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Abstract. Satellite-based solar-induced chlorophyll fluorescence (SIF) serves as a valuable proxy for monitor-
ing the photosynthesis of vegetation globally. The Global Ozone Monitoring Experiment-2A (GOME-2A) SIF
product has gained widespread popularity, particularly due to its extensive global coverage since 2007. However,
serious temporal degradation of the GOME-2A instrument is a problem, and there is currently a lack of time-
consistent GOME-2A SIF products that meet the needs of temporal trend analysis. In this paper, the GOME-2A
instrument’s temporal degradation was first calibrated using a pseudo-invariant method, which revealed 16.21 %
degradation of the GOME-2A radiance at the near-infrared (NIR) band from 2007 to 2021. Based on the cali-
bration results, the temporal degradation of the GOME-2A radiance spectra was successfully corrected by using
a fitted quadratic polynomial function whose determination coefficient (R2) was 0.851. Next, a data-driven al-
gorithm was applied for SIF retrieval at the 735–758 nm window. Also, a photosynthetically active radiation
(PAR)-based upscaling model was employed to upscale the instantaneous clear-sky observations to monthly av-
erage values to compensate for the changes in cloud conditions and atmospheric scattering. Accordingly, a global
temporally consistent GOME-2A SIF dataset (TCSIF) for 2007 to 2021 with the correction of temporal degrada-
tion was successfully generated, and the spatiotemporal pattern of global SIF was then investigated. Correspond-
ing trend maps of the global temporally consistent GOME-2A SIF showed that 62.91 % of vegetated regions
underwent an increase in SIF, and the global annual averaged SIF exhibited a trend of increasing by 0.70 % yr−1

during the 2007–2021 period. The TCSIF dataset is available at https://doi.org/10.5281/zenodo.8242928 (Zou et
al., 2023).

1 Introduction

Solar-induced chlorophyll fluorescence (SIF) retrieved from
satellite-based hyperspectral data provides a new way to
proxy the photosynthesis of vegetation globally. Numerous
studies have demonstrated that satellite-based SIF observa-
tions are able to produce better estimates of gross primary
productivity (GPP) than the widely used reflectance-based

approaches (Sun et al., 2017; Guanter et al., 2014; Zhang et
al., 2014).

Currently, the satellite sensors used for SIF retrieval can
be generally divided into two types according to their spec-
tral resolution (Frankenberg et al., 2011, 2014; Guanter et al.,
2012; Du et al., 2018). The first type of satellite was origi-
nally designed to measure the atmospheric XCO2 concentra-
tion using observations with a spectral resolution of higher
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than 0.05 nm; these satellites include GOSAT (Frankenberg
et al., 2011; Guanter et al., 2012), OCO-2 (Frankenberg et
al., 2014; Sun et al., 2017), TanSat (Du et al., 2018), and
OCO-3 (Taylor et al., 2020). The other type of satellite in-
strument was originally designed for atmospheric chemistry
applications and had a spectral resolution of about 0.5 nm.
Instruments of this type included the Global Ozone Moni-
toring Experiment 2 (GOME-2) on board the MetOp-A/B/C
satellites (Joiner et al., 2013, 2016; Köhler et al., 2015),
the SCanning Imaging Absorption spectroMeter for Atmo-
spheric CHartograhY (SCIAMACHY) on board the ENVI-
ronmental SATellite (ENVISAT) (Köhler et al., 2015; Joiner
et al., 2016), and the TROPOspheric Monitoring Instrument
(TROPOMI) on board the Sentinel-5P satellite (Köhler et al.,
2018). Given that its global coverage capability starts from
2007, the GOME-2 satellite-based SIF dataset has been the
most widely used for the global monitoring of GPP, crop
yields, droughts, and vegetation phenology (Sun et al., 2015;
Guanter et al., 2014; Yoshida et al., 2015; Lu et al., 2018;
Chen et al., 2019). Yet, the volatile coating used within
GOME-2’s optical bench enclosure makes the optical lens
more susceptible to contamination, which eventually leads
to instrument degradation (Hahne, 2012; Munro et al., 2016).
Further, such degradation may affect the solar and Earth ra-
diance measurements in different ways, depending on the
optical components involved, and correcting this via the on-
board calibration method may be impossible (Munro et al.,
2016). Moreover, how degradation impacts the quality of dif-
ferent level-2 products is highly dependent on the individ-
ual algorithms used. Generally, there is a strong decreasing
trend in the GOME-2A level-2 SIF product as derived from
the GOME-2A level-1B radiance product. For example, the
GOME-2A SIF generated by Joiner et al. (2016) and the Sun-
Induced Fluorescence of Terrestrial Ecosystems Retrieval
(SIFTER) SIF dataset produced by Sanders et al. (2016) were
both found to harbor an artificial trend caused by instrument
degradation (Zhang et al., 2018; Koren et al., 2018). Also,
Yang et al. (2018) reported that the SIF emission of the Ama-
zon forests decreased during the 2015/2016 El Niño event
when analyzed by Joiner et al. (2016) using the GOME-2 SIF
data, which is in conflict with the increases in the enhanced
vegetation index (EVI) and downward solar shortwave radia-
tion. Zhang et al. (2018) argued that the reduced GOME-2A
SIF signal observed by Yang et al. (2018) in the Amazon for-
est could have been caused by artifacts associated with the
temporal degradation of the GOME-2A instrument instead
of an actual decline in photosynthesis. Hence, it is imperative
to address the temporally decreasing artifact in the GOME-
2A dataset before this dataset is applied to any analysis and
interpretation of interannual trends.

Researchers have tried to generate consistent long-term
SIF datasets. For example, Wang et al. (2022) assembled a
consistent long-term global SIF dataset (LT_SIFc*) by com-
bining the global SIF products from GOME, SCIAMACHY,
and GOME-2. The temporal degradation problem was cor-

rected based on the satellite SIF measurements over the Sa-
hara between 1995 and 2018. Unfortunately, this attempt
was not sufficiently rigorous in that the degradation of sen-
sors does not transit to SIF in a linear manner due to post-
processing processes. Furthermore, LT_SIFc* is a repro-
cessed product derived from existing GOME-2 SIF products,
which limits its temporal resolution to 1 month and hinders
its broader application. Earlier, van Schaik et al. (2020) ap-
plied a seasonal factor to GOME-2 reflectance and retrieved
SIF from that temporally corrected reflectance data to gen-
erate the SIFTER v2 product; however, the function fitted
with the season as the smallest unit may entail deviations
from the actual reality of sensor degradation. Accordingly, in
terms of the processing results, significant interannual vari-
ation persists in the SIFTER v2 time series (Wang et al.,
2022). Presently, we still lack a robust, consistent long-term
GOME-2 SIF product that has been generated via rigorous
recalibration methods and can yield reasonable, meaningful
results. This leaves the long-term observations provided by
GOME-2 underutilized scientifically.

The objective of this study was to provide a tempo-
rally consistent GOME-2A SIF dataset spanning 2007 to
2021 that overcomes the degradation problem. The tempo-
ral degradation of GOME-2A level-1B radiance was first
calibrated using the pseudo-invariant method in the Sahara.
Then a data-driven approach was applied to retrieve the SIF
datasets from the corrected GOME-2A measurements. Fi-
nally, a global temporally consistent monthly GOME-2A
SIF (TCSIF) dataset for 2007–2021 was generated, using
the photosynthetically active radiation (PAR)-based temporal
upscaling method, from the degradation-corrected GOME-
2A instantaneous SIF retrievals. The temporally consistent
GOME-2A SIF dataset generated here offers a promising
tool for monitoring global vegetation variation from 2007
through 2021, and it will advance our understanding of the
photosynthetic activity of vegetation at a global scale.

2 Datasets

2.1 Datasets for the generation of TCSIF

GOME-2A (launched on 19 October 2006) was designed by
the European Space Agency to measure atmospheric ozone,
trace gases, and ultraviolet radiation. Since 2007, it has been
collecting top-of-atmosphere (TOA) radiance data spanning
the spectral range of 270 to 790 nm from four channels
(Munro et al., 2006). Of these, channel 4 of GOME-2A has a
spectral (wavelength) coverage of 593–790 nm with a spec-
tral resolution of 0.48 nm and was successfully used to gen-
erate a global SIF dataset (Joiner et al., 2013).

The MODIS version 6.1 Nadir Bidirectional reflectance
distribution Adjusted Reflectance (NBAR) product
(MCD43C4) (Schaaf et al., 2002) records the surface
reflectance at the nadir viewing angle for each pixel at local
solar noon. It has a spatial resolution of 0.05°× 0.05° and
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daily temporal resolution (Schaaf et al., 2002). The MODIS
NBAR product is considered stable over long periods of
time and was used here to investigate the homogeneity and
stability of the calibration site (see Sect. 3.1).

The EVI product derived from the MODIS Vegetation In-
dices 16-Day (MOD13C1) version 6.1, with a spatial reso-
lution of 0.05°, was aggregated to 0.5° (Didan, 2021). PAR
was obtained from the MERRA-2 meteorological assimi-
lation reanalysis data (Gelaro et al., 2017), and this PAR
dataset had a spatial resolution of 0.5°× 0.625° (resampled
to 0.5°× 0.5°) and a temporal interval of 1 h. The EVI prod-
uct and MERRA-2 PAR dataset were used to upscale the in-
stantaneous SIF to monthly values, as described in Sect. 3.4.

2.2 Datasets for evaluation and comparison

The dataset was verified through a two-step verification, i.e.,
the verification of the corrected radiance (compared to radi-
ance measurements in the absence of sensor degradation) and
SIF retrievals (compared to other long-term products).

Radiance spectra obtained from GOME-2C serve as a
benchmark for the calibrated GOME-2A radiance. Although
it is a sensor that measures the same bands with the same
spectral resolution as GOME-2A, GOME-2C had a later
launch time (in November 2018). Thus, measurements ob-
tained at the initial launch stage of GOME-2C can be taken
as accurate values that are not affected by degradation.

The NDVI (normalized difference vegetation index) and
three global GPP products were utilized for validation pur-
poses. We employed the global NDVI derived from the
MOD13C1 product. The MOD17A2H GPP (MODIS GPP)
product, with a spatial resolution of 500 m (Running et al.,
2021), was mosaicked globally every 8 d during the 2007–
2021 period. The global simulated GPP based on the LUE
model (Pmodel GPP) is a daily product from 1982 to 2016
whose spatial resolution is 0.5° (Stocker et al., 2019). The
monthly 0.5° GPP derived from the Dynamic Global Veg-
etation Model (DGVM) for 2007 to 2021 was also utilized
(TRENDY GPP version 11) (Sitch et al., 2015). The tempo-
ral range, temporal resolution, and spatial resolution of these
datasets are summarized in Table 1. All these products were
resampled at a spatial resolution of 0.5° and a temporal reso-
lution of 1 month to enable their comparison.

Next, we selected four long-term SIF products spanning
more than 1 decade for comparison, including the LT_SIFc*
(1995–2018) (Wang et al., 2022), SIFTER v2 (2007–2018)
(van Schaik et al., 2020), GOSIF (2000–2022) (Li and Xiao,
2019), and GOME-2 SIF products generated by the National
Aeronautics and Space Administration (hereon abbreviated
to NASA SIF) (2007–2018) (Joiner et al., 2013, 2016). The
LT_SIFc* is a data fusion product of GOME, SCIAMACHY,
and GOME-2 with a spatial resolution of 0.05° and a tempo-
ral resolution of 1 month. It dealt with the temporal decay of
the instrument based on statistics of the SIF signals in the Sa-
hara. The SIFTER v2 product is the point-by-point SIF prod-

uct retrieved from GOME-2 measurements after applying a
time-related correction factor; it was composited to yield a
monthly 0.5° global map in this study. The GOSIF product is
the spatiotemporal extrapolation product based on the global
neural network model and the OCO-2 SIF V8r product, with
a spatial resolution of 0.05° and a temporal resolution of 8 d.
Apart from the SIF products spanning decades, the OCO-
2 SIF product from 2015 to 2021 and the TROPOMI SIF
from 2018 to 2021 are also included here for comparative
purposes due to their high accuracy and because they are
less affected by sensor degradation. All SIF products were
resampled to 0.5° spatial and monthly temporal resolution
and were compared with TCSIF to assess long-term trends
in this study. Additionally, we used the NASA GOME-2A
level-2 SIF product, which has not been corrected for tempo-
ral decay, to verify the spatial distribution of our product. Key
information about these SIF products is presented in Table 2.

3 Methods

3.1 Pseudo-invariant method for calibrating the
GOME-2A degradation

A homogeneous square region in the Sahara (22.5–23.5° E,
28.5–29.5° N; Fig. 1b) was selected as a pseudo-invariant site
for calibrating the GOME-2A degradation. Ignoring the spa-
tiotemporal variation in the far-red surface reflectance and at-
mospheric optical properties over the calibration site during
the 2007–2021 period, the temporal trend in TOA GOME-
2A reflectance could be deemed equivalent to the amount of
temporal degradation in the GOME-2A instrument.

The MCD43C4 product was used here to investigate the
homogeneity and stability of this calibration site. Figure 1b
depicts the MCD43C4 surface reflectance and its spatiotem-
poral variance for the calibration site in 2007–2021. These
results indicate that this site is bright (the near-infrared (NIR)
reflectance is high, at 55.3 %–60.6 %), homogeneous (mean
spatial variation= 0.29 %), and stable (with very low tempo-
ral variation of 0.81 %). Arguably, this site qualified as an
ideal calibration site for implementing the pseudo-invariant
method.

The clear-sky GOME-2A level-1B radiance products for
the calibration site during 2007–2021 were downloaded to
derive the temporal degradation. Two selection criteria for
the GOME-2A data were applied: (1) a scanning angle of
<20° and (2) no cloud contamination. This resulted in a total
of 6885 GOME-2A level-1B radiance spectra being collected
to correct for the GOME-2A degradation.

Figure 2 depicts the yearly averaged TOA radiance spectra
over the calibration site for each year in 2007–2021. Tempo-
ral degradation was determined using GOME-2A level-1B
radiance products in the near-infrared (NIR) band between
735 and 758 nm, which served as the fitting window for SIF
retrieval. Evidently, there is pronounced temporal degrada-
tion in the radiance spectra. Thus, a time-dependent correc-
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Table 1. The GPP and NDVI datasets used in this study and relevant details about them.

Dataset Temporal range Temporal Spatial
(YYYY.MM–YYYY.MM) resolution resolution

MODIS GPP 2000.02–2023.02 8 d 500 m
Pmodel GPP 1982.01–2016.12 1 d 0.5°
TRENDY GPP 1900.01–2021.12 1 month 0.5°
MODIS NDVI 2000.02–2023.02 16 d 0.05°

Table 2. The SIF products used in this study and relevant details about them. This information includes the temporal range of the dataset,
whether the dataset initially had a temporal degradation problem, and, if so, whether the degraded dataset was corrected. The signal to which
the correction factor is directly applied, the temporal unit of the correction factor, and the function describing the temporal correction are
provided as well.

Dataset Temporal range Temporal degradation Temporal correction Signal directly Temporal Function
(YYYY.MM–YYYY.MM) problem? applied? corrected unit

TCSIF 2007.01–2021.11 Yes Yes Radiance 1 d Quadratic function

NASASIF 2007.01–2019.03 Yes No – – –

LT_SIFc* 1995.01–2018.12 Yes Yes SIF 1 month Ensemble empirical mode
decomposition approach

SIFTER 2007.01–2018.12 Yes Yes Reflectance 3 months Piecewise function

GOSIF 2000.03–2022.12 No – – – –

OCO-2 SIF 2014.09–2021.12 No – – – –

TROPOMI SIF 2018.04–2022.12 No – – – –

tion factor was calculated, and the temporal correction func-
tion was assumed to be a second-order polynomial as fol-
lows:

Dfactor= a ·NOD2
+ b ·NOD+ c, (1)

where Dfactor is the degradation correction factor describ-
ing the temporal degradation; NOD is the number of days
elapsed since 1 January 1900, starting with 1; and a, b, and
c are the fitting coefficients of the polynomial function based
on the near-infrared radiance of the pseudo-invariant site.
The detailed analysis can be found in Sect. 4.1.

Next, the GOME-2A radiance can be corrected by dividing
the measured radiance signal by the Dfactor:

Radc (NOD,λ)=
Rado (NOD,λ)
Dfactor (NOD)

, (2)

where Radc and Rado are, respectively, the corrected radi-
ance and the original radiance without correction for the
degradation; Dfactor is the degradation correction factor in
Eq. (1), which is used to compensate for the GOME-2A in-
strument’s degradation since 2007.

3.2 Data-driven-based SIF retrieval method

The TCSIF dataset was separated from far-red SIF and cor-
rected radiance spectra in the 735–758 nm range by using an

singular vector decomposition (SVD)-based data-driven ap-
proach, namely that proposed by Guanter et al. (2015).

The TOA radiance (LTOA) was modeled this way:

LTOA =
(∑np

i=0
ai ·λ

i
)
·

(∑npc

j=1
βj · vj

)
+Fs ·hF ·T

e
↑
, (3)

where LTOA is the TOA radiance at 735–758 nm, λ is the
measured wavelength used to represent the low-frequency in-
formation on surface reflectance and atmospheric scattering,
and vj is the j th singular vector derived from non-vegetated
targets (referred to as training datasets) that describes the
high-frequency information on solar irradiance and atmo-
spheric transmittance. αi and βj are the coefficients of the
polynomial and singular vectors, respectively; Fs is the SIF
intensity at 740 nm; λ is the wavelength; np is the order of
the polynomial; and npc is the number of singular vectors
selected. Finally, T e

↑
is the effective upward transmittance

estimated as follows (Köhler et al., 2015):

T e
↑
= exp

[
ln
(
T e
↓↑
·

sec(θv)
sec(θ0)+ sec(θv)

)]
, (4)

where T e
↓↑

is the effective two-way atmospheric transmit-
tance derived by normalizing the TOA reflectance using the
low-order polynomial function; θ0 and θv denote the solar
zenith angle and viewing zenith angle, respectively.
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Figure 1. (a) Location of the calibration site. (b) The NIR surface reflectance and its temporal variance at the calibration site (22.5–23.5° E,
28.5–29.5° N) during the 2007–2021 period. The NIR reflectance (shown by yellow triangles) and the NIR variance (shown by blue crosses)
are, respectively, the mean and variance of the surface reflectance at the near-infrared band.

Figure 2. Temporal variation in the GOME-2A level-1B top-of-
atmosphere (TOA) radiance spectra at the calibration site (22.5–
23.5° E, 28.5–29.5° N) for the 2007–2021 period. Different colors
represent different years from 2007 to 2021.

3.3 Post-processing of SIF retrieval results

The following quality-filtering criteria were applied (Guanter
et al., 2012):

1. The land-cover type was set to vegetation.

2. The range of the mean radiance within the 735–758 nm
window was between 25 and 200 mW m−2 nm−1 sr−1.

3. The absolute value of SIF was <5 mW m−2 nm−1 sr−1.

4. The solar zenith angle was <75°.

5. χ2 was <2.

Here, χ2 is the reduced chi-square value calculated based
on the residuals from fitting (Sun et al., 2018), which char-
acterizes the fit between the modeled and measured radiance
using the forward model described above in Eq. (3). It is cal-
culated as follows:

χ2
=

∑nwi
i

( (
Radifit−Raditrue

)2
noise

)2

nf
, (5)

where Radifit and Raditrue denote the ith spectral point of the
modeled and measured radiance within the fitting window,
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respectively; “noise” denotes the random noise spectra; nf
is the degrees of freedom; and nwi is the number of bands
within the fitting window.

Also, we dealt with the effect of a zero-offset error in the
SIF retrievals. Both the nonlinear response of the spectrom-
eter radiance signals and the SVD data-driven algorithm can
inevitably introduce systematic biases into the SIF retrieval
results, especially in non-vegetated areas. Previous studies
have identified systematic biases in SIF retrievals that depend
on either the TOA radiance (Frankenberg et al., 2011; Guan-
ter et al., 2012; Sun et al., 2017, 2018) or the latitude (Köhler
et al., 2015; Joiner et al., 2016; van Schaik et al., 2020). Here
we corrected the systematic biases (bias) by considering the
radiance at the 735–758 nm window (Rad), the latitude (lat),
and the observation zenith angle (θ0) of each footprint as fol-
lows (Joiner et al., 2016):

bias
cos(θ0)

= A+B · θ0 +C · θ
2
0 +D · θ

3
0 +E ·Rad

+F ·Rad2
+G ·Rad3

+H · lat, (6)

where A to H are the correction factors. These factors were
first determined using the training dataset (where SIF is sup-
posed to be zero and the retrieved SIF can be taken as the
“bias”), which has a uniform latitude dimension, by apply-
ing the least-squares model. Next, the bias was calculated
and subtracted from the SIF retrievals for each pixel.

3.4 Evaluation of the product accuracy

First, the root mean square of the model residual
(rms_residual) was used to assess the accuracy of the data-
driven model used to fit the radiance spectra. The model
residual (Res) is the difference between the modeled and
measured radiance:

Res(λ)= Radtrue(λ)−Radfit(λ), (7)

where Radifit and Raditrue denote the modeled and measured
radiance spectra, respectively.

Second, the covariance matrix Se of the least squares for
the SIF retrieval was calculated to assess the precision of the
SIF retrievals:

Se = noise2(KTK
)−1

, (8)

where K is the Jacobian matrix formed by those linear model
parameters from Eq. (3), and “noise” refers to the spectrally
uncorrelated noise, which was calculated here based on the
radiance and signal-to-noise ratio.

The standard error of the weighted mean (σSIF) within
each grid cell was calculated in the following way (Du et
al., 2018):

σSIF =
1√∑n

1(1/σ 2
i )
, (9)

where σi is the 1σ error, which is the diagonal element of Se
corresponding to Fs, and n is the number of sample points
within each grid cell.

3.5 Upscaling the instantaneous SIF to the monthly
averaged value

In previous studies, the global satellite-observed SIF was up-
scaled to a daily scale by using the diurnal cycle of the co-
sine of the solar zenith angle (cos[SZA]) to correct for day-
length effects (Frankenberg et al., 2011; Zhang et al., 2018).
These effects can cause large overestimates of SIF on cloudy
days because the satellite-observed SIF data are only avail-
able on clear-sky days. In this study, the downwelling PAR
rather than cos(SZA) was used to compensate for the sig-
nificant effects of diurnal weather changes due to cloud and
atmospheric scattering (Hu et al., 2018) while upscaling the
instantaneous SIF to monthly values. The all-sky monthly av-
eraged SIF (SIFmon) can be determined using the PAR-based
upscaling model as follows:

SIFmon =


∑M

monSIFins∑M
monPARins×EVIins

×PARmon×EVImon

if EVImon > 0.2∑M
monSIFins∑M

monPARins
×PARmon if EVImon ≤ 0.2,

(10)

where SIFins is the GOME-2A level-2 daily instantaneous
clear-sky (i.e., <30 % cloud fraction) SIF, the terms PARmon
and PARins are the corresponding monthly and instantaneous
values of PAR, and EVImon and EVIins are the respective
monthly and daily EVI values. M is the number of valid
measurements within the 0.5° grid cell during the relevant
monthly period. The EVI is negligible if the EVI value for
the cell is <0.2.

Based on the PAR-based upscaled model, the instanta-
neous GOME-2A SIF clear-sky observations with a correc-
tion for temporal degradation were upscaled to their monthly
average values.

4 Results

4.1 Correction of GOME-2A sensor degradation

A second-order polynomial was fitted to describe the tempo-
ral degradation in the reflectance signal of GOME-2A. Fig-
ure 3a illustrates the temporal variation in TOA reflectance
at 758 nm at the calibration site. Significant and continuous
degradation can be observed; however, this nonlinear trend
was accurately captured by a quadratic polynomial function
with a determination coefficient (R2) of 0.851. These results
indicated that, overall, the GOME-2A instrument degraded
by 16.21 % from 2007 to 2021. This temporal degradation
was considered spectrally constant in the narrow fitting win-
dow of the SIF retrieval (735–758 nm).

By dividing the NIR reflectance by the value of the fit-
ted function at the starting date (1 January 2007), we obtain
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the degradation factor (Dfactor), as shown in Fig. 3b. The
second-order polynomial fit was used in Eq. (2) to calibrate
the instrument’s degradation since 1 January 2007, as given
by

Dfactor(NOD)= 80.298×
(

NOD
100000

)2

− 70.123

×
NOD

100000
+ 16.142 (R2

= 0.851), (11)

where NOD is the number of days since 1 January 1900.
The temporally corrected GOME-2A NIR radiance was

validated using GOME-2C radiance spectra (Fig. 4). For
the corrected GOME-2A radiance, the scatter plot shows
that the majority of points are concentrated near the 1 : 1
line (Fig. 4a). The difference between the two products
followed a Gaussian distribution with a small mean value
of 1.85 mW m−2 sr−1 nm−1, which is 2.3 % of the mean
GOME-2A radiance (Fig. 4b). In contrast, the mean devia-
tion without temporal correction is 15.16 W m−2 sr−1 nm−1

(Fig. 4d). Slight positive offsets can be found in both lin-
ear regression results. The difference in orbit height between
GOME-2A (827 km) and GOME-2C (817 km) leads to the
difference in viewing zenith angle (VZA). Although only
observations with VZA <20° were selected, and the effect
of observing angle has been corrected for by dividing by
the cosine of VZA, there may still be differences due to the
anisotropy of the ground surface, which introduces system-
atic errors.

4.2 Uncertainty of the data-driven algorithm

The fitting residual and single-retrieval error of the TCSIF
dataset were analyzed to verify the feasibility of the data-
driven retrieval algorithm as well as the quality control pro-
cess.

As Fig. 5 shows, the fitted data-driven model described
the measured radiance spectra well, with a root mean square
(rms) of the residual that was below 0.30 %. The model that
considers the fluorescence is more capable of reconstruct-
ing the radiance spectra than the model which ignores the
fluorescence, as it has a slightly lower rms_residual (around
0.02 % on average).

4.3 Spatial distribution of the TCSIF dataset

Figure 6 shows the global pattern of monthly TCSIF in the
summer and winter of 2008. The monthly GOME-2A SIF
dataset captured the spatial pattern in both seasons well, with
high SIF values present in Southeast Asia, the North Ameri-
can Corn Belt, and central Europe in July and the Amazon
rainforest and most of South America in December. Cru-
cially, the standard error of the weighted mean (σ (Fs)) is
lower than 0.1 mW m−2 sr−1 nm−1 in most regions globally,
while the main vegetated areas have σ (Fs) values lower than
0.05 mW m−2 sr−1 nm−1 (Fig. 6).

We also compared the spatially matched TCSIF and
NASA SIF pixels in January and July 2008, July 2017, and
January 2018 (Fig. 7a–d). The linear relationships between
the two SIF products revealed that they were strongly cor-
related (R2>0.65), significant (p value <0.05), and close
to the 1 : 1 correspondence line (slope >0.84) for both sea-
sons in 2008 (Fig. 7a, b). For comparison, in 2017 and 2018
(Fig. 7c, d), there are still good linear relationships between
TCSIF and NASA SIF (R2>0.64). However, it is worth not-
ing that the regression line deviates from the 1 : 1 line in both
2017 and 2018 (slope <0.80), which is caused by the degra-
dation in NASA SIF.

OCO-2 SIF and TROPOMI SIF were also involved in
the validation of TCSIF (Fig. 7e, f). To avoid discrepan-
cies in wavelength and the overpassing time, the day-length-
corrected 740 nm values provided by OCO-2 SIF, TROPOMI
SIF, and TCSIF were compared. The spatially matched
points were selected. TCSIF versus OCO-2 SIF and TC-
SIF versus TROPOMI SIF comparisons were conducted in
July 2019 and July 2021, respectively. Both comparisons
show high consistency, with R2>0.65, and the linear regres-
sion results are close to the 1 : 1 line.

4.4 Temporal variation in the TCSIF dataset

The global monthly SIF is averaged to demonstrate the tem-
poral variation (Fig. 8). The autocorrelation coefficient of
the time series is calculated for each pixel, and only the
vegetation-covered pixels with an autocorrelation coefficient
greater than 0.4 are selected to ensure the authenticity of the
time series. Compared with the NASA SIF products, which
gave a downward trend in SIF for 2007–2018, the global
monthly mean trend in TCSIF exhibited an upward trend.
The monthly trend in global averaged SIF shifted from a de-
crease of 1.15 % yr−1 to an increase of 0.71 % yr−1 after cor-
recting for the instrument’s degradation. As seen in Fig. 9,
the trend in SIF variation was underestimated in almost all
vegetation regions before the temporal correction, with the
effect of the correction being particularly prominent at low
latitudes in the Southern Hemisphere (0–20° S) as well as at
middle and high latitudes in the Northern Hemisphere (30–
70° N).

The temporally consistent SIF dataset was then applied to
reveal spatiotemporal patterns in the photosynthetic activity
of global vegetation. Figure 10 shows the global patterns in
the trends for the annual average TCSIF in the 2007–2021
period. When tallied, 62.91 % of the vegetated areas were
distinguished by an upward trend in SIF, whereas 13.86 %
corresponded to a significant increase over time (p<0.05).
The regions that showed a significant increase in SIF were
mainly located in Southeast Asia, eastern China, western Eu-
rope, central Africa, and South America. Only 4.51 % of the
vegetated parts of the Earth’s vegetated surface experienced
a significant decrease in SIF.
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Figure 3. Temporal variation in the TOA reflectance at 758 nm at the calibration site (a) and the temporal correction coefficients used to
compensate for the degradation of GOME-2A since 2007 (b). The blue dots and red curves in (a) represent NIR reflectance and the fitted
quadratic function, respectively. The degradation factor (Dfactor) in (b) was calculated by dividing the NIR reflectance by the value of the
quadratic function in (a) at the starting date (1 January 2007). NOD in the degradation correction equation is the GOME-2A acquisition date
since 2007, which equals the number of days from 1 January 1900.

Figure 4. Comparison between the GOME-2A and GOME-2C NIR radiance after (a, b) and before (c, d) the temporal correction on
1 July 2019. Histograms of the GOME-2C NIR radiance minus the corrected GOME-2A NIR radiance and the GOME-2C NIR radiance
minus the uncorrected GOME-2A NIR radiance are shown in (b) and (d), respectively. Spatially matched pixels with a cloud fraction lower
than 0.3, a VZA lower than 20°, and an SZA lower than 70° were selected.
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Figure 5. (a) Radiance spectra in the 735–758 nm fitting window over vegetated areas on 15 July 2017: measured spectrum (Rad, represented
by squares) and spectra that were modeled with (Rad_Fit Fs, represented by diamonds) and without (Rad_Not Fit of Fs, represented by
crosses) accounting for SIF. (b) Root mean square (rms) values of the fitting residual obtained when SIF was (rms _Fit Fs, represented
by yellow diamonds) and was not (rms_Not Fit of Fs, represented by blue triangles) accounted for. Each spectrum is the average of 224
vegetation spectra over pixels with a cloud fraction of <0.1 and a SIF intensity of >1.5 mW m−2 sr−1 nm−1.

Figure 6. Global patterns in the upscaled monthly TCSIF (a, b) and the standard error of the weighted mean (σ (Fs)) (c, d) in July (a, c) and
December (b, d) in the year 2008.

As shown in Fig. 11, 57.11 % of the vegetated area is fac-
ing a decline in NASA SIF. In contrast, as seen from OCO-
2 SIF, TRENDY GPP, and NDVI, vegetation was growing
over a large area globally (>70 %) from 2007 (or 2015)
to 2021. The main inconsistency between NASA SIF and

the other products occurs in central and southern Africa,
eastern Europe, and southern North America, where NASA
SIF declines and the others increase. In southeastern China,
vegetation greening was found by TCSIF, OCO-2 SIF, and
NDVI, while an insignificant downward trend was shown
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Figure 7. Comparison of TCSIF vs. NASA SIF on 14 January (a) and 15 July (b) in the year 2008 and on 15 July 2017 (c) and 14 Jan-
uary 2018 (d). Comparisons of TCSIF versus OCO-2 in July 2019 (e) and TCSIF versus TROPOMI SIF in July 2021 (f). The comparisons
were made based on the level-2 product. Co-located pixels over land with a cloud fraction<0.3 were selected. The color of the scatter points
represents the density of the points. The dotted blue line and the solid black line represent the line fitted based on the scatter points and the
1 : 1 line, respectively.

by TRENDY GPP. Vegetation growth in southern North
America, Europe, the Amazon rainforest, central Africa, and
Southeast Asia was detected by all the products apart from
NASA SIF.

5 Discussion

5.1 Degradation at different locations and wavelengths

In this study, only one calibration site (Libya 4) was used for
the fitting of the degradation function. The results may be
different for different sites. Previous studies have compiled
20 pseudo-invariant calibration sites (PICSs) for instrument
calibration (Cosnefroy et al., 1996; Bacour et al., 2019). We
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Figure 8. Time series of the monthly averaged global GOME-2A SIF for 2007–2018 with (purple line) and without (orange line) the
degradation correction. The daily level-2 NASASIF product was composited and filtered in the same way as for TCSIF.

Figure 9. (a) Difference in temporal trend between SIF products with and without temporal correction and (b) the latitudinal profiles of (a)
for 2007–2018. The brown- and green-shaded areas in (b) represent the standard deviations of the TCSIF and NASA SIF trends, respectively.

have involved three other commonly used sites, and the re-
lated information is shown in Table 3.

Among the four PICSs, Libya 4 was shown to be the best
site for the calibration, as it is bright (the near-infrared (NIR)
reflectance is high, at 55.3 %–60.6 %) and it is the most ho-
mogeneous (mean spatial variation= 0.29 %) and most sta-
ble (with a very low temporal variation of 0.81 %) site.
On the other hand, similar interannual declining trends are
given by the four PICSs (Fig. 12a). The NIR reflectances of
Libya 4, Algeria 3, Mauritania 1, and Libya 1 declined by
16.21%, 17.57 %, 17.20 %, and 16.38 % from 2007 to 2021,
respectively. Therefore, we can reliably fit the degradation of
GOME-2A using the Libya 4 site only.

In addition, the degradation at different wavelengths may
also differ. Degradation functions fitted by different wave-
lengths in the 735–758 nm were compared. A difference of
less than 1 % was found when the degradation from 2007
to 2021 was fitted at different wavelengths (Fig. 13a and b).
Figure 13b shows the variation in the temporal decay at dif-
ferent wavelengths and indicates that inconsistency mainly
occurs at the Fraunhofer line, which is inherently unstable

over time. On the other hand, SIF retrieval relies on the fit-
ting of absorption lines. Extremely high fitting accuracy must
be ensured if the wavelength is considered to be a factor that
influences the degradation function; otherwise, the accuracy
of SIF retrieval will be greatly affected. Therefore, in this
study, the wavelength dependence of the degradation within
the 735–758 nm window is ignored.

5.2 Uncertainty in the temporal correction method

A wide range of radiance is essential for ensuring the rep-
resentativeness of the temporal correction function, since
the degradation may differ across different radiance levels.
Although the pseudo-invariant sampling region selected in
this study has a small spatial extent, it has a large radi-
ance range (48–284 mW m−2 sr−1 nm−1) which almost cov-
ers that of the main vegetated areas at the near-infrared
band (Fig. 14); only the lowest value of vegetation radiance
(24 mW m−2 sr−1 nm−1) is not covered. Since temporal in-
variance is required for the calibration site, it leaves a few
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Figure 10. Map of trends in the annual average GOME-2A SIF for 2007–2021. The inset shows the percentages of the area that were
characterized by four types of trends: a significant increase (a positive correlation with p<0.05), an increase (a positive correlation with
p ≥ 0.05), a decrease (a negative correlation with p ≥ 0.05), or a significant decrease (a negative correlation with p<0.05).

Figure 11. Map of trends in the annual average (a) NASA SIF for 2007–2018, (b) OCO-2 SIF for 2015–2021, and (c) TRENDY GPP and
(d) NDVI for 2007–2021. The colors represent four types of trends: a significant increase (a positive correlation with p<0.05), an increase
(a positive correlation with p ≥ 0.05), a decrease (a negative correlation with p ≥ 0.05), or a significant decrease (a negative correlation with
p<0.05).

optional samples to choose from. The representativeness of
samples may have an impact on the correction coefficient.

The relative residuals of the corrected GOME-2A NIR
radiance at vegetated targets under different radiance lev-
els were analyzed. As shown in Fig. 15, the relative resid-
uals are less than 20 % when the NIR radiation is greater
than 25 mW m−2 sr−1 nm−1, and the averages of the rel-
ative residuals are less than 7 %. The results indicate
that the correction is essentially accurate at different ra-
diance levels. However, when the radiance is lower than

25 mW m−2 sr−1 nm−1, the relative residual error reaches
40%. One reason for this result is that low radiance sig-
nals are greatly affected by random noise, resulting in poor
comparability of GOME-2A and GOME-2C. Also, the ex-
tremely low radiance level cannot be estimated using the cor-
rection based on desert pixels. Therefore, the correction re-
sults can be inaccurate for pixels with low vegetation cover-
age or stressed vegetation.

Another limitation is that we only indirectly verify the re-
liability of the interannual trend of TCSIF when using sev-
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Table 3. The four pseudo-invariant calibration sites (PICSs) and related information.

Site name Location NIR reflectance Mean spatial Temporal
variation variation

Libya 4 (23.00° E, 29.00° N) 55.3 %–60.6 % 0.29 % 0.81 %
Algeria 3 (7.66° E, 30.33° N) 49.2 %–59.3 % 0.94 % 1.20 %
Mauritania 1 (9.30° W, 19.40° N) 48.3 %–65.6 % 3.48 % 2.25 %
Libya 1 (13.35° E, 24.42° N) 50.2 %–66.2 % 2.51 % 2.25 %

Figure 12. Instrument degradation at the four different calibration
sites. Each bar shows the yearly average ± standard deviation.

eral long-term remote-sensing products, such as GPP, NDVI,
and other SIF products. Direct validation data, such as field
measurements, were not used to prove the accuracy of our
results. In this respect, the huge discrepancy in scale be-
tween the satellite SIF products (0.5°) and ground observa-
tions (<100 km2) is one of the major obstacles. In fact, to our
best knowledge, there is no available decade-long in situ SIF
validation dataset that is sufficiently reliable for such a direct
validation, and the methodology of directly verifying satellite
SIF based on in situ measurements is still imperfect (Parazoo
et al., 2019). The accuracy of TCSIF products needs to be
verified via future applications.

The contamination of the lens may not be the only reason
for GOME-2A’s degradation. As shown in Fig. 3, the intra-
annual variation in NIR reflectance does not decrease, unlike
the interannual average. Instead, the intra-annual variation
grows with time. A similar phenomenon was found in the
chlorine dioxide products (Pinardi et al., 2022): the GOME-
2A results are noisier than those of GOME-2B, especially
after 2011. These results suggest that, in addition to the de-
cline in reflectance over time caused by lens contamination,
the temporal degradation impacts GOME-2A measurements
in other forms. However, the pattern of this effect is not yet
clear; further research is needed on more aspects of the im-

pact of GOME-2A’s degradation on its measurements. There-
fore, only the interannual declining trend was considered in
this study, while the inevitable intra-annual variations caused
by other factors such as the bidirectional reflectance distribu-
tion function and atmospheric scattering were neglected.

5.3 Comparison with other long-term SIF products

The annual average values of TCSIF and other long-term
SIF products were compared (Fig. 16). Importantly, most
of the long-term SIF products were in agreement and fea-
tured an increasing trend in SIF from 2007 to 2018, except
for NASA SIF and SIFTER (Fig. 16a–e). Among the tem-
porally corrected SIF products, the annual curves of TC-
SIF and LT_SIFc* are generally consistent, while LT_SIFc*
gives a more strongly increasing trend of 1.247% yr−1, and
the uncertainty of the growing trend in TCSIF (0.15 % yr−1)
is lower. A slightly decreasing trend of−0.08 % yr−1 charac-
terized the SIFTER v2 product (Fig. 16b), while the annual
fluctuation in SIFTER v2 was clearly the greatest among all
the SIF products shown in Fig. 16 (0.37 % yr−1). The yearly
trend according to TCSIF (1.06 % yr−1) is close to the results
from OCO-2 SIF for 2015 to 2021 (1.23% yr−1; Fig. 16f),
while GOSIF shows a slower growing trend of 0.50% yr−1

during the same period. Compared to GOSIF, which was de-
rived from OCO-2 SIF using a machine-learning method,
TCSIF is even more consistent with OCO-2 SIF, suggest-
ing that machine-learning methods have flaws in relation to
maintaining the temporal trend of the original SIF products.

The large interannual fluctuation of SIFTER may be
caused by the fact that its correction factor is seasonally
based. No continuous correction functions were applied by
SIFTER, which runs counter to the sensor’s general pattern
of temporal decay (Lyapustin et al., 2014; Wang et al., 2012).
In stark contrast, the least interannual fluctuation was found
in the GOSIF product. A neural network model was used for
the spatiotemporal degradation of the GOSIF product, en-
abling GOSIF to inherit the time-stable signal from MODIS
reflectance. However, this neural network model has been
criticized for relying too much on training data, such as re-
flectance data, and overlooking valuable information in the
original observations (Ma et al., 2020). In the years not cov-
ered by the original OCO-2 SIF, the spatial distribution of
GOSIF depends almost entirely on other input parameters of

https://doi.org/10.5194/essd-16-2789-2024 Earth Syst. Sci. Data, 16, 2789–2809, 2024



2802 C. Zou et al.: TCSIF

Figure 13. (a) The degradation factor (Dfactor) fitted using the reflectance at different wavelengths in the 735–758 nm fitting window. The
red line is the result obtained at 758 nm, while the degradation functions fitted by other wavelengths are shown in gray. (b) Normalized NIR
reflectance spectra in the 735–758 nm fitting window for different years from 2007–2021.

Figure 14. Range of radiance at the near-infrared band at the cali-
bration site and in the six main vegetated areas. The gray bars and
blue lines are the range and mean of the datasets, respectively.

the data-driven model; hence, it cannot reliably capture the
long-term temporal trend in SIF.

The LT_SIFc* product uses weak SIF signals over the Sa-
hara to fit the temporal decay pattern of the sensor, which
can quickly generate corrected SIF products based on the
monthly global maps provided by NASA SIF. Nevertheless,
the method is not rigorous enough, since the sensor’s degra-
dation does not alter the SIF retrievals in a linear way. The
post-processing steps, such as the zero-offset correction and
quality-filtering procedures, will influence the distribution of
global gridded SIF products, leading to uncertainties in the

correction function. Besides this, a large proportion of noise
signals accompany the weak SIF signals over desert targets,
thus restricting the fitting accuracy of the corrective func-
tion. Meanwhile, LT_SIFc* is obtained by fusing three SIF
products using the cumulative distribution frequency (CDF)-
matching approach. Accordingly, the spatiotemporal distri-
bution of the original SIF signal may be forced to change due
to adjustments in the distribution frequency of each separate
product. In this study, we corrected the degradation in radi-
ance spectra rather than the SIF by using pseudo-invariant
pixels over the Sahara, which should provide a more reliable
method.

To take advantage of SIF’s ability to capture rapid changes
in GPP, the temporal resolution of long-term SIF products
needs to be higher than 1 month or even a few days (Zhang
et al., 2014, 2016; Porcar-Castell et al., 2014). However,
LT_SIFc* cannot meet these temporal resolution require-
ments as it is constrained by the original SIF products. By
contrast, the shorter repeating cycle of GOME-2 was fully
utilized in this study. Our work provides global daily level-
2 SIF products that encompass the world’s terrestrial area,
which will greatly improve the applicability of global SIF
products to the monitoring of global vegetation dynamics.

5.4 Interannual trends for the TCSIF, NDVI, and GPP
products

We compared the interannual trend in TCSIF with those of
GPP and NDVI. Parameter values during the peak of the
growing season were compared to show the period when the
vegetation was most lush each year. After the spatial averag-
ing of monthly products, the yearly annual maximum values
were calculated year by year.
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Figure 15. Relative residual of the NIR radiance (calculated as the absolute difference between the GOME-2A and GOME-2C NIR radiance
at the co-located points) at different radiance levels. Global vegetation targets with SIF signals greater than 0.1 mW m−2 sr−1 nm−1 on
1 July 2019 were selected.

Figure 16. Comparison of temporal trends in the annual SIF average from (a) TCSIF, (b) LT_SIFc*, (c) SIFTER v2, and (d) NASA SIF
during 2007–2018, from (e) GOSIF during 2007–2021, and from (f) OCO-2 SIF during 2015–2021. All data shown are normalized to relative
values (by dividing by the mean). The shaded areas indicate the standard deviations.

As evinced by Fig. 17a–e, the global yearly maximum
TCSIF showed a trend of increasing SIF intensity, which
was consistent with those of GPP and NDVI. The interan-
nual fluctuation of TCSIF (0.16 %) slightly exceeded those of
the GPP and NDVI products (both <0.1 % yr−1) during the
2007–2021 period, and likewise for 2007–2016. The interan-
nual trend and associated uncertainty of each product are dis-
played in Fig. 17f. Given that the time span of Pmodel GPP
stops at 2016, we selected the NDVI and TCSIF series from
2007 to 2016 for a fair comparison with Pmodel GPP; this is
shown in the bottom half of Fig. 17f. Evidently, there are de-
viations between the interannual vegetation growth trends in-

ferred from different GPP products. For example, from 2007
to 2021, the interannual growth trend estimated by MODIS
GPP (0.64 %) surpassed that of TRENDY GPP (0.44 %).
Meanwhile, the interannual growth rate of TCSIF was close
to those of MODIS GPP and Pmodel GPP in 2007–2021 and
2007–2016, respectively. Notably, when compared with the
reflectance-based NDVI, the trend in TCSIF was more sim-
ilar to that in GPP in both periods examined, indicating that
TCSIF was more capable of tracking GPP than NDVI.
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Figure 17. Comparison of temporal trends in the yearly maximum from (a) TCSIF, (b) TRENDY GPP, (c) Pmodel GPP, (d) MODIS GPP,
and (e) NDVI. All data shown are normalized to relative values (by dividing by the mean). The shaded areas indicate the standard deviations
and the gray lines represent the fitted lines which show the general trends. The interannual trends (shown by the short vertical gray or blue
lines) of all the products and their uncertainties (shown by the horizontal blue or gray bars) are shown in (f). TCSIF_s1 and NDVI_s1
correspond to the TCSIF and NDVI series for 2007–2016.

6 Data availability

The global monthly GOME-2A SIF dataset (2007–2021)
with the correction of temporal degradation is openly avail-
able at https://doi.org/10.5281/zenodo.8242928 (Zou et al.,
2023; see Table A1 for access to other related datasets).
The corrected global GOME-2 SIF dataset can be ob-
tained in two forms. The daily level-2 dataset is provided
in hdf5 format. The names of these files are given as
SIF_daily_YYYYMMDD.h5, in which “YYYY”, “MM”,
and “DD” denote the year, month, and date, respectively. The
level-3 datasets, which were aggregated monthly from the
level-2 dataset, have a spatial resolution of 0.5° and are saved
in TIFF format in chronological order from 2007 to 2021.
The names of these files are given as SIFpar_evi_monthly
_YYYYMM.tif, in which “SIF” is the product type; “par”
and “evi” represent upscaled parameters; “monthly” denotes
the temporal scale, and “YYYY” and “MM” are the year and
month, respectively. The SIF output is stored in the hdf5 files
along with other variables of interest for further processing
and visualization. See Appendix B for the structure of the
hdf5 file.

7 Conclusion

Degradation of the GOME-2A instrument has been a ma-
jor barrier to producing consistent SIF products over an ex-
tended time period. By normalizing the instrument’s degra-
dation from 2007 to 2021, the radiance spectra of GOME-
2A were successfully corrected. The calibrated GOME-2A
NIR radiance was shown to be accurate by comparing it
to GOME-2C; the mean bias is 1.85 mW m−2 sr−1 nm−1.
Based on the calibrated radiance, we were able to develop a
temporally consistent SIF (TCSIF) dataset spanning decades
for use in research. The TCSIF is strongly correlated with
the NASA SIF, OCO-2 SIF, and TROPOMI SIF products in
terms of its spatial distribution (R2>0.65), and it has a low
retrieval residual (the rms of the residual is under 0.30 %).
Our findings reveal that the TCSIF product yields a more reli-
able trend in vegetation SIF than the GOME-2A dataset with-
out the degradation correction does. After undergoing the
temporal correction, the vegetation SIF increased by 0.70 %
per year during the 2007–2021 period, and 62.91 % of the
global vegetated regions saw an increase in their SIF, sug-
gesting an overall increase in vegetation SIF and photosyn-
thesis during the growing season. Compared with NDVI, the
results obtained by TCSIF are closer to the GPP, indicating
that the TCSIF product is a reliable proxy for vegetation ac-
tivity.
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We conclude that the TCSIF product developed in this
study represents a significant advancement in our ability to
accurately assess long-term changes in the SIF of vegetation
on a global scale. This product can thus serve as a valuable
reference for past and future studies of long-term SIF prod-
ucts and may provide important insights into the impact of
climate change on vegetation photosynthesis.

Appendix A: Supplementary material

Table A1. Access to the datasets used to generate and compared with TCSIF products.

Dataset name Description Access

GOME-2A/C radiance Level-1B product of GOME-2A and GOME-2C https://data.eumetsat.int/data/map/EO:EUM:
DAT:METOP:GOMEL1
(EUMETSAT 2019)

MERRA-2 PAR MERRA-2 meteorological assimilation reanalysis data
(photosynthetically active radiation)

https://doi.org/10.5067/L0T5GEG1NYFA
(GMAO 2015)

MODIS MOD13C1 MODIS Vegetation Indices 16-Day (version 6.1) https://doi.org/10.5067/MODIS/MOD13C1.
061 (Didan, 2021)

MODIS MOD43C4 The MODIS version 6.1 Nadir Bidirectional reflectance
distribution Adjusted Reflectance (NBAR) product

https://doi.org/10.5067/MODIS/MCD43C4.
006 (Schaaf and Wang, 2015)

LT_SIFc* Temporally corrected, global, 0.05° level-3 SIF product https://doi.org/10.6084/m9.figshare.21546066.
v1 (Wang and Zhang, 2023)

SIFTER Level-2 daily GOME-2A SIF product that accounts for
biases

https://doi.org/10.21944/
gome2a-sifter-v2-sun-induced-fluorescence
(Kooreman et al., 2020)

NASA SIF Level-2 daily SIF (at 740 nm) dataset from GOME-2A https://doi.org/10.3334/ORNLDAAC/2083
(Joiner et al., 2023)

GOSIF A global 0.05° product of solar-induced chlorophyll flu-
orescence derived from OCO-2, MODIS, and reanalysis
data

https://globalecology.unh.edu/data/GOSIF.html
(Li and Xiao, 2019)

OCO-2 SIF Level-2 daily SIF (at 740 nm) dataset from OCO-2 https://doi.org/10.5067/XO2LBBNPO010
(Gunson and Eldering, 2020)

TROPOMI SIF Level-2 daily SIF (at 740 nm) dataset from TROPOMI ftp://fluo.gps.caltech.edu/data/tropomi/
(Köhler et al. 2018)

TRENDY GPP Global monthly 0.5° GPP based on the Dynamic Global
Vegetation Model

https://blogs.exeter.ac.uk/trendy/∗

(Sitch et al. 2015)

Pmodel GPP Global daily 0.5° GPP based on an LUE model
(Pmodel)

https://doi.org/10.5281/zenodo.1423484
(Stocker, 2018)

MODIS GPP 8 d composite, 500 m GPP product based on the radia-
tion use efficiency concept

https://doi.org/10.5067/MODIS/MOD17A2H.
061 (Running et al., 2021)

∗ Last access: 1 July 2023. The information on data access can be found at https://globalcarbonbudgetdata.org/closed-access-requests.html (last access: 1 July 2023). The
original TRENDY datasets can be requested from Stephen Sitch and Pierre Friedlingstein.
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Appendix B: Level-2 file description

The fields of the level-2 products include the following.

1. SIF retrievals, including the instant SIF retrieved using
the data-driven algorithm (SIF_740), the day-length-
corrected SIF (SIF_daily), and the relative error estima-
tions (the 1σ error (sigma_1), χ2, and the quality assur-
ance field – QA).

2. Geolocations, which are fields that describe the loca-
tion, including the latitude and longitude of the center
and boundary of each footprint as well as the solar and
viewing angles.

3. Ancillary data, including the reflectance at the red
(ps_red) and far-red (ps_NIR) bands, the cloud fraction,
the mean radiance in the 735–758 nm fitting window
(Rad_NIR), and the NDVI calculated from the GOME-
2 reflectance.
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