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Abstract. Accurate long-term marine-derived biogenic sulfur aerosol concentrations at high spatial and tem-
poral resolutions are critical for a wide range of studies, including climatology, trend analysis, and model eval-
uation; this information is also imperative for the accurate investigation of the contribution of marine-derived
biogenic sulfur aerosol concentrations to the aerosol burden, for the elucidation of their radiative impacts, and
to provide boundary conditions for regional models. By applying machine learning algorithms, we constructed
the first publicly available daily gridded dataset of in situ-produced biogenic methanesulfonic acid (MSA) and
non-sea-salt sulfate (nss-SO=4 ) concentrations covering the North Atlantic. The dataset is of high spatial resolu-
tion (0.25°× 0.25°) and spans 25 years (1998–2022), far exceeding what observations alone could achieve both
spatially and temporally. The machine learning models were generated by combining in situ observations of sul-
fur aerosol data from Mace Head Atmospheric Research Station, located on the west coast of Ireland, and from
the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) cruises in the northwestern Atlantic with
the constructed sea-to-air dimethylsulfide flux (FDMS) and ECMWF ERA5 reanalysis datasets. To determine
the optimal method for regression, we employed five machine learning model types: support vector machines,
decision tree, regression ensemble, Gaussian process regression, and artificial neural networks. A comparison
of the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of determination (R2) re-
vealed that Gaussian process regression (GPR) was the most effective algorithm, outperforming the other models
with respect to simulating the biogenic MSA and nss-SO=4 concentrations. For predicting daily MSA (nss-SO=4 ),
GPR displayed the highest R2 value of 0.86 (0.72) and the lowest MAE of 0.014 (0.10) µg m−3. GPR partial
dependence analysis suggests that the relationships between predictors and MSA and nss-SO=4 concentrations
are complex rather than linear. Using the GPR algorithm, we produced a high-resolution daily dataset of in situ-
produced biogenic MSA and nss-SO=4 sea-level concentrations over the North Atlantic, which we named “In-situ
Produced Biogenic Methanesulfonic Acid and Sulfate over the North Atlantic” (IPB-MSA&SO4). The obtained
IPB-MSA&SO4 data allowed us to analyze the spatiotemporal patterns of MSA and nss-SO=4 as well as the ratio
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between them (MSA : nss−SO=
4). A comparison with the existing Copernicus Atmosphere Monitoring Service

ECMWF Atmospheric Composition Reanalysis 4 (CAMS-EAC4) reanalysis suggested that our high-resolution
dataset reproduces the spatial and temporal patterns of the biogenic sulfur aerosol concentration with high accu-
racy and has high consistency with independent measurements in the Atlantic Ocean. IPB-MSA&SO4 is publicly
available at https://doi.org/10.17632/j8bzd5dvpx.1 (Mansour et al., 2023b).

1 Introduction

Marine-derived biogenic sulfur aerosol particles exert an im-
portant influence on the radiative properties of the atmo-
sphere, both directly by scattering solar radiation and indi-
rectly by modifying cloud properties (Langmann et al., 2008;
Charlson et al., 1987). Dimethylsulfide (DMS), a volatile or-
ganic compound produced by marine microbes, is the main
precursor of biogenic sulfur-containing aerosols in the ma-
rine boundary layer (MBL). After being ventilated into the
atmosphere, DMS is oxidized to form two of the major sec-
ondary marine aerosol species: methanesulfonic acid (MSA)
and non-sea-salt sulfate (nss-SO=4 ). Sulfur emitted by ma-
rine organisms constitutes 20 % (Fiddes et al., 2018) to 40 %
(Simo, 2001) of the total sulfur burden of the atmosphere.
An understanding of the role of MSA and nss-SO=4 concen-
trations in Earth’s climate is elusive (Mansour et al., 2020a;
Hodshire et al., 2019). According to the CLAW hypothesis
(Charlson et al., 1987), a negative climate feedback is ex-
pected to occur if phytoplankton respond to elevated tem-
perature or solar radiation levels by increasing their DMS
production, thereby exerting a cooling effect by increasing
the planetary albedo. Indeed, some studies have confirmed
that DMS emissions contribute significantly to stabilizing
the Earth’s atmosphere (Sanchez et al., 2018; Thomas et al.,
2010; Kim et al., 2018; Mahmood et al., 2019; Mansour et
al., 2022, 2020b), while a few others have claimed that the bi-
ological control over cloud condensation nuclei (CCN) goes
even beyond the climatic feedback role of DMS in the CLAW
hypothesis (Quinn and Bates, 2011; Woodhouse et al., 2010;
O’Dowd et al., 2004). As a result, biogenic sulfur aerosols
play a central role in ocean–atmosphere interactions and re-
gional climate change, and it is critical to parameterize and
characterize biogenic MSA and nss-SO=4 across different sea
areas and identify their sources to constrain the past, current,
and future climate impacts of both species (Hodshire et al.,
2019; Gondwe et al., 2003). For instance, MSA observations
from Greenlandic ice cores have been used to study the vari-
ability in subarctic Atlantic Ocean productivity from decadal
to centennial timescales (Osman et al., 2019).

Global aerosol–chemistry–climate general circulation
models are used widely to assess the radiative forcing of
DMS-derived aerosols. A negative forcing of between −1.7
and −2.3 W m−2 due to the DMS effect is predicted (Fiddes
et al., 2018; Fung et al., 2022; Thomas et al., 2010; Mahajan
et al., 2015). This range is comparable to the positive forcing

impact of anthropogenic CO2 emissions (1.83± 0.2 W m−2)
(Etminan et al., 2016). Large uncertainties in DMS forc-
ing estimates (up to ±10 W m−2) are partly because models
overlook the high-frequency spatial, temporal, and seasonal
variability in DMS fluxes (Mansour et al., 2023a; Royer et
al., 2015; McNabb and Tortell, 2022) as well as consequent
oxidation products (Riccobono et al., 2014), which are not
adequately constrained by the available sparse observations
(Bock et al., 2021). This level of uncertainty underlines the
need for improved parameterizations of natural sulfur aerosol
cycling and fluxes at regional scales (Hulswar et al., 2022;
Galí et al., 2018; Mahajan et al., 2015), which are essential
to determine their impact on climate. Recently, multilinear
regression was utilized to simulate monthly MSA over the
Bohai Sea, Yellow Sea, and East China Sea at a spatial reso-
lution of 1°× 1° (Zhou et al., 2023), and it was concluded
that spatial and seasonal patterns of MSA exhibit signifi-
cant variability, primarily governed by surface phytoplankton
biomass and the atmospheric boundary layer height.

Focusing on the North Atlantic (NA), sulfur-containing
aerosols, MSA and nss-SO=4 , have been measured at Mace
Head Atmospheric Research Station, a coastal area in the
eastern NA, to quantify the contribution of phytoplankton
emissions to aerosol mass concentrations in the MBL (Ri-
naldi et al., 2010, 2009; O’Dowd et al., 2004), to assess the
long-term seasonal patterns in the chemical composition of
submicron aerosol in the different origin of marine air masses
(Ovadnevaite et al., 2014), and to identify the oceanic re-
gions acting as the main source of biogenic aerosols (Man-
sour et al., 2020b). During the North Atlantic Aerosols and
Marine Ecosystems Study (NAAMES) field campaigns, re-
search cruises aimed at comprehending the relationships be-
tween ecosystems, aerosols, and clouds (Behrenfeld et al.,
2019), Saliba et al. (2020) evaluated the origins and contribu-
tions of submicron organic and sulfate components to CCN
concentrations in the MBL. They concluded that the DMS-
derived secondary nss-SO=4 enhanced hygroscopicity, parti-
cle size, and CCN concentrations by 5 %–66 %, especially
in the spring, highlighting the importance of phytoplankton-
produced DMS emissions for the CCN budget in the NA
(Mansour et al., 2022, 2020b; Sanchez et al., 2018). How-
ever, it is currently challenging to effectively investigate cli-
matology and long-term trends and climate forcing of bio-
genic sulfur compounds as well as to validate inherent model
outputs, as there is a lack of high-temporal-resolution data on
these compounds.
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In this study, we present the first high-resolution, long-
term daily gridded time series of freshly formed in situ-
produced biogenic MSA and nss-SO=4 (IPB-MSA&SO4)
concentrations over the NA at a 0.25°× 0.25° spatial reso-
lution. The data cover 25 years, from 1998 to 2022, with the
possibility of future year-by-year updates. The dataset is a
unique and novel product in that it extends the spatial and
temporal representativeness of atmospheric in situ observa-
tions of marine aerosol chemical properties over the NA by
exploiting the potential of machine learning. The dataset rep-
resents the sea-level concentrations of MSA and nss-SO=4 , in
each grid point of the domain, resulting from the interplay
between precursor emissions and local atmospheric condi-
tions. We created the IPB-MSA&SO4 dataset using in situ
MSA and nss-SO=4 data measured at the Mace Head (MHD)
site and during the NAAMES cruises, the gridded dataset
from the ECMWF ERA5, and reconstructed FDMS (Man-
sour et al., 2023a) as input data. To achieve this aim, we
employed the following machine learning (ML) approaches:
support vector machines (SVMs), decision tree (DT), regres-
sion ensemble (RE), Gaussian process regression (GPR), and
artificial neural networks (ANNs). ML has been applied in
a variety of scientific areas for model approximation, ex-
periment design, and multivariate regression of oceanic and
atmospheric complex systems; however, to our knowledge,
no prior applications to MSA and nss-SO=4 prediction have
been published. During model training, we evaluated the var-
ious possible kernel functions and hyperparameters in each
ML type (details in Table 1), employing the 5-fold cross-
validation strategy to select the best-performing (optimal)
function capable of properly predicting MSA and nss-SO=4 .
A partial dependence analysis is also used to assess the effect
of different predictors on the modeled MSA and nss-SO=4 .
Furthermore, we investigate the annual and monthly spatial
distributions of MSA, nss-SO=4 , and the ratio between them
(MSA : nss−SO=

4) to examine the evolution of MSA and nss-
SO=4 in the different regions of the NA domain from 1998
to 2022. The output data (IPB-MSA&SO4) from this study
should be useful for filling the data gap, particularly for the
NA, and be applicable to a variety of investigations, such as
climatology, trend analysis, model evaluation, and radiative
impact assessment, as well as providing boundary conditions
for regional models.

2 Study domain and data sources

2.1 Study area and measurement sites

The study area extends from 20° to 66° N and from 72° W
to the prime meridian (Fig. 1), covering the NA. The key
climate-relevant features in the study domain are the Gulf
Stream, its northern extension towards Europe known as the
North Atlantic Current (NAC), and the cyclonic subpolar
gyre (SPG) (Rhein et al., 2011). The Gulf Stream is a warm
Atlantic Ocean flow that begins in the Gulf of Mexico and

moves through the Straits of Florida before continuing up
the eastern coast of the United States (Buckley and Marshall,
2016). These warm northward-flowing waters meet the cold
southward-flowing waters of the Labrador Current and the
western boundary current of the cyclonic subpolar gyre, ulti-
mately turning east and heading toward northwestern Europe
as the NAC. The NAC then splits into multiple branches that
enter the subpolar gyre, one of which passes via the Iceland
Basin and the other through the Rockall Trough (Fratantoni,
2001). The NA SPG extends from 45 to around 65° N and
comprises the sills between Greenland, Iceland, the Faroe Is-
lands, and Scotland. Such circulation phenomena are crucial
for the modulation of the temperate climate of northwest-
ern Europe (Marzocchi et al., 2015), and the dynamics of
the SPG determine the rate of deep- and intermediate-water
formation (sinking dense and cold surface waters through
air–sea heat exchanges in the wintertime), particularly in the
Labrador Sea (Katsman et al., 2004). Accordingly, they con-
tribute to the regional changes in primary production and the
subsequent biogenic emissions in the study domain.

The MHD Global Atmosphere Watch (GAW) research sta-
tion (53.33° N, 09.90° W) is located on Ireland’s west coast
(Fig. 1), about 80 m from the coastline and 21 m above mean
sea level. MHD is the only GAW station in the eastern At-
lantic region; moreover, it is the globally acknowledged clean
background western European station, providing key base-
line input for intercomparison with levels elsewhere in Eu-
rope (Grigas et al., 2017; O’Dowd et al., 2014).

Four shipboard field campaigns were carried out as part
of the NAAMES research project (Behrenfeld et al., 2019).
The tracks of cruises representing marine conditions during
aerosol sampling (Saliba et al., 2020) are shown in Fig. 1.
The measurements cover the periods of November 2015,
May–June 2016, September 2017, and March 2018. Behren-
feld et al. (2019) provide a thorough explanation of the
NAAMES project’s goals, objectives, and atmospheric and
oceanic conditions.

2.2 Observational data

Long-term atmospheric concentrations of submicron sulfur
aerosol species (methanesulfonic acid, MSA, and sulfate,
SO=4 ) from January 2009 to June 2018 measured at MHD
were used. The measurements were performed using the
Aerodyne high-resolution time-of-flight aerosol mass spec-
trometer (HR-ToF-AMS). The HR-ToF-AMS (DeCarlo et
al., 2006) output has a time resolution of∼ 5–10 min, and the
instrument was operated according to the recommendations
of Jimenez et al. (2003), Allan et al. (2003), and Canagaratna
et al. (2007). MSA was derived from the concentration of the
mass fragment CH3SO+2 (Ovadnevaite et al., 2014). Further
information on the MSA measurement can be found in Man-
sour et al. (2020a). The black carbon (BC) concentrations
were measured in situ at MHD using a multi-angle absorp-
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Table 1. List of machine learning models used in the present study.

Model type Preset Hyperparameters
(if any)

Support vector Linear

machines Quadratic

Cubic

Fine Gaussian Kernel scale= 0.61

Medium Gaussian Kernel scale= 2.4

Coarse Gaussian Kernel scale= 9.8

Decision tree Fine Minimum leaf size= 4

Medium Minimum leaf size= 12

Coarse Minimum leaf size= 36

Regression ensemble Boosted Minimum leaf size= 8
Number of learners= 30

Bagged Minimum leaf size= 8
Number of learners= 30

Gaussian process Squared exponential

regression Matern 5/2

Exponential

Rational quadratic

Artificial neural
networks

Narrow Number of fully connected layers= 1
First layer size= 10

Medium Number of fully connected layers= 1
First layer size= 25

Wide Number of fully connected layers= 1
First layer size= 100

Bi-layered Number of fully connected layers= 2
First layer size= 10
2nd layer size= 10

Tri-layered Number of fully connected layers= 3
First layer size= 10
Second layer size= 10
Third layer size= 10

tion photometer (O’Dowd et al., 2014) to identify the anthro-
pogenically impacted air masses, as detailed in Sect. 3.1.1.

High-resolution in situ shipborne measurements of non-
refractory submicron SO=4 concentrations were measured ev-
ery 5 min using HR-ToF-AMS during four open-ocean re-
search cruises (NAAMES) in the northwestern Atlantic: win-
ter (November 2015), late spring (May–June 2016), autumn
(September 2017), and early spring (March 2018) (Saliba
et al., 2020). We employ this SO=4 concentration informa-
tion (no high-resolution MSA datasets available from the
NAAMES campaigns) during periods that were largely ma-

rine aerosol sources, which were defined as periods when
particle number concentrations were <1500 cm−3, BC was
<50 ng m−3, 2 d back trajectories originated from the North
Atlantic or tropical Atlantic, and radon concentrations were
<500 mBq m−3 according to Saliba et al. (2020). The mea-
sured SO=4 from the AMS excludes refractory particles that
likely contain the majority of sea-salt sulfate; therefore,
the measured SO=4 is approximately equivalent to nss-SO=4
(Frossard et al., 2014).
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Figure 1. The study region in the North Atlantic (20–66° N, 72–0° W) with bathymetry presented in meters. The gridded bathymetric dataset
was extracted from the General Bathymetric Chart of the Oceans (https://www.gebco.net, last access: 25 May 2023) GEBCO_2023 Grid.
The green pentagram represents the Mace Head measuring station on the west coast of Ireland, the dark-red points are the sampling points
that represent marine conditions in the NAAMES cruises track, and the violet points represent the ship track during Polarstern campaigns.

2.3 Air mass back trajectories

The National Oceanic and Atmospheric Administration
(NOAA) Air Resources Laboratory (ARL) developed the
Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT4) model (Rolph et al., 2017; Stein et al., 2015),
which is used to calculate the air mass back trajecto-
ries (BTs). The archived Global Data Assimilation System
(GDAS1; 1°× 1°) of the National Centers for Environmental
Prediction (NCEP) was used as a driver of the trajectory cal-
culation (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1, last
access: 10 November 2022). We ran the model at the MHD
sampling station as a fixed source location, whereas the
NAAMES cruises were run as a moving source location. The
starting height was set to 100 m above ground level, and the
backward time was 3 d with an interval of 1 h along each en-
tire trajectory track. The schematic diagram of BT calcula-
tion is shown in Fig. S1. The arrival frequency of BTs at
MHD is 3 h (8 tracks a day), covering the period from 1 Jan-
uary 2009 to 30 June 2018, whereas the arrival frequency of
NAAMES is hourly (24 tracks a day), covering the time of
the four campaigns identified as marine periods (Saliba et al.,
2020).

2.4 Dimethylsulfide flux data

Seawater DMS is the primary contributor to biogenic sulfur
aerosol in the atmosphere. For this reason, we use the sea-
to-air DMS flux (FDMS) as a predictor of MSA and nss-SO=4

concentrations. Mansour et al. (2023a) used an ML predic-
tive algorithm based on Gaussian process regression (GPR)
to simulate the distribution of daily seawater DMS concen-
trations and related FDMS in the NA areas from 35 to 66° N
and from 0 to 55° W at a 0.25°× 0.25° spatial resolution. We
extended the GPR model within the NA to encompass the
NAAMES measurements, which are essential because they
cover the westernmost section of the study area. Figure S2
displays the main differences between the two domains. Sim-
ply, the GPR was trained once more, utilizing the same ap-
proach as that outlined in Mansour et al. (2023a), with a
higher number of data points, and it yielded an enhanced R2

value up to 0.77 on the independent test dataset. The daily
sea-to-air FDMS was calculated using the gas transfer veloc-
ity (Goddijn-Murphy et al., 2012) and the DMS derived from
GPR predictions. For more details about the data product, we
refer the reader to Mansour et al. (2023a).

2.5 Meteorological data

The ECMWF ERA5 reanalysis data (Hersbach et al., 2020)
were downloaded to extract the meteorological parameters
used as predictors of MSA and nss-SO=4 in the ML mod-
els. ERA5 provides estimates for the hourly state of the at-
mosphere, worldwide, with a 0.25°× 0.25° spatial resolution
at the surface and different pressure levels. From the global
domain, we extracted multiple atmospheric components, in-
cluding air temperature at 2 m above sea level (AT) and sur-
face net shortwave radiation flux (SRF), as representative of
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thermal heating, and the relative humidity (RH), as represen-
tative of water vapor abundance in the atmosphere. To rep-
resent the dispersion of aerosol particles in the troposphere
and wet removal through the below-cloud scavenging pro-
cess, the boundary layer height (BLH) and the precipitation
rate (PR) were utilized, respectively.

3 Methods

3.1 Data preparation

In this section, we describe the preparation of predictors and
responses that were used to train, cross-validate, and generate
the ML models.

3.1.1 Air mass selection

In previous studies (Mansour et al., 2020b; O’Dowd et al.,
2015; Ovadnevaite et al., 2014), the BC concentration has of-
ten been considered to be a useful tool to select clean marine
air masses excluding inputs from continental emissions or
ship trails. In this study, we still relied on BC measurements
as a precious tool to identify and exclude anthropogenically
impacted air masses, but we also developed a more complete
approach aimed at identifying air masses characterized by a
high degree of contact with the ocean surface. This was nec-
essary in order to select, from the in situ observations, data
points representing almost entirely oceanic sources to pro-
vide the best dataset for training the ML models.

The retention ratio of the air mass over the ocean (RO) was
calculated to determine whether an air mass (identified by BT
track) arriving at the MHD sampling station or at the ship lo-
cation, in the case of shipborne measurements, was primarily
from the NA region or not. We used 3 d BTs arriving 100 m
above the MHD sampling station and NAAMES tracks. The
BT tracks at the MHD arrival point were calculated 8 times
per day, whereas they were calculated 24 times per day at
NAAMES measuring points, considering only the measure-
ments classified as marine periods (Saliba et al., 2020). The
RO was calculated for each track as follows:

RO =

∑NOcean
i=1 e

−ti
72∑NTotal

i=1 e
−ti
72

, (1)

where NTotal is the total number of trajectory endpoints,
which is equal to 73 (arrival point+ 72 backward hours);
NOcean is the total number of trajectory endpoints passing
over the ocean; and ti is the backward-tracking time, with the
unit of hours and spanning values from 0 to 72. Because air
mass diffusion and particle deposition potentially occur dur-
ing the air mass transport, a weighting factor e−ti/72 related
to tracking time has been introduced. The weighting factor
takes values from 1 (at the arrival point) up to 0.37 (farthest
point); hence, oceanic areas far from the arrival point, cor-
responding to longer backward-tracking time, have a weaker

influence than areas closer to the sampling point. As a re-
sult, a higher RO value implies that oceanic emissions have
a greater influence on the air mass and that the source re-
gion is more likely to be the ocean. Other studies have used
similar methods to characterize air mass source regions. For
example, Zhou et al. (2021) studied the contribution of non-
marine MSA sources in the coastal East China Sea and the
Gulf of Aqaba by characterizing the land air masses. Rinaldi
et al. (2021) used a combination of low-traveling air mass
BTs and satellite ground-type maps to investigate the effect
of ground conditions (sea ice, snow, seawater, and land) on
air samples at Ny-Ålesund station in the Arctic Ocean.

Because oceanic air masses crossing the NA can pass
above the BLH, its connection to local sea surface pro-
cesses, such as marine biogenic emission and subsequent at-
mospheric reactions, may be significantly weaker. To address
this issue, Eq. (2) was used to calculate the retention ratio of
an ocean air mass within the marine boundary layer (RB).

RB =

∑NBelow
i=1 e

−ti
72∑NOcean

i=1 e
−ti
72

, (2)

where NOcean is the total number of trajectory endpoints lo-
cated over the ocean (i.e., marine endpoints) and NBelow is
the number of marine endpoints with an altitude below the
BLH. The higher the RB value, the more airflow over the
ocean is confined to the MBL. The BLH datasets at each end-
point were extracted from the hourly ERA5 dataset.

The total number of BT tracks arriving at MHD during the
period from January 2009 to June 2018 is 27 744 (3468 d× 8
tracks per day). We counted the number of endpoints of all
BTs in each 1°× 1° grid cell and normalized them to the
maximum value to find the percentage of endpoints for all
grid cells (Fig. S3). The larger density of BT endpoints is
concentrated over the NA oceanic region, indicating that the
main source regions for air masses transported to MHD sam-
pling stations are most likely oceanic. At MHD, we inves-
tigated how MSA (a marine biogenic tracer) responds to
change in BC (a tracer of anthropogenic input), as seen in
Fig. S4, by considering hourly data simultaneous to the ar-
rival time of BTs (i.e., 8 times a day). We found that MSA
tends to fluctuate minimally when BC is less than 15 ng m−3

(slope= 0.05), whereas MSA tends to rise slightly when BC
exceeds 15 ng m−3 (slope= 0.28). Such cases with hourly
BC concentrations <15 ng m−3 were classified as represen-
tative of marine conditions, which are likely not influenced
by anthropogenic sources. To constrain the impact of marine
biogenic emissions and meteorological parameters on MSA
and nss-SO=4 , air masses were included in this analysis only
if they were characterized by RO+RB ≥ 1.75, meaning that
the air mass had experienced a high degree of contact with
the ocean surface within the last 3 d (Fig. S4). Indeed, con-
sidering the above condition, an air mass must have an RO
equal to at least 0.75 and, in such case, the track must be trav-
eling below the BLH 100 % of the time. By introducing the
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criterion of RO+RB ≥ 1.75, approximately 72 % of the BT
tracks were considered. This reflects the significance of the
MHD research station for studying NA biogenic emissions as
well as the frequency with which it is impacted by MBL air
masses (Grigas et al., 2017; O’Dowd et al., 2014). After con-
sidering the BC threshold (<15 ng m−3) and conservatively
removing all of the observations done when the BC data were
unavailable (instrument downtime), 9211 (33 % of the total)
tracks were classified as representative of marine conditions
(selected marine BTs frequency is presented in Fig. S5).

Regarding the NAAMES measurements, the total num-
ber of calculated BT tracks was 832 (Fig. S6) during back-
ground marine conditions, identified by Saliba et al. (2020).
In this study, we kept 660 tracks (Fig. S7) of the above
832 as representative samples of marine conditions during
NAAMES cruises by limiting the analysis to hourly samples
with RO+RB ≥ 1.75.

3.1.2 Predictor extraction along back trajectories

In order to train the ML models, it was necessary to asso-
ciate each observed MSA and nss-SO=4 data point with the
corresponding potential predictors. The potential predictors
(FDMS, AT, SRF, RH, BLH, and PR) were extracted at each
endpoint of the BTs associated with each of the selected
clean marine observational data points (see Sect. 3.1.1),
inside the oceanic region within 20–66° N and 0–72° W
(Fig. S1). The extracted predictor values were then averaged
along each marine BT track, providing the most representa-
tive picture of the conditions (air mass history) that led to
the formation of the observed sulfur aerosol concentrations.
The few endpoints over land or crossing above the BLH were
eliminated.

The Pearson correlation coefficients between the poten-
tial predictors and observational MSA and nss-SO=4 data
were compared, considering different BT lengths of 1, 2,
and 3 d, to assess which BT length was more representative
of the timescale of sulfur aerosol formation processes. As
seen from Table 2, both MSA and nss-SO=4 correlate better
with FDMS considering a 3 d BT length. Similarly, the ma-
jority of the other predictors, except for AT, tended to maxi-
mize their correlations considering a 2 or 3 d BT length. Ulti-
mately, for each predictor, we considered the BT length that
maximized the correlation coefficient for the analyses in the
present study.

3.1.3 Responses at measuring sites

Hourly nss-SO=4 at MHD and from the NAAMES campaigns
as well as MSA at MHD, measured concurrently with the se-
lected marine BTs (Sect. 3.3.1), were used to build ML mod-
els. A total of 6162 (6920) data points for MSA (nss-SO=4 )
were obtained. Furthermore, we also applied a 0.1 and 99.9
percentile lower and upper threshold filter to remove the ex-
tremely low and high values that could bias the ML models’

training and cross-validation. This helped to identify and re-
move outliers in each dataset, thereby reducing the number of
data points to 6150 (6905) for MSA (nss-SO=4 ) (∼ 0.2 % of
data points were rejected). Details of the MSA and nss-SO=4
percentile thresholds, along with the number of data before
and after applying the filters are given in Table 3. The hourly
data after cleanup are used for training/cross-validation and
testing of ML models.

3.2 Machine learning models

The methodological flowchart of the present study is shown
in Fig. 2. The core of the framework uses supervised ML re-
gression techniques to build predictive models for estimat-
ing the atmospheric concentrations of biogenic MSA and
nss-SO=4 (responses) from independent variables (predic-
tors). Predictors include the sea-to-air FDMS and meteorolog-
ical parameters that control the aerosol concentration in the
MBL. We used multilinear regression to assess the contribu-
tion of each predictor to MSA and nss-SO=4 variations. Ini-
tially, we ran the multilinear regression model using the total
of the following potential six predictors: FDMS, AT, SRF, RH,
BLH, and PR. Secondly, we applied the multilinear regres-
sion models by eliminating one predictor each time. Each in-
dependent variable’s contribution to R2 is the reduction in to-
tal R2 when that variable is eliminated. The results (Table 4)
showed that the six predictors used can explain up to 74 %
(53 %) of MSA (nss-SO=4 ) variance. Such predictors tend to
contribute differently to MSA and nss-SO=4 . SRF, FDMS, and
the BLH are the most effective parameters for MSA (explain-
ing up to 64 % of the variability), while SRF, AT, and FDMS
are the most influential with respect to nss-SO=4 (explaining
up to 44 % of the variability). RH has a minor contribution to
the MSA and nss-SO=4 variance. To know if a predictor con-
tributes significantly to the explained variance, we performed
an analysis of variance (ANOVA) on the implemented mul-
tilinear regression model. The ANOVA revealed that all of
the tested predictors have statistically significant (p<0.05)
contributions to MSA and nss-SO=4 . For these reasons, we
applied the ML models using all six potential predictors.

The datasets, containing the corresponding predictors
and each one of the responses (MSA and nss-SO=4 ) sep-
arately, were split randomly into two subsets, defined as
the training/cross-validation set and the test/evaluation set,
for each response. The training/cross-validation sets include
80 % of the total points (n= 4920 for MSA and n= 5524 for
nss-SO=4 ), while the test/evaluation sets comprise the remain-
ing 20 % (n= 1230 for MSA and n= 1381 for nss-SO=4 ).
To improve ML algorithms’ accuracy and protect against
overfitting, a k-fold cross-validation strategy with k = 5 was
used, as this has been shown to provide maximal model
prediction robustness and minimal bias (Rodriguez et al.,
2010; Fushiki, 2011). The k-fold cross-validation is a pro-
cedure used to estimate the skill of the model on new data
and generally results in a less biased estimate of the model
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Table 2. The Pearson coefficients between possible predictors for the selected marine air masses and the in situ observed MSA and nss-SO=4
concentrations. The MSA, nss-SO=4 , and FDMS values are used on a log scale. All values are statistically significant at p<0.05, except the
value indicated by “*”. Bold text denotes the maximum during different days of air mass history.

Predictors BT length (in days) MSA nss-SO=4
MHD MHD NAAMES

FDMS

0 0.27 0.24 0.04∗

1 0.64 0.53 0.24
2 0.66 0.54 0.38
3 0.69 0.55 0.47

AT

0 0.65 0.61 0.17
1 0.57 0.56 0.29
2 0.53 0.53 0.35
3 0.53 0.51 0.37

RH

0 0.15 0.15 0.27
1 0.33 0.27 0.22
2 0.39 0.31 0.24
3 0.44 0.33 0.28

PR

0 −0.18 −0.12 −0.09
1 −0.27 −0.26 −0.27
2 −0.33 −0.31 −0.34
3 −0.35 −0.33 −0.32

BLH

0 −0.41 −0.32 −0.32
1 −0.53 −0.45 −0.34
2 −0.58 −0.49 −0.36
3 −0.60 −0.49 −0.35

SRF

0 0.32 0.23 0.14
1 0.73 0.61 0.53
2 0.77 0.65 0.62
3 0.78 0.67 0.63

Table 3. Details of the number of hourly (MSA and nss-SO=4 ) data points corresponding to selected marine BTs. The threshold used for
filtering outlier values and the number of data points after filtering are given.

Response No. of hourly Lower threshold Upper threshold No. of data lost No. of hourly data
data points according to the 0.1 according to the 99.9 due to filtering points after cleanup

percentile percentile

MSA
Source: MHD 0.0001 µg m−3 0.45 µg m−3

12 6150
n= 6162

nss-SO=4

Source: MHD 0.006 µg m−3 2.116 µg m−3
12

6905
n= 6260

Source: NAAMES 0.007 µg m−3 1.107 µg m−3
3

n= 660

skill. The k-fold number refers to how many groups a given
data sample is to be split into. In this study, where k = 5,
the training/cross-validation dataset was further randomly di-
vided into five folds of roughly equal size. For each trial, one
group is designated as a holdout or validation dataset, while
the remaining four groups are designated as training data
(Fig. 2). The model is then fit on the training set (four folds)

and evaluated on the validation set (last fold), and the av-
erage evaluation measures (accuracy) on the validation sub-
sets of the five iterations are reported. To better examine the
model’s repeatability on a new independent dataset, the gen-
erated models were evaluated on the test data that were not
included in the model construction.
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Figure 2. The methodology’s workflow, showing the predictor and response variable data preparation, the overall framework for the genera-
tion and development of the trained models (including a schematic diagram of 5-fold cross-validation, model export and validation details),
and post-processing analysis.

Table 4. Multilinear regression of MSA and nss-SO=4 as a function of predictors. The MSA, nss-SO=4 , and FDMS values are used on a log
scale. Each independent variable’s contribution to R2 is the decrease in total R2 when that variable is eliminated. Individual R2 contributions
are normalized and added together to equal the overall R2. According to the analysis of variance (ANOVA) on the multilinear regression
models, all predictors have a statistically significant (p<0.05) contribution to the MSA and nss-SO=4 variance.

Total explained Normalized contribution to R2 (%)

variance by R2 AT RH PR BLH SRF FDMS

MSA 74.36 % 6.86 0.47 2.82 8.66 42.77 12.97
nss-SO=4 53.39 % 11.64 0.55 5.07 3.63 25.83 6.66

Five types of ML models were trained/cross-validated and
evaluated to identify the best-performing model with respect
to estimating sulfur aerosol concentrations (MSA and nss-
SO=4 ). The ML algorithms are SVM, DT, RE, GPR, and
ANN. These are the most common types of algorithms; how-
ever, there are subtypes for which advanced options and op-
timizations in the model can increase the performance and

resilience of the algorithms. In general, each supervised ML
model performs differently and has various strengths and
shortcomings. Finding the proper ML algorithm is largely
based on trial and error; even experienced data scientists can-
not anticipate if an algorithm will work without testing it.
Thus, understanding the fundamentals of various ML algo-
rithms and their applicability to diverse applications is criti-
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cal (Sarker et al., 2019). As a result, we initially assessed 20
algorithms belonging to the aforementioned five types and
chose the model with the best performance skill from each
type (Table 1), as detailed in the following sections.

3.2.1 Support vector machines (SVMs)

A SVM is a powerful mathematical model based on the sta-
tistical learning theory (Vapnik, 2013) that can be used either
for classification or regression analysis. In recent decades,
SVMs have demonstrated high prediction accuracy for a
wide range of regression problems in fields such as oceanog-
raphy, meteorology, and atmospheric sciences (Lins et al.,
2013; Sachindra et al., 2018; Shabani et al., 2020; Shrestha
and Shukla, 2015; Fan et al., 2018). The SVM model es-
timates the regression using a series of kernel functions
that are capable of implicitly converting the original, lower-
dimensional input data to a higher-dimensional feature space.
To achieve the best prediction accuracy for MSA and nss-
SO=4 , we assessed the different SVM kernel functions, such
as linear, polynomial (quadratic and cubic), and Gaussian
(Table 1). The Gaussian kernel was adopted by trying var-
ious kernel scales, setting them to 0.61 (fine), 2.4 (medium),
and 9.8 (coarse). For more information on SVMs, the reader
is referred to https://www.mathworks.com/help/stats/fitrsvm.
html (last access: 10 January 2023).

3.2.2 Decision tree (DT)

The DT model is a nonparametric, nonlinear model that gen-
erates a structure resembling a tree for classification and re-
gression (Kotsiantis, 2013; Quinlan, 1986). It repeatedly di-
vides the dataset into smaller subsets based on independent
features from the input dataset. The split seeks to reduce vari-
ability within each group while increasing the variance be-
tween subsets. The final tree is made up of decision and leaf
nodes. The decision node represents a condition on an at-
tribute, and its branches indicate the conditions’ outcomes.
For additional information on DT, the reader is directed to
https://www.mathworks.com/help/stats/fitrtree.html (last ac-
cess: 10 January 2023). The critical parameter in this tech-
nique is determining when to terminate the division process.
In this study, we set up three different minimum leaf sizes
(minimum samples to split) to control the number of data
that should be in the sub-branch to continue the splitting pro-
cess, namely 4 (fine tree), 12 (medium tree), and 36 (coarse
tree), as seen in Table 1.

3.2.3 Regression ensemble (RE)

RE is a technique that employs a collection of DT models
(referred to as weak learners or base models), each of which
is produced by applying a learning process to a specific prob-
lem and then combining them to provide the final prediction
(Mendes-Moreira et al., 2012). The performance and accu-

racy of ensembles are determined by the aggregation of weak
learners (Hengl et al., 2018). The well-known types of ag-
gregation are the bagging and boosting methods (Breiman,
2001). In the bagging method (also known as bootstrap ag-
gregating), the base models are generated using random sub-
samples drawn from the original dataset with the bootstrap
sampling method, where some original examples appear sev-
eral times, whereas others do not appear at all. On the other
hand, the main idea of the boosting method is that it is possi-
ble to convert a base model that performs slightly better into
one that arbitrarily achieves high accuracy. This conversion
is performed by combining the estimations of several pre-
dictors. For more information on RE, the reader is referred
to https://www.mathworks.com/help/stats/fitrensemble.html
(last access: 10 January 2023).

3.2.4 Gaussian process regression (GPR)

GPR is a nonparametric technique for solving nonlinear re-
gression problems (Williams and Rasmussen, 1996) that is
based on Bayesian theory and statistical learning theory. The
accuracy of GPR is dependent on the adopted kernel (co-
variance) functions (Verrelst et al., 2016). We assessed the
different base kernel functions, namely exponential, Matern
5/2, squared exponential, and rational quadratic (Asante-
Okyere et al., 2018; Mansour et al., 2023a) to determine
the optimal covariance function that could produce reliable
predictions of MSA and nss-SO=4 . For more information
on GPR, the reader is referred to Mansour et al. (2023a)
and https://www.mathworks.com/help/stats/fitrgp.html (last
access: 10 January 2023).

3.2.5 Artificial neural networks (ANNs)

An ANN is an information processing system that can be
used to understand the complex nonlinear relationship be-
tween the response and predictors (Kalogirou, 2001). It con-
sists of interconnected groups of artificial neurons that work
in the same way as biological neurons. The ANN structure
comprises three distinctive groups called input (corresponds
to the predictors), several hidden layers (fully connected),
and output (corresponds to the predicted response values).
The input introduces data to the ANN model, the hidden
layer processes the data, and the results are produced in the
output. Further details on ANNs can be found at https://www.
mathworks.com/help/stats/fitrnet.html (last access: 10 Jan-
uary 2023). We trained various types of ANNs as single-layer
(number of fully connected layers= 1), bi-layered (number
of fully connected layers= 2), and tri-layered (number of
fully connected layers= 3) neural networks, as detailed in
Table 1.
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3.3 Evaluation measures

In this study, we use different validation metrics to evalu-
ate the ML models’ performance. Each of the metrics is cal-
culated using “residuals”. Residuals are the differences be-
tween the observed data points Oi and the predicted values
Pi , where i = 1,2, . . .n; here, n refers to the number of ob-
servations. Better models with respect to predicting the re-
sponse have residuals close to zero. The average magnitude
of the residuals is called mean absolute error (MAE):

MAE=
1
n

∑n

i=1
|Oi −Pi | . (3)

Regression models tend to use the square of the residuals
instead of the absolute. The square root of the average of
the squared residuals is called the root-mean-square error
(RMSE). A low RMSE denotes confidence that the model
has relatively few large errors.

RMSE=

√
1
n

∑n

i
(Pi −Oi)2 (4)

The metrics listed in Eqs. (3) and (4) can only provide in-
formation on how a model compares to observations and/or
other models. Neither can objectively say whether a model
is a good fit for the data. Comparing a model to a simple
baseline model is a different approach. This is the motiva-
tion behind the use of the coefficient of determination (R2)
metric (Eq. 5). R2 is the relative difference in the total error
obtained by fitting a model, resulting in a value of between 0
and 1. If a model fits the data well, the model error is small
and R2 will be close to 1, and vice versa.

R2
= 1−

∑n
i (Oi −Pi)2∑n
i (Oi −Oi)2

, (5)

where Oi is the average of observations. The predicted–
observed linear slope is the last metric used to evaluate the
performance of ML models. It determines the rate of change
in the predicted variable concerning the observed variable
and should be close to unity for skilled model predictions.

4 Results and discussion

4.1 Evaluation of ML model performance

As a first step, we assessed different possible hyperparam-
eter optimizations in each of the five types of ML models
used (SVM, DT, RE, GPR, and ANN) to determine which
one had the best fit and lower errors for sulfur aerosol (MSA
and nss-SO=4 ) predictability. We chose the best model with
the lowest errors in each type for further evaluation and anal-
ysis based on the evaluation measures (RMSE, MAE, and
R2). The evaluation measures are summarized in Table S1.
The medium Gaussian SVM, which utilizes a Gaussian ker-
nel scale equal to the square root of the number of predictors

(2.4), displayed better performance. The coarse DT, which
sets the minimum sample size to split equal to 36; the ensem-
ble bagged trees (EBT) of a bootstrap aggregated ensemble;
and the GPR, which employs the rational quadratic kernel,
represent the minimum errors. Finally, a medium ANN of
layer size 25 with one fully connected layer was selected.
The five best-performing (optimal) models were exported
and saved so that they could be used to make new predic-
tions on a new dataset.

Figures 3a–e and 4a–e present a detailed comparison be-
tween observed and predicted MSA and nss-SO=4 , respec-
tively, for the five optimal ML models developed. When
compared with the multilinear regression (Table 4), it is clear
that ML models can generally reconstruct the observations
with a markedly higher R2 value, which means that the se-
lected ML approaches capture much more of the observed
MSA and nss-SO=4 variability. While the five applied opti-
mal algorithms have quasi-similar measures, the best model
for predicting MSA and nss-SO=4 is GPR. For hourly MSA
(nss-SO=4 ), GPR achieves the highest R2 value of 0.79 (0.64)
and the lowest RMSE of 0.362 (0.282) for the cross-validated
data (average measures of each validation fold). When ex-
tending this to the test data, the R2 and RMSE reach 0.81
(0.67) and 0.347 (0.272), respectively. The EBT comes sec-
ond in terms of performance with respect to predicting MSA
(nss-SO=4 ) with an R2 of 0.80 (0.64) for the independent test
data. The SVM and ANN achieve a reasonable accuracy with
a respective R2 value of 0.79 (0.61) and 0.78 (0.60) for MSA
(nss-SO=4 ) based on the test data. Lastly, based on the hourly
test data, DT shows the lowest, although still respectable, ac-
curacy with an R2 of 0.76 for MSA and of 0.57 for nss-SO=4 .

Importantly, the implemented ML models can reconstruct
MSA and nss-SO=4 daily time series’ characteristics with re-
markable consistency between observed and predicted data,
except for extremely high and low concentrations. This is
mostly due to the low probability of such concentrations in
the observed dataset, which inhibits ML models from re-
constructing them. The quantitative comprehension of ex-
ceptional emission extremes is not addressed in this study;
nonetheless, their occurrence and possible implications de-
serve to be investigated in future studies. It is worth noting
that the daily averages of MSA and nss-SO=4 have been cal-
culated from the validation folds and the test set. The MAE
of GPR is close to 0.014 (0.100) µg m−3 for MSA (nss-SO=4 ).
The MAE values of EBT, SVM, ANN, and DT are higher
than those of GPR. According to the R2, the ranking order is
the same as for the MAE, i.e., GPR outperforms EBT, SVM,
ANN, and DT for both MSA and nss-SO=4 , although the dif-
ferences in the R2 values of the five models are small. An
in-depth look at the MAE and R2 from MHD and NAAMES
(Fig. 4, right panels) demonstrates that the ML models per-
form well with respect to predicting nss-SO=4 across different
datasets. All five models show relatively high R2 values for
the NAAMES dataset. EBT, SVM, and ANN have R2 values
that are similar (equal to 0.81), whilst GPR has the highest
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Figure 3. Comparison of predicted and observed MSA on the hourly (left panels) and daily (right panels) scales: (a) GPR, (b) EBT, (c)
SVM, (d) ANN, and (e) DT. The validation and test data subsets are used to compute the model’s performance. R2 and RMSE are computed
in a logarithmic space, whereas MAE is computed on a normal scale.
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Figure 4. Comparison of predicted and observed nss-SO=4 on the hourly (left panels) and daily (right panels) scales: (a) GPR, (b) EBT, (c)
SVM, (d) ANN, and (e) DT. The validation and test data subsets are used to compute the model’s performance. R2 and RMSE are computed
in a logarithmic space, whereas MAE is computed on a normal scale.
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R2 value (reaching 0.87) and DT has the lowest (0.72). In
essence, the performance metrics indicate that GPR always
has the highest accuracy and lowest errors, reflecting the ro-
bustness of GPR. Therefore, GPR was selected as the optimal
regressor for further analysis in this study.

Knowing that the GPR model could be biased due to the
inhomogeneous distribution of in situ observations, we as-
sessed the applicability of the GPR model in regions poorly
covered by atmospheric observational data (such as the cen-
tral part of the domain) by running the model in a worst-
case scenario deployment. In this exercise, we predicted
the daily variations in nss-SO=4 measurements in the west-
ernmost portion of the study area by training the model
using only observations from the eastern part of the do-
main (i.e., data collected at MHD). In this case, MHD
data were used for training/cross-validation, while the four
NAAMES campaigns were employed as independent test
data. The evaluation on the test data (Fig. S8) revealed that
GPR can explain 55 % of the daily observed nss-SO=4 vari-
ance (MAE= 0.129 µg m−3), even in this worst-case sce-
nario and on a limited test dataset (n= 57). This more-than-
acceptable model performance supports the reliability of the
IPB-MSA&SO4 dataset in the central part of the NA, where
measurements of MSA and nss-SO=4 are missing. In addition,
Sect. 4.5 describes the validation of the GPR model with re-
spect to predicting observed MSA concentrations during the
Polarstern campaigns, which were not included in either the
model training/cross-validation or in the model test.

4.2 Partial dependence analysis

Most ML models are referred to as “black box” models, as
the internal computations inside multiple operational layers
in a model are concealed, and most systems have only ob-
servable inputs and outputs out of the box. A partial depen-
dence analysis (Friedman, 2001) is used to assess how pre-
dictors influence ML model output and shows whether the
relationship between the response and any of the features
is linear, monotonic, or more complex. The method entails
altering one feature and constraining the remaining features
to unaltered average values to illustrate the marginal effect
of the changed feature on the expected outcome. The par-
tial dependence plots of MSA and nss-SO=4 as a function of
the predictors in the best-performing GPR model are shown
in Fig. 5; these plots indicate that the interactions between
predictors and response are generally complex. MSA and
nss-SO=4 levels tend to rise as FDMS levels rise from 3 to
10 µmol m−2 d−1. MSA continues to rise with stronger FDMS
emission rates (>10 µmol m−2 d−1); nevertheless, the nss-
SO=4 concentration appears independent of FDMS after this
threshold. AT exhibits a positive relationship with MSA and
the nss-SO=4 concentration in the range of 5–15 °C and a neg-
ative relationship above 15 °C. RH, which has the least im-
pact on MSA and nss-SO=4 (Table 4), has an unclear pattern
regarding the MSA and nss-SO=4 marginal changes. MSA

and nss-SO=4 present a negative dependence on PR, as rain
is expected to scavenge aerosol particles; nevertheless, at
higher PR levels, nss-SO=4 concentrations tend to increase.
This may be partly linked to enhanced cloudiness, associ-
ated with high PR, where the aqueous-phase formation of
nss-SO=4 in the MBL may be favored (Zhu et al., 2006; von
Glasow and Crutzen, 2004). This is also in agreement with
the enhancement of the nss-SO=4 concentration at high RH.
Finally, BLH and SRF are the parameters that show the most
straightforward influence on the MSA and nss-SO=4 levels,
with a deep BLH resulting in a dilution of their concentra-
tions and high SRF leading to high MSA and nss-SO=4 levels,
as expected for DMS photooxidation products.

4.3 The IPB-MSA&SO4 dataset

The GPR model was used to generate the long-term gridded
fields of high-resolution (0.25°× 0.25°) MSA and nss-SO=4
concentrations. At each pixel, daily time series of MSA and
nss-SO=4 have been generated spanning from 1998 to 2022
(9131 d). The total number of pixels in the entire NA domain
is 43 840, for a total of 400 303 040 data points. The daily
time series of MSA and nss-SO=4 averaged over the entire
NA domain are presented in Fig. S9. The dataset represents
the sea-level concentrations of MSA and nss-SO=4 associated
with in situ production in the MBL derived based on the six
selected predictors, which, in turn, represent the sea-to-air
flux of DMS (the precursor) and the meteorological condi-
tions that can mostly affect, in one direction or another, the
formation of the two products. For this reason, we consider
the data to be representative of the concentration of sulfur
aerosol species resulting, in each pixel, from the local bio-
genic emissions in combination with local atmospheric con-
ditions. As such, we called the achieved data product the “In-
situ Produced Biogenic Methanesulfonic Acid and Sulfate
over the North Atlantic” (IPB-MSA&SO4). It is important to
note that atmospheric motion is not considered in our prod-
uct and that the maps resulting from the data represent a static
picture of potential sea-level concentrations of MSA and nss-
SO=4 (in a certain pixel and at a certain time as a result of only
the interplay between local DMS emissions, photochemistry,
and dilution/removal processes) and provide accurate pre-
dictions of the actual sea-level concentrations of MSA and
nss-SO=4 once averaged over 2–3 d transport tracts. Accord-
ingly, the IPB-MSA&SO4 data presented hereafter are differ-
ent from the output of a chemical transport model. Neverthe-
less, we believe that this unprecedented dataset may be useful
for many research purposes, for instance, investigating long-
term trends or addressing the interannual or spatial variability
in the production of biogenic sulfur aerosol species. Exam-
ples of the scientific information that can be extracted from
the data and how the data can be compared to model output
or in situ observations are provided in the next sections.
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Figure 5. Partial dependence plots of MSA and nss-SO=4 as a function of the predictors revealed by the GPR model.

4.4 Comparison with CAMS Reanalysis

To further examine the effectiveness of our GPR model, we
compared the observed MSA concentrations at MHD with
the most recently released CAMS-EAC4 (Inness et al., 2019)
reanalysis datasets. EAC4 (ECMWF Atmospheric Composi-
tion Reanalysis 4) is the fourth generation of the ECMWF
global reanalysis dataset of atmospheric composition from
the Copernicus Atmosphere Monitoring Service (CAMS).
CAMS-EAC4 is a collection of atmospheric composition
fields from 2003 to the present, including aerosols and chem-
ical species – for which MSA data are available. The spa-
tial resolution of the CAMS datasets is about 0.75°× 0.75°
and the temporal resolution is 3 h. Our datasets have a
0.25°× 0.25° resolution and start from 1998. To compare the
two products, we extracted MSA data from CAMS locally,
at the grid cell in front of the MHD station, corresponding to
maritime BT timings, and averaged them to a daily resolu-
tion. Conservatively, the MSA concentration data simulated
by GPR were taken from the validation and test sets, which
were not included in the model training. Such MSA concen-
trations at MHD were projected by incorporating predictors
along the BTs to account for air motion (see Sect. 3.1.2 for
details).

Scatterplots and joint probability histograms of residual
errors (Fig. 6) were constructed to compare the accuracy
between GPR, CAMS, and observations (with the latter re-

ferred to as OBS). From the scatterplots (Fig. 6a, b), it can
be seen that the GPR-simulated MSA best matches the ob-
servations, with a 0.84 fitted slope, a 0.93 correlation coeffi-
cient, and most of the data points within the 95 % confidence
bounds. The joint probability histograms between observed
MSA and the residuals, OBS−GPR and OBS−CAMS, are
used to verify the variance of residual errors around zero.
The GPR histograms (Fig. 6c, e) show that the residual er-
rors are mostly centered around zero (dashed black line in
the right) up to a value of 0.1 µg m−3, where the majority
of data points lie, while CAMS points are skewed toward
negative residuals followed by positive residuals, mainly at
high MSA values (Fig. 6d, f). Quantitatively, the GPR has a
relative MAE equal to 4.3 %, in comparison with 6.3 % for
CAMS. In summary, GPR better captures the low concen-
trations of MSA, which CAMS tends to overestimate, while
both CAMS and GPR show limitations with respect to re-
trieving the extreme points of MSA concentrations. A quanti-
tative statistical analysis (Fig. 6g) showed that no statistically
significant (p<0.05) difference exists between the seasonal
median MSA from OBS and GPR, whereas CAMS presents
a significant (p<0.05) difference in all seasons except sum-
mer. Nevertheless, the two datasets (GPR and CAMS) prop-
erly retrieve the observed MSA seasonal cycle.
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Figure 6. Comparison between observed MSA at the MHD measuring site and both MSA predicted by GPR (a) and MSA extracted
from CAMS Reanalysis (b). Panels (c) and (d) present joint probability histograms between observed MSA and residual errors (ob-
served− predicted); the dashed black lines represent the change in MSA residual errors in each bin. MAE is the mean absolute error,
and the relative MAE has been calculated as the MAE divided by the range of observed MSA. Panels (e) and (f) show frequency distributions
of the residual errors. Panel (g) contains seasonal box charts from different datasets. Each box chart displays the median (line inside of each
box), the 1st and 3rd quartiles (bottom and top edges of each box), the minimum and maximum values that are not outliers (whiskers), and
any outliers (represented by “+” and computed as values that are more than 1.5 of the interquartile range away from the top or bottom of the
box). Box charts whose notches (the shaded region around each median) do not overlap have different medians at the 95 % confidence level.

4.5 Comparison with the Polarstern cruise results

In this section, we present a case study exemplifying how
the IPB-MSA&SO4 datasets can be used. Because the data
product represents the concentration of freshly formed sul-
fur aerosol species and the ML model does not account for
atmospheric transport, users must interpret the datasets con-
sidering the air mass history. To better clarify the idea, we
employed the independent MSA data measured during the
Polarstern campaigns in the NA (Huang et al., 2017), which
were not used in the training/validation or testing/evaluation
of the ML models, and compared them with MSA predicted
by GPR. In particular, the MSA predicted by GPR was ex-
tracted along air mass BTs arriving at the hourly sites of
the ship tracks and then averaged considering a 0 d (no air
mass history), 1, 2, and 3 d air mass history. The MSA mea-
surements on Polarstern were performed during four scien-

tific cruises, including two spring seasons (April–May 2011
and April–May 2012) and two autumn seasons (October–
November 2011 and October–November 2012). The ship
tracks of the cruises from which the data were taken in the
present study are shown in Fig. 7. It can be seen that the best
match between GPR-simulated MSA and observed MSA oc-
curred when 2 d air masses were considered. At a 2 d air mass
history, the slope reached 0.78 and the correlation coefficient
reached 0.81 (Fig. 7a–d). Again, as seen in Fig. 7f, GPR
MSA is considerably more consistent with observations than
CAMS, for which a significant difference with observations
(p<0.05) can be appreciated.

4.6 Spatial distributions of MSA and nss-SO=
4

In order to elucidate the geographical distributions of bio-
genic sulfur aerosol production across the NA domain, the
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Figure 7. (a) Scatterplots between observed MSA during the Po-
larstern campaigns (Huang et al., 2017) and predicted MSA by
GPR, considering (a) 0 d, (b) 1 d, (c) 2 d, and (d) 3 d air mass his-
tory. Panel (f) contains seasonal box charts from different datasets.
The features displayed on each box chart are the same as those given
in Fig. 6.

IPB-MSA&SO4 datasets for the 25 years (1998–2022) were
averaged to obtain the climatic annual and monthly distri-
butions of MSA and nss-SO=4 , as illustrated in Figs. 8 and
9. Across the NA domain, the annual average of MSA is
0.016± 0.007 µg m−3, whereas the annual average of nss-
SO=4 is 0.250± 0.077 µg m−3 (Table S2). The annual spatial
distributions of MSA and nss-SO=4 exhibit a latitudinal gra-
dient over the majority of the NA area that increases from
north to south, except below approximately 35° N, where it
increases from west to east. Notwithstanding, the latitudinal
gradients are much more evident than longitudinal variations.
For instance, MSA grows at a rate of 0.0016 (R2

= 0.93;
p<0.05) µg m−3 per degree latitude towards the south and
0.00036 (R2

= 0.53; p<0.05) µg m−3 per degree longitude
eastward (it reaches its peak between 20 and 10° W). Fur-
thermore, for each degree southward, nss-SO=4 increases by
0.0212 (R2

= 0.96; p<0.05) µg m−3, whereas there are no
significant changes in nss-SO=4 with longitude (R2

= 0.01;
p>0.05). The highest concentrations of both components
(>90th percentile) are primarily found in the southeast of
the domain (in front of the Moroccan coast and the Strait
of Gibraltar). Minimum annual concentrations (<10th per-

centile) are found in northern areas of the domain, particu-
larly in the Labrador Sea and near the shores of Greenland
and Iceland.

The annual average MSA-to-nss-SO=4 ratio (MSA :
nss−SO=

4) is 0.053± 0.012 (Table S2), with a consis-
tent latitudinal gradient increasing southward (rate of
change= 0.0028 (R2

= 0.93; p<0.05) per degree latitude).
Lower MSA: nss-SO=4 values are found in the northwest of
the domain, while higher values are apparent in front of the
African coast; the ratio is practically constant across the same
latitudinal band. It is worth noting that the region with ex-
tremely high MSA concentrations and high MSA : nss−SO=

4
(above the mean+ 3 times the standard deviation) is linked
to the Canary upwelling system on the northwest African
coast. The Canary Current system is one of the world’s most
productive regions of the ocean, known as eastern bound-
ary upwelling systems (EBUSs) (Chavez and Messié, 2009;
Carr, 2001). This may indicate a link between EBUSs and the
potential formation of biogenic aerosol in the atmosphere.
Previous research has shown how EBUSs changed in re-
sponse to climate change (Bograd et al., 2023; Sydeman et
al., 2014; Bonino et al., 2019), including the trend toward
increased upwelling intensity (Wang et al., 2015; García-
Reyes et al., 2015); however, little is known about the im-
pact of EBUSs on marine biogenic emissions and the re-
sultant aerosol fluxes. Future studies are needed to address
these issues in order to better understand the role of EBUSs
in aerosol-climate systems.

Looking at the monthly climatological maps (Fig. 9), it
is revealed that MSA and nss-SO=4 display a gradual south-
ward increase in their concentrations, clearly evident from
October to March, resulting in a large difference between the
northern and southern parts of the domain. On the contrary,
during summer, the concentrations are more homogeneous
over the domain (see latitudinal patterns in Fig. 9), still with
a tendency toward higher concentrations over the northeast-
ern part of the region. The seasonality of MSA and nss-SO=4
is evident: the increase in both compounds starts in April,
peaks in June–July, and is followed by a gradual decrease
in September (Fig. S9, Table S2). The lowest MSA (nss-
SO=4 ) concentration occurs in December at 0.006± 0.005
(0.155± 0.079) µg m−3, whereas the highest concentration
occurs in June at 0.029± 0.013 (0.364± 0.075) µg m−3 (Ta-
ble S2), consistent with the fact that winter and summer are
typically the lowest and highest seasons with respect to bi-
ological activity, respectively, for the NA (Mansour et al.,
2023a). The coefficient of variation (COV), defined as the
ratio between the standard deviation and the mean value,
expressed as a percentage at each grid point, is used to as-
sess how much MSA and nss-SO=4 vary around their mean
value in each month; variability increases with a higher COV.
The maps (Fig. S10) confirm that the variability in sul-
fur aerosol species depends strongly on the season: MSA
and nss-SO=4 are mostly stable (small variations) during the
winter, whereas most variations occur between April (late

https://doi.org/10.5194/essd-16-2717-2024 Earth Syst. Sci. Data, 16, 2717–2740, 2024



2734 K. Mansour et al.: IPB-MSA&SO4

Figure 8. The annual averages of (a) MSA, (b) nss-SO=4 , and
(c) MSA : nss−SO=

4 spatial distributions based on GPR at a
0.25°× 0.25° resolution during the 1998–2022 period. The latitudi-
nal (longitudinal) gradients of each component are displayed in the
left (bottom) panels, shaded areas represent ± standard deviations,
and the black crosses evidence the extremely high concentrations
(more than 3 times the standard deviation plus the annual mean cli-
matology).

spring) and June (early summer) and preferentially over the
eastern part of the NA compared with the western part.

MSA : nss−SO=
4 also exhibits a seasonal pattern, with the

lowest (highest) values observed during the winter (summer),
as presented in Fig. 9c. July has the highest spatial aver-
age of the ratio of 0.077± 0.022, while the lowest value
of 0.032± 0.012 occurs in December (Table S2). Looking
at the overall distributions, MSA : nss−SO=

4 demonstrates
a general southward increase, with the exception of sum-
mer months. In summer (mainly July and August), MSA :
nss−SO=

4 above 50° N has an opposite trend with respect to
the ratio below 50° N. In detail, from north to south, we re-
port a sharp increase in MSA : nss−SO=

4 , maximized around
50° N, followed by an abrupt decrease toward the Equator. A
possible explanation for the decline in MSA : nss−SO=

4 be-
low 50° N is that the reduction is related to an increase in
AT caused by warmer air nearing the Equator, in line with
observations in the Pacific Ocean (Bates et al., 1992) and
with the higher ratio observed in colder (marine polar and
arctic) air masses with respect to warmer (marine tropical)
air masses at MHD (Ovadnevaite et al., 2014). As a final re-
mark, we report that the summertime low MSA : nss−SO=

4
below 50° N is linked to a decrease in FDMS in the same
latitudinal zone (Mansour et al., 2023a). Owing to the low
DMS emissions, different DMS oxidation patterns may be in
competition (Barone et al., 1995); as MSA is formed pref-
erentially through the pathway of OH addition at low tem-
peratures (Shen et al., 2022), the production of MSA may be
decreased relative to that of nss-SO=4 in the warm southern
part of the domain, during summer, leading to the observed
decrease in MSA : nss−SO=

4 .

5 Data availability

The dataset includes daily MSA and nss-SO=4 concentra-
tions at a 0.25°× 0.25° spatial resolution over the North At-
lantic from January 1998 to December 2022. The data are
publicly available in NetCDF format as daily files on the
Mendeley Data online repository at https://doi.org/10.17632/
j8bzd5dvpx.1 (Mansour et al., 2023b).

6 Conclusions

Marine aerosol data can be obtained from in situ coastal ob-
servatories or from shipborne measurements; however, coast
observations at individual measurement points are limited
with respect to their spatial representativity, while shipborne
measurements suffer from limitations in terms of tempo-
ral coverage. Understanding the dynamics of marine-derived
biogenic sulfur aerosols and their radiative effects, as well as
carrying out relevant scientific studies, requires long-term,
continuous, high-resolution (both spatial and temporal reso-
lution) datasets. To overcome the limitations of point-based
measurements, we combined the in situ observations of sul-
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Figure 9. Monthly spatial distributions of (a) MSA, (b) nss-SO=4 , and (c) MSA : nss−SO=
4 based on GPR over 1998–2022 at a 0.25°× 0.25°

resolution. Panel (d) shows monthly latitudinal distributions of each component, with the shaded areas representing ± standard deviations.
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fur aerosol data at Mace Head and those from NAAMES
cruises, as dependent variables, and the sea-to-air DMS flux
and ECMWF ERA5 reanalysis meteorological datasets, as
independent variables, to investigate the potential of machine
learning techniques for the prediction of daily MSA and nss-
SO=4 sea-level concentrations over the North Atlantic. We
evaluated five machine learning models (i.e., SVM, DT, RE,
GPR, and ANN), considering various sets of hyperparameter
optimizations. Our findings demonstrate that the GPR model
outperforms other approaches with respect to simulating the
concentrations of biogenic sulfur aerosols, capturing up to
86 % and 72 % of the observed variance in daily MSA and
nss-SO=4 , respectively. This makes the GPR an effective tool
for obtaining trustworthy sea-level MSA and nss-SO=4 con-
centrations over the North Atlantic, which may also result in
it be successful in other oceanic regions or over the entire
global ocean. The impact of the six independent predictors
on the simulated MSA and nss-SO=4 is further evaluated us-
ing the GPR partial dependence analysis, which reveals that
the relationships between them are multifaceted rather than
linear or monotonically varying.

Using the GPR machine learning method, we constructed
a novel 0.25°× 0.25° resolution daily gridded dataset of
in situ-produced biogenic MSA and nss-SO=4 concentrations
(named IPB-MSA&SO4) covering the North Atlantic from
1998 to 2022. The dataset represents the sea-level concentra-
tions of MSA and nss-SO=4 associated with in situ production
in the MBL, i.e., the concentration of sulfur aerosol species
resulting, in each pixel, from the local biogenic emissions
in combination with local atmospheric conditions. Other in-
puts, such as terrestrial emissions or sinking of sulfur species
produced in the free troposphere are not accounted for in the
present dataset.

Comparison of the GPR-derived MSA with existing
CAMS-EAC4 reanalysis product reveals that our high-
resolution dataset accurately reproduces the spatial and tem-
poral patterns of the biogenic sulfur aerosol concentration
and has high consistency with the independent observations
of the Polarstern cruises’ measurements in the Atlantic. The
obtained IPB-MSA&SO4 data were used to analyze the spa-
tiotemporal variations in MSA, nss-SO=4 , and the ratio be-
tween them (MSA : nss−SO=

4). It was found that the monthly
concentrations of MSA and nss-SO=4 across the NA are char-
acterized by a significant southward increase in each month,
with the exception of summertime when MSA and nss-SO=4
displayed more homogeneous spatial patterns with a ten-
dency toward higher concentrations over the northeastern
part of the domain. MSA : nss−SO=

4 exhibits a seasonal vari-
ation from winter (low) to summer (high), characterized by
a sharp decline from the 50° N parallel toward the Equator
mainly in July–August. In general, the atmospheric concen-
tration of sulfur aerosol species tends to be more stable in
winter, whereas wider variations are associated with late-
spring and early summertime and more with the eastern part
of the domain than with the western part.

More in-depth analyses can be conducted based on the pre-
sented biogenic sulfur aerosol concentration dataset, which
could help further the understanding of marine-aerosol–
cloud interactions. For instance, we evidence that the Ca-
nary eastern upwelling system emerges from the dataset as
a hot spot of high sea-level MSA concentrations and high
MSA : nss−SO=

4 values. Such a finding is worth further in-
vestigation and may shed light on the role of EBUSs in the
production of biogenic marine aerosols and on their climate
relevance.
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