
2012a, 2012b; Kang et al., 2016; H. Liu et al., 2016; Liu
et al., 2019; M. Liu et al., 2015; Song et al., 2009; Yin et al.,
2019).

2.1.1 MEIC

The integrated inventory INTAC is built upon MEIC, a com-
prehensive database with extensive coverage across time pe-
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Table 1. List of emission inventories collected in this work.

Priority
ranking

Emission inventory and developer Year Resolution Region Resolution Species

1 PKU-NH3
(Peking University)

1980–2017 Monthly Mainland China 0.1° NH3

2 The shipping emission inventory
for East Asia
(Tsinghua University)

2017 Annually East Asia 0.1° SO2/NOx /CO/NMVOC/
PM2.5/BC/OC

3 The open biomass burning emission
inventory for China
(Peking University)

1980–2017 Daily Mainland China ∼ 1 km SO2/NOx /CO/NMVOC/
NH3/PM10/PM2.5/BC/OC

4 The PRD emission inventory
(Jinan University)

2017 Monthly PRD 0.05° SO2/NOx /CO/NMVOC/
NH3/PM10/PM2.5/BC/OC

5 The YRD emission inventory
(Nanjing University/Shanghai
Academy of Environmental
Sciences/Jiangsu Provincial
Academy of Environmental
Science)

2017 Annually YRD 0.1° SO2/NOx /CO/NMVOC/
NH3/PM10/PM2.5/BC/OC

6 The industrial point source
emission inventory for China
(Tsinghua University)

2012–2018 Monthly Mainland China ∼ 1 km SO2/NOx /CO/NMVOC/
NH3/PM10/PM2.5/BC/OC

7 MEICv1.3
(Tsinghua University)

2008–2017 Monthly Mainland China 0.25° SO2/NOx /CO/NMVOC/
NH3/PM10/PM2.5/BC/OC

riods, space, species, and sectors. Developed by Tsinghua
University since 2010 (http://meicmodel.org.cn, last access:
15 December 2022) (Li et al., 2017a; Zheng et al., 2018),
MEIC provides monthly emissions for air pollutants and
CO2 in China from 1990 to the present at a resolution of
0.25°× 0.25°. It caters to the demand for timely and ac-
curate estimates of atmospheric emissions and has gained
widespread adoption by both domestic and international re-
search institutions. We use 2017 emissions from MEICv1.3
in this study.

MEIC employs several strategies to improve emission
estimation parameters. This includes categorizing emission
sources across ∼ 800 sectors, utilizing a technology- and
big-data-driven approach for dynamic emission characteri-
zation, and employing a localized emission factor database
(Li et al., 2017a; Zheng et al., 2018). Emission estimates
for power, on-road, and residential sources are enhanced
through the use of unit-level data (F. Liu et al., 2015), county-
level emission estimates (Zheng et al., 2014), and integration
of extensive household surveys (Peng et al., 2019), respec-
tively. MEIC builds a database encompassing temporal allo-
cation profiles (ranging from yearly to monthly, daily, and
hourly) (Li et al., 2017b), spatial allocation proxies (from
province to county and further to grids) (Geng et al., 2017; Li
et al., 2017b; Zheng et al., 2017), and a speciation framework
for NMVOCs involving five mechanisms (CB-IV, CB05,
SAPRC-07, SAPRC-99, and RADM2) (Li et al., 2014) to
support the development of model-ready gridded emissions.

Among the seven inventories, MEIC has the lowest prior-
ity and is only considered when the other six cannot provide
the necessary emissions for a specific city and source.

2.1.2 The industrial point source emission inventory for
China

The proxy-based method used for spatial allocation in MEIC
introduces biases in emission mapping, especially at the kilo-
meter scale (Zheng et al., 2021, 2017). To significantly re-
duce the uncertainty, we merged an industrial emission in-
ventory with detailed information on∼ 100 000 facilities into
INTAC.

Compiled by the MEIC team at Tsinghua University for
the year 2013 (Zheng et al., 2021) and updated by them for
2017, this point-based inventory combines three databases
investigated under the guidance of the Chinese government,
offering a comprehensive overview of industrial facilities. It
includes details on the locations, activity rates, production
technology, end-of-pipe pollution control devices, and other
parameters. It is worth noting that the facility-level activity
data were corrected using provincial activity data from MEIC
as a total constraint to ensure consistency with national to-
tals from statistics (Zheng et al., 2021). The facility-level,
technology-based approach allows for dynamic tracking of
emission fluctuations resulting from technological advance-
ments and tightening emission regulations. Crucially, the use
of facility geolocations, rather than relying on spatial prox-
ies like urban population, enables the derivation of gridded
industrial data at a resolution of ∼ 1 km. This approach sig-
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nificantly avoids misallocating emissions from rural to urban
areas at fine grids, as supported by previous studies demon-
strating its effectiveness in mitigating simulated biases in
air pollutant concentrations within densely populated regions
(e.g., Zheng et al., 2021). For temporal variations it employs
the same monthly profiles as MEIC, including the production
of various industrial goods or gross domestic product (GDP),
as outlined in Li et al. (2017b). The NMVOC speciation also
aligns with the MEIC model. This inventory takes priority
over MEIC, indicating that only few industrial sources not
covered in this inventory are substituted with MEIC.

2.1.3 The YRD air pollutant emission inventory

Regional emission inventories within YRD provide a more
accurate representation of emissions compared with the
national-scale MEIC, as proven by ground and satellite ob-
servations (Yang and Zhao, 2019; Zhang et al., 2021; Zhao
et al., 2017a, 2018, 2020; Zhou et al., 2017b). This im-
provement is attributed to the avoidance of outdated or non-
localized emission calculation parameters commonly present
in large-scale inventories like MEIC. Here, we merge the
2017 YRD air pollutant emission inventory into INTAC to
achieve state-of-the-art estimates for rapidly changing emis-
sions over this core area (An et al., 2021; Gu et al., 2023;
Zhou et al., 2017b).

Localized field surveys and measurements greatly enhance
the reliability of calculation parameters within the YRD in-
ventory. Highly resolved emissions for the power sector are
acquired through on-site monitoring with high temporal res-
olution (Y. Zhang et al., 2019), rather than relying on static
and outdated average emission factors. Facility-level infor-
mation (e.g., the removal efficiencies) obtained from local
investigation and a segment-based industrial process method
enhances the understanding of both the quantity and spatial
patterns of industrial emissions. Considering meteorological
factors and land use conditions during agricultural processes
results in more accurate seasonal and spatial distributions of
NH3 emissions. (Zhao et al., 2020). An investigation of in-
use machinery is conducted to capture the seasonal emission
patterns from off-road machines (Zhang et al., 2020). Real-
world surveys are performed to determine grain straw ratios
and household burning proportions, facilitating the quantifi-
cation of emissions from biomass-fueled stoves. The PM2.5
and NMVOC speciation profiles are updated based on multi-
instrument sampling and analysis in both current and previ-
ous studies (Huang et al., 2018; Zhao et al., 2017a), satis-
fying the need for simulating PM2.5 chemical components
and O3. The YRD inventory is collected with a spatial res-
olution of 0.1° and an annually temporal resolution in this
study. Only CB05 volatile organic compound (VOC) species
are collected.

2.1.4 The PRD emission inventory

The regional emission inventories within the PRD region
have demonstrated enhanced reliability compared with previ-
ous studies (Huang et al., 2021; Sha et al., 2021; Zheng et al.,
2012). The PRD emission inventory developed by Jinan Uni-
versity captures spatial and temporal variations within the
PRD region under emission control policies, serving as a
foundation for supporting air-quality modeling (Huang et al.,
2021; Sha et al., 2021).

The PRD inventory exhibits notable accuracy improve-
ments achieved by means of big-data-driven estimation
methods, updated spatial–temporal allocations, and localized
NMVOC speciation profiles. Gridded hourly open biomass
burning emissions are quantified by fusing the fire radiative
power data from three satellites, and hourly shipping emis-
sions are estimated using high-frequency automatic identifi-
cation system (AIS) records. A total of 31 monthly profiles
and 10 spatial proxies are updated to reflect spatial–temporal
patterns of emissions influenced by economic growth and
energy consumption structural adjustment. Approximately
90 % of industrial emissions are disaggregated using ex-
act locations, and novel proxies (e.g., farmland produc-
tion potential) have been developed for several sectors. The
NMVOC speciation is carried out through extensive local-
ized measurements and literature reviews, manifested as a
collection of 480 NMVOC source profiles across eight sec-
tors and 380 species. The species relevant to the SAPRC-07
chemical mechanism are collected in this work. Additionally,
the inventory encompasses 800 source categories, placing
particular emphasis on incorporating new sectors relevant to
VOC emissions. Activity rates are improved by utilizing ex-
tensive field surveys and data mining efforts involving inves-
tigations of production data for 10 000 industrial plants and
the gathering of activity-relevant information for 50 million
vehicles. Emission factors that reflect the local context are
obtained or revised based on source measurements and the
latest research findings. These updates help mitigate uncer-
tainties in emission estimates for the PRD region. The PRD
inventory is initially collected at a monthly resolution and
a spatial resolution of 0.05°, with detailed spatial–temporal
allocation proxies as outlined in Huang et al. (2021).

2.1.5 The open biomass burning emission inventory in
China

As a significant source of CO2, BC, OC, and other pollutants,
open biomass burning profoundly influences air quality, cli-
mate change, and human health (Reisen et al., 2013). A case
study in summer 2011 for the YRD region revealed that dur-
ing a severe haze episode, open biomass burning contributed
to 37 %, 70 %, and 61 % of PM2.5, OC, and elemental car-
bon (EC) emissions, respectively (Cheng et al., 2014). To
address the absence of this source in MEIC, we integrate a
high-resolution open biomass burning emission inventory by
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Peking University into INTAC (Huang et al., 2012a; M. Liu
et al., 2015; Song et al., 2009; Yin et al., 2019).

The inventory applies satellite observations to tackle con-
siderable uncertainties associated with provincial statistical
data and overcome the coarse resolution found in previous
studies (Ni et al., 2015). The estimation of biomass con-
sumption in the inventory is based on the fire radiative en-
ergy (FRE) approach, which depends on the energy emitted
by fires. This approach helps reduce the biases introduced
by burned-area algorithms, especially for small-scale fires.
The inventory utilizes the high-spatial-resolution land cover
dataset GlobeLand30 derived from multi-spectral images to
classify biomass fuel types. Eventually, daily emissions from
forest, grassland, cropland, and shrubland are calculated at
a 1 km resolution. The reasonableness is validated by com-
paring with other datasets such as the fourth version of the
Global Fire Emissions Database (GFED). The initially col-
lected inventory lacks model-ready VOC species.

2.1.6 The shipping emission inventory in East Asia

In recent years, maritime trade in the East Asian region has
significantly increased (United Nations Conference on Trade
and Development (UNCTAD), 2014), resulting in a surge in
shipping emissions with substantial impacts on air quality
and climate. Previous studies have indicated that East Asian
shipping emissions accounted for 16 % of the global total in
2013. Shipping emissions made a growing contribution to the
rise in annual mean PM2.5 concentrations, reaching levels as
high as 5.2 µgm−3 in 2015 (Lv et al., 2018). To address the
omission of this emission source in MEIC, we integrate the
shipping emission inventory in East Asia for 2017 into IN-
TAC (H. Liu et al., 2016; Liu et al., 2019).

The inventory introduces an innovative approach based
on comprehensive and dynamic ship activity data. A static
dataset of approximately 66 000 vessels is compiled as a
foundation, using information from Lloyd’s Register and the
China Classification Society. This dataset encompasses var-
ious ship properties including ship category, hull shape, en-
gine rotational speed, engine capacity, maximum speed ca-
pability, and build year. High-quality AIS data are used to
capture ship activities, incorporating the Maritime Mobile
Service Identification identifier, geographical location, real-
time speed, and time-related information. The AIS data are
also employed to generate gridded emissions from shipping
at a spatial resolution of 0.1°. The inventory enhances our
comprehension of regional-level shipping emissions and sig-
nificantly alleviates biases arising from the misallocation of
marine fuels, as observed in global studies (Endresen et al.,
2007). The collected shipping inventory provides emissions
at an annual resolution for seven species including SO2,
NOx , CO, NMVOC, PM2.5, BC, and OC.

2.1.7 PKU-NH3

As a prominent alkaline component in the atmosphere, am-
monia plays a crucial role in atmospheric chemistry and also
terrestrial and aquatic ecosystems through its participation in
atmospheric reactions and deposition processes. This study
integrates PKU-NH3, a high-resolution ammonia emission
inventory for China developed by Peking University. PKU-
NH3 is designed to track the evolution of NH3 emissions
amid the rapid increase in grain and meat production in China
over the past few decades (Huang et al., 2012b; Kang et al.,
2016). This inventory offers a better grasp on NH3 emissions
in China through the application of a process-based method
and more reliable emission factors, in contrast to previous
studies (Kurokawa et al., 2013; Li et al., 2017b). Top-down
NH3 inversion through satellite observations provides addi-
tional validation for the accuracy of PKU-NH3 (Paulot et al.,
2014).

Earlier studies of NH3 emissions commonly used fixed
EFs, overlooked some ammonia emission sources, and had
coarse resolutions (Ohara et al., 2007; Streets et al., 2003).
Unlike previous approaches, PKU-NH3 incorporates dy-
namic and multifactorial EFs and more comprehensive emis-
sions sources. The determination of emission factors takes
into account various parameters related to local conditions
and agricultural practices. When estimating NH3 emissions
of synthetic fertilizer application, the model considers five
types of fertilizers and factors such as soil acidity, ambi-
ent temperature, fertilizer application technique and dosage,
wind speed, and in situ measurements of NH3 flux. For live-
stock waste, NH3 emissions are calculated using a mass-flow
approach across four phases of manure management, con-
sidering variables such as animal rearing types, temperature,
and wind speed. In addition, NH3 emissions from other small
sources are quantified, including agricultural soil, nitrogen-
fixing crops, crop residue compost, excretion of rural popu-
lations, open biomass burning, waste disposal, gasoline vehi-
cles, diesel vehicles, and industrial processes. The NH3 emis-
sions are allocated from provinces into 0.1° grids based on
spatial proxies such as land cover, rural population, and other
relevant indicators. Monthly emission factors shaped by me-
teorological conditions are used to calculate NH3 emissions
from fertilizer application and livestock source at a monthly
level.

2.2 The integration of multi-source heterogeneous data

In the integration process, seven heterogeneous inventories
are first normalized in terms of emission sources, species,
and spatial–temporal resolutions, and then they are integrated
following a priority order to produce a standardized, highly
resolved data cube.

Earth Syst. Sci. Data, 16, 2893–2915, 2024 https://doi.org/10.5194/essd-16-2893-2024



N. Wu et al.: Development of a high-resolution integrated emission inventory of air pollutants for China 2899

2.2.1 Source mapping

To merge inventories under a unified emission source clas-
sification system, the emission sources in the MEIC model
are categorized into 88 standard sectors for mapping (Ta-
ble S1 in the Supplement). The first-level category com-
prises 10 subcategories, namely, stationary combustion, in-
dustrial process, mobile source, solvent use, agriculture, dust,
biomass burning, storage and transportation, waste treat-
ment, and other sources. These subcategories are then fur-
ther subdivided into 88 second-level sources, which take in-
dustrial classification for national economic activities for ref-
erence. For example, the industrial process sector encom-
passes emission sources such as the manufacturing of non-
metallic mineral products, manufacturing of chemical fibers,
manufacturing of foods, and smelting and pressing of ferrous
metals. In the initial step of integration, the sectors in each
emission inventory are mapped to the standardized two-level
sources.

2.2.2 Species mapping

In the next step, non-methane volatile organic compounds
(NMVOCs), particulate matter (PM), and NOx in each in-
ventory are converted into model-ready species to support
CTMs. The species mapping process is grounded in the
chemical species mapping methods in the MEIC model (Li
et al., 2017b, 2014). The model supports aerosol chemi-
cal schemes such as AER05 and AER06. NOx emissions
are allocated to NO and NO2 emissions based on ground
observations. The step-by-step NMVOC speciation frame-
work developed in Li et al. (2014) is employed to generate
emissions for various gas-phase chemical mechanisms com-
monly used in CTMs, including CB-IV, CB05, SAPRC-07,
SAPRC-99, and RADM2. The framework incorporates an
explicit-assignment approach and updated profiles based on
both local measurements and the SPECIATE database v.4.5.
The sources abundant with oxygenated volatile organic com-
pounds (OVOCs) are identified, and the incomplete pro-
files with missing OVOC fractions are corrected. The accu-
rate speciation mapping helps reduce uncertainties in model-
ready emissions. For inventories providing speciated VOC
emissions for certain mechanisms (e.g., the YRD inventory
for CB05 and the PRD inventory for SAPRC-07), we use
their emissions directly, or alternatively, we utilize MEIC’s
speciation framework to generate model species for the five
chemical mechanisms.

2.2.3 Temporal disaggregation

The seven emission inventories are collected at different tem-
poral resolutions (Table 1) and need to be temporally al-
located to a unified monthly scale for integration. Monthly
emissions from PKU-NH3, the PRD inventory, the indus-
trial point source inventory, and MEIC can be directly
used for data merge. Daily-level emissions from the open

biomass burning inventory are aggregated to monthly scales
through summation. For annual inventories (e.g., the YRD
inventory), sector-specific monthly profiles derived from the
MEIC model are used for disaggregation (Li et al., 2017b).
For instance, monthly power generation data from the Na-
tional Bureau of Statistics describe variations in monthly
power emissions. Industrial production or the GDP from the
National Bureau of Statistics is employed to account for
monthly emission fluctuations related to industrial heating,
boilers, cement, iron and steel, and other industrial processes.
Monthly emission factors calculated by the International Ve-
hicle Emissions model are applied to on-road vehicles. Con-
sidering the insignificant monthly variations in automatic
identification system data for marine shipping, the annual
shipping emissions are uniformly disaggregated across the
months.

2.2.4 Spatial allocation

The seven inventories are in different data formats, includ-
ing point source and gridded formats at varying resolutions,
necessitating spatial harmonization for integration. Although
the industrial point source inventory and the open biomass
burning inventory can accurately pinpoint the specific ge-
ographical locations of emission sources, the other five in-
ventories rely on numerous spatial proxies to disaggregate
emissions into grids, which inevitably introduce uncertain-
ties at very fine resolutions. Therefore, we re-grid the final
product to 0.1° to ensure high-level spatial accuracy. Grid-
ded emissions finer than 0.1° resolution are aggregated to
0.1°, which is performed in the open biomass burning inven-
tory and the PRD inventory. For the industrial point source
inventory, latitude and longitude coordinates are employed
to directly position them within grid locations. Area sources
in MEIC are allocated to grids using spatial proxies within
the MEIC model (Li et al., 2017b). For instance, indus-
trial sources are assigned to grids based on urban popula-
tion (Schneider et al., 2009). The road network (Zheng et al.,
2014) serves as a proxy for disaggregating emissions of on-
road vehicles, while rural population (Schneider et al., 2009)
is used as the proxy for fertilizer and livestock sources. It
is important to mention that uncertainties may arise at city
borders if emissions from adjacent cities come from differ-
ent inventories during the integration process. To mitigate
biases introduced by border issues, all emissions at 0.1° res-
olution are first uniformly downscaled to 1 km in preparation
for the spatial–temporal coupling process, and then they are
re-gridded back to 0.1° for the final product.

2.2.5 Spatial–temporal coupling

Finally, following the procedures outlined in Sects. 2.2.1–
2.2.4, all inventories are preprocessed to a standardized for-
mat encompassing 88 sectors, various species, a spatial reso-
lution of 1 km, and a monthly temporal resolution. This pre-
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processing prepares the inventories for merging, ultimately
resulting in the generation of a standardized data cube.

The integration is carried out at source-by-source, species-
by-species, and grid-by-grid levels, with the process guided
by the priority order of each inventory (Table 1). MEIC
serves as the default inventory in our integration, offering
extensive spatial and species coverage along with spatial
proxies, temporal profiles, and NMVOC speciation meth-
ods within the model. The remaining six emission inven-
tories are assigned a predefined priority order. The indus-
trial point source emission inventory for China takes prece-
dence over industrial emissions in MEIC, substituting proxy-
based spatial allocation with precise geographical coordi-
nates. This extends the applicability of MEIC from a reso-
lution greater than 0.25° to finer scale (Zheng et al., 2021,
2017). To achieve fine-grained emission characterization in
critical areas, the YRD and PRD emission inventories en-
riched with localized data and advanced methods are in-
corporated to update emissions in these areas. While MEIC
comprehensively estimates emissions for ∼ 800 source cate-
gories in China, there may still be omissions for certain emis-
sion sources. The inclusion of inventories for open biomass
burning and East Asian shipping helps partially fill this gap.
PKU-NH3, generated by a process-based model to provide a
comprehensive understanding of China’s NH3 sources, is uti-
lized to replace all NH3 emissions in other inventories. The
prioritization is performed city by city. For emissions of a
particular species from a specific emission sector, when mul-
tiple inventories overlap in city grids, the estimates from the
highest-priority inventory are selected as the final emissions.
Through this step the integrated inventories are developed
based on the configured output settings such as map projec-
tion and spatial–temporal attributes.

2.3 Evaluation of the emission inventory using
WRF/CMAQ model

We apply Weather Research and Forecasting version 3.9
(WRFv3.9) and Community Multiscale Air Quality ver-
sion 5.2 (CMAQ5.2) as the air-quality simulation systems.
Two nested simulation domains with horizontal resolutions
of 36 and 12 km are used (Fig. S1 in the Supplement). The
mother domain (172× 127 cells) covers the entire Chinese
mainland and parts of the neighboring countries, and the
nested domain (226× 241 cells) includes the heavily pol-
luted eastern China. Some 4-month (January, April, July, and
October) simulations in 2017 are carried out with a 7 d spin-
up period preceding each month. The vertical resolution in
WRF is set with 45 sigma levels ranging from the surface
up to 100 hPa. Subsequently, it is collapsed into 28 lay-
ers through the Meteorology–Chemistry Interface Processor
(MCIP) before being input into CMAQ.

The configurations of the WRF and CMAQ models in
this study follow Cheng et al. (2019). The meteorological
initial and boundary conditions for the simulation are pro-

vided by the final reanalysis data from the National Cen-
ters for Environmental Prediction (NCEP-FNL; https://rda.
ucar.edu/datasets/ds083.2/, last access: 15 December 2022).
The schemes for shortwave radiation, longwave radiation,
land surface processes, boundary layer, cumulus parameteri-
zation, and cloud microphysics are selected as the New God-
dard scheme (Chou et al., 1998), RRTM scheme (Mlawer
et al., 1997), Pleim–Xiu surface layer scheme (Xiu and
Pleim, 2001), ACM2 PLB scheme (Pleim, 2007), Kain–
Fritsch scheme (Kain, 2004), and WSM6 scheme (Hong
and Lim, 2006), respectively. Observational nudging and soil
nudging are employed to enhance the meteorological sim-
ulation. Regarding the CMAQ model, the chemical mecha-
nisms for gas-phase, aqueous-phase, and aerosol are config-
ured as CB05, the regional acid deposition model (RADM),
and AERO6, respectively. Photolysis rates are calculated
online using the simulated aerosols and ozone concentra-
tions. Anthropogenic emissions outside China are taken from
the MIX inventory (Li et al., 2017b). The integrated inven-
tories INTAC and MEIC are used for comparison within
China. Biogenic emissions are calculated using the Model
of Emissions of Gases and Aerosols from Nature version 2.1
(MEGANv2.1), while dust and lightning emissions are not
considered in this study.

The performances of WRF for the meteorological param-
eters are evaluated against the Integrated Surface Database
(ISD) from the National Climatic Data Center (NCDC; ftp:
//ftp.ncdc.noaa.gov/pub/data/noaa/). Evaluation metrics in-
clude the correlation coefficient (R), mean bias (MB), root
mean square error (RMSE), normalized mean bias (NMB),
and normalized mean error (NME). Table S2 demonstrates
good agreement between WRF model results and ground-
level observations. Similar configurations also have been val-
idated in previous studies (Cheng et al., 2019, 2021a, b).
CMAQ modeling performances are assessed using hourly
observed concentrations of air pollutants obtained from the
China National Environmental Monitoring Center (http://
www.cnemc.cn/, last access: 15 December 2022).

3 Results

3.1 China’s emission characteristics in 2017

We use the integrated emission inventory to analyze air pol-
lutant emissions in China for 2017. Major air pollutant emis-
sions are estimated as follows: 12.3 Tg SO2, 24.5 Tg NOx ,
141.0 Tg CO, 27.9 Tg NMVOCs, 9.2 Tg NH3, 11.1 Tg PM10,
8.4 Tg PM2.5, 1.3 Tg BC, and 2.2 Tg OC. The emission
data, organized into power, industry, residential, transporta-
tion, agriculture, solvent use, shipping, and open biomass
burning sectors, are available for download at https://doi.
org/10.5281/zenodo.10459198 (Wu et al., 2024) and http:
//meicmodel.org.cn/intac. The following sections will char-
acterize emissions in detail across sectors, fuel types, and
spatial distributions.
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Table 2. Anthropogenic emissions (in Gg) of air pollutants by sector in the 2017 INTAC for China. The shipping sector includes inland
waterway sources and the marine vessels.

Sector SO2 NOx CO NMVOCs NH3 PM10 PM2.5 BC OC

Power 1822 3790 4909 152 14 981 568 6 0
Industry 6066 8800 52 828 8824 249 5603 3620 308 285
Residential 2361 861 55 895 3676 629 3516 3088 606 1649
Transportation 341 7751 22 597 4123 619 533 493 257 95
Agriculture 0 0 0 0 7609 0 0 0 0
Solvent 0 0 0 9255 0 0 0 0 0
Shipping 1642 3077 391 191 2 73 264 43 49
Open biomass burning 21 215 4403 1659 76 409 355 35 167

Total 12 253 24 494 14 1023 27 881 9198 11 117 8388 1255 2245

Figure 2. Sector-specific distributions of emissions in the 2017 INTAC for China. Panels (a)–(c) represent the sectoral contributions for
SO2, NOx , NMVOCs, and PM2.5, respectively. The figure only displays the top eight contributing sources, while sources excluding these
are categorized as “other sources”.

3.1.1 By sector

Table 2 displays emissions specific to power, industry, resi-
dential, transportation, agriculture, solvent use, shipping, and
open biomass burning sectors in INTAC. For pollutants pri-
marily originating from fuel combustion and industrial pro-
cesses (e.g., SO2, NOx , CO, PM10, and PM2.5), the power,
industry, and transportation sources collectively contribute
significantly to their emissions, ranging from 56 % to 83 %.
Industrial sources take a leading role in various atmospheric
pollutants, contributing more than 30 % for SO2, NOx , CO,
NMVOC, PM10, and PM2.5 emissions. Due to low combus-
tion efficiency and a lack of emission control measures, res-
idential sources exhibit a high emission factor for products
of incomplete combustion, leading to 40 % of CO, 48 % of
BC, and 73 % of OC emissions. Solvent sources exclusively

produce NMVOC emissions, contributing 33 % to the over-
all emissions. The complexity of VOC emission origins is
evident in the diverse range of contributing sources. Agricul-
tural sources dominate NH3 emissions, comprising an 83 %
share of total emissions. As described in Sect. 2.1.7, PKU-
NH3 incorporates a wide variety of NH3 sources, providing a
more comprehensive understanding of the sectors contribut-
ing to NH3 emissions. Insignificant sources may exert a large
influence in specific regions or periods, such as during large
wildfires or in cities with heavy traffic. Additionally, the con-
tribution of the supplemented open biomass burning source,
especially for OC (7 %) and NMVOCs (6 %), cannot be over-
looked.

Figure 2 consolidates 88 standardized emission sources
into 25 categories, allowing for a more detailed analysis of
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sectoral emission patterns compared with Table 2. Owing to
substantial coal use in industrial and power sectors, along
with sulfur-rich ship fuels, prominent contributors to SO2
emissions include power, shipping, stationary combustion,
and manufacture of non-metallic mineral product sources,
accounting for 15 %, 13 %, 12 %, and 12 %, respectively,
to total SO2 emissions. This indicates that achieving fur-
ther reductions in SO2 emissions requires the implementa-
tion of more energy-efficient end-of-pipe control measures
and adoption of low-sulfur fuels. The dominant origins of
NOx emissions are from the freight truck, power gener-
ation, and shipping sectors, representing 21 %, 15 %, and
13 %, respectively, of the total emissions. Both freight trucks
and vessels extensively use compression ignition engines,
which are prone to generating NOx emissions under high-
temperature and oxygen-rich conditions. Implementing strict
vehicle standards is crucial to effectively reduce NOx emis-
sions from exhaust gases. Coatings, other industrial pro-
cesses, and passenger vehicle sources together account for
51 % of anthropogenic NMVOC emissions. The major con-
tributors to primary PM2.5 emissions include biomass fuel,
the manufacture of non-metallic mineral products, and the
smelting and pressing of ferrous metal sources, making up
22 %, 17 %, and 10 %, respectively, of the total emissions. It
is noteworthy that the use of biomass fuels (e.g., rice straw
and firewood) for cooking or heating in rural areas results
in considerable PM2.5 emissions especially in provinces like
Sichuan, Anhui, Shandong, and Heilongjiang.

3.1.2 By fuel type

Figure 3 illustrates the proportions of major air pollutant
emissions in 2017 for each fuel type. Fossil fuel combustion
significantly dominates the emissions of PM10, PM2.5, CO,
BC, SO2, and NOx , with proportions ranging from 38 % to
80 %. Coal combustion accounts for 56 % of SO2 emissions,
with power, residential activities, and industrial production
as the primary emitters. Furthermore, petroleum combus-
tion, mainly from marine vessels, constitutes 20 % of SO2
emissions. For NOx emissions, petroleum combustion con-
tributes 48 % of the total, predominantly arising from freight
trucks (5.2 Tg), marine vessels (3.1 Tg), and passenger ve-
hicles (1.0 Tg). Coal combustion processes, such as power
and industrial boilers, also result in substantial NOx emis-
sions (31 %). The biomass fuel source causes 53 % of OC
emissions. Emissions of NMVOCs and NH3 are primarily
associated with non-combustion processes.

3.1.3 Spatial distribution

We present the gridded emission maps of major air pollu-
tants in Fig. 4. Emissions from anthropogenic sources in
China exhibit significant spatial heterogeneity. Due to eco-
nomic growth and industrial activities, air pollutant emis-
sions are primarily concentrated in the central and eastern

Figure 3. Fuel-specific distributions of major air pollutant emis-
sions in the 2017 INTAC for China.

regions of China, especially in economically developed ur-
ban clusters such as the Beijing–Tianjin–Hebei (BTH) re-
gion, the YRD, and the PRD and in regions like Sichuan
and Chongqing. These four key areas, as depicted in Fig. S2,
collectively account for 25 %, 33 %, 35 %, 37 %, 30 %, 35 %,
33 %, 27 %, and 29 % of the national emissions of SO2, NOx ,
CO, NMVOCs, NH3, PM10, PM2.5, BC, and OC, respec-
tively. Moreover, the emission maps at a fine spatial reso-
lution of 0.1°× 0.1° present the local variations in emission
patterns, identifying numerous hotspots in small areas and
showcasing distinct gradients in emissions. Table 3 shows
the provincial-level emissions (except Hong Kong SAR,
Macao SAR, and Taiwan), and a map depicting provincial
boundaries is displayed in Fig. S2. The emission levels in
specific provinces are determined by factors such as resource
endowments, industrial structure, energy consumption, and
emission control measures. Taking SO2 as an example, the
top five provinces are Shanxi, Shandong, Hebei, Guizhou,
and Inner Mongolia, collectively accounting for 36 % of the
national total SO2 emissions. Guizhou Province, located in
the southwest of China, is characterized by high-sulfur coal
and a relatively gradual implementation of pollution control
measures, which result in elevated SO2 emissions. In the
other four provinces, large-scale heavy industries have led
to substantial coal consumption and correspondingly higher
SO2 emissions. Provinces with a less industry-focused eco-
nomic structure and lower energy consumption, including
Tianjin, Hainan, Qinghai, Beijing, and Tibet, exhibit the low-
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Figure 4. Spatial distributions of major air pollutant emissions in the 2017 INTAC for China.

est SO2 emissions accounting for approximately 2 % of the
national total.

3.2 Improved accuracy of INTAC for China’s
anthropogenic emissions

3.2.1 Comparison of emission magnitudes in INTAC
with MEIC across sectors and regions

INTAC improves the representation of anthropogenic air pol-
lutant emissions by incorporating a large number of indus-
trial point sources, integrating high-resolution regional in-
ventories, and supplementing missing emission sources in

MEIC. Remarkable differences between INTAC and MEIC
are illustrated in Fig. 5 across regions and sectors. Compared
with MEIC, INTAC shows higher levels of 16.7 %, 11.5 %,
10.8 %, 11.0 %, and 9.1 % for SO2, NOx , PM10, PM2.5, and
OC emissions, respectively. However, it indicates lower lev-
els of 6.3 % and 10.6 % for NMVOCs and NH3. CO and
BC emissions exhibit good agreement between the two in-
ventories, with differences lower than 3.9 %. In comparison
with MEIC, the supplementary emission sources in INTAC
– specifically open biomass burning and marine shipping –
account for the majority of increased emissions, contributing
95 %, 89 %, and 74 % for SO2, CO, and PM2.5, respectively.
Additionally, the incorporation of PKU-NH3 in INTAC leads

https://doi.org/10.5194/essd-16-2893-2024 Earth Syst. Sci. Data, 16, 2893–2915, 2024



2904 N. Wu et al.: Development of a high-resolution integrated emission inventory of air pollutants for China

Table 3. Anthropogenic emissions (in Gg) of air pollutants by province in the 2017 INTAC for China. Emissions from the shipping emission
inventory in East Asia are not included.

Province SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC

Anhui 315 846 5955 1089 341 596 443 49 114
Beijing 26 231 1394 516 36 61 49 7 16
Chongqing 396 375 2419 564 150 207 158 22 47
Fujian 161 530 2344 895 149 202 152 22 49
Gansu 189 351 2221 358 276 163 126 22 42
Guangdong 430 1566 6897 1268 351 783 356 17 67
Guangxi 265 434 3578 808 323 355 275 29 83
Guizhou 652 355 6629 508 236 459 347 76 125
Hainan 47 95 584 172 57 46 37 5 14
Hebei 667 1697 11 731 1673 523 708 528 88 125
Heilongjiang 246 822 7034 1419 379 495 403 65 156
Henan 367 1256 7962 1500 678 620 459 79 108
Hubei 513 703 6341 1183 358 455 354 68 118
Hunan 518 633 6802 953 330 481 363 77 122
Inner Mongolia 594 1211 5747 831 562 459 340 56 89
Jiangsu 391 1217 8628 1529 498 667 496 50 105
Jiangxi 179 449 3676 646 209 273 195 28 52
Jilin 235 652 3973 847 207 307 237 39 76
Liaoning 459 1200 5835 1316 268 432 325 54 86
Ningxia 226 327 766 178 79 91 63 7 9
Qinghai 43 106 598 129 131 59 45 5 8
Shaanxi 334 549 3781 820 273 294 221 39 68
Shandong 946 2134 11 469 2846 696 897 678 105 150
Shanghai 114 469 1130 342 29 104 86 15 6
Shanxi 977 964 6017 756 199 555 415 64 81
Sichuan 379 777 6362 1478 646 463 371 56 141
Tianjin 90 333 1434 573 33 81 61 9 12
Xinjiang 257 608 2639 632 516 218 158 23 32
Xizang 1 52 149 46 149 15 12 2 5
Yunnan 332 435 3823 576 398 302 230 38 75
Zhejiang 293 670 3009 1342 118 270 195 22 22

to a 21 % decrease in NH3 emissions from agricultural
sources, while NH3 emissions from residential sources and
transportation increase by 99 % and 13.1 times, respectively.
Such difference in agricultural sources is mainly caused by
the estimates of synthetic fertilizer (Kang et al., 2016), par-
ticularly concerning the treatment of fertilizer types and cor-
responding emission factors.

Many discrepancies between MEIC and INTAC arise from
the integration of regional emission inventories. As pre-
sented in Fig. 5b, notable disparities are observed in the
YRD and PRD regions. Estimates for NOx emissions in
the YRD region are approximately 88 % of those derived
from the MEIC model. This highlights an enhanced preci-
sion attributable to reliable assessments of denitrification ef-
ficiency in power plants and the measured NOx emission fac-
tors for both power plants and boilers within the integrated
YRD inventory, as supported by previous studies (e.g., Zhao
et al., 2018). INTAC’s estimates for NMVOC emissions in
the YRD region are 26 % lower than estimates in MEIC. The

overestimation in MEIC mainly results from the uncertain-
ties in solvent use source, particularly coating, printing, and
dyeing processes. The integrated YRD emission inventory
employs more accurate calculation parameters for NMVOCs
such as statistical data from local city yearbooks, industry as-
sociation reports, and apparent consumption of solvents. Fur-
thermore, the speciation profiles of NMVOCs are localized
and corrected based on the literature research and measure-
ments. In the PRD region, the NOx emissions from INTAC
are 41 % higher than MEIC estimates, with non-road sources
and non-metallic mineral products contributing 45 % and
40 %, respectively, to this difference. The PRD inventory em-
ploys a detailed calculation approach for shipping emissions
based on AIS data, in contrast to the simplified approach
for inland waterway sources in MEIC. The NOx emissions
from industrial processes of brick and flat-glass manufactur-
ing are not considered in MEIC, a deficiency which is ad-
dressed in the integrated PRD inventory. INTAC’s NMVOC
emissions are approximately 59 % of those from MEIC. The
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Figure 5. Inter-comparisons of emission estimates between INTAC and MEIC. Panel (a) shows the difference by sector, and (b) presents the
ratio of emissions in INTAC to those in MEIC.

disparity is particularly notable in industrial and solvent use
sources, contributing 49 % and 35 %, respectively, to the ob-
served difference. In INTAC nearly half of the VOC emission
factors for industrial solvent sources are based on local mea-
surements, and a preference for raw-material-based calcula-
tions over product-based ones reduces uncertainty in the es-
timation. For significant VOC-emitting sources like cleaning
solvents, MEIC employs an emission factor of 1000 gkg−1,
whereas the PRD inventory uses 850 gkg−1. In the case of
oil refineries, the emission factors are 2.76 gkg−1 for MEIC
and 1.82 gkg−1 for the PRD inventory.

3.2.2 Impact of point source contributions

The most accurate method for obtaining emissions at finer-
scale grids relies on spatial allocation based on precise ge-
ographical coordinates. In MEIC the majority of emission
sources are represented as area sources and distributed onto
grids using spatial proxies, such as urban population, except
for power plants. In contrast, the increased proportion of in-
dustrial point source emissions in INTAC significantly con-
strains the uncertainties associated with spatial proxies. Fig-
ure 6 shows the inter-comparisons of the percentage of point,

on-road, and area source emissions between INTAC and
MEIC. Air pollutants, especially those dominated by indus-
trial combustion sources like SO2, NOx , PM10, and PM2.5,
exhibit a significantly higher proportion of point source emis-
sions within INTAC compared with MEIC. In MEIC the pro-
portion of point source emissions for SO2, PM10, NOx , and
PM2.5 is 17 %, 9 %, 19 %, and 7 %, respectively. However,
in INTAC these percentages substantially increase to 66 %,
54 %, 52 %, and 48 %, respectively, indicating a more ac-
curate representation of spatial patterns. For other species
with emissions mainly from area sources (e.g., residential
and transportation), there are limited improvements in the
proportion of point source emissions in INTAC.

To further assess the impact of point sources, Fig. 7 takes
SO2 and the YRD region as an example to compare the spa-
tial emission patterns between INTAC and MEIC. Figure 7c–
e reveal that MEIC tends to overestimate emissions in urban
centers and underestimate emissions in rural areas compared
with INTAC. Amid economic growth and rapid urbanization,
MEIC’s use of urban population as a proxy for spatial alloca-
tion becomes impractical as many factories relocate from city
centers to rural areas. To elucidate the difference between
population-based and point-source-based allocation methods

https://doi.org/10.5194/essd-16-2893-2024 Earth Syst. Sci. Data, 16, 2893–2915, 2024



2906 N. Wu et al.: Development of a high-resolution integrated emission inventory of air pollutants for China

Figure 6. Inter-comparisons of the percentage of point, on-road, and area source emissions between INTAC and MEIC.

in emission mapping, we present the cumulative percentage
of SO2 emissions in MEIC and INTAC based on descending
population orders in Fig. 7f. We use the grid groups where
densely populated areas contribute 50 % of SO2 emissions
in MEIC as an example, and we compare them with the cu-
mulative percentage in INTAC across various grid sizes. The
results show that at a resolution of 0.05° INTAC only ac-
counts for 17 % of the emissions, while it reaches 48 % as
the grid size increases to 1.0°. This suggests that at a fine
grid scale MEIC tends to allocate more emissions to densely
populated urban areas, while INTAC allocates a larger pro-
portion to suburban and rural areas, aligning better with the
real-world emission spatial patterns. This mitigation of bias
through INTAC is especially notable at finer resolutions. The
close cumulative percentage at 1.0° in the two inventories can
be attributed to the fact that urban and suburban areas often
fall within the same grid, leading to a decreasing enhance-
ment in the spatial accuracy achieved by INTAC. Figure 7g
further presents the correlation between the spatial patterns
of SO2 emissions in INTAC and various spatial proxies. At a
resolution of 1.0° the correlation coefficients between emis-
sion distributions and factors (i.e., road networks, nighttime
lights, total population, urban population, and rural popula-
tion) fall within the range of 0.55–0.79. Nevertheless, at a
resolution of 0.05° the correlation coefficients range from
0.05 to 0.13. This indicates that at higher spatial resolutions
INTAC substantially reduces the bias introduced by spatial
proxies in MEIC.

3.3 Improvements in air-quality modeling by INTAC

3.3.1 Overall performance in key regions

We conducted simulations using the WRF–CMAQ model
driven by INTAC and MEIC separately to evaluate the im-
provements in modeled air pollutant concentrations. Table 4
evaluates the simulated emissions in 74 major cities (loca-
tions depicted in Fig. S2) against in situ observations, with
corresponding scatterplots shown in Fig. S3. INTAC demon-
strates improved agreement between modeled concentrations

and ground-level observations, which benefits from the in-
tegrated high-resolution inventories. Compared with MEIC,
INTAC leads to a decline in the mean bias of simulated major
pollutant concentrations by 2–14 µgm−3, a reduction in the
root mean square error by 4–19 µgm−3, and a decrease in the
normalized mean error by 4 %–71 %. This finding indicates
that INTAC produces a more accurate overall characteriza-
tion of emissions in China. Furthermore, given that atmo-
spheric pollution monitoring stations are mainly located in
urban areas in China, the observed differences suggest that
INTAC can mitigate the overestimation of major pollutant
concentrations in urban centers. As discussed in Sect. 3.2.2,
MEIC overestimates emissions in urban areas and underesti-
mates them in rural and suburban areas, consequently intro-
ducing uncertainties into air-quality modeling. The improved
accuracy in spatial distributions within INTAC significantly
contributes to enhancing the overall accuracy of air pollutant
modeling.

Figure 8 further compares the overall simulation perfor-
mance between INTAC and MEIC in three key regions
(BTH, YRD, and PRD), with corresponding scatterplots
shown in Figs. S4–S6. Regarding PM2.5 and its precursors,
MEIC shows a considerable mean bias of up to 36 µgm−3

and a root mean square error of up to 59 µgm−3 in key re-
gions. In contrast, INTAC demonstrates maximum MB val-
ues of 15 µgm−3 and maximum RMSE values of 40 µgm−3.
The correlation coefficients between simulated and observed
concentrations of the three air pollutants are generally lower
in MEIC compared with those in INTAC. The model-
ing performance driven by INTAC, particularly for short-
lived pollutants, experiences significant improvement due to
their strong correlation with spatial distributions of emis-
sion sources. Nonetheless, discrepancies between modeled
and observed surface concentrations still exist because of un-
certainties from meteorological, physical, and chemical pro-
cesses within chemical transport models. Moreover, emission
sources such as residential, transportation, and agriculture
are treated in INTAC as non-point sources, and their allo-
cation to grids using spatial proxies can introduce biases in
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Figure 7. Spatial pattern analysis of emissions in INTAC using SO2 emissions as an example. Panels (a) and (b) display the spatial dis-
tributions of SO2 emissions in MEIC and INTAC, respectively. MEIC emissions have been downscaled from 0.25 to 0.1° for comparison.
To compare MEIC and INTAC in detail, the YRD region is zoomed in on. Panels (c)–(e) show spatial distributions of SO2 emissions in
MEIC and INTAC, and also their difference. Circles in (e) represent the center of a city. Panel (f) compares cumulative percentage of SO2
emissions in INTAC with those in MEIC across different spatial resolutions. The gridded SO2 emissions, ranging in resolution from 0.05
to 1.0°, are cumulated in descending order of population. The percentage annotations in different colors indicate the level of accumulated
SO2 emissions in INTAC at various spatial resolutions when SO2 emissions in MEIC reach 50 % accumulation. Panel (g) shows correlation
coefficient between SO2 emissions in INTAC and multiple spatial proxies at different grid sizes.

air-quality modeling. It is noteworthy that ammonium (NH+4 )
concentrations simulated by INTAC agree better with ground
measurements than MEIC (Table S3). While NH+4 concen-
trations are influenced by secondary chemical reactions, the
improved model performance still reflects the benefits from
the integration of PKU-NH3.

3.3.2 Improvements across different spatial resolutions

To provide a more in-depth assessment of improved spatial
patterns in INTAC, Fig. 9 categorizes grid cells into differ-
ent bins based on their urban population and calculates the
ratio of simulated pollutant concentrations to ground obser-
vations for both INTAC and MEIC in each category. The
results demonstrate that as the urban population increases,
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Table 4. The discrepancies between simulated SO2, NO2, and PM2.5 concentrations, and observed values for 74 major cities at a resolution
of 12 km, using MEIC and INTAC as emission inputs. The statistical metrics used for comparison include R, MB, and RMSE. The bold font
represents the difference in modeling performance between INTAC and MEIC.

Pollutant Inventory MB (µgm−3) RMSE (µgm−3) NME (%)

SO2 INTAC 11 30 92
MEIC 25 49 163
Difference −14 −19 −71

NO2 INTAC 7 22 43
MEIC 18 31 60
Difference −11 −9 −17

PM2.5 INTAC 6 35 46
MEIC 8 39 50
Difference −2 −4 −4

Figure 8. Comparison of modeling performance across key regions (i.e., BTH, YRD, and PRD) when using MEIC and INTAC, respectively,
as emission inputs. The statistical metrics used for comparison include R, MB, and RMSE. The regions under comparison comprise BTH,
YRD, and PRD.

the enhanced model performance of INTAC over MEIC for
SO2, NO2, and PM2.5 becomes more evident. Specifically,
when the urban population is less than 50 000, both INTAC
and MEIC exhibit a median range of simulated-to-observed
concentration ratios close to 1. However, as the urban popu-
lation exceeds 550 000, the average range for MEIC widens
to 1.4–5.2, whereas it remains within the range of 0.9–1.0
for INTAC. This indicates a significant improvement in mit-
igating the overestimation of emissions in densely populated
areas by INTAC. The incorporation of the industrial point
source emission inventory for China along with the YRD
and PRD emission inventories significantly increases point
source shares in INTAC, thus producing better spatial repre-
sentations for real-world emission distributions and smaller
simulated deviations.

Model performance differences between MEIC and IN-
TAC are influenced by grid size. Figure 10 presents the com-

parison between modeled SO2, NO2, and PM2.5 concentra-
tions against ground observations for 74 major cities at res-
olutions of 36 and 12 km. Increasing spatial resolution does
not lead to a reduction in simulation errors, especially for
MEIC. As the horizontal resolution increases from 36 to
12 km, the mean biases of simulated SO2, NO2, and PM2.5
concentrations using MEIC as input show an increase from
37 % to 143 %, 11 % to 46 %, and −3 % to 15 %, respec-
tively, when compared with in situ observations. In contrast,
the simulation results using INTAC as input exhibit better
agreement with ground observations, with mean biases for
SO2, NO2, and PM2.5 increasing from 23 % to 64 %, −0 %
to 17 %, and 2 % to 11 %, respectively. This is due to the fact
that the deviations in finer grid cells, whether overestimated
or underestimated, tend to cancel out at a coarse spatial res-
olution. The decoupling between emission spatial distribu-
tions with proxies at finer grids leads to more noticeable bi-
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Figure 9. Comparisons of modeling performance between INTAC
and MEIC in different ranges of urban population. The 12 km grids
are categorized to different bins according to the urban population
residing within each grid. The ratio of simulated pollutant concen-
trations (Sim) to observed concentrations (Obs) for major pollutants
(SO2, NO2, and PM2.5) are calculated. The boxplot presents the up-
per quartile, median (red dot), and lower quartile of the ratios.

ases in air-quality modeling. Therefore, the findings suggest
that the INTAC developed in this study can effectively con-
strain uncertainties in emissions and the modeling bias, espe-
cially at fine spatial scales. The improvement will help tackle
emerging challenges in high-resolution air-quality modeling
in China.

4 Discussion

Both qualitative and quantitative uncertainty assessments
are essential components of a comprehensive inventory
for policy or scientific purposes. Approaches such as er-
ror propagation and Monte Carlo simulation are commonly
used for quantitative uncertainty analysis in China’s emis-
sion inventory (Lu et al., 2011; Streets et al., 2003; Zhao
et al., 2011, 2017b). However, this study uses an integrated
method, rather than a unified framework, to compile the high-
resolution emission inventory for China. Collecting only
emission quantities from the seven inventories without de-
tailed calculation parameters makes it challenging to assess

the overall uncertainties in INTAC here. We have summa-
rized the estimated uncertainty range for components of IN-
TAC in Table 5, where such information is available. Al-
though the uncertainties might be reported for a year other
than 2017, they still provide a rough representation of the
uncertainty range in major air pollutant emission estimates
within INTAC. Species such as SO2 and NOx exhibit rela-
tively low uncertainties, benefiting from well-established es-
timates for large-scale combustion sources. The considerable
uncertainties observed in BC and OC emissions may be at-
tributed to inaccuracies in the emission factors of the residen-
tial sector. Further details regarding the uncertainties in each
component inventory can be found in corresponding litera-
ture (An et al., 2021; Huang et al., 2021; Kang et al., 2016;
H. Liu et al., 2016; Yin et al., 2019; Zhao et al., 2011).

The uncertainties in INTAC also arise from the integration
process:

– The emission sectors in all inventories need to be
mapped to the 88 standard sectors first. Due to limited
foundational information for an aggregated sector’s dis-
aggregation, this process may introduce biases for those
who initially provide coarser source categories. For ex-
ample, if an inventory only offers one aggregated sec-
tor for power, which needs to be broken down into four
subsectors (i.e., production of power, supply of power,
production of industrial heat power, and production of
residential heat power), we use the energy consumption
for corresponding sectors from the statistical yearbook
as a reference basis for this allocation, which is a rela-
tively reliable method despite potential deviations.

– To generate speciated VOC species, sectoral NMVOC
emissions in each inventory need to be matched to cor-
responding source profiles from the MEIC model. Dis-
crepancies in emission source mapping can impact the
outcomes, which will be overcome by gathering more
detailed sectoral information for each inventory or di-
rectly collecting speciated species in future studies.

– INTAC is made publicly available at a monthly scale,
given that the majority of its components are gathered
on a monthly or annual scale. The temporal disaggre-
gation to finer resolutions for modeling is achieved us-
ing empirically selected weighting factors in the MEIC
model. However, it is noteworthy that the parameters
employed for allocating emissions to daily or hourly
scales remain fixed and do not vary over time or re-
gion, introducing additional uncertainties. In the future,
we plan to incorporate more advanced data or meth-
ods (e.g., real-time emission measurements) to enhance
temporal accuracy at finer scales, as indicated in the pre-
vious work for the power sector (Wu et al., 2022).

– The border issue is inevitable when emissions for the
same species in two adjacent cities are derived from
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Figure 10. Comparison of modeled air pollutant concentrations and ground observations for 74 cities at 36 and 12 km resolutions using
MEIC and INTAC, respectively, as emission inputs. The dashed black line represents the observational mean, and the annotations above the
bar charts indicate the mean biases between simulated concentrations and the corresponding observed values.

Table 5. Uncertainties in the inventory components of INTAC (in %) contingent upon the availability of such information.

Emission inventory Reporting

year

SO2 NOx CO NMVOCs NH3 PM10 PM2.5 BC OC Reference

PKU-NH3 2012 −26 to 25 Kang et al. (2016)
Shipping emission
inventory for East Asia

2013 ± 4 ± 4 ± 5 ± 4 ± 4 ± 4 ± 4 H. Liu et al.
(2016)

Open biomass
burning emission
inventory for China

2003–
2017

−67 to 67 −78 to 98 −54 to 56 −44 to 89 −74 to 84 −65 to 65 −75 to 100 −74 to 81 Yin et al. (2019)

PRD emission
inventory

2017 −17 to 20 −25 to 28 −30 to 39 −34 to 50 −50 to 86 −45 to 60 −43 to 62 −53 to 116 −54 to 160 Huang et al. (2021)

YRD air pollutant
emission inventory

2017 −29 to 36 −28 to 33 −42 to 75 −44 to 68 −58 to 117 −36 to 62 −30 to 46 An et al. (2021)

2005 −14 to 13 −13 to 37 −14 to 45 −17 to 54 −25 to 136 −40 to 121 Zhao et al. (2011)

different inventories. Typical examples are the cities lo-
cated at the boundaries of the YRD and PRD regions.
In INTAC we downscale all emissions to 1 km before
the spatial–temporal coupling process, thereby mitigat-
ing this uncertainty to some extent.

INTAC for 2017 is subject to some limitations: (1) In
the integrated method, emission data for the same city and
species across different sectors may come from different
datasets. Similarly, emission data for different species within
the same city and sector may also originate from different
datasets. The utilization of species ratios requires careful
consideration in these cases. (2) Limited resources present a
substantial challenge in gathering emission inventories over
extended time series from diverse research institutions within
the scope of this study. Consequently, we exclusively present
INTAC for 2017, with the possibility of extension to other
years in subsequent research.

5 Data availability

Data described in this paper can be accessed via
Zenodo at https://doi.org/10.5281/zenodo.10459198 (Wu

et al., 2024) and http://meicmodel.org.cn/intac (last access:
15 April 2024).

6 Concluding remarks

Compiling a comprehensive bottom-up emission inventory
for China that achieves both extensive coverage and high
resolution poses a significant challenge. In this work, we
construct a 0.1° resolution integrated inventory for 2017
through the fusion of multi-source emission inventories. An
integration model has been developed to effectively cou-
ple heterogeneous emission datasets, aimed at generating
a standardized data cube with consistent sectors, species,
and spatial–temporal resolution. INTAC is created through
source mapping, species mapping, temporal disaggregation,
spatial allocation, and spatial–temporal coupling. Six repre-
sentative emission inventories focusing on national and re-
gional scales, as well as key species and sources in China, are
merged with MEIC. This integration harnesses the strengths
of each inventory, resulting in an improved depiction of emis-
sion totals and spatial distribution patterns for China.

We find that the total emissions of SO2, NOx , CO,
NMVOCs, NH3, PM10, PM2.5, BC, and OC in INTAC for
2017 are 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3, and
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2.2 Tg, respectively. Industrial production serves as the main
source of various atmospheric pollutants. Residential sources
contribute over 40 % to CO, BC, and OC emissions. Apart
from agricultural sources, which account for 83 % of NH3
emissions, the contributions from various minor emission
sources cannot be overlooked. This study emphasizes the sig-
nificance of shipping emissions, particularly in contributing
to SO2 (13 %) and NOx (13 %). Fossil fuel combustion domi-
nates the emissions of PM10, PM2.5, CO, BC, SO2, and NOx ,
ranging from 38 % to 80 %. The enhancement in emission es-
timates for China in INTAC is demonstrated by the compar-
ison with MEIC. For instance, the incorporation of numer-
ous point sources has notably addressed MEIC’s tendency
to overestimate emissions in urban centers, particularly at
higher spatial resolutions. In comparison with MEIC, IN-
TAC exhibits a mean bias reduction in simulated concentra-
tions of major pollutants against ground observations across
74 cities, ranging from 2 to 14 µgm−3. The improvement in
model performance achieved by INTAC is particularly no-
ticeable at finer spatial resolutions.

Our study offers an efficient framework for creating a
highly resolved emission inventory on a large scale. This
approach integrates advantages from previous studies and
holds the potential to support policymakers in making well-
informed decisions for improving air quality. In the future,
we anticipate the ongoing incorporation of additional emis-
sion datasets to offer a more reliable representation of emis-
sions in China over extended time periods.
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