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Abstract. Global multi-regional input–output (GMRIO) analysis is the standard tool to calculate consumption-
based carbon accounts at the macro level. Recent inter-database comparisons have exposed discrepancies in
GMRIO-based results, pinpointing greenhouse gas (GHG) emission accounts as the primary source of variation.
A few studies have analysed the robustness of GHG emission accounts, using Monte Carlo simulations to un-
derstand how uncertainty from raw data propagates to the final GHG emission accounts. However, these studies
often make simplistic assumptions about raw data uncertainty and ignore correlations between disaggregated
variables.

Here, we compile GHG emission accounts for the year 2015 according to the resolution of EXIOBASE V3,
covering CO2, CH4 and N2O emissions. We propagate uncertainty from the raw data, i.e. the United Nations
Framework Convention on Climate Change (UNFCCC) and EDGAR inventories, to the GHG emission ac-
counts and then further to the GHG footprints. We address both limitations from previous studies. First, instead
of making simplistic assumptions, we utilise authoritative raw data uncertainty estimates from the National In-
ventory Reports (NIRs) submitted to the UNFCCC and a recent study on uncertainty of the EDGAR emission
inventory. Second, we account for inherent correlations due to data disaggregation by sampling from a Dirichlet
distribution.

Our results show a median coefficient of variation (CV) for GHG emission accounts at the country level of 4 %
for CO2, 12 % for CH4 and 33 % for N2O. For CO2, smaller economies with significant international aviation or
shipping sectors show CVs as high as 94 %, as seen in Malta. At the sector level, uncertainties are higher, with
median CVs of 94 % for CO2, 100 % for CH4 and 113 % for N2O. Overall, uncertainty decreases when prop-
agated from GHG emission accounts to GHG footprints, likely due to the cancelling-out effects caused by the
distribution of emissions and their uncertainties across global supply chains. Our GHG emission accounts gener-
ally align with official EXIOBASE emission accounts and OECD data at the country level, though discrepancies
at the sectoral level give cause for further examination.

We provide our GHG emission accounts with associated uncertainties and correlations at
https://doi.org/10.5281/zenodo.10041196 (Schulte et al., 2023) to complement the official EXIOBASE
emission accounts for users interested in estimating the uncertainties of their results.
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1 Introduction

1.1 Problem setting

Currently, most climate policy focuses on greenhouse gas
(GHG) emissions that physically occur within the geographi-
cal boundaries of a country (Steininger et al., 2016). This ter-
ritorial perspective, however, neglects both emissions caused
in international territories such as from international air
transport as well as emissions embodied in trade, which due
to globalisation nowadays constitute a major share of the life
cycle impacts of most countries’ consumption (Peters et al.,
2011; Pan et al., 2017; Hertwich and Wood, 2018). From an
equity perspective, this approach can obscure the environ-
mental responsibility of countries that outsource production
and thus emissions to other nations, potentially placing a dis-
proportionate burden on countries where production takes
place while benefiting from consumed goods. To comple-
ment the territorial perspective, the consumption-based per-
spective has been increasingly gaining attention in academia
and the wider public in recent years (Tukker et al., 2020). At
a macro level, those so-called consumption-based carbon ac-
counts (CBCAs) are typically calculated using environmen-
tally extended global multi-regional input–output (GMRIO)
databases (Tukker et al., 2020). Those GMRIO databases
usually consist of three building blocks: the inter-industry
matrix, the final demand matrix and the environmental satel-
lite accounts (Miller and Blair, 2009). With GMRIO analysis,
one can allocate those environmental impacts along global
supply chains to the end consumers of products and services.

Although over the course of the last decade or so GMRIO-
based CBCAs have become a standard metric among aca-
demics, their adoption by policy-makers remains limited
compared to the territorial perspective (Tukker et al., 2018).
One important reason for this restrained uptake is the lack
of robust knowledge concerning model uncertainty. This ab-
sence of robust model uncertainty estimates poses a major
challenge to decision-makers (Reale et al., 2017). Due to the
complex nature of reality, our understanding of the effects
of a decision will always be limited. Thus, making robust
decisions in the real world inevitably involves incorporating
judgements regarding uncertainty (Lempert, 2003). For ex-
ample, when choosing between two policy options, A and
B, policy-makers need to understand not only that, on aver-
age, the modelled consequences of A surpass those of B, but
also how robust those modelled results are. If, for instance,
there is a 5 % chance that A could lead to severe negative out-
comes, a decision-maker might prefer B, even if the average
expected result is more favourable for A.

Given the added complexity of GMRIO-based CBCAs
compared to territorial-based emission inventories, it be-
comes particularly crucial for the former to possess a pro-
found understanding of uncertainties. Uncertainty in GMRIO
modelling might arise from various sources. Here, we focus
on parametric uncertainty, referring to uncertainty in the out-

come caused by uncertainty of input parameters (Huijbregts,
1998).

1.2 Literature review

A large part of environmentally extended GMRIO studies
make only, if at all, qualitative considerations of uncertainty
(Zhang et al., 2019). Studies that include quantitative con-
siderations of parametric uncertainties include Lenzen et al.
(2010), Wilting (2012), Karstensen et al. (2015), Moran
et al. (2018), Shrestha and Sun (2019), Zhang et al. (2019),
Kanemoto et al. (2020) and Abbood et al. (2023). Moreover,
with Eora (Lenzen et al., 2013) and GLORIA (Lenzen et al.,
2022), there exist two GMRIO databases that publish uncer-
tainty estimates in the form of standard deviations alongside
each data entry, thus allowing GMRIO practitioners to con-
duct an uncertainty analysis of their results by themselves.

All the mentioned studies quantify parametric uncertainty
by propagating uncertainty from model input parameters to
model outputs via Monte Carlo (MC) simulations. The first
step in uncertainty propagation involves assigning probabil-
ity distributions (mostly normal or log-normal distributions)
to the model inputs. What is meant by model input dif-
fers depending on whether in the study an existing GMRIO
database was used or whether a custom database was created.
In the case of the former, probability distributions are directly
assigned to the input–output coefficients, i.e. the individual
elements of the inter-industry, final-demand or satellite ex-
tension matrices (Abbood et al., 2023; Shrestha and Sun,
2019; Kanemoto et al., 2020). In the case of the latter, prob-
ability distributions are assigned to the raw data used to de-
termine those coefficients (Lenzen et al., 2010, 2013, 2022;
Karstensen et al., 2015; Zhang et al., 2019). Using MC simu-
lations, i.e. repeatedly and randomly drawing raw data sam-
ples from those probability distributions, the uncertainty can
be propagated either from the GMRIO database to the CBCA
(in the case of the former group of studies) or from the raw
data needed to compile GMRIOs to the GMRIO coefficients
and further to the CBCA (in the case of the latter group of
studies).

1.3 Research gaps

As we will argue in the following, all of the studies cited
above have two major limitations. (1) First, all studies share
a very simple modelling of the uncertainty of the raw input
data. (2) Second, they disregard correlations between vari-
ables obtained by disaggregating a common input data point.

1. The raw data needed to compile GMRIO databases
usually lack quantitative information on uncertainty
(Lenzen et al., 2013; Wilting, 2012). This holds true
for most national input–output (IO) tables, international
trade statistics (such as BACI/Comtrade), macroeco-
nomic data (e.g. GDP) or energy statistics. In the ab-
sence of quantitative uncertainty information, studies
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addressing uncertainty in GMRIO either estimate the
raw data uncertainty using simple heuristics or model
it through a power law regression.

In the first approach, simple heuristics are employed
to assess the uncertainty of the raw data. This method
is adopted by Wilting (2012), Abbood et al. (2023),
Kanemoto et al. (2020) and Shrestha and Sun (2019).
For instance, Wilting (2012) applies heuristics such as
domestic input data being less uncertain than trade data
and sectors from one group being less uncertain than
those from another, based on “differences in input char-
acteristics”. Through these heuristics, they determine
an uncertainty estimate for each IO coefficient that de-
pends on the combination of the different characteris-
tics.

The second approach involves using a statistical model,
specifically a power law regression, to determine raw
data uncertainties (Lenzen et al., 2010; Karstensen et al.,
2015; Zhang et al., 2019). The authors fit a power law
regression to some proxy data points using the size of
the sector (in terms of emissions or financial volume) as
the only predictor variable. The resulting power law re-
lationship between the absolute sector size on the one
hand and uncertainty on the other hand is then used
to determine the uncertainties of the raw data (Lenzen
et al., 2010). However, while the size of a sectoral flow
(either financial or physical, e.g. in the form of emis-
sions) might explain some variability in the uncertain-
ties between flows, there are likely other credible pre-
dictors one could or perhaps should consider. This can
also be observed in the poor fits of the power law regres-
sions in Lenzen et al. (2010): they report R2 values of
only 0.26 for financial transactions and 0.21 for carbon
emissions, respectively, for their power law regressions.
This implies that the total size of a sectoral flow only
explains roughly one-fifth to one-fourth of the overall
variability in uncertainties.

Thus, both approaches rely on simple, somewhat arbi-
trary assumptions to determine uncertainty estimates for
the raw data. In the absence of better data on uncertain-
ties, those assumptions might be justified. However, in
the case of the data used to compile the GHG emission
accounts of GMRIO, there indeed exist very detailed
data on uncertainties, which to the best of our knowl-
edge have never been applied to assess uncertainties of
GMRIO extensions. One way to compile GHG emis-
sion accounts – referred to as inventory-first (Flache-
necker et al., 2018) or top-down (Tukker et al., 2018)
approaches – is based on GHG inventories from the
United Nations Framework to Combat Climate Change
(UNFCCC, covering only Annex-I countries) and/or
EDGAR (covering more than 200 countries) (Crippa
et al., 2020b). For both emission inventory data sources,
UNFCCC and EDGAR, very detailed information on

uncertainties is available. In the case of the UNFCCC
data, all parties submitting their national emission in-
ventories to the UNFCCC are obliged to publish uncer-
tainty estimates alongside them. However, those uncer-
tainty estimates are hidden in the annexes of the so-
called National Inventory Reports (NIRs), which are
only available in PDF format. This makes them diffi-
cult to retrieve and process by computer, which in turn
may explain why they have not been used to determine
uncertainties of GMRIO databases so far. In the case of
EDGAR, Solazzo et al. (2021) recently estimated the
uncertainties of the 2015 emission data.

2. The second shortcoming with respect to model uncer-
tainty in GMRIO relates to the ignorance of correla-
tions between variables introduced by disaggregating a
common raw data item. Compiling GMRIO is an un-
determined problem. That is, “there are many more IO
table entries than raw data items to construct them”
(Lenzen et al., 2010). Therefore, raw input data items
and their uncertainties have to be disaggregated. Lenzen
et al. (2010) and Lenzen et al. (2013) for example apply
a RAS-type balancing algorithm to “fit [. . . ] an error
propagation formula to the standard deviations of raw
data” (Lenzen et al., 2013) (the name RAS comes from
the central equation of this method, where R, A and S
are matrices). By doing so, they ensure that the uncer-
tainty of the disaggregate IO table entries is consistent
with the “known” standard deviation of their common
aggregate raw data item. Thereby they imply that the
disaggregate uncertainties are uncorrelated and follow
the standard error propagation formula as formulated
in Ku (1966). However, as Rodrigues (2016) showed,
the assumptions of uncorrelated disaggregated variables
on the one hand and a known aggregate uncertainty on
the other are mutually exclusive. Rodrigues (2016) con-
cludes that, if “the aggregate uncertainty is known, prior
correlations can be either all positive, all negative, or
a mix of both, depending on the relative values of ag-
gregate and disaggregate uncertainties.” Ignoring corre-
lations, in turn, might lead to overestimation or under-
estimation of the model output uncertainty (Groen and
Heijungs, 2017; Solazzo et al., 2021).

1.4 Goal and scope

Against this background, in this study, we aim to over-
come the above-listed limitations from previous approaches
to assessing parametric uncertainty in GMRIO. First, we use
available authoritative uncertainty estimates of the raw input
data, instead of relying on simplistic assumptions. Thereby,
we make use of uncertainty data from UNFCCC NIRs and
Solazzo et al. (2021). Second, we include correlations, in par-
ticular those arising from data disaggregation, by sampling
from Dirichlet distributions.
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Table 1. Three different statistical perspectives on GHG emission.

Statistical concept Definition Perspectives Synonyms Abbreviation

GHG inventory Emissions within the
geographical boundary

Territorial – –

GHG emission accounts Emissions within the
economic boundary

Residential,
production-based

Satellite accounts, GHG
extensions

GEA

GHG footprints Emissions related to
final consumption

Consumption-based Consumption-based carbon
accounts

CBCA

We estimate the uncertainty of the GHG emission ac-
counts, thus leaving aside the uncertainty of the other two
components of GMRIOs, i.e. the inter-industry matrix and
final demand. GHG emission accounts are also referred to as
GHG extensions or GHG satellite accounts (all three terms
are used interchangeably in this work; see also Table 1). We
focus on the GHG emission accounts for three reasons. First,
inter-database comparisons identified the GHG emission ac-
counts as the major source of discrepancy between difference
GMRIO databases (Owen et al., 2016), which makes them a
relevant starting point for improving the robustness of uncer-
tainty estimates. Second, as detailed above, that is where we
have authoritative information on raw data uncertainties, so
that we avoid “guesstimating” them or basing them on (too)
simplified assumptions. Third, as shown by Lenzen et al.
(2010) and mentioned above, for carbon emissions the ab-
solute size of a sector is an even poorer predictor of raw data
uncertainty than for financial transaction. Thus, we expect
that the inclusion of more robust raw data uncertainties will
be especially relevant for GHG emission accounts.

We compile our own set of GHG emission accounts and
estimate parametric uncertainty by using MC simulations to
propagate the uncertainty from raw input data that enters the
GHG extension compilation process to the GHG emission
accounts and then further to the GHG footprints.

We compile the GHG emission accounts for the year 2015
according to the sectoral and regional resolutions of EX-
IOBASE V3 (Stadler et al., 2018) since it has the highest sec-
toral resolution of all currently available, harmonised (with
respect to sector resolution) GMRIO databases. We cover the
three major GHGs CO2, CH4 and N2O. As raw data for com-
piling GHG emission accounts, we follow recommendations
by Tukker et al. (2018) and use, where available, emission
data from the UNFCCC as a “robust, authoritative source”
(Tukker et al., 2018). We base the analysis on the maximum
entropy principle and thus try to use only the information
that is available to use. Thus, we aim to provide a conserva-
tive baseline scenario of the uncertainty underlying the GHG
emission accounts.

In addition to parametric uncertainty, we also provide an
estimate of what Huijbregts (1998) calls “uncertainty due to
choices”, reflecting the uncertainty that arises from decisions

that inevitably have to be made in compiling and making use
of GMRIO databases. Such decisions include for example
the choice of the data sources used if there are several avail-
able (such as for GHG emissions) or the choice of how to
allocate emissions to IO sectors. In GMRIO the uncertainty
due to choices is either estimated specifically for one sin-
gle decision using sensitivity analysis to study how the re-
sults differ when this decision is made differently (Wiebe and
Lenzen, 2016; Schulte et al., 2021) or “generally” by com-
paring the outcome of different GMRIO databases (Owen
et al., 2016; Tukker et al., 2018). Those inter-database com-
parisons allow one to study the variability in outcomes re-
sulting from all decisions that have been made differently by
the different database compilers in the course of compiling
a GMRIO database. In this work, we choose the second ap-
proach by comparing our GHG emission accounts to those
from other sources, i.e. the GHG emission accounts released
by EXIOBASE V3.8.2 and official GHG emission accounts
published by national statistical agencies and collected by the
OECD.

By doing so, we aim to guide future GMRIO compil-
ers to “uncertainty hotspots”, i.e. very uncertain data points
which are relevant to answering a given research question,
such that resources can be more efficiently guided to improve
data accuracy (if parametric uncertainty prevails) or improve
(align) the overall compilation procedure (if uncertainty due
to choices prevails).

The aim of the study is twofold. First, we estimate
and present the uncertainty of both GHG emission ac-
counts (production-based perspective) and GHG footprints
(consumption-based perspective), at two levels of detail – at
the aggregate country level and the disaggregate sector level.
Second, we provide GHG emission accounts along with their
uncertainty to allow IO practitioners to conduct uncertainty
assessment for their research question at hand.

2 Material and methods

In the following, Sect. 2.1 provides an overview of our
methodology for compiling GHG emission accounts for EX-
IOBASE, including the raw input data and proxy data em-
ployed. Section 2.2 shows how we calculate GHG footprints
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using our GHG emission accounts along with data from EX-
IOBASE. Subsequently, Sect. 2.3 outlines our approach to
modelling the uncertainty related to those GHG emission ac-
counts, including the assignment of probability distributions
to the input data (Sect. 2.3.1) and the propagation of uncer-
tainty of the input data through the compilation process to
derive uncertainty estimates for the GHG emission accounts
and the GHG footprints (Sect. 2.3.2).

2.1 Compiling GHG emission accounts

2.1.1 General information on GHG emission accounts

GHG emission accounts, also called GHG satellite accounts
or GHG extensions (all three terms are used interchange-
ably in this work), represent GHG emissions broken down
by emitting economic activity. Economic activities comprise
both production and consumption activities. The System of
Environmental-Economic Accounting (SEEA) provides the
framework for the preparation of GHG emission accounts
at the national level (UN et al., 2014). The SEEA frame-
work shares the same system boundary as the purely eco-
nomic System of National Accounts (SNA) to allow seam-
less integration between the economic IO tables (based on
SNA) and the environmental extensions. As such, the GHG
emission accounts list all GHGs emitted within the economic
boundary of an economic unit such as a country, thus fol-
lowing the residential principle. According to the residential
principle, national GHG emission accounts list all emissions
caused by residence units of a country. A residence unit is
an institutional unit (e.g. a corporation, household or gen-
eral government) which “has its centre of predominant eco-
nomic interest in a particular economic territory” (UN et al.,
2014). Emission accounts present GHG emissions from the
production perspective. The design of the system boundary is
one major difference between GHG emission accounts and
other emission statistics such as national emission invento-
ries reported to the United Nations Framework Convention
on Climate Change (UNFCCC), which follow the territorial
principle listing all GHGs emitted within the geographical
border of a country (see Table 1).

Two approaches for constructing GHG emission accounts
can be distinguished: the inventory-first and energy-first ap-
proaches (Eurostat, 2015). Both differ in the raw data used
in the compilation process. While the inventory-first ap-
proach starts with the ready-made emission inventories, in
the energy-first approach energy accounts are constructed
based on energy consumption data (such as the IEA World
Energy Balances) and then combined with data on emis-
sion factors per fuel and economic sector. The energy-first
approach ensures database-internal consistency between en-
ergy and emission accounts (Stadler et al., 2018) but at the
cost of a lack of consistency with emission data from author-
itative sources such as the UNFCCC. Hence, in this study,
we follow the recommendations from a recent review of

the robustness of GMRIO (Tukker et al., 2018) and use the
inventory-first approach.

Thus, our approach differs from the EXIOBASE approach
as of version 3.8.2. EXIOBASE compilers apply the energy-
first approach by using IEA World Energy Balances to com-
pile energy use accounts and then combine those energy use
data with emission factors from the TEAM model (Stadler
et al., 2018; Pulles et al., 2007). Thereafter, CO2 fossil emis-
sions (until 2019) at an aggregate level are scaled to match
EDGAR emissions and all other GHG emissions (until 2017)
scaled to match the PRIMAP database (see the “README”
files in Stadler et al., 2021). In Appendix A, we provide
a figure of the different data sources used to compile se-
lected GHG emission accounts and to show how they differ
(Fig. A1).

Our workflow for the compilation of the GHG emission
accounts and the calculation of GHG footprints is illustrated
in Fig. 1. We construct GHG emission accounts following
the guidelines as described in Eurostat (2015). We use GHG
emission inventories as submitted to the UNFCCC and from
EDGAR (Crippa et al., 2020b) as raw data input. We com-
pile the GHG emission accounts according to the country
and sector resolution of the industry-by-industry version of
EXIOBASE V3, distinguishing 44 individual countries and
five rest of the world (RoW) regions (see Table C1), each
covering 163 industry sectors.

The GHG emission account compilation process can be
divided into two major steps.

– Step 1: aligning the system boundary to fit the residence
principle

– Step 2: assigning the emissions to EXIOBASE sectors

In the following, we first briefly describe the characteris-
tics of the UNFCCC and EDGAR emission inventory data
and then outline the two steps in the GHG emission account
compilation process.

2.1.2 Emission inventory data

We base our analysis on the GHG emission inventories as
submitted to the UNFCCC (hereafter referred to as UNFCCC
data/inventories) and emission inventories from the Emis-
sions Database for Global Atmospheric Research (EDGAR).
UNFCCC inventories are available for all Annex-I countries
(or parties) consisting of 40 developed or industrialised coun-
tries and the EU. Reporting follows the IPCC 2006 guide-
lines (IPCC, 2006). The UNFCCC inventories as published
by the UNFCCC secretariat were obtained from Pflüger and
Gütschow (2020). For all non-Annex-I countries and a few
Annex-I countries for which we had problems while extract-
ing uncertainty data (see Sect. 2.3.1 and Table C1 in the Ap-
pendix), we use the emission inventories from EDGAR v5.0
(Crippa et al., 2020a) since they have a global coverage (231
countries plus bunker fuel emissions), they are published on
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Figure 1. Our workflow of propagating uncertainty from the raw input data sources (UNFCCC/EDGAR) to the GHG emission accounts and
further to the GHG footprints.

a yearly basis, and, like the UNFCCC inventories, their re-
porting largely follows the IPCC 2006 guidelines. EDGAR
data were obtained from Crippa et al. (2020b).

Both UNFCCC and EDGAR classify GHG emission
sources according to the Common Reporting Format (CRF).
While EDGAR uses the CRF as stated in IPCC (2006),
the more recent UNFCCC inventories follow a slightly up-
dated version (IPCC, 2019). In both CRF versions, emission
sources are grouped into categories in a hierarchical order.
In the case of UNFCCC inventories, the highest-ranked cat-
egories – also called sectors – are (1) energy; (2) industrial
processes and product use; (3) agriculture; (4) land use, land
use change and forestry (LULUCF); (5) waste and (6) other.
Those sectors are further broken down into sub-categories,
e.g. 1.A.1.a.i. The level of detail with regard to categories dif-
fers between the UNFCCC and EDGAR data as well as be-
tween different countries. While EDGAR distinguishes only
up to 22 different sub-categories, the national inventories
submitted to the UNFCCC are much more granular, distin-
guishing up to 160 different sub-categories.

Furthermore, in the case of the UNFCCC inventories, the
sub-categories of the energy, agriculture and LULUCF sec-
tors are further broken down by the so-called classification.
The classification distinguishes between different fuel types
(in the case of emission from “Energy”) and animal types
(in the case of emissions from “Agriculture”). Like the cate-
gories, the classification also follows a hierarchical structure,
with a varying level of detail between individual country sub-
missions. Hence, while for a certain category some countries
only publish emissions from “liquid fuels” or even only the
“total for category”, other countries distinguish between e.g.
“gasoline” and “diesel”. EDGAR, on the other hand, does not
provide details on the fuel or animal type.

We exclude emissions from LULUCF as they are com-
monly not included in air emission accounts due to a lack
of detailed enough data to allocate those emissions to the
industry and product sectors (Eurostat, 2015). Recently, ef-

forts have been made to include LULUCF emissions in car-
bon footprint analysis (Hong et al., 2022). Further research
could include those in the uncertainty analysis framework
presented here.

2.1.3 Step 1: aligning the system boundary

As outlined above, emission inventories and emission ac-
counts differ in their system boundary: while the former fol-
lows the territorial principle, the latter follows the residential
principle. While a residence unit such as a company oper-
ates in most cases within the domestic territory, the excep-
tions can account for a considerable share of total national
GHG emissions, especially for smaller economies like Lux-
embourg, Malta or Cyprus (Usubiaga and Acosta-Fernández,
2015). Consequently, a crucial step in compiling GHG emis-
sion accounts is aligning the system boundary from the ter-
ritorial to residential principle, which is referred to as the
“residence adjustment” (Eurostat, 2015). It should be noted,
however, that not all global MRIO databases undertake this
step (e.g. Eora (Lenzen et al., 2013) and ICIO (Wiebe and
Yamano, 2016); see also Fig. A1 in the Appendix), which
was found to be a major reason for the relatively large inter-
database variability stemming from the GHG emission ac-
counts (Owen et al., 2016).

The residence adjustment requires for each country or re-
gion (1) to deduct the emissions from non-resident units op-
erating on the country’s national territory and (2) to add the
emissions from resident units operating abroad (see Fig. 2).
These operations are explicitly presented in the so-called
“bridging items”, which cover both deduction and addi-
tion operations for all relevant sectors. Thus, the net bridg-
ing items show the difference between national totals of
territorial-based UNFCCC and EDGAR inventories and of
national residence-based GHG emission accounts.

The residence adjustment affects a wide range of emis-
sion sources. However, due to the lack of data, estimating
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Figure 2. Schematic waterfall plot showing the relations between
the three different statistical perspectives on GHG emissions. Error
bars illustrate that each component is subject to uncertainty.

the bridging items is often hard. We therefore follow the
compilers of EXIOBASE and WIOD and carry out the res-
idence adjustment for the following globally relevant emis-
sion sources.

1. International air transport

2. International navigation

3. International fishing activities

4. International road transport

We note that for some individual countries there might
exist other quantitatively relevant items (e.g. pipeline trans-
port). However, conducting individual residence adjustments
for each country is beyond the scope of our paper.

Emissions from international air transport, international
navigation (shipping) and fishing activities have in common
that they all occur, by definition, in international territory,
i.e. in international airspace or in international waters. As
emission inventories adhere to the territorial principle, these
emissions are not included in national totals but are rather
classified as “memo items”. Adding up all memo items from
EDGAR delivers an estimate of the global total emissions
from international air and maritime activities, respectively.
Consequently, these memo items need to be added to the
corresponding EXIOBASE sectors, i.e. “Air transport”, “Sea
and coastal water transport” and “Fishing, operating of fish
hatcheries and fish farms; service activities incidental to fish-
ing”, of the countries that are home to the emitting institu-
tional units. All emissions caused by the Irish airline Ryanair,
for example, need to be added to the Irish air transport sector,
because this is the sector where the purchases of the airline’s
customers will be recorded in the IO tables.

To ensure consistency with the total global emissions from
international air and maritime activities from EDGAR, we

calculate country-specific use shares for both activities using
additional auxiliary data (details in Appendix D). Those use
shares (which globally sum to 1) are multiplied by the total
global international air or maritime emissions from EDGAR.
In the case of international maritime activities, we calcu-
late country-specific use shares using data from Selin et al.
(2021). In their analysis, Selin et al. (2021) made a bottom-
up estimate of the allocation of CO2 emissions from inter-
national shipping to national carbon budgets for the year
2015 using spatially resolved data on ship movements and
ship-specific data on engine power demand, activity time and
emission factor (details in Appendix D1). In the case of in-
ternational air transport, we calculate country-specific use
shares for EU countries using bridging items provided by Eu-
rostat (Eurostat, 2022) and for non-EU countries using data
from the World Bank on the country-specific numbers of do-
mestic and international air passengers carried by air carriers
registered in the country (Worldbank, 2023). For more de-
tails, see Appendix D2.

Emissions from international road transport occur within
national territories but are caused by non-residence. As such,
international road transport includes both tourism activi-
ties and road freight transport. These emissions need to be
added to the corresponding EXIOBASE sector of the resi-
dence country of the emitter. For instance, emissions result-
ing from a tourist driving a car abroad would be allocated to
the household sector of their home country. Similarly, emis-
sions caused by a logistics company operating abroad would
be added to the “Other land transport” sector of the coun-
try where the logistics company is registered. Moreover, as
opposed to emissions from international territory, emissions
from international road transport additionally need to be sub-
tracted from the account of the country where the emissions
occur (or more precisely from the country where the fuel was
sold since emission inventories mostly use fuel sale statistics
to estimate transport emissions).

In the case of international road transport, we follow
Stadler et al. (2018) and consider the European countries to
be by far the most affected by the residence adjustment of
international road transport due to the European geography
and its economic size (many countries in a relatively small
area with a lot of cross-border commercial and recreational
road transport). Non-European regions represented in EX-
IOBASE are “either islands or countries with limited road
access in relation to their size (e.g. China, India)” (Stadler
et al., 2018). We therefore assume that, for those countries,
the road transport emissions from non-resident units operat-
ing on the country’s national territory and the emissions from
resident units operating abroad are the same. In other words,
we assume the bridging items related to international road
transport for non-European countries to be 0. However, in
contrast to international air and water transport, we have no
knowledge of the total (global or European) emissions from
international road transport, as they are not reported sepa-
rately as memo items but as part of the road transport sector

https://doi.org/10.5194/essd-16-2669-2024 Earth Syst. Sci. Data, 16, 2669–2700, 2024



2676 S. Schulte et al.: Uncertainty of the GHG emission accounts

emissions (CRF category 1.A.3.b) within each country. That
is why – instead of calculating use shares as we do for wa-
ter transport – we directly take the total bridging items from
Eurostat (Eurostat, 2022) and add or subtract those from the
respective EU country’s national road transport emissions.
Eurostat’s bridging items do not sum to 0, and thus we dis-
tribute the residual to all European countries not listed in the
Eurostat data using the total emissions from road transport
(1.A.3.b) as a country-specific proxy. For details, please re-
fer to Appendix D2.

2.1.4 Step 2: assigning emissions to MRIO sectors

Next to the differences in the system boundary, emission in-
ventories and emission accounts also differ in their classifica-
tion scheme. While inventories have more technical process-
oriented classifications, emission accounts are grouped ac-
cording to economic activity. Using the example of road
transportation, in the UNFCCC CRF, emissions from road
transportation are broken down according to emitting vehi-
cle: cars, light-duty trucks, heavy-duty trucks, motorcycles
and others, thereby focusing on differences in technology
while ignoring the institutional unit that operates the vehicle,
i.e. whether the operator is a household or transport com-
pany. In contrast, emission accounts would allocate these
emissions from road transportation to the operators of the
vehicles and thus to households, the logistics sector and all
economic sectors that operate vehicles (which are basically
all economic sectors; for details, see Appendix D3).

Creating a correspondence table (CT) is the first step in
assigning the inventory emission sources to EXIOBASE sec-
tors. The CT needs to map each combination of CRF cate-
gory and classification (in the following referred to as a “CRF
emission source”, e.g. “Liquid fuel” emission from category
“1.A.1.a”), for each level of detail, to the EXIOBASE sectors
differentiating between individual industry sectors and final
demand categories. To get a CT that is consistent over all
hierarchical levels, we manually constructed the CT for the
most detailed combinations among all the countries (which
we name “root classification”, following Lenzen et al., 2013).
The upper level is then filled automatically by merging the re-
spective EXIOBASE correspondences from the lower levels.

As a starting point, we take the correspondence table pub-
lished by Eurostat that maps UNFCCC categories (without
classification detail) to NACE rev2 sectors (until level 2,
e.g. C11). Since we aim for a higher level of detail on both
sides of the CT, considerable effort was needed to create
the CT. We follow recommendations from Eurostat (2015)
for creating correspondence tables by taking the following
steps. First, we get a detailed understanding of the CRF cat-
egories and classifications (fuel and animal types) based on
the IPCC 2006 guidelines (IPCC, 2006), EMEP and EEA
(2019) and NIRs. Second, we get a detailed understanding of
EXIOBASE sectors using the official documentation (Stadler
et al., 2018, and the Supplement) and, where more detail is

needed, the documentation of the NACE rev2 classification
(on which the EXIOBASE classification is based). Third,
we assign corresponding EXIOBASE sectors to each com-
bination of CRF category and classification from the root
classification. We end up with both 1-to-1 correspondences
and 1-to-N (many) correspondences. Moreover, some CRF
categories or classifications which are found to be country-
specific are marked, and in a first step the correspondence is
chosen according to the German inventory.1 Upcoming work
could be to construct country-specific CTs (or even country-
year-specific CTs, since correspondences within a country
might also change over time). Since CRF emission sources
marked as country-specific make up only a small share of
the total emissions from Annex-I countries (0.4 % for CO2,
5.7 % for CH4 and 1.2 % for N2O), we consider our results to
not be significantly affected by this pragmatic choice. Fourth,
for each 1-to-N correspondence, we identify suitable proxy
data to get a best-guess estimate for allocating (disaggregat-
ing) the CRF emission sources to MRIO sectors. As proxy
data sources, we use in most cases the (monetary) Supply
and Use Tables (SUTs) from EXIOBASE. To split emis-
sions from Road Transport (CRF category 1.A.3.b) into EX-
IOBASE sectors, we use Eurostat’s Physical Energy Flow
Accounts (PEFAs) (Eurostat, 2023) along with the industry-
sector-specific employment data from the EXIOBASE exten-
sions (Stadler et al., 2018) as proxy data. Our CT includ-
ing all UNFCCC–EXIOBASE mappings and their proxy data
sources is available on Zenodo (see the Data availability sec-
tion at the end of the paper).

Special case: road transport

Since road transport activities are undertaken by basically
all industries and households, the allocation of emissions
from road transport (CRF category 1.A.3.b) is one of the
most difficult parts of compiling GHG emission accounts
(Eurostat, 2015). Since the availability and quality of aux-
iliary data needed to estimate the shares of the respective
industries and households in total road transport emission
are highly country-specific (Eurostat, 2015), we use in a
first step Eurostat’s PEFAs to allocate road transport emis-
sions to NACE rev2 industries and households for all EU28
countries plus Iceland and Norway (Eurostat, 2023). Given
that a PEFA solely incorporates NACE rev2 industries up to
the second level (e.g. C11), further disaggregation is needed
to align with the more detailed sector classification of EX-
IOBASE. Consequently, in a second step, we further disag-
gregate emissions from NACE sectors to EXIOBASE sectors
using sector-specific employment data from the EXIOBASE
extensions (Stadler et al., 2018), more specifically the sum of
the working hours from low-, middle- and high-skilled em-

1Germany was chosen for two reasons. First, it is a major GHG-
emitting country, and second, with ± 1000 pages the German NIR
is one of the most detailed reports of all the submitting countries.
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ployment. In our analysis, we deem the total working hour
input to be a more suitable proxy for allocating road trans-
port emissions compared to the economic output of a sector.
This choice is predicated on the assumption that the num-
ber of business trips (a major source of industry road trans-
port emissions) is primarily contingent on the workforce size
within a sector rather than solely relying on its overall out-
put. For a more detailed and formal elaboration on how we
allocate road transport, we refer the reader to Appendix D3.

2.2 Calculate GHG footprints

We transform the GHG emission accounts compiled with the
procedure detailed above into a matrix F∗. The columns of F∗
represent the 7987 industry–country combinations following
the structure of EXIOBASE V3, while the rows represent the
33 combinations of the three GHGs (CO2, CH4 and N2O)
and 11 emission sources according to the UNFCCC CRF.
By combining our GHG emission accounts F∗ with the other
elements needed from EXIOBASE V3.8.2 (Stadler et al.,
2021, 2018), i.e. the inter-industry coefficient matrix A, the
sectoral output x and the final demand matrix Y, we first cal-
culate the matrix of environmental multipliers M storing the
consumption-based environmental impacts to produce one
unit of output by industry sector:

M= F∗X̂−1(I−A)−1, (1)

where I is the identity matrix and X̂−1 is a square matrix with
1/xi on the main diagonal and 0 elsewhere.

We calculate national footprints D as

D =MY. (2)

2.3 Uncertainty analysis

We use MC simulations to propagate uncertainty from the
raw data (GHG inventories from UNFCCC and EDGAR) to
the GHG emission accounts and then further to the GHG
footprints. Uncertainty propagation using MC requires us
first to assign probability distributions to the raw input data.
Subsequently, we perform MC simulations by repeatedly
(N = 1000) and randomly sampling from those probability
distributions. We use those N random samples to create a
set of N GHG extension matrices {F∗1,F

∗

2, . . .,F
∗

N } following
the procedure described in Sect. 2.1, which in turn are then
used to calculate sets of N multiplier {M1,M2, . . .,MN } and
of N national footprints {D1,D2, . . .,DN } (Sect. 2.2). In the
following, we first show how we handle data uncertainty of
the raw data and then explain in detail how we model uncer-
tainty propagation.

2.3.1 Assigning probability distributions to input data

Uncertainties of national GHG emission inventories as sub-
mitted to the UNFCCC are available in the NIRs. NIRs are

published annually by Annex-I countries along with the ac-
tual emission data (see Sect. 2.1.2). The reporting of the un-
certainties in the NIRs largely adheres to the IPCC 2006
guidelines (IPCC, 2006), specifically the template table for
uncertainty reporting found in Tables 3.2 and 3.3 of Vol. 1,
Chap. 3. Since the NIRs are only available in pdf format,
we first had to extract the uncertainty tables using a set of
Python scripts. The extracted uncertainty estimates from the
2017 submission of UNFCCC NIRs covering the year 2015
are available on Zenodo (see the Data availability section at
the end of the paper). Note that we were not successful in
extracting uncertainty data for all Annex-I countries due to
the lack of uncertainty data in those countries’ NIRs or other
issues which inhibited extraction or processing of those data.
In Table C1 we list all EXIOBASE countries and regions,
along with the database we used as a raw data source.

The NIR uncertainty tables list the uncertainties by source
category (e.g. 1.A.3) and classification (i.e. fuel and animal
types). The uncertainties are given either as one value rep-
resenting a symmetric 95 % confidence interval (CI) around
the mean (2 relative standard deviations: 2σ ) or lower and
upper uncertainty bounds which enclose the 95 % CI in
the form (Q0.025,Q0.975), where Q0.025 and Q0.975 are the
2.5th and 97.5th percentiles, respectively. The type of un-
certainty reporting depends on whether the reporting coun-
try estimated the emission uncertainties based on analytical
error propagation where uncertainty in emissions is propa-
gated from uncertainty of the activity data, emission factors
and other parameters using the error propagation equation
(Ku, 1966) (approach 1) or based on Monte Carlo simula-
tions (approach 2; see IPCC, 2006).

For EDGAR data, which we use for all non-Annex-I coun-
tries and those Annex-I countries for which we could not
extract the data from the NIRs, uncertainties are available
from Solazzo et al. (2021). Solazzo et al. (2021) apply a sim-
ilar approach by also following the IPCC 2006 guidelines
(IPCC, 2006). Compared to the uncertainties reported by the
UNFCCC, however, they mostly use default emission factor
uncertainties from IPCC (2006), thus omitting national pecu-
liarities. Like the uncertainty data from NIRs, Solazzo et al.
(2021) report the EDGAR uncertainties as either symmetric
or asymmetric 95 % CIs.

In the case of symmetric (approach 1) uncertainties, we as-
sign a truncated normal distribution Truncnorm(µ,σ,a = 0),
where µ is the mean taken from the UNFCCC or EDGAR
inventory data, σ is the standard deviation taken from UN-
FCCC NIRs or Solazzo et al. (2021), respectively, and a de-
picts the minimum value.

In the case of asymmetric (approach 2) uncertainties, we
assign a log-normal distribution Lognormal(µ∗,σ ∗), where
µ∗ and σ ∗ are the mean and standard deviation of the vari-
able’s natural logarithm. µ∗ and σ ∗ are both estimated,
so that the 95 % CI of the log-normal distribution fits the
95 % CI, as given in UNFCCC NIRs or Solazzo et al. (2021)
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Figure 3. An example of the nested hierarchical data structure of the UNFCCC inventories, one hierarchy on the left side representing the
categories (e.g. 1.A.2 represents emissions from “Manufacturing Industries and Construction”). Each node representing a category contains
another hierarchy representing the classification (i.e. fuel or animal type).

using the R package rriskDistributions (Belgorodski et al.,
2017).

To examine how the “law of large numbers” which has
been used in the literature (Lenzen et al., 2010; Karstensen
et al., 2015; Zhang et al., 2019) performs for the uncertainty
data from the UNFCCC and EDGAR, we fit power law re-
gressions, both pooled and by country (Fig. E1 and Sect. E1
in the Appendix).

One major challenge for both emission inventories (UN-
FCCC and EDGAR) is that the level of detail of the un-
certainty data often does not match the level of detail of
the emission data. This mismatch in resolution is present in
both categories (i.e. processes and sectors) and classifications
(i.e. fuel and animal types, applicable to the UNFCCC only
since EDGAR does not distinguish between fuel and animal
types).

Figure 3 exemplifies this mismatch for the CRF cate-
gory 1.A.2 comprising emissions from fuel combustion from
“Manufacturing Industries and Construction” and its sub-
categories. In that example, we have emission data up to the
fourth category level (1.A.2.a Iron and Steel, 1.A.2.b Non-
Ferrous Metals, etc.), each for three different fuel types (see
the circles outlined in light blue). Uncertainty data, however,
are only available at the third category level (1.A.2) without
any details on fuel type (see the circles filled in orange). The
easy solution to deal with this mismatch in granularity would
be to use the data at the level of detail for which both emis-
sion and uncertainty data are available. This option, however,
would come at the cost of losing valuable information on the

composition of the emission sources, so that we would have
to make even more assumptions regarding the allocation of
emissions to MRIO sectors. As such, in order to use all the
information available, we handle the data in a hierarchical
tree format, in two different variants based either on (A) the
category or (B) the classification, so that we have one data
tree for each party, year, gas and classification (in the case
of A) or one data tree for each party, year, gas and category
(in the case of B), respectively. We wrote functions to flexi-
bly reshape the data between the usual table format and the
category or classification tree formats.

The modelling of uncertainty of the residence adjustment
(Sect. 2.1.3) differs between international road transport on
the one hand and international air and water transport on the
other hand. While in the case of the former we have no infor-
mation on the total (global) emissions from international road
transport but only on the country-specific bridging items, in
the case of the latter we know the total (global) emission from
international air and water transport from the UNFCCC and
EDGAR memo items (see Sect. 2.1.3) along with their un-
certainties (see the next section).

That is why, for international road transport, we explicitly
need to assign uncertainty estimates to the country-specific
bridging items, while for international air and water trans-
port we can model the uncertainty of the country-specific
bridging items by disaggregating the global international air
or navigation emissions using the procedure presented be-
low. Since Eurostat does not provide uncertainties of their
bridging items, we assume a relative standard deviation of
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0.3. Note that, due to taking totals (instead of use shares), the
uncertainty propagation also differs between the residence
adjustment related to international road transport as opposed
to emission happening in international territory.

2.3.2 Propagating uncertainty

We propagate the uncertainty using 1000 MC simulations in
three steps:

1. from the nodes that have uncertainty information
(Fig. 3, orange circles) to the most detailed level to
which emission data are available (Fig. 3, lowest-level
blue-bordered circles);

2. from these inventory leaves further to the MRIO sectors
(extensions); and

3. from the GHG emission accounts to the GHG foot-
prints.

The aforementioned Fig. 3 illustrates steps (1) and (2) of
the uncertainty propagation procedure. Steps (1) and (2) in-
volve both 1-to-1 mappings (i.e. a node is only connected to
one lower-level node, not shown in Fig. 3) and 1-to-N map-
pings (i.e. a node is connected to two or more lower-level
nodes). While the first case is trivial, the second one involv-
ing data disaggregation requires further attention.

The problem of data disaggregation under uncertainty
(i.e. in a probabilistic framework) appears in many differ-
ent research fields (e.g. chemistry: Plessis et al., 2010; eco-
nomics: Rodrigues, 2014; energy statistics: Paoli et al., 2018,
Min and Rao, 2018). The main characteristic of the problem
of data disaggregation is the preservation of the accounting
identity, i.e. the constraint that all disaggregate data values
x1, . . .,xK need to sum to the aggregate data value x0:

x0 =

K∑
i=1

xi . (3)

Rewriting Eq. (3) by substituting xi
x0
= αi gives

x0 = x0

K∑
i=1

αi, (4)

where αi is the branching ratio (or sector share) of sector i,
and

∑K
i=1αi = 1. The accounting identity constraint natu-

rally introduces negative correlations between the αis (Ro-
drigues, 2016).

We approach the problem of data disaggregation under un-
certainty as follows: first, we sample the aggregate x′0 from
the uncertainty distribution for x0 assigned in Sect. 2.3.1.
Second, we sample the disaggregate branching ratios α′ =
α′1, . . .,α

′

K from the Dirichlet distribution of α = α1, . . .,αK ,
which will be detailed in Schulte et al. (2024). Together,
x′0 and α′ then provide the sampled disaggregate values:
x′i = x

′

0 ·α
′

i .

For data disaggregation in a probabilistic framework, the
Dirichlet distribution is often a natural choice (see Paoli
et al., 2018, e.g.), since it has the helpful properties that ran-
dom variables drawn from the distribution always sum to 1.
Formally expressed, the Dirichlet distribution describes K ≥
2 random variables X1, . . .,XK such that each xi ∈ (0,1) and∑K
i=1xi = 1. The Dirichlet distribution we use which is de-

scribed in Plessis et al. (2010) is parameterised as follows:

x1, . . .,xK ∼ Dir(α1, . . .,αK ;γ ), (5)

where α = (α1, . . .,αK ) is a vector of positive-valued param-
eters such that

∑K
i=1αi = 1 and an additional positive-valued

concentration parameter γ > 0. The Dirichlet distribution, as
described here, has the useful property that the expected val-
ues for each variable Xi equal the parameter value αi :

E[Xi] = αi,∀i ∈ {1, . . .,K}. (6)

The concentration parameter γ , on the other hand, controls
the variance of X. This is illustrated in Fig. 4, showing his-
tograms of 10 000 random numbers generated with three dif-
ferent Dirichlet distributions, all with the same average sec-
tor shares α = (0.1,0.3,0.6) but with different values of γ .
From the figure, we can see that the variance decreases with
increasing γ .

In other words, with the parameter γ we can introduce un-
certainties of the sector shares. However, we have no infor-
mation on how accurate the SUT and PEFA data are as a
proxy for disaggregating emission data. Thus, without quan-
titative information uncertainties of the sector shares, we can-
not choose one of these realisations of the Dirichlet distri-
bution without explicitly making an (arbitrary) assumption
about the uncertainty (i.e. variance) of the shares. Against
this background, the maximum entropy (MaxEnt) principle
provides a powerful framework to deal with all available in-
formation and constraints in a consistent manner. According
to Jaynes (1957), from all probability distributions that align
with a given set of constraints and information, the one with
the maximum entropy should be selected. The MaxEnt prin-
ciple implies that the chosen distribution is at the same time
maximally uninformative about what is unknown and max-
imally informative about what is known. Consequently, the
MaxEnt distribution provides the least biased estimation that
remains consistent with the provided constraints and infor-
mation. Thus, in our case we want to find the least informa-
tive – or least biased – Dirichlet distribution with given sector
shares α. More precisely, we estimate the concentration pa-
rameter γ such that the entropy of the Dirichlet distribution
Dir(α;γ ) is maximised. A more detailed elaboration of our
procedure is under preparation (Schulte et al., 2024).

3 Results

Here, we present the results from propagating uncertainties
from the UNFCCC and EDGAR emission inventories to the
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Figure 4. Histograms of sector shares for three sectors (grey, yellow, blue) sampled from Dirichlet distributions with different values of
gamma (N = 10 000, α = (0.1,0.3,0.6), γ ∈ {1,6.36,30}).

GHG emission accounts and further to the GHG footprints.
The Results section is structured as follows. First, Sect. 3.1
shows the uncertainty of the GHG emission accounts and the
GHG footprints at the level of countries or regions and com-
pares our range estimates to the point estimates from the offi-
cial EXIOBASE GHG emission accounts and – if available –
GHG emission accounts published by national statistical of-
fices (and collected by the OECD). Subsequently, Sect. 3.2
shows the uncertainty at the level of industry sectors.

We provide the 95 % CI [Q0.025,Q0.975] depicting the in-
terval between the 2.5th and 97.5th percentiles of the 1000
Monte Carlo samples.

3.1 Uncertainty at the regional or country level

Figure 5 shows that the uncertainty of the GHG emission ac-
counts at the country level for the three GHGs CO2, CH4
and N2O. The grey bars show the uncertainty as the relative
deviation of the 95 % CI from the sample mean. For CO2,
the uncertainties range between minimally [−2 %,+3 %] for
the RoW region Middle East (WM) and maximally [−35 %,
+257 %] for Malta (MT). For CH4, the uncertainties range
between minimally [−8 %, +10 %] for RoW Europe (WE)
and maximally [−50 %, +59 %] for Bulgaria (BG). For N2O,
the uncertainties range between minimally [−26 %, +34 %]
for RoW Middle East and maximally [−48 %, +203 %] for
Malta. Thus, the uncertainty ranges span almost a factor
of 100 for CO2 and less than a factor of 10 for N2O and
CH4. Moreover, for most countries, the 95 % CI is positively

skewed. This can be explained by the constraint that emis-
sions can only be positive, and thus the theoretically maxi-
mum relative downward deviation from the mean is−100 %.

Comparing our range estimates to the point estimates from
the official EXIOBASE GHG emission accounts and the
collection of national emission accounts from the OECD
(coloured points in Fig. 5, summary statistics in Fig. E2 in
the Appendix), we observe that, for most countries, both
EXIOBASE and OECD estimates fall within our 95 % CI.
Exceptions include some countries (AT, AU, BE, EE, FI,
GB, HU, PT and SE; see Table C1 for the country codes)
for which the CH4 estimate from EXIOBASE is well above
our 95 %, in the case of Finland (FI) even by a factor of
more than 3. We suspect that those discrepancies can mostly
be explained by the different source data used, which for
those countries also differ considerably. While EXIOBASE
estimates align well with the EDGAR inventory data (see
Sect. 2.1.1 for details on the way EXIOBASE compiles its
GHG accounts), our estimates and OECD estimates are both
based on the UNFCCC inventories. Therefore, we conclude
that, for those countries, the uncertainty due to choices (in
this case the choice of database) is much higher than the para-
metric uncertainty.

Also in the case of the four EXIOBASE RoW regions,
EXIOBASE estimates mostly fall outside our 95 %. This
might result from the fact that, in contrast to most coun-
tries that are individually present in EXIOBASE, there is
no official “benchmark” estimate for the emissions of those
RoW regions. In the case of the CO2 emission accounts
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Figure 5. Uncertainty of the GHG emission accounts for the 49 EXIOBASE countries and regions, shown as the relative deviation from
the sample mean. Grey bars show our 95 % CI. The blue and yellow points show the relative deviation of the official EXIOBASE V3.8.2
emission accounts and the collection of national emission accounts from the OECD, respectively, from our sample mean. EDGAR and
UNFCCC emission inventories (territorial-based) are additionally displayed to help explain some of the differences between our GHG
emission accounts and those from the OECD or EXIOBASE. See Appendix C1 for a definition of all EXIOBASE country or region codes.

from Switzerland (CH) and Sweden (SE), both EXIOBASE
and OECD estimates are below our 95 % CI. In the case of
N2O, we observe that for most countries the EXIOBASE and
OECD estimates are systematically below our sample mean
(but still within our 95 %). An exception to that is Australia
(AU), where EXIOBASE reports 250 % higher (residential-
based) N2O than our sample mean. However, similar to the
CH4 “outlier”, we also suspect the different source data of
being (one) explanation for this discrepancy.

Figure 6 displays the uncertainties of the GHG emission
accounts next to the uncertainties of the GHG footprints, al-
lowing one to analyse how the uncertainty propagates from
the production-based GHG emission accounts through inter-
national supply chains to the consumption-based GHG foot-
prints. This time, the countries are sorted along the x axis
according to their mean share of total emissions (according
to our estimate).

Focusing on the uncertainty of the GHG emission accounts
(Fig. 6a, c and e), we see that, in the case of CH4 and N2O,
there is no clear trend between a country’s emissions’ un-
certainty and its absolute emissions. This means that the un-
certainty is relatively uniform between countries, regardless
of the size of their total emissions. In contrast, for CO2, a
clear trend emerges where countries with larger overall GHG
emission accounts exhibit lower uncertainty. Those countries
with by far the greatest uncertainty – MT, Cyprus (CY) and
Luxembourg (LU) – all have very small (production-based)
contributions to global CO2 emissions. Countries and regions
with a considerable contribution to global CO2 emissions,
on the other hand, such as China (CN), the US, RoW Middle
East (WM) or India (IN), show relatively small uncertainties,
with CIs all ranging within the interval [−10 %, +10 %].

Comparing the uncertainty of the GHG emission accounts
(production-based) to the uncertainty of the GHG footprints
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Figure 6. Uncertainty of the GHG emission accounts (a, c, e) and of the GHG footprints (b, d, f) at the country or region level, shown as the
relative deviation from the sample mean. The yellow bars show our 95 % CI. Countries are sorted along the x axis according to their mean
share of the total emissions. The bar width is adjusted to the mean share of the total emissions. For EXIOBASE, country or region codes, see
Table C1.

(consumption-based), we observe that for most countries the
uncertainty of the former is considerably higher than of the
latter. This can also be seen in Table 2, which shows the dis-
tributions of the coefficients of variation (CVs) as the median
(50th percentile) and the 2nd and 97.5th percentiles.

This difference is particularly striking in countries with
very uncertain GHG emission accounts, such as Malta and
Cyprus, especially concerning CO2 and N2O emissions. The
lower uncertainty in GHG footprints compared to GHG
emission accounts can be attributed to the fact that, when
calculating footprints, the emissions from GHG emission ac-
counts – and their associated uncertainties – are distributed
internationally through global supply chains. For example,
a large share of Malta’s “sea and coastal water transport”
services, whose emissions are a major source of uncertainty
(see Fig. E3 in the Appendix), is not consumed domesti-
cally but relates to final consumption in other parts of the
world. However, it must be noted that, in our analysis, we
only consider the uncertainty of the GHG emission accounts,

Table 2. Distribution of the coefficients of variation (CVs) of the
country- and sector-level GHG emission accounts and GHG foot-
prints. Numbers are denoted in the form of median+(Q0.975−median)

−(median−Q0.025).

Level Gas GHG emission
accounts

GHG footprints

Country or region CH4 0.12+0.13
−0.07 0.06+0.1

−0.03

Country or region CO2 0.04+0.46
−0.02 0.03+0.13

−0.02

Country or region N2O 0.33+0.25
−0.17 0.16+0.28

−0.08

Economic sector CH4 1+21.63
−0.81 0.1+1.11

−0.06

Economic sector CO2 0.94+20.76
−0.82 0.18+3.57

−0.15

Economic sector N2O 1.13+20.89
−0.88 0.22+1.58

−0.16
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thus neglecting the uncertainty stemming from all inter-
industry flows, including how emissions are internationally
distributed through global supply chains. Hence, depending
on the sizes of those uncertainties not covered here, the ratio
might also be reversed.

3.2 Uncertainty at the sectoral or multiplier level

Next, we turn to the uncertainty at the level of industry sec-
tors. The industry-by-industry version of EXIOBASE V3.8.2
covers 163 economic sectors in each of the 49 countries and
regions, resulting in a total of 7987 economic sectors. We
analyse both the uncertainty of the sectoral GHG emission
accounts and the uncertainty of the sectoral GHG footprints.
In the case of sectoral GHG footprints, the consumption-
based emissions to produce one unit of output are also often
referred to as the (emission) multiplier.

Figure 7 displays the uncertainty relative to the mean in
the (production-based) GHG emission accounts of those eco-
nomic sectors. Each economic sector is represented by one
grey bar showing the range of its 95 % CI (y axis) and its
share in total (global) emissions (x axis). The sectors are
sorted along the x axis according to their mean share of to-
tal emissions. The coloured points depict the EXIOBASE
V3.8.2 estimate for that sector. Colours indicate whether the
EXIOBASE estimate is above, below or within our 95 % CI.

Figure 7b, d and f show all the sectors (except those with
zero emissions). From there we can see that, for some sec-
tors with a very small contribution to the total emissions, the
EXIOBASE estimates deviate substantially by up to a fac-
tor of +1× 109. However, since those sectors only make a
very small contribution to global emissions but completely
dominate the scale of the y axis, we zoom into those sec-
tors which cover the top 80 % of the total emissions (Fig. 7a,
c and e). For those top-80 % sectors, the 95 % CI ranges
between [−100 %, +200 %] for CH4, [−100 %, 300 %] for
CO2 and [−100 %, 350 %] for N2O.

For CO2, similar to the country-level uncertainties, a clear
trend can be observed between a sector’s emission uncer-
tainty and its absolute emissions. For example, the 95 % CIs
of the sectors covering the top 40 % of the total CO2 emis-
sions are all within [−50 %, +50 %], while for N2O the sec-
tor with the highest share of total emissions (China – cul-
tivation of vegetables, fruit and nuts) shows a 95 % CI of
[−85 %, 140 %], and for CH4 the sectors with the third-
highest share of the total emissions (China – mining of coal
and lignite; extraction of peat) show a 95 % CI of [−70 %,
+90 %]. Moreover, like for country-level uncertainties, for
most sectors the 95 % CI is positively skewed.

Comparing our range estimates (covering the 95 % CI)
with the point estimates from EXIOBASE, we see – in
contrast to the country-level results – a considerable devi-
ation between the EXIOBASE estimates and our 95 % CIs
(coloured points in Figs. 7 and E2 in the Appendix). All
sectors for which the EXIOBASE estimate falls within our

95 % CI make up 28 % (CO2), 35 % (CH4) and 41 % (N2O),
respectively, of global emissions (see Fig. E2 in the Ap-
pendix). For most sectors, making up 58 % (CO2), 47 %
(CH4) and 53 % (N2O) of the total emissions, the EX-
IOBASE estimate is below our 95 % CI, while sectors for
which EXIOBASE provides higher emission values make up
14 % (CO2), 17 % (CH4) and 6 % (N2O) of global emissions.
Therefore, we conclude that the uncertainty due to choices
outweighs the parametric uncertainty for most sectors, or,
put differently, all choices made differently between us and
the compilers of the official EXIOBASE GHG emission ac-
counts (see Sect. 2.1.1 for details on the way EXIOBASE
compiles their GHG accounts) affect the sector-level emis-
sion accounts more than the raw data uncertainties. Tables E1
and E2 in Appendix E2 list all EXIOBASE sectors for which
our sample means are considerably (i.e. for more than 75 %
of all the regions) above or below the official EXIOBASE
V3.8.2 estimate, thus shedding light on sectors for which the
process of emission assignment (Sect. 2.1) needs further in-
vestigation in terms of proxy data used or incorrect corre-
spondences from raw data items to those sectors.

Comparing the uncertainty in GHG emission accounts
with those of the GHG footprint, we see that, overall, the un-
certainty is substantially lower for the latter. This is indicated
by the boxplots in Fig. E4 in the Appendix and the summary
statistics in Table 2). From Table 2 we see that the median
CV is a factor of 5 to 10 lower for the sector-level GHG foot-
prints than for the sector-level GHG emission accounts. This
finding is in line with the results at that country level and
can also be explained by the fact that, in the footprint calcu-
lations, uncertainties are distributed internationally through
global supply chains, where they partly cancel out.

4 Discussion

4.1 Uncertainty of GHG accounts at the country level

In our analysis, we estimate the uncertainty of the GHG
emission accounts by propagating uncertainty from the raw
data inputs needed to compile them, i.e. the GHG invento-
ries, to the accounts. In doing so, we identify several uncer-
tainty hotspots. At the country level, countries with small
economies and comparably little GHG emissions exhibit
higher uncertainties than large economies with large emis-
sions, a pattern that is strongest for CO2 emissions, in which
case the pattern can mostly be attributed to the residence ad-
justment (see Fig. E3 in Appendix E). In the residence adjust-
ment, large chunks of emissions are allocated across many
countries. Since we model this allocation using a maximally
uninformative Dirichlet distribution, the amount of emissions
attributed to a specific country shows a high variability. For
countries like Malta or Cyprus, where the international avi-
ation and/or shipping sector play a considerably high role in
overall economic activities, this uncertainty also contributes
considerably to the uncertainty of the national GHG emis-
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Figure 7. Uncertainty of the GHG emission accounts for the 7987 EXIOBASE sectors against their cumulative share of the total emissions.
The right column (b, d, f) shows all the sectors, and the left column (a, c, e) zooms into those sectors covering the top 80 % of the total
emissions. Uncertainty (y axis) is shown as the relative deviation from our sample mean. Grey bars display our 95 % CI, with the width being
adjusted to the mean share of the total emissions. The coloured points depict the EXIOBASE V3.8.2 estimate for that sector. The colours
indicate whether the EXIOBASE estimate is above, below or within our 95 % CI. Sectors are sorted along the x axis according to their mean
share of the total emissions. Note: sectors with zero emissions are not displayed.

sion accounts. For large economies like China or the US,
on the other hand, these sectors play – in relative terms –
an almost marginal role; therefore, their overall uncertainty
remains relatively unaffected by the uncertainty of the resi-
dence adjustment.

Comparing our range estimates with EXIOBASE and
OECD point estimates at the country level, we observe
that, for the majority of countries, both the EXIOBASE
and OECD point estimates are encompassed within our
95 % confidence interval. To conclude, GHG emission ac-
counts at the country level appear reasonably accurate, espe-
cially for CO2 emissions, provided that international trans-
port emissions are a minor component in comparison to the
broader economic activities of a country. However, caution is
warranted: disparities between our estimates and those from
EXIOBASE and the OECD exist for specific countries (like
Switzerland, Romania or Sweden) and some RoW regions,
emphasising the importance of choices made while compil-
ing GHG extensions, such as the source data selection (UN-
FCCC vs. EDGAR), the approach applied (inventory-first
vs. energy-first), the elaboration of correspondences between
emission categories and economic sectors, and proxy data se-
lection.

Furthermore, the CH4 and N2O emission accounts demand
a more cautious interpretation. They possess considerably
higher parametric uncertainties, primarily due to the higher
uncertainty in raw inventory data (Solazzo et al., 2021). Ad-
ditionally, the uncertainty resulting from choices, particularly
concerning the raw data source (EDGAR vs. UNFCCC), is
substantial. For CH4, choosing between EDGAR or UN-
FCCC can lead to deviations as large as 300 % for some
countries. For N2O, a clear trend emerges: our method fre-
quently produces higher estimates compared to EXIOBASE
or the OECD. This recurring variance necessitates further in-
vestigation to determine its root causes.

4.2 Uncertainty of GHG accounts at the sector level

At the sector level, the uncertainty significantly surpasses
that of the country level, with CVs reaching values of up to
10. For CO2, uncertainties are distributed unevenly. Larger
sectors, in terms of emissions, typically display less uncer-
tainty. However, for CH4 and N2O, the uncertainties are com-
paratively uniform across industries. Consequently, for CH4
and N2O, even sectors with high emissions exhibit consid-
erable uncertainty. When juxtaposed with the estimates from
EXIOBASE at the sector level, the alignment is less consis-
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tent than at the country level. On average, EXIOBASE esti-
mates tend to be below our 95 % CIs, while for certain sec-
tors with relatively low emissions, the EXIOBASE estimates
show considerable upward deviations.

In conclusion, for GHG emission accounts at the sector
level, CO2 estimates for sectors with large emissions seem
reasonably accurate. However, substantial uncertainties in
CO2 emissions exist for sectors with rather low overall emis-
sions and for CH4 and N2O emissions in general. This sug-
gests that a more cautious interpretation is warranted for
these sectors and emissions. This heightened level of overall
uncertainty at the sector level resonates with findings from
other studies (Lenzen et al., 2010; Karstensen et al., 2015;
Rodrigues et al., 2016) that have also highlighted the need
to approach individual data items in a GMRIO database with
caution.

Furthermore, the uncertainty due to choices (see Hui-
jbregts, 1998, and Appendix B) is predominant at the sec-
tor level. A significant proportion of the sectors in terms of
both number and emission size fall outside our 95 % CI, im-
plying that all choices made differently by us as compared
to the EXIOBASE compilers have a greater impact on the
sectoral variability than the parametric uncertainty. Conse-
quently, to enhance the robustness of sector-level emission
accounts, there is a need for a more systematic analysis of
the uncertainty that results from different choices made in
compiling GHG emission accounts. The aspects needed to
be considered in such an assessment include industry cor-
respondences, residence adjustments and the nature of the
proxy data utilised (see also Appendix E2).

4.3 Uncertainty of GHG footprints

In our analysis, we also show how the uncertainty propa-
gates further from the GHG emission accounts to the GHG
footprints. We find that, overall, production-based emission
accounts exhibit higher uncertainty than consumption-based
accounts (GHG footprints). This is especially pronounced for
sectors with high uncertainty in production-based emissions.
This finding can be explained by the fact that, when calcu-
lating footprints, the production-based emissions along with
their uncertainties are distributed internationally through
global supply chains to serve final consumption in another
part of the world. Since we assume the uncertainties of the
production-based emission accounts to be uncorrelated (ex-
cept those stemming from a common raw data point; see
Sect. 2.3.2), we expect them to partially cancel out each other
when propagated through the supply chains, resulting in a
lower uncertainty of GHG footprints. However, in our anal-
ysis we do not include the uncertainty of the entries in the
inter-industry coefficient matrix A, the sectoral output x and
the final demand matrix Y (see Eq. 1). Therefore, depending
on the magnitude of these uncertainties and the structure of
the correlations we did not cover, consumption-based emis-

sion uncertainties might indeed be even higher than the un-
certainties from production-based emissions.

4.4 Assumptions, limitations and outlook

This analysis provides a conservative baseline scenario of the
parametric uncertainty inherent in GHG emission accounts.
Thus, we only – with one exception (see below) – include
estimates of raw input data uncertainty when it comes from
authoritative sources and is available to us. In our case, both
criteria are fulfilled by two data sources: the National Inven-
tory Reports as submitted to the UNFCCC (Tukker et al.,
2018, see) and the study by Solazzo et al. (2021) providing
uncertainties for the EDGAR database based on the IPCC
2006 guidelines (IPCC, 2006). For most other raw input data
where uncertainty estimates are not available, we assume
maximally uninformative distributions or, in more technical
terms, those distributions maximise the statistical entropy.
This is especially true for all proxy data used to disaggre-
gate and assign emission inventory data to the MRIO sectors.
The only exception, in which we deviate from the maximum
entropy principle, is for the bridging items used for the res-
idence adjustment concerning international road transport.
For these bridging items, we lack a (global) total emission
estimate as compared to international air or water transport
emissions. Thus, we need to make an explicit assumption
about their uncertainty (see Sect. 2.3.1).

Further research could narrow down the uncertainty ranges
of raw data inputs for which we used maximally uninforma-
tive prior distributions by either relying on expert judgement
or using an approach similar to the pedigree matrix approach
applied to the life cycle inventory database ecoinvent (Ciroth
et al., 2016). This could be achieved by including uncertainty
estimates to both proxy data to assign emissions from in-
ternational transport (air, ship, fishing) to national GHG ac-
counts in the so-called residence adjustment (Sect. 2.1.3) and
the proxy data to assign emissions from GHG inventories to
MRIO sectors (Sect. 2.1.4). The inclusion of uncertainty esti-
mates of the proxy data would be possible in the framework
proposed in this study but replacing the standard Dirichlet
distribution as applied here with a generalised Dirichlet dis-
tribution such as the one formulated by Plessis et al. (2010)
in order to “force” the disaggregate samples to stay within a
given range.

Our analysis comes with several limitations, outlined as
follows. In our analysis, following the classification by Hui-
jbregts (1998), we have accounted for two types of uncer-
tainty in GMRIO modelling: parametric uncertainty and un-
certainty due to choices. While in the case of the former we
have considerably advanced the state of the art in uncertainty
estimation in GMRIO, in the case of the latter our analy-
sis only provides a very general analysis of the uncertainty
due to choices by comparing our GHG emission accounts to
other databases which made a different set of choices or as-
sumptions in their compilation process. Particularly in view
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of our finding that the uncertainty due to choices plays a ma-
jor role in most sectoral emissions and some country emis-
sions, a more systematic analysis of the uncertainty that re-
sults from different choices in compiling GHG emission ac-
counts should be made. This could be achieved with a sensi-
tivity analysis by varying one assumption or choice at a time
(e.g. source data, proxy data or sector mapping) to identify
the decisions with the largest sources of variability.

Moreover, we neglect other sources of uncertainty and
variability, such as model or scenario uncertainty, spatial
variability, temporal variability or variability between objects
or sources (see Table B1 and the discussion in Appendix B).
Especially the latter three sources of variability result in a
variability in inputs and outputs (e.g. in forms of GHG emis-
sions) within each GMRIO sector, which is hidden in the
model due to the sector-homogeneity assumption (Majeau-
Bettez et al., 2016). While this within-sector variability (also
called the aggregation error) might be of less relevance at the
country level due to effects of cancelling out, it might con-
stitute a considerable source of uncertainty for analysis car-
ried out at the sectoral level (“product footprints”) or at the
sub-national level, e.g. in household footprint studies. When
interpreting our results, it should be kept in mind that the
uncertainty estimates we provide are on the mean emissions
of that sector. However, depending on the characteristics of
a sector, the within-sector variability might be substantially
larger.

Moreover, there is a trade-off between the within-sector
variability and the uncertainty of the mean with respect to
the sectoral resolution: the more you aggregate sectors, the
lower the uncertainty on the mean (due to cancelling-out ef-
fects, except when uncertainties are highly positively corre-
lated) but the higher the within-sector variability. As shown
by Lenzen (2011), IO-based results are more accurate if you
first disaggregate the IO data, then perform the calculations,
and then aggregate the results. Thus, we still recommend that
database compilers further increase the sectoral resolution
of GMRIO databases to decrease the aggregation bias, even
though we expect an even higher uncertainty on the mean
than what we found here for the EXIOBASE resolution. For
database users and analysts, however, our analysis indicates
that there is a need for more guidance on the “best” level of
aggregation of GMRIO-based results that balances out the
aggregation error with the uncertainty on the mean. How-
ever, we leave this research topic, which greatly depends on
the research question, to further research.

Moreover, in our analysis we also ignore systematic uncer-
tainties arising from limitations of the raw data sources we
have used, i.e. the UNFCCC and EDGAR inventories. These
limitations include issues with CO2 emissions from biomass
combustion as noted by Pulles et al. (2022) and the predom-
inant use of default emission factors in the case of EDGAR
(Crippa et al., 2018). Additionally, there are systematic is-
sues with the proxy data utilised. If proxy data are sourced
from the supply table, they neglect all production ending as

self-consumption within the same facility and thus not ap-
pearing in the supply tables, as for example is the case for
coke production used within steel plants. Conversely, using
proxy data from the use table fails to account for the re-export
by an industry. This means that a sector could use coal with-
out burning it and simply resell it to another sector. In such
a scenario, the emissions from that resold coal should not be
attributed to that sector, but the one that actually burned it.

Furthermore, even uncertainty estimates have their own
inherent uncertainty. Although all raw data uncertainty es-
timates we use in our analysis are based on the same set
of guidelines, i.e. the IPCC 2006 guidelines (IPCC, 2006),
there remain questions on comparability and validity. Over-
all, we consider the uncertainty estimates from the UNFCCC
NIRs to be more robust than the ones from EDGAR (So-
lazzo et al., 2021), since the latter are based on default (tier-
1) uncertainty estimates, while the former are often but not
exclusively based on more elaborate methods which include
national or process-based peculiarities (tiers 2 and 3). How-
ever, to the best of our knowledge there exists no third-party
systematical validation of the UNFCCC NIRs and compar-
isons with e.g. Solazzo et al. (2021) to provide more insights
into the robustness of the uncertainty estimates. However, de-
spite those limitations, by using “real” uncertainty estimates
on the raw data instead of modelling them using a power law
regression or heuristics as done in previous studies, we con-
sider our analysis to substantially advance uncertainty mod-
elling in GMRIO, especially since the “law of large num-
bers” mostly explains only a small part of the overall vari-
ability in uncertainties (see Sect. E1 in the Appendix).

Finally, our analysis solely captures correlations arising
from data disaggregation and omits other potential correla-
tions between the raw data points we use to compile GHG
accounts. While for UNFCCC inventories there are no data
on correlations available, the uncertainty estimates of the
EDGAR inventory from Solazzo et al. (2021) take into ac-
count correlations between all emission sources that share
the same emission factor. However, in our MC-sampling ap-
proach we sample all raw data items independently, thus
omitting those correlations. Further research could make use
of the correlations from Solazzo et al. (2021) and similarly
derive correlations for the UNFCCC inventories by making
use of available information on the data structures, e.g. data
points that share the same emission factors. However, this
“back-engineering” of UNFCCC emission inventories would
require a major effort since the data sources for each emis-
sion source (activity data and emission factors) need to be
traced. Therefore, we would encourage the UNFCCC parties
to also report correlations along with their uncertainty data.
To make reporting of correlations mandatory and consistent,
this could also be reflected in upcoming IPCC guidelines.
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5 Code and data availability

– Our GHG extensions with associated uncertainties
and correlations are made available on Zenodo
at https://doi.org/10.5281/zenodo.10041195 (Schulte
et al., 2023).

– The extracted and processed uncertainty data from the
UNFCCC NIRs (submission 2017) are made available
on Zenodo at https://doi.org/10.5281/zenodo.10037714
(Schulte and Heipel, 2023).

– Our correspondence table that maps UN-
FCCC CRF categories and classifications to
EXIOBASE sectors is made available here:
https://doi.org/10.5281/zenodo.10046372 (Schulte,
2023a).

– The R code needed to reproduce the results of
this article is available on GitHub and Zenodo:
https://doi.org/10.5281/zenodo.10141616 (Schulte,
2023b).

– EXIOBASE V3.8.2, which was used in this analysis,
is available at https://doi.org/10.5281/zenodo.5589597
(Stadler et al., 2021).

6 Conclusions

Having robust information on model uncertainty is
paramount for robust policy- and decision-making. In this
analysis, we estimated the uncertainty of one part of envi-
ronmentally extended GMRIO analysis: the GHG emission
accounts. Thereby, we overcame two major limitations of
previous studies. First, instead of making simplistic assump-
tions, we used authoritative raw data uncertainty estimates
from the National Inventory Reports (NIRs) submitted to the
United Nations Framework Convention on Climate Change
(UNFCCC) and a recent study on uncertainty of the EDGAR
emission inventory. Second, we accounted for correlations
arising from data disaggregation by sampling from Dirichlet
distributions.

Our results show a median CV for GHG emission accounts
at the country level of 4 % for CO2, 12 % for CH4 and 33 %
for N2O. For CO2, smaller economies with significant in-
ternational aviation or shipping sectors show CVs as high
as 96 %, as seen in Malta. At the sector level, uncertain-
ties are higher, with median CVs of 94 % for CO2, 100 %
for CH4 and 113 % for N2O. Overall, uncertainty decreases
when propagated from GHG emission accounts to GHG foot-
prints, likely due to cancelling-out effects caused by the dis-
tribution of emissions and their uncertainties across global
supply chains. Our GHG emission accounts generally align
with official EXIOBASE emission accounts and OECD data
at the country level, though sectoral discrepancies warrant
further examination.

To increase the robustness of GHG emission accounts, we
recommend future GMRIO compilers do the following:

– refine the residence adjustment process to increase ro-
bustness of GHG accounts at the national level for some
small economies and

– refine the process of emission assignment in terms of
the proxy data used and correspondences from emis-
sion sources to MRIO sectors to address discrepancies
in sectoral emissions between our GHG accounts and
those from EXIOBASE V3.8.2 (see Tables E1 and E2
for lists of sectors which are most affected).

To conduct our analysis, a major effort had to be made (in
terms of time and resources) to extract and process the un-
certainty estimates from the UNFCCC NIRs which are only
published in pdf format. We made the uncertainty data for
the year 2015 (from the 2017 submission) available on Zen-
odo (Schulte and Heipel, 2023). Moreover, we plan to make
data available for other years as well. However, some ef-
forts in processing the data are still required. In any case,
since updating a database each year when the new reports
are published requires a consequent effort, we recommend
adapting the UNFCCC emission reporting guidelines (IPCC,
2006, 2019) to oblige parties to also report their uncertainty
estimates in machine-readable format to make it easier for
researchers to make use of this valuable data resource.

Moreover, we made the correspondence table that maps
UNFCCC categories and classifications to EXIOBASE sec-
tors available on Zenodo (Schulte, 2023a). Thereby, we hope
to make the refinement of those correspondences, which are
a central piece in compiling GHG emission accounts, a col-
laborative and cumulative effort.

Lastly, we provide our GHG extensions with associated
uncertainties and correlations on Zenodo (Schulte et al.,
2023) to complement the official EXIOBASE extensions for
users interested in estimating the uncertainties of their re-
sults.
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Appendix A: Comparing the GHG emission account
compilation between different databases

Figure A1. Data sources used to compile selected GHG emission accounts. This is our own elaboration that builds on Andrew (2020)
(emission data sets), Eurostat (2015) (Eurostat air emission accounts), Flachenecker et al. (2018) (OECD air emission accounts), Stadler
et al. (2018) (EXIOBASE air emission accounts), Genty et al. (2012) (WIOD) and Lenzen et al. (2013, 2012) (Eora).
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Appendix B: Sources of uncertainty in GMRIO

Since, to the best of our knowledge, there exists no proper
framework to distinguish between different types of uncer-
tainty in GMRIO analysis, we use the classification by Hui-
jbregts (1998), who focuses on uncertainty and variability in
the related discipline of life cycle assessment (LCA). Dis-
tinguishing variability from uncertainty, Huijbregts (1998)
defines the former as “stemming from inherent variations in
the real world”, while the latter is defined as coming “from
inaccurate measurements, lack of data, model assumptions,
etc.”. Variability, as defined by Huijbregts (1998), is some-
times also referred to as aleatoric uncertainty, while their
understanding of uncertainty is often referred to as epis-
temic uncertainty (see e.g. Sullivan, 2015). Huijbregts (1998)
further divide (epistemic) uncertainty into parameter uncer-
tainty, model or scenario uncertainty and uncertainty due to
choices as well as variability (aleatoric uncertainty) into spa-
tial variability, temporal variability and variability between
objects or sources (Table B1).

Table B1. Different types of uncertainty and variability according to Huijbregts (1998). GMRIO examples are based on our own elaboration.

Type of uncertainty/variability Description Example from the GMRIO context

Parameter uncertainty Uncertainty in the outcome caused by
uncertainty of input parameters

Uncertainty in economic transactions from
sector A to sector B

Model or scenario uncertainty Uncertainty due to (fixed) characteristics of
the model structure

Assumption that impacts scale linearly

Uncertainty due to choices Uncertainty due to choices that inevitably
have to be made in compiling GMRIO
databases and using them to calculate
environmental impacts

Sectoral or regional resolution

Spatial variability Variability across locations Variability of transport inputs between
companies within a sector in a country due
to geographic heterogeneity

Temporal variability Variability in time Variability of heating inputs between the
production of a sector’s good at different
points in the year

Variability between objects and sources Inherent differences in inputs and emissions
within a sector in a country

Variability of input structure between
companies within a sector in a country due
to the use of different technologies
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Appendix C: EXIOBASE regions

Table C1. EXIOBASE V3 countries or regions and raw data sources (EDGAR or UNFCCC inventories). The column “Country code” shows
ISO 3166-1 alpha-2 codes, except for the five Rest of the World (RoW) regions.

Country code Name Database Country code Name Database

AT Austria UNFCCC SI Slovenia UNFCCC
BE Belgium UNFCCC SK Slovakia UNFCCC
BG Bulgaria UNFCCC GB United Kingdom UNFCCC
CY Cyprus EDGAR US United States EDGAR
CZ Czech Republic UNFCCC JP Japan EDGAR
DE Germany UNFCCC CN China EDGAR
DK Denmark EDGAR CA Canada UNFCCC
EE Estonia UNFCCC KR South Korea EDGAR
ES Spain UNFCCC BR Brazil EDGAR
FI Finland UNFCCC IN India EDGAR
FR France EDGAR MX Mexico EDGAR
GR Greece UNFCCC RU Russia EDGAR
HR Croatia EDGAR AU Australia UNFCCC
HU Hungary UNFCCC CH Switzerland UNFCCC
IE Ireland UNFCCC TR Turkey UNFCCC
IT Italy UNFCCC TW Taiwan EDGAR
LT Lithuania UNFCCC NO Norway EDGAR
LU Luxembourg EDGAR ID Indonesia EDGAR
LV Latvia UNFCCC ZA South Africa EDGAR
MT Malta UNFCCC WA RoW Asia and Pacific EDGAR
NL Netherlands UNFCCC WL RoW America EDGAR
PL Poland UNFCCC WE RoW Europe EDGAR
PT Portugal UNFCCC WF RoW Africa EDGAR
RO Romania UNFCCC WM RoW Middle East EDGAR
SE Sweden UNFCCC
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Appendix D: Methods

D1 International navigation and fishing

To estimate the bridging items for international water trans-
port and fishing activities, we use data from Selin et al.
(2021), who analysed the allocation of CO2 emissions from
international shipping to national carbon budgets for the year
2015 using spatially resolved data on ship movements and
ship-specific data on engine power demand, activity time and
emission factor. The authors compared different allocation
options: allocation based on flag country, owner country, op-
erator country, manager country or bunker fuel country.

To be consistent with the SEEA, we use the allocation
based on the operator country since the operator country is
where the economic transactions related to the shipping ac-
tivities are listed in the national accounts (as compared to the
flag country, which is only responsible for ensuring that a
ship meets all relevant legal standards).

To ensure consistency with global international shipping
emissions from EDGAR, we do not directly take the bottom-
up total emission estimates from Selin et al. (2021). Instead,
we take the results from Selin et al. (2021) and calculate
country-specific use shares by dividing individual countries’
shipping CO2 emissions through the sum of all shipping
CO2 emissions. Those use shares (which sum to 1) are mul-
tiplied by the total global international shipping emissions
from EDGAR. Formally expressed, the emissions of GHG g

from international shipping for country r are

Er,g =
E

Selin et al. (2021)
r,CO2∑R

i=1E
Selin et al. (2021)
i,CO2

·EEDGAR
global,g , (D1)

whereESelin et al. (2021)
r,CO2

are all CO2 emissions caused by ships
of which the operator is an institutional unit of country r
and which serve international shipping or fishing purposes.
EEDGAR

global,g are the global CO2/CH4/N2O emissions related to
international shipping from EDGAR.

Since Selin et al. (2021) only cover CO2 emissions, we
use the CO2-related use shares for CH4 and N2O, too, thus
making the implicit assumption that the ship-specific emis-
sion factors for CH4 and N2O are directly proportional to the
CO2 emission factors.

D2 International air and road transport

Unfortunately, for international air and road transport, to the
best of our knowledge, there exists no study of a similar
scope and level of detail to the work of Selin et al. (2021)
for international shipping. That is why, for both international
air and road transport, we use the country-specific bridging
items provided by Eurostat (Eurostat, 2022).

In the case of international road transport, we follow
Stadler et al. (2018) and consider the EU countries to be by
far the most affected by the residence adjustment of interna-
tional road transport due to the European geography and its

economic size (many countries in a relatively small area with
a lot of cross-border commercial and recreational road trans-
port). Non-European regions represented in EXIOBASE are
“either islands or countries with limited road access in rela-
tion to their size (e.g. China, India)” (Stadler et al., 2018).
Thus we assume that, for those countries, the road transport
emissions from non-resident units operating on the country’s
national territory and the emissions from resident units op-
erating abroad are the same. In other words, we assume the
bridging items related to international road transport for non-
EU countries to be 0. However, in contrast to international
air and water transport, we have no knowledge about the to-
tal (global or European) emissions from international road
transport, as they are not reported separately as memo items
but as part of the road transport sector emissions (CRF cate-
gory 1.A.3.b) within each country. That is why – instead of
calculating use shares as we do for water transport – we di-
rectly take the total bridging items from Eurostat (Eurostat,
2022) and add or subtract those from the respective EU coun-
try’s national road transport emissions.

In the case of international air transport, however, non-EU
countries constitute a major, definitely non-negligible share
of global international air transport emissions. Thus, we cal-
culate country-specific use shares separately for EU coun-
tries (using Eurostat’s bridging data) and non-EU countries.
For the latter we use Worldbank data on the country-specific
numbers of domestic and international air passengers carried
by air carriers registered in the country as a proxy (World-
bank, 2023).

EU-country use shares we calculate as follows:

αAIR,EU
r,g =

E
AIR,Eurostat
r,g

E
AIR,EDGAR
g

. (D2)

Non-EU-country use shares we calculate as follows:

αAIR,nonEU
r,g =

pWorldbank
r∑

i∈Rp
Worldbank
i

·

(
1−

EEurostat
EU

EEDGAR
global

)
. (D3)

D3 Special case: road transport

In the first step, we use Eurostat’s PEFA data covering fuel-
specific energy usage by NACE rev2 industries and house-
holds for all EU28 countries plus Iceland and Norway (Eu-
rostat, 2023). We first calculate emissions from the use of
“motor spirit” and “transport diesel” by industry sector or
household s using the default fuel and GHG-specific emis-
sion factors EFdiesel/gasoline

g from IPCC (2006):

EPEFA
r,s,g = ADdiesel

r,s ·EFdiesel
g +ADgasoline

r,s ·EFgasoline
g , (D4)

where EPEFA
r,s,g are the emissions from road transport using

PEFA data and ADdiesel/gasoline
r,s is the energy use from diesel

or gasoline by both country r and sector s.
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By summing emissions from both fuel types, we get to-
tal emissions by industry sector or household. To be consis-
tent with UNFCCC and EDGAR inventories, we calculate
industry- or household-specific use shares for each country,

αROAD
r,sNACE,g

=
EPEFA
r,s∑
s∈SEr,s

[ac], (D5)

and multiply those by the country-specific total emis-
sions from road transport (1.A.3.b) from the UNFCCC and
EDGAR:

EROAD
r,sNACE,g

= αROAD
r,sNACE,g

·E1.A.3.b
r,g . (D6)

Next, we allocate emissions from NACErev2 sectors to
EXIOBASE sectors analogously using employment data as
a proxy.

For countries not covered by Eurostat’s PEFA (all non-
EU countries except Norway and Iceland), we first split the
country-specific total road transport emissions into house-
hold and industry emissions by using the weighted average
household–industry split of all countries covered by PEFAs,
with the total emissions from road transport as weights. We
then further disaggregate the industry part using the employ-
ment data (see above).

In the case of countries not covered by Eurostat’s PEFAs
(all non-EU countries excluding Norway and Iceland), our
approach involves initially splitting the total road transport
emissions into household and industry emissions. To achieve
this, we employ a weighted average household–industry split
derived from all the countries covered by PEFAs, utilising
the country-specific total emissions from road transport as
the weighting factor. Subsequently, we proceed to disaggre-
gate the industry portion by utilising employment data, as
mentioned earlier.

Appendix E: Additional results

E1 Fitting power law regressions to the raw data
uncertainties

To examine how the “law of large numbers” which was used
in the literature (Lenzen et al., 2010; Karstensen et al., 2015;
Zhang et al., 2019) performs for the uncertainty data from
UNFCCC and EDGAR, we fit power law regressions, both
pooled and by country. The regressions have the form y =

axb, where y is the CV and x is the size of an emission source
(in terms of emissions).

From that exercise we see that, for CO2 and partly for
CH4, there is a negative relation between the CV (coefficient
of variation) and the size (in terms of emissions) of an emis-
sion source. This can be seen in the mostly negative slopes
of the regression lines in Fig. E1a and the mostly negative
values for the fitted parameters b (plot c). For N2O there is a
large variability in the effect direction between the different
countries with both negative and positive effects.

In general, R2s of the by-country regressions are larger
for EDGAR than for the UNFCCC data. We assume that this
results from the different level of aggregation of both data
sources, which results in a larger variability in CVs for UN-
FCCC data due to their higher level of detail.

Furthermore, using pooled regression mostly delivers a
worse fit (lower R2) than the by-country regressions. More-
over, we observe a large variability in the regression results
between different countries, both in the direction of the rela-
tion between CV and size (plot c) and the R2 (plot b).

E2 Comparing our estimates to other databases

Figure E2 shows the comparison of the 95 % CIs of our GHG
emission accounts with the estimates from EXIOBASE and
the OECD.

E3 Decomposing the uncertainty by source sector

Compiling GHG emission accounts from UNFCCC and
EDGAR emission inventories involves allocating each emis-
sion source reported in the inventories to EXIOBASE tar-
get sectors and countries (see Sect. 2.1). Both UNFCCC and
EDGAR report their emissions in CRF format.

Here, we aggregate all allocations by CRF category at a
common level (depicting the emission source) and at the EX-
IOBASE region level (depicting the emission destination) to
analyse which source categories contribute most to overall
uncertainty by country. Figure E3 illustrates the absolute un-
certainty by CRF category and country using bubble charts.
The size of each bubble is adjusted according to the share
of the standard deviation (SD) of the respective IPCC cate-
gory in the sum of all SDs for each country. While interpret-
ing the actual numbers, caution is advised since summing all
SDs may not yield a meaningful calculation. Nevertheless,
the visualisation remains helpful in identifying “hotspots” of
uncertainty sources.

Regarding CO2 emissions, most countries exhibit the
largest SD in the allocations of international air and wa-
ter emissions. Additionally, road transportation (1.A.3) and
other energy sources (1.A.4) also contribute significantly to
the overall uncertainty in some countries. For CH4 emis-
sions, the greatest uncertainty arises from agriculture (3)
and waste (5), with varying compositions depending on each
country. Fugitive emissions (1.B) are generally less pro-
nounced but still constitute a major source in some countries.
Notably, for a few countries like Malta, Cyprus, Denmark or
Luxembourg, CH4 emissions from international water trans-
port emerge as a significant source of uncertainty.

Concerning N2O emissions, emissions from agriculture
(3) account for the largest uncertainty in almost all countries.
However, for a few countries like Spain, Taiwan, Cyprus or
Malta, emissions from waste treatment (5) and international
shipping (0.B) also play a considerable role.
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Figure E1. Fitting power law regressions to the raw data uncertainties from the UNFCCC NIRs and EDGAR. The regressions have the
form y = axb, where y is the CV and x is the size of an emission source (hence following Lenzen et al., 2010; Karstensen et al., 2015). The
parameters a and b are fitted, either pooled (i.e. all data points together, red) or country-wise (i.e. a separate regression for each country,
blue–green–yellow colour scale). (a) The data points along with the fitted regression lines. The black line shows the fit from Lenzen et al.
(2010) (y = 0.486x−0.212). (b) The distribution of the R2s of each of the regressions shown in panel (a). (c) The distribution of the fitted bs
of each of the regressions shown in panel (a). A positive fitted b means a positive relation between CV and emission size and vice versa.

E4 Uncertainty at the sectoral level

Figure E4a, c and e show the uncertainty in GHG emis-
sion accounts next to the uncertainty of the GHG footprints
(Fig. E4b, d and f). To allow comparison between the two,
the measure of uncertainty is reduced to one number, the
CV (y axis, orange line). Each coloured stripe represents one
sector with the width and colour adjusted to the mean share
in total emissions. In the case of GHG emission accounts,
the mean share refers to the (total) production-based emis-
sions of that sector, while in the case of the GHG footprints
the mean share refers to the consumption-based emissions to
satisfy the global final demand of that sector’s product. The
stripes are sorted along the x axis by their CV. The boxplots
show the (unweighted) distributions of the CVs of the indi-
vidual sectors.

Focusing on the uncertainty in GHG emission accounts
(Fig. E4a, c and e), we see that the distributions of the CVs
of the sectors look very similar between the three GHGs
(Fig. E4 for boxplots, Table 2 for values). However, in the
case of CO2, large uncertainties mostly occur with sectors
with a relatively low share in total emissions, while sec-
tors with relatively high CO2 emissions show in general a
lower uncertainty. This can be seen in the distribution of the
width and colours along the y axis in Fig. E4, where CO2
sectors with high emissions (large stretch along the x axis,
yellow to green colour) are generally more situated towards
the right (lower CV), while sectors with low CO2 emissions
(small stretch along the x axis, blue colour to purple) are
more present towards the left (high CV). For CH4 and N2O
there is no clear trend between a sector’s CV and its size in
terms of emissions. Thus, high-emitting sectors (wide, yel-
low boxes) and low-emitting sectors (narrow, blue boxes) are
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Figure E2. Comparison of the 95 % CIs of our GHG emission accounts with the estimates from EXIOBASE and the OECD. (a) At the
country level. (b) At the sector level. Comparison is made according to both the share of countries and sectors and the share of emissions
those countries and sectors generate. Note that, due to the OECD’s broad sector resolution, a direct comparison with our emission accounts
at the sector level is not possible. In the case of comparison with the OECD estimate, 100 % refers to all countries and regions, which are
covered in both our analysis and the OECD.

much more evenly distributed along the y axis. This finding
aligns well with what we saw in Fig. 7, i.e. that uncertainties
in CH4 and N2O emissions are much more homogeneously
distributed between sectors than in the case of CO2. We see
that, for CO2, 37 % of all emissions stem from sectors with a
CV of less than 0.1 (dashed line) and 85 % from sectors with
a CV of less than 0.5 (dotted line), while for CH4 it is only
7 % (CV< 0.1) and 80 % (CV< 0.5) and for N2O only 2 %
(CV< 0.1) and 41 % (CV< 0.5).
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Table E1. Industry sectors for which our sample means are considerably (i.e. for more than 75 % of all the regions) ABOVE the official
EXIOBASE V3.8.2 estimate. Numerical values depict the median and 25 % and 75 % quantiles, respectively, of the sector-wise relative
differences between our sample mean and the official EXIOBASE V3.8.2 estimate. A median of 19, for example, means that the median
relative difference for that of a specific industry sector among all 49 regions is a factor of 19 compared to the official EXIOBASE estimates.
CO2 only.

Industry name Industry code Median Q0.25 Q0.75

Re-processing of secondary precious metals into new precious metals i27.41.w 33.03 2.88 20 841.48
Production of electricity by nuclear i40.11.c 31.76 0.83 433.56
Other land transport i60.2 18.97 2.23 914.90
Cultivation of crops n.e.c. i01.h 7.15 0.97 22.42
Manufacture of rubber and plastic products (25) i25 4.48 0.85 13.54
Processing vegetable oils and fats i15.e 4.08 0.22 15.46
Manufacture of machinery and equipment n.e.c. (29) i29 3.26 1.28 7.13
Biogasification of food waste, including land application i90.2.a 3.25 0.33 8.68
Wholesale trade and commission trade, except of motor vehicles and motorcycles (. . . i51 2.75 1.04 6.91
Construction (45) i45 2.57 0.78 6.14
Biogasification of sewage sludge, including land application i90.2.c 2.57 1.13 7.04
Retail trade, except of motor vehicles and motorcycles; repair of personal and h. . . i52 2.53 0.48 6.48
Sale, maintenance, repair of motor vehicles, motor vehicle parts, motorcycles, . . . i50.a 2.07 0.44 7.21
Other service activities (93) i93 1.94 0.73 6.33
Other business activities (74) i74 1.83 0.66 4.08
Poultry farming i01.k 1.12 0.33 3.82
Forestry, logging and related service activities (02) i02 0.94 0.24 6.01
Production of electricity by petroleum and other oil derivatives i40.11.f 0.81 0.06 6.75

Table E2. Industry sectors for which our sample means are considerably (i.e. for more than 75 % of all the regions) BELOW the official
EXIOBASE V3.8.2 estimate. Numerical values depict the median and 25 % and 75 % quantiles, respectively, of the sector-wise relative
differences between our sample mean and the official EXIOBASE V3.8.2 estimate. A median of −0.9, for example, means that the median
relative difference for that of a specific industry sector among all 49 regions is a factor of−0.9 compared to the official EXIOBASE estimates.
CO2 only.

Industry name Industry code Median Q0.25 Q0.75

Production of electricity by tide, wave or ocean i40.11.j −1.00 −1.00 −0.79
Production of electricity by solar thermal i40.11.i −1.00 −1.00 −0.99
Re-processing of ash into clinker i26.d.w −1.00 −1.00 −1.00
Casting of metals i27.5 −0.98 −0.99 −0.93
Production of electricity by solar photovoltaic i40.11.h −0.98 −1.00 −0.65
Retail sale of automotive fuel i50.b −0.96 −0.99 −0.79
Re-processing of secondary glass into new glass i26.a.w −0.94 −0.98 −0.89
Manufacture of gas; distribution of gaseous fuels through mains i40.2 −0.89 −0.98 −0.38
Mining of aluminium ores and concentrates i13.20.13 −0.89 −0.98 −0.17
Inland water transport i61.2 −0.86 −0.97 −0.66
Mining of iron ores i13.1 −0.86 −1.00 −0.27
Extraction of natural gas and services related to natural gas extraction, excluding . . . i11.b −0.85 −0.96 −0.45
Manufacture of other non-metallic mineral products n.e.c. i26.e −0.54 −0.77 −0.09
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Figure E3. Breakdown of the uncertainty by CRF category and country using bubble charts. The size of each bubble is adjusted according
to the share of the standard deviation (SD) of the respective IPCC category in the sum of all SDs for each country.
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Figure E4. The relative standard error (CVs) of the GHG emission accounts (a, c, e) and GHG footprints (b, d, f) at the sectoral level
(coefficients) (orange line, y axis) by the cumulative share of the total emissions (x axis). Each coloured stripe represents one sector, with
the width and colour adjusted to the mean share of the total emissions. The sectors are sorted along the x axis by their CV from high to low.
The width and colour of the stripes are adjusted to the mean share of the total emissions. To ease interpretation, the dotted line marks a CV
of 0.1 and the dashed line a CV of 0.5. The boxplots show the (unweighted) distributions of the CVs of the individual sectors.
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