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Abstract. Accurate long-term daily cloud-gap-filled fractional snow cover products are essential for climate
change and snow hydrological studies in the Asian Water Tower (AWT) region, but existing Moderate Reso-
lution Imaging Spectroradiometer (MODIS) snow cover products are not sufficient. In this study, the multiple-
endmember spectral mixture analysis algorithm based on automatic endmember extraction (MESMA-AGE) and
the multistep spatiotemporal interpolation algorithm (MSTI) are used to produce the MODIS daily cloud-gap-
filled fractional snow cover product over the AWT region (AWT MODIS FSC). The AWT MODIS FSC products
have a spatial resolution of 0.005° and span from 2000 to 2022. The 2745 scenes of Landsat-8 images are used
for the areal-scale accuracy assessment. The fractional snow cover accuracy metrics, including the coefficient
of determination (R2), root mean squared error (RMSE) and mean absolute error (MAE), are 0.80, 0.16 and
0.10, respectively. The binarized identification accuracy metrics, including overall accuracy (OA), producer’s
accuracy (PA) and user’s accuracy (UA), are 95.17 %, 97.34 % and 97.59 %, respectively. Snow depth data ob-
served at 175 meteorological stations are used to evaluate accuracy at the point scale, yielding the following
accuracy metrics: an OA of 93.26 %, a PA of 84.41 %, a UA of 82.14 % and a Cohen kappa (CK) value of
0.79. Snow depth observations from meteorological stations are also used to assess the fractional snow cover
resulting from different weather conditions, with an OA of 95.36 % (88.96 %), a PA of 87.75 % (82.26 %), a
UA of 86.86 % (78.86 %) and a CK of 0.84 (0.72) under the MODIS clear-sky observations (spatiotemporal
reconstruction based on the MSTI algorithm). The AWT MODIS FSC product can provide quantitative spatial
distribution information on snowpacks for mountain hydrological models, land surface models and numerical
weather prediction in the Asian Water Tower region. This dataset is freely available from the National Tibetan
Plateau Data Center at https://doi.org/10.11888/Cryos.tpdc.272503 (Jiang et al., 2022) or from the Zenodo plat-
form at https://doi.org/10.5281/zenodo.10005826 (Jiang et al., 2023a).
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1 Introduction

Snow cover has the characteristics of high albedo, low emis-
sivity and strong water-holding energy (Yang et al., 2014;
Wang et al., 2022; Pan et al., 2023; Wang et al., 2023). The
extent and variability of snow cover have profound implica-
tions for global and regional water and energy cycles (El-
guindi et al., 2005; Senan et al., 2016) and climate change
(Barnett et al., 2005; Li et al., 2018). The Asian Water Tower
region centered on the Tibetan Plateau is the region with the
largest snow accumulation outside the North Pole and South
Pole (Immerzeel et al., 2020). In recent years, this region
has been in a state of imbalance, which is mainly reflected
in the massive conversion of snow (one of the two forms of
solid water) into liquid water (Yao et al., 2022). Furthermore,
since 2008, the snow cover in the Asian Water Tower re-
gion has surpassed the tipping point and has become unstable
(Liu et al., 2023), which has a strong and stable relationship
with the changes in the Amazon rainforest ecosystem. There-
fore, it is important to produce long-term series and high-
spatiotemporal-resolution cloud-gap-filled fractional snow
cover datasets in the Asian Water Tower region.

Remote sensing technology has become an essential tool
for monitoring snow cover globally. Polar orbit satellites
such as NOAA/AVHRR, the Terra and Aqua Moderate Res-
olution Imaging Spectroradiometer (MODIS), Landsat and
Sentinel-2, which are often used to monitor snow cover, have
spatial resolutions ranging from meters to kilometers. To-
ward the requirement of daily, large-scale and long-term se-
ries of fractional snow cover monitoring, only moderate- to
coarse-resolution sensors such as AVHRR and MODIS are
currently available. However, multispectral images at mod-
erate and coarse spatial resolution have mixed pixels near
the snow line, the edge zone of snow patches and the forest
area covered by snow (Painter et al., 2009; Pan et al., 2022;
Wang et al., 2022). The classification of snow and non-snow
alone will lead to significant overestimation or underestima-
tion. Classification errors will be further transferred to sub-
sequent applications in various fields (Wang et al., 2013; Ni-
ittynen et al., 2020; Notarnicola, 2020). The existing optical
remote sensing snow cover mapping methods mainly include
the reflectivity linear interpolation method (Metsämäki et al.,
2012; Metsamaki et al., 2005; Wang et al., 2017), snow index
empirical relationship method (Hall et al., 1995; Salomonson
and Appel, 2004; Wang et al., 2021; Salomonson and Ap-
pel, 2006; Wang et al., 2020), machine learning method (Do-
breva and Klein, 2011; Czyzowska-Wisniewski et al., 2015;
Kuter, 2021; Xiao et al., 2022) and spectral mixture anal-
ysis method (Painter et al., 2003, 2009; Bair et al., 2021).
The accuracy of the first three methods depends on the train-
ing data, and the methods need to be retrained when used
in different regions and on different dates. The MEAMA-
AGE algorithm is a kind of automatic extraction of pure
snow and non-snow endmembers based on the single-band
reflectance of MODIS multispectral images and the normal-

ized differential snow index (NDSI), normalized differential
vegetation index (NDVI) and normalized differential water
index (NDWI), and then the fractional snow cover is re-
trieved by the MESMA-AGE algorithm (Shi, 2012; Zhu and
Shi, 2018). This algorithm can ensure the representativeness
of the endmember, improve the computational efficiency and
effectively adapt to the characteristics of strong topographic
heterogeneity and thin and broken snow, with better accuracy
and robustness than other algorithms (Hao et al., 2019; Pan
et al., 2022).

Terra and Aqua MODIS provides two daily daytime ob-
servations, but the MODIS annual average cloud cover in
the Asian Water Tower region is approximately 50 % (Wang
et al., 2019; Huang et al., 2022a). Snow cover observations
can be obscured by clouds, resulting in many data gaps in
daily snow cover products, which greatly limits the applica-
tion of daily snow cover products. To improve the spatiotem-
poral continuity of snow cover products, researchers have
proposed various spatiotemporal reconstruction algorithms,
such as temporal methods (Dozier et al., 2008; Tang et al.,
2017; Tran et al., 2019), spatial methods (López-Burgos et
al., 2013; Shea et al., 2013; Hou et al., 2019), spatiotemporal
methods (Li et al., 2017; Huang et al., 2018; Li et al., 2020;
Xing et al., 2022) and multisource data fusion methods (Yang
et al., 2014; Yu et al., 2016; Dai et al., 2017). Most existing
algorithms were developed for binary snow cover products,
and although they have good accuracy, they are difficult to
apply to continuous values such as fractional snow cover.
The multistep grouping algorithm used in this study is an
improved spatiotemporal method that combines spatial and
temporal methods through multistep implementations (Para-
jka and BlöSchl, 2008; Gafurov and Bárdossy, 2009; López-
Burgos et al., 2013). These simple multistep combinations
have been shown to be effective and efficient in cloud re-
moval and agree very well with in situ observations (Paudel
and Andersen, 2011).

Currently, there are various snow cover datasets for the
Asian Water Tower region, such as the Interactive Multi-
sensor Snow and Ice Mapping System (IMS) (Mazari et
al., 2013), MODIS/Terra Snow Cover Daily L3 Global
500 m SIN Grid product (MOD10A1/MOD10A1F) (Hall
and Riggs, 2016), MODIS Snow-Covered Area and Grain
size product (MODSCAG) (Painter et al., 2009), Japan
Aerospace Exploration Agency (JAXA) long-term snow
cover extent dataset (JASMES) (Hori et al., 2017), North-
west Institute of Eco-Environment and Resources (NIEER),
Chinese Academy of Sciences AVHRR/MODIS snow cover
extent product (NIEER AVHRR/MODIS SCE) (Hao et al.,
2021, 2022), Tibetan Plateau long-term daily gap-free snow
cover product based on the Hidden Markov Random Field
model (HMRFS-TP) (Huang et al., 2022a), the European
Space Agency (ESA) Snow Climate Change Initiative (Snow
CCI: MODIS (Nagler et al., 2022) and AVHRR (Naegeli
et al., 2022. The IMS, JASMES and NIEER AVHRR SCE
products are binary products and have relatively coarse reso-
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lutions. The NIEER AVHRR/MODIS SCE and HMRFS-TP
products are binary, and their range cannot fully cover the
Asian Water Tower area. The MODSCAG product has bet-
ter accuracy, but it is not freely available. The MOD10A1
product is the most widely used, but it has data gaps, and the
linear relationship between the NDSI and FSC is not always
valid. The MOD10A1F product is based on the MOD10A1
product, which only replaces cloud gaps with the previous
most-recent clear-sky observation, resulting in limited prod-
uct accuracy (Hao et al., 2022; Stillinger et al., 2023). Com-
pared to MODSCAG and MOD10A1, the AWT MODIS
FSC product has overall better accuracy in the AWT re-
gion (Hao et al., 2019). Although Snow CCI is a fractional
snow cover product, the key parameter for retrieving canopy
transmittance is calculated using static forest data from the
early 2000s, which makes it difficult to capture the dy-
namic changes in snow cover in forest areas, and it has data
gaps. Therefore, there is an urgent need for a high-precision,
high-spatiotemporal-resolution and long-term-series cloud-
gap-filled fractional snow cover dataset to meet the growing
demand for snow monitoring in the Asian Water Tower re-
gion.

This study used the MESMA-AGE algorithm and the
MSTI algorithm to produce a MODIS long-term-series daily
fractional snow cover dataset for the Asian Water Tower
region from 2000 to 2022. This work is organized as fol-
lows: first, the study area and datasets are presented. Then,
the MESMA-AGE algorithm framework, the MSTI algo-
rithm framework and the data processing process are intro-
duced. The two algorithms are used to produce a daily cloud-
gap-filled fractional snow cover dataset for the Asian Water
Tower region. Finally, the accuracy of this product is evalu-
ated using high-spatial-resolution Landsat-8 images and me-
teorological station snow depth data from the China Meteo-
rological Administration (CMA).

2 Study area and data

2.1 Study area

The Asian Water Tower region consists mainly of the Pamir
Plateau, Xinjiang and the Qinghai–Tibet Plateau in China
(Fig. 1). The latitude and longitude ranges are 24–54° N and
60–106° E, respectively, with an average elevation of over
4000 m. The Asian Water Tower region is the birthplace of
more than 10 major rivers in Asia, sustaining nearly 2 bil-
lion people in its vicinity (Immerzeel et al., 2020; Li et al.,
2022). In the Asian Water Tower region, the monthly aver-
age snowmelt runoff ratio is greater than 30 % in more than
half of the months, far exceeding the surrounding area (Yang
et al., 2022). Over the past 50 years, the temperature in the
Asian Water Tower region has increased by an average of
0.3 to 0.4 °C per 10 years, which is twice the global aver-
age rate (Barnett et al., 2005; Kraaijenbrink et al., 2017).
As one of the most important climate response factors (Liu

Figure 1. DEM (a) and land cover (b) maps of the AWT with the
positions of the MODIS tiles, Landsat scenes and CMA stations
used in the validation.

and Chen, 2000; Immerzeel et al., 2010), the distribution and
change in snow cover are of great importance for the study
of climatic and ecological changes across the region. Mean-
while, fractional snow cover data are important input for the
Snowmelt Runoff Model (SRM) (Martinec, 1975) and can
also be used for snow water equivalent reconstruction and
optimization (Rittger et al., 2016). Therefore, a set of high-
precision fractional snow cover products is necessary for hy-
drological simulation and hydrological applications in the
Asian Water Tower region.

2.2 MODIS surface reflectance data

This study used MODIS surface reflectance products
MOD09GA and MYD09GA in Collection 6 spanning from
2000 to 2022. These surface reflectance products have two
data layers. The 500 m reflectance data layer provides re-
flectance, quality assessment level, observation area, obser-
vation number and 250 m scan information for bands 1–7.
The 1 km geographic information data layer provides addi-
tional information, such as observation times, quality assess-
ment levels, sensor azimuth zenith angles, solar azimuth al-
titude angles and orbit pointers. In addition, it also includes
metadata information of the file (production information, ge-
ographical scope, etc.). The characteristics of MODIS solar
reflective bands are shown in Table 1. The cloud information
used in this study was obtained from the “state_1km” layer,
which includes “cloud state” not being a clear and “cirrus de-
tected” being a high. Moreover, 12 MODIS tiles (“h23v03”,
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Table 1. MODIS spectral characteristics.

Band Spectral Central Spatial
name range wavelength resolution

(µm) (µm) (m)

band1 0.62–0.67 0.645 500
band2 0.841–0.876 0.858 500
band3 0.459–0.479 0.469 500
band4 0.545–0.565 0.555 500
band5 1.23–1.25 1.24 500
band6 1.628–1.652 1.64 500
band7 2.105–2.155 2.13 500

“h23v04”, “h23v05”, “h24v04”, “h24v05”, “h24v06”,
“h25v04”, “h25v05”, “h25v06”, “h26v05”, “h26v06” and
“h27v06”) with sinusoidal projection were used in this study,
as shown in Fig. 1a.

2.3 Landsat-8 images

This study used the Google Earth Engine (GEE) cloud plat-
form to select a total of 2745 scenes of Landsat-8 images
from 2013 to 2021 that met the cloud coverage ratio of less
than 10 % and the snow coverage ratio of more than 30 % as
“ground truth” to validate our fractional snow cover product.
Landsat-5 Thematic Mapper (TM) has obvious attenuation
since 2000, and the Landsat-7 Enhanced Thematic Mapper
Plus (ETM+) sensor has been affected by striping in 25 % of
the image area due to scanner failure since June 2003. There-
fore, this study mainly focused on Landsat-8 images to eval-
uate the accuracy of the AWT MODIS FSC dataset. To better
evaluate the MESMA-AGE algorithm and the AWT MODIS
FSC product, this study also applied the MESMA-AGE algo-
rithm to retrieve Landsat-8 fractional snow cover, which has
been demonstrated to have good accuracy on Landsat-8 using
higher-resolution Gaofen-2 imagery with an OA of 94.46 %
and an RMSE of 0.094 (Hao et al., 2019). The Landsat-
8 fractional snow cover results at 30 m were resampled to
the resolution of the AWT MODIS FSC product (0.005°)
through aggregation and averaging. Subsequently, the Land-
sat fractional snow cover results at 0.005° resolution were
used to assess the accuracy of the MODIS clear-sky retrieval
results in the AWT MODIS FSC product.

2.4 Ground snow depth measurements

As Landsat images can only assess accuracy under a clear
sky, this study chose to use snow depth data from meteoro-
logical stations to support the validation of the accuracy of
the spatiotemporal reconstruction results under cloud cover.
This study used a total of 175 in situ stations provided by
the China Meteorological Administration in the Asian Water
Tower region from 26 February 2000 to 30 April 2019, as
shown in Fig. 1b. Figure 1b shows that the in situ stations are

more evenly distributed in the southeast of the Qinghai–Tibet
Plateau, Tianshan Mountains and Altay Mountains, where
seasonal snow is prevalent. Snow depth data are measured
in an open field at 08:00 UTC/GMT + 8 (Beijing time). us-
ing a professional meter ruler. If the fractional snow cover is
greater than 50 % and the snow depth is greater than 1 cm,
it is considered snow and recorded. The geographical co-
ordinates, time of observation and snow pressure are also
recorded. Snow depth data can only be used to evaluate bina-
rized snow products, whereas the AWT MODIS FSC prod-
ucts are binarized by re-classifying the image pixels with
small fractional snow cover as no snow, and smaller snow
depths tend to have greater uncertainty (Ault et al., 2006; Ke
et al., 2016; Zhang et al., 2019; Wang et al., 2022). There-
fore, this study refers to previous studies to binarize the snow
depth data with a threshold of 3 cm in the AWT region (Yang
et al., 2015; Zhang et al., 2019; Huang et al., 2022a, b); i.e.,
snow depths less than 3 cm are classified as no snow and
those greater than 3 cm are classified as snow. To further il-
lustrate the accuracy of snow identification, this study ex-
cluded stations with snow depths greater than 1 cm but snow
cover days less than 20 (Zhang et al., 2020; Hao et al., 2021).

2.5 Auxiliary data

To better evaluate the accuracy of the MESMA-AGE al-
gorithm and the AWT MODIS FSC product, auxiliary in-
formation, such as elevation and the land cover type of
the Asian Water Tower region, was used. The GEE cloud
platform provided the MCD12Q1 V6.1 annual International
Geosphere-Biosphere Programme (IGBP) classification data
(Sulla-Menashe et al., 2019). The surface types were further
divided into four categories: bare land, grassland, forest and
plateau mountain. The GEE cloud platform was utilized to
obtain Shuttle Radar Topography Mission (STRM) digital el-
evation model (DEM) data. The DEM data were then resam-
pled from 90 m to the 0.005° resolution of the AWT MODIS
FSC product (Reuter et al., 2007).

3 Methodology

Figure 2 shows the flowchart of the AWT MODIS FSC
production. According to the accuracy evaluation of the
MOD10A1, MODSCAG and MODAGE fractional snow
cover products in the Qinghai–Tibet Plateau region, the
MODAGE product had the highest accuracy (Hao et al.,
2019). Therefore, the MODAGE fractional snow cover re-
trieval algorithm (MESMA-AGE algorithm) was selected for
the fractional snow cover retrieval of Terra and Aqua MODIS
surface reflectance version 6 data in the Asian Water Tower
region. Second, based on the Terra/MODIS fractional snow
cover retrieval results, the Aqua/MODIS fractional snow
cover retrieval results were used to fill in data gaps due to
clouds and missing observations (Li et al., 2014). Third, the
Geospatial Data Abstraction Library (GDAL) was used to re-
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project and mosaic the fractional snow cover retrieval results
of 12 MODIS tiles (Rouault et al., 2024). Fourth, the MSTI
algorithm was developed to perform spatiotemporal interpo-
lation on pixels with cloud cover or missing data, enabling
the generation of a daily cloud-gap-filled fractional snow
cover product. Finally, accuracy evaluation and algorithm
optimization of the MESMA-AGE algorithm and the AWT
MODIS FSC product were performed using snow depth data
from meteorological stations and Landsat-8 imagery.

3.1 MESMA-AGE algorithm

When a pixel contains information from multiple surface
types, it is called a mixed pixel, whereas a pixel containing
only one type of ground object can be called an endmember
of that surface type. The algorithm for unmixing mixed pix-
els is mainly based on the linear combination of the spectral
information of the endmember (Roberts et al., 1998). To ana-
lyze the spectral information combination of a pixel, a linear
spectral mixing analysis model can be used, which assumes
that different endmember energies only undergo single scat-
tering mixing and that there is no nonlinear mixing process
(Painter et al., 2003). The linear spectral mixing analysis ex-
pression and constraints can be expressed as Eqs. (1)–(3).

Rλ =

N∑
i=1

FiRi,λ+ ελ (1)

N∑
i=1

Fi = 1 (2)

Fi ≥ 0 (3)

Painter et al. (2003) established an endmember spectral
library by collecting spectra of various types of vegetation,
rocks, soils and lake ice from the field and lab and opti-
mized the endmember metadata of the snow cover of dif-
ferent grain sizes using radiative transfer models. They then
used this spectral library with MODIS images to produce
MODSCAG (Painter et al., 2009). Due to the phenomenon of
“the same object with different spectra”, spectra from limited
observation conditions in the field and lab have difficulty rep-
resenting the actual complex surface. Meanwhile, the spec-
trum simulated by the Mie/DISORT model can represent the
reflection characteristics of snow under different snow prop-
erty and observation conditions, but it is also susceptible to
the simulation errors of the model itself. In this study, the
MEAMA-AGE algorithm was used to retrieve the fractional
snow cover in the Asian Water Tower region, which com-
bines an image-based automatic endmember extraction algo-
rithm (Shi, 2012) with a spectral library optimization method
(Xu et al., 2015). The MESMA-AGE algorithm can improve
the computational efficiency while ensuring the representa-
tiveness of the endmembers (Hao et al., 2019). Considering
that if the image area is too large, the representativeness will
be limited if only one set of endmember libraries is used,

Table 2. Endmember extraction rule of the MESMA-AGE algo-
rithm (Shi, 2012; Hao et al., 2019).

Endmember Rule for MODIS surface reflectance data

Snow NDSI> 0.75 and NDVI<−0.035 and R0.55> 0.7
Vegetation NDSI<−0.4 and NDVI> 0.7
Soil/rock NDSI<−0.4 and 0<NDVI< 0.15
Waterbody NDWI> 0.2 and R0.86< 0.2

this study performs the FSC retrieval independently for each
MODIS tile during the retrieval process. The rules for ex-
tracting snow and non-snow endmembers are shown in Ta-
ble 2.

For this study, 42 033 samples were selected from the
MODIS data in January, November and December of 2001,
2005, 2010, 2015 and 2020. The sample types include
snow (14 756 samples), vegetation (6968 samples) and soil
(20 309 samples). The samples were used to create the
ground object feature map (Fig. 3). The x axis in Fig. 3 is
the NDSI value, and the y axis is the NDVI. The endmember
extraction rules outlined in Table 2 effectively identify and
isolate regions located at the geometric vertices within the
two-dimensional scatter plots in Fig. 3.

3.2 Multistep spatiotemporal interpolation algorithm

This study developed a multistep cloud removal algorithm
that combines temporal and spatial information. The MSTI
algorithm prioritizes the use of nearby spatiotemporal in-
formation based on the characteristics of snow cover and
achieves complete cloud removal for still-cloudy pixels by
further expanding their spatiotemporal range. This algorithm
is mainly divided into four steps: temporal filtering with a
3× 3 temporal window, 4× 4 spatial interpolation, a piece-
wise cubic Hermite interpolating polynomial (PCHIP) for
the 19 d period, and further spatial interpolation using a
11× 11 window. The process is shown in the MSTI algo-
rithm flowchart in Fig. 2.

1. The temporal filtering algorithm assumes that FSC does
not change during a short period (Hou et al., 2019). In
previous studies, the size window of the adjacent time
filter ranged from 1 to 8 d. Due to the unique climate
conditions and terrain conditions of the Asian Water
Tower (high wind speeds can easily redistribute snow,
and thin layers of snow can melt and sublime quickly),
the snow cover changes rapidly. Therefore, choosing a
longer time window may introduce errors. In this study,
the time window of the adjacent time filtering algorithm
was set to 3 d (the day of cloud cover and the day be-
fore and after cloud cover). If a given pixel is covered
by clouds and there are no clouds before and after 2 d,
the FSC value of the cloud pixel can be calculated using
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Figure 2. Overall flowchart of the AWT MODIS FSC product.

the following formula:

FSCTpredictcloud
(x,y)= (FSCT−1

observedcloud-free
(x,y)

+FSCT+1
observedcloud-free

(x,y))/2, (4)

where FSCTpredictcloud
(x,y) is the predicted FSC value of

cloud pixels (x,y) at time T , FSCT−1
observedcloud-free

(x,y) is
the observed FSC value of cloud-free pixel (x,y) at time
T − 1, and FSCT+1

observedcloud
(x,y) is the observed FSC

value of cloud-free pixel (x,y) at time T + 1.

2. Based on the continuity of snow cover in spatial con-
tinuity, snow cover can be interpolated based on infor-
mation from non-cloud pixels around a cloud pixel (Ga-
furov and Bárdossy, 2009; Paudel and Andersen, 2011;
Lindsay et al., 2015). Considering the situation where
there are at least 3 identical pixels in the 4 pixels adja-
cent to a cloud pixel, the cloud pixel discrimination rule
is as follows: if at least 3 of the 4 pixels above, below,
left and right of a cloud pixel are covered with snow,
the central cloud pixel is assigned the mean FSC of the
snow pixels in the adjacent 8 pixels. If at least 3 out of
the 4 pixels above, below, left and right of a cloud pixel
are land, the central cloud pixel is assigned as land. In
other cases, the pixels retain their cloud pixel values.

3. For the remaining cloud pixels after the previous two
steps, the PCHIP algorithm is used to interpolate the
time series of the missing data. Compared with the
spline curve used in previous studies (Dozier et al.,
2008; Z. Tang et al., 2013, 2022), which uses the whole
sequence information to fit an equation, the PCHIP al-
gorithm (Fritsch and Carlson, 1980) divides the time
series into several sub-intervals, and the fitting equa-
tion for this sub-interval can be obtained only by using
the two endpoints of the sub-intervals and their deriva-
tive values. This can also make the results more confor-
mal since the adjacent sub-intervals share an endpoint
and a derivative. Therefore, the PCHIP algorithm can
adaptively select a suitable time window for interpo-
lation according to the cloud persistence days (CPDs),
which ensures the monotonicity of the interpolation re-
sult and allows it to achieve spatiotemporally continu-
ous fractional snow cover while suppressing the effects
of noise. Through statistical analysis of the CPDs in the
Asian Water Tower region over the past approximately
20 years, 96.58 % has less than 19 d of cloud cover.
Therefore, the time window selected for this study was
set to 9 d before and after the presence of cloud cover
pixels.

The PCHIP algorithm assumes that the known func-
tion f (x) satisfies f (xi)= fi and f ′(xi)= f ′i (i =
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0,1,2, . . .,n) at n+ 1 distinct nodes xi (i = 0, . . .,n) on
the interpolation interval [a, b]. A segmented cubic Her-
mite interpolation function G(x) can be constructed to
satisfy Eqs. (5), (6) and (7).

The polynomial degree of G(x) between

each cell is 3. (5)

G(x) ∈ C1
[a,b] (6)

G (xi)= f (xi)G′(xi)= f ′(xi), i = (0,1, . . .,n) (7)

The expression of G(x) between cells [xk,xk+1] can be
directly obtained from the above conditions:

G (x)=
(

1+ 2
x− xk

xk+1− xk

)(
x− xk+1

xk − xk+1

)2

yk +

(
1+ 2

x− xk+1

xk − xk+1

)(
x− xk

xk+1− xk

)2

yk+1+ (x− xk)
(
x− xk+1

xk − xk+1

)2

y′k

+ (x− xk+1)
(

x− xk

xk+1− xk

)2

y′k+1, (8)

where xk and xk+1 are the positions of two adjacent time
points to be interpolated, yk and yk+1 are the FSC cor-
responding to the two observations before and after the
corresponding interpolation point, and y′k and y′k+1 are
the corresponding derivatives.

4. After the first three steps of spatiotemporal interpola-
tion, there are still a few cloud pixels left. In this study,
the observation information from the 11×11 interpola-
tion window centered on the cloud pixel was used based
on the inverse distance weight (IDW) interpolation al-
gorithm, which considers elevation information for spa-
tial interpolation. The IDW interpolation algorithm is
an important application of the first law of geography,
which uses the distance between the interpolation point
and the sample point as the weight for weighted av-
eraging (Zhao et al., 2022). The closer the interpola-
tion point, the greater the weight assigned to the sam-
ple point. According to existing studies, elevation is im-
portant for the distribution of fractional snow cover (Li
et al., 2017), but traditional IDW algorithms only con-
sider spatial distance. Therefore, this study incorporated
the influence of elevation on fractional snow cover on
this basis. The SNOWL method is a commonly used al-
gorithm for spatiotemporal interpolation of snow cover,
and scholars often use 100 m as the interval (Huang et
al., 2016; Li et al., 2017). Therefore, this study mainly
used clear-sky pixel information within the range of el-
evation differences less than 100 m around the pixels.
The process of the IDW interpolation algorithm consid-
ering elevation information is described in Eqs. (9), (10)

Figure 3. The NDSI and NDVI pattern of vegetation, soil/rock and
snow endmembers from MODIS images.

and (11):

di =
2
√

(x− xi)2+ (y− yi)2, (9)

wi =
1Ei/di∑n
11Ei/di

,

1Ei =

{
1− |1Elevi |

100 , |1Elevi | ≤ 100 m,
0, |1Elevi |> 100 m,

(10)

FSC(x,y)=
n∑
i=1

wi ·FSC(xiyi), (11)

where (x,y) is the position of the cloud pixel, (xi,yi) are
the observing pixel positions for the surrounding clear-
sky pixels, di is the distance between the sample point
and the position to be interpolated, 1Ei is the weight
of the ith sample point obtained based on elevation,
1Elevi is the elevation difference, wi is the weight of
the ith sample point, FSC(xi,yi) is the fractional snow
cover for clear-sky pixels, and FSC(x,y) is the interpo-
lated fractional snow cover for the cloud pixel.

3.3 Evaluation metrics

Selected metrics for validation of the AWT MODIS FSC
product included the OA, PA, UA, Cohen kappa (CK), R2,
RMSE and MAE, which are defined below:

OA=
TP+TN

TP+TN+FP+FN
, (12)

PA=
TP

TP+FP
, (13)

UA=
TP

TP+FN
, (14)
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CK=
OA−P
1−P

,

P =
(TP+FN)(TP+FP)+ (TN+FN)(TN+FP)

(TP+TN+FP+FN)2 , (15)

R2
=

[∑
(fest− fest)(fref− fref)

]2∑
(fest− fest)2 ·

∑
(fref− fref)2

, (16)

MAE=
1
N

∑
N

|fest− fref|, (17)

RMSE=

√
1
N

∑
N

(fest− fref)2, (18)

where TP indicates true positive, TN indicates true nega-
tive, FP indicates false positive, FN indicates false negative,
fest indicates fractional snow cover estimation derived from
MODIS, and, similarly, fref indicates the reference fractional
snow cover derived from Landsat-8. To calculate the over-
all accuracy, binary snow cover was labeled for pixels with
fractional snow cover ≥ 15 %, as the error for FSC less than
15 % would probably be larger because the spectral signal
from snow is diminished with mixing from other land cov-
ers and cloud or snow misjudgments are more severe in areas
with less snow (Painter et al., 2009; Rittger et al., 2013, 2021;
Selkowitz et al., 2017; Key et al., 2020; Hall and Riggs, 2007;
B.-H. Tang et al., 2013).

4 Results

In this study, a comprehensive evaluation of the accuracy of
the AWT MODIS FSC product in two dimensions, i.e., bi-
nary and fractional snow cover, was conducted. The binary
and fractional snow cover accuracies of the AWT MODIS
FSC product were quantitatively assessed under three differ-
ent conditions: overall, different surface types and altitudes.
This evaluation was conducted using 2745 Landsat-8 images.
Additionally, the binary accuracies of the AWT MODIS FSC
product were specifically evaluated under three different con-
ditions, i.e., overall (including clear and cloudy conditions),
clear sky and cloud cover, utilizing snow depth data from 175
meteorological stations.

4.1 Validation with Landsat-8 images

4.1.1 Overall results

In this study, the 2745 Landsat-8 scenes were used as ground
truth to quantitatively evaluate the AWT MODIS FSC prod-
uct obtained from clear sky in two dimensions: binary (OA,
PA and UA) and fractional snow cover (R2, MAE and
RMSE). Figure 4 shows violin charts of the accuracy evalua-
tion metrics, and the violin charts of each accuracy metric are
composed of two parts: the outer violin chart and the inner
box plot. The left side of the outer violin chart is the kernel

Figure 4. Violin charts for the accuracy evaluation metrics of the
AWT MODIS FSC product validated by Landsat images.

density map. The larger the area of a certain range, the greater
the probability of the distribution near a certain value, and the
horizontal line in the left area is where the median is located.
To the right of the violin plot is a histogram of the frequency
of a value; i.e., the longer the line is, the more points there are
for that value. The internal box plot contains a gray rectangle
consisting of the upper and lower quartiles, with the mean po-
sition represented by the white point. From Fig. 4, the mini-
mum OA value of the AWT MODIS FSC product is 80.38 %,
and the average value is 95.17 %. The minimum PA value is
58.71 %, and the average value is 97.34 %; i.e., the average
omission error of this product is 2.66 %. The minimum UA
value is 67.02 %, and the average value is 97.59 %; i.e., the
average commission error is 2.41 %. The R2 value distribu-
tion range is 0.40–0.97, and the average value is 0.80. The
MAE ranges from 0.01 to 0.23, with an average of 0.10. The
RMSE ranges from 0.02 to 0.26, with an average of 0.16. The
above results provide a good illustration of the consistency of
the AWT MODIS FSC product with the ground truth data.

To better explore the interannual differences in each ac-
curacy metric, this study divided the 2745 Landsat-8 scenes
by year. Figure 5 shows the interannual distribution of each
accuracy metric, and Table 3 shows the number of Landsat
images and the interannual average of each accuracy met-
ric. Figure 5 and Table 3 show that the interannual means of
the OA range from 92.41 % to 96.22 %, PA from 94.77 % to
97.88 %, UA from 95.35 % to 98.55 %, R2 from 0.76 to 0.81,
MAE from 0.09 to 0.11 and RMSE from 0.15 to 0.17. The
accuracy metrics perform better except for 2013, where the
poor accuracy indicators are mainly due to the overall low
number of validation data and the fact that a significantly
larger proportion of the validation data are located at high
altitudes in mountainous areas than in other years. The re-
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sults of this part of the retrieval are strongly influenced by
topographical effects.

4.1.2 Evaluation for different land surface types

Spectra of the snow-covered surface also encounter the im-
pacts of land cover type. In particular, in forested areas, snow
below the forest canopy is difficult to observe with space-
borne sensors because the forest blocks the visible, near-
infrared and shortwave infrared bands (Wang et al., 2021,
2023). Therefore, in this study, 2745 scenes of Landsat-8 im-
ages were divided into four categories according to land sur-
face types, i.e., the grassland area (1500 scenes), bare land
area (264 scenes), forest area (410 scenes) and mountain area
of the Himalayas and Pamir Plateau (571 scenes). The accu-
racy evaluation metrics under the two dimensions of binary
value and fractional snow cover of the four land surface types
are shown in Fig. 6. Regarding the accuracy metrics of bina-
rization, the accuracy of the grassland area is better than that
of other land surface types, and its average OA is 95.99 %,
while the bare land area is the worst but also reaches 93.69 %.
This is because the bare land area is mainly the hinterland of
the Asian Water Tower region, which is mainly desert (Gobi)
with little vegetation growth, and there are also many large
and small lakes distributed in this area. The bright land and
the winter water surface lead to deviations in the retrieval
algorithm. In addition, the snow in this region is relatively
broken, and the observation scales of MODIS and Landsat
are quite different, making it difficult for MODIS to capture
the broken snow information as effectively as Landsat. These
two reasons lead to many errors in the results. The UA also
illustrates this problem well. Figure 6 shows that the average
UA of bare land is only 94.06 %, approximately 4 % lower
than that of the other surface types. From the perspective of
fractional snow cover accuracy metrics, grassland and forest
are slightly worse, mainly because it is difficult to observe the
snow signal shielded by the vegetation canopy at the MODIS
scale. Previous studies have demonstrated that canopy adjust-
ment using fractional vegetation cover (FVC) can enhance
the accuracy of observations in such areas (Raleigh et al.,
2013; Rittger et al., 2020; Xiao et al., 2022). Therefore, fu-
ture relevant studies can utilize mature FVC products for
canopy adjustment to fulfill research requirements. For snow
mapping in areas with high forest cover, we recommend us-
ing URSI (Wang et al., 2021) or NDFSI (Wang et al., 2020),
which are more sensitive indicators, to replace NDSI to en-
sure accuracy.

4.1.3 Evaluation for different altitudes

Topographic effects challenge accurate snow cover mapping
with optical imagery as well. The snow cover products such
as MOD10A1 have reported uncertainties related to altitudes
(Zhang et al., 2020; Wu et al., 2021; Huang et al., 2022a).
Therefore, the 2745 Landsat-8 images are divided into four

sections according to altitude, i.e., < 3 km (1603 scenes), 3–
4 km (395 scenes), 4–5 km (355 scenes) and > 5 km (392
scenes). The results of the accuracy evaluation metrics ac-
cording to different heights are shown in Fig. 7. As shown in
Fig. 7, both binary and fractional snow cover accuracy met-
rics show a decreasing trend with increasing altitude. The
areas smaller than 3 km are mostly distributed in northern
Xinjiang, China, i.e., the area north of 40° N, where the snow
distribution is relatively concentrated, and the surface type is
mostly grassland with a small amount of forest, so the ac-
curacy is highest. The three elevation regions greater than
3 km are mainly distributed in the Tianshan Mountains, the
Pamir Plateau and the Tibetan Plateau. Snow fragmentation
and topographic heterogeneity in these regions increase with
altitude. This results in a slight reduction in the accuracy of
the AWT MODIS FSC product.

4.2 Validation with in situ snow depth measurements

Landsat images can only be used to evaluate the accuracy of
the fractional snow cover retrieval algorithm and FSC prod-
uct under clear-sky conditions, and the fractional snow cover
information reconstructed by the MSTI algorithm needs to be
verified by snow depth observations at meteorological sta-
tions. Therefore, this study used a total of nearly 1 million
observations collected from 175 in situ stations during the
period from 26 February 2000 to 30 April 2019 to evaluate
the accuracy under different weather conditions. The num-
ber of meteorological stations and SD observations obtained
each year are shown in Fig. 8. The number of stations fluctu-
ates to some extent each year, and the number of snow depth
observations available after 2014 has nearly tripled compared
with before 2014.

4.2.1 Overall results

To better assess the accuracy of snow identification, only in
situ stations with more than 20 d of snow observations per
year were selected for evaluation (Zhang et al., 2020; Hao et
al., 2021). This reduced the number of in situ stations and the
total observation data by approximately half. In this study,
snow depth observations from 175 in situ stations were used
to perform a binary evaluation of the AWT MODIS FSC
product. Table 4 shows the results of the overall accuracy
evaluation. It can be seen from the results that the OA of the
product reaches 93.26 %, PA can reach 84.41 %, and UA can
reach 82.14 %; i.e., the omission error is 15.59 %, and the
commission error is 17.86 %. In addition, CK reaches 0.79.
The results of the above accuracy metrics exclude the stations
without snow observations, which indicates that the AWT
MODIS FSC product has good accuracy and good consis-
tency with the snow depth observation data of meteorological
stations.

To verify the stability of the product accuracy over time,
this study performed a binary accuracy assessment of the

https://doi.org/10.5194/essd-16-2501-2024 Earth Syst. Sci. Data, 16, 2501–2523, 2024



2510 F. Pan et al.: AWT MODIS FSC dataset

Figure 5. Violin chart for the interannual accuracy evaluation metrics.

Table 3. The number of Landsat images and the interannual average of each accuracy metric.

Year Image OA PA UA R2 MAE RMSE
number

2013 123 92.41 % 94.77 % 95.35 % 0.81 0.11 0.17
2014 328 95.60 % 97.67 % 98.38 % 0.79 0.11 0.16
2015 287 95.08 % 97.26 % 97.58 % 0.79 0.10 0.16
2016 309 96.22 % 97.88 % 98.55 % 0.81 0.09 0.15
2017 315 95.85 % 97.25 % 98.27 % 0.79 0.09 0.15
2018 389 95.16 % 97.30 % 97.95 % 0.76 0.11 0.17
2019 360 95.23 % 97.32 % 97.37 % 0.79 0.10 0.16
2020 320 95.01 % 97.21 % 97.53 % 0.81 0.10 0.16
2021 314 94.20 % 97.33 % 95.07 % 0.81 0.10 0.17

snow depth observations at each station by year. The over-
all results of each accuracy metric over the last 20 years are
shown in Fig. 9. Each accuracy metric is relatively stable be-
fore and after 2014, but there is a large fluctuation in 2014.
The OA metric exhibits the most significant temporal varia-
tion. Before 2014, the fluctuation range of OA is 88.69 %–
92.96 %, and after 2014, the fluctuation range of OA is
95.05 %–97.54 %. Meanwhile, CK and PA increase signifi-
cantly after 2014. This also indicates that the consistency be-
tween the AWT MODIS FSC product and the snow depth ob-
servations from meteorological stations has improved signifi-
cantly since 2014. The fluctuation in the above accuracy indi-
cators is mainly due to the significant increase in the number
of meteorological station observations used in this study af-
ter 2014 and the improvement in the accuracy of snow iden-

tification, which ultimately leads to a significant increase in
OA. The percentage of cloud cover in different years is also
shown in Fig. 9 below. Combined with Figs. 8 and 9, the de-
crease in cloud and snow cover (Tang et al., 2022; Yao et al.,
2022) leads to an increase in the proportion of clear-sky and
non-snow observations at stations. This will result in fewer
omission errors (PA increases), ultimately leading to better
station-based assessment accuracy.

4.2.2 Accuracy metrics at each in situ station

Figure 10 shows the detailed results of the accuracy metrics
of the AWT MODIS FSC product verified by the snow depth
data of the stations. As shown in Fig. 10, the OA of most in
situ stations is above 90 %, with only one in situ station be-

Earth Syst. Sci. Data, 16, 2501–2523, 2024 https://doi.org/10.5194/essd-16-2501-2024



F. Pan et al.: AWT MODIS FSC dataset 2511

Figure 6. Violin charts for accuracy evaluation metrics of the AWT MODIS FSC product validated by Landsat images under different surface
types.

Figure 7. Violin chart for accuracy evaluation metrics of the AWT MODIS FSC product validated by Landsat at different altitudes.

https://doi.org/10.5194/essd-16-2501-2024 Earth Syst. Sci. Data, 16, 2501–2523, 2024



2512 F. Pan et al.: AWT MODIS FSC dataset

Table 4. Confusion matrix and accuracy results of the AWT MODIS FSC product based on snow depth measurements from the CMA: OA,
PA, UA and CK.

AWT MODIS FSC

Class Snow Non-snow

In situ snow depth measurements Snow 102 617 18 946
Non-snow 22 316 468 105

OA 93.26 %
PA 84.41 %
UA 82.14 %
CK 0.79

Figure 8. The number of in situ stations and the observed data vol-
ume per year (26 February 2000–30 April 2019).

Figure 9. Accuracy fluctuations of the AWT MODIS FSC product
based on in situ snow depth measurements and the percentage of
cloud cover in the past 20 years.

low 70 %. However, the figure shows that, unlike the OA, the
accuracy of the entire Asian Water Tower region is relatively
consistent. PA, UA and CK are severely affected by the re-
gion. The PA and UA metrics at stations in northern Xinjiang,
China, are generally greater than 90 %, and CK is also greater
than 0.8. This is mainly due to the stable snow cover in the
region. The spatiotemporal reconstruction algorithm of snow
cover developed in this research can grasp the spatiotempo-
ral variation characteristics of snow cover in this region well,
so that high-precision spatiotemporal reconstruction of snow
cover information can be achieved. However, the snow cover
in the eastern part of the Asian Water Tower region and the
northwestern edge of the Tarim Basin is relatively broken,
and the MODIS resolution is coarse. These areas are seri-
ously affected by clouds, so the PA, UA and CK metrics in
these areas are generally not high.

4.2.3 Performance of the spatiotemporal reconstruction
algorithm

The above two sections presented the overall accuracy of the
AWT MODIS FSC product using snow depth data from me-
teorological stations. The AWT MODIS FSC product is de-
rived from the composition of two parts: the real MODIS
observation under clear sky and the spatiotemporal recon-
struction with the MSTI algorithm for cloudy conditions. To
further explore the accuracy of the fractional snow cover re-
sults of these two parts, the snow depth observation data of
the meteorological stations are divided into two categories
based on MODIS clear-sky and cloudy conditions. First, the
stability of the accuracy evaluation metric under clear-sky
and cloudy conditions, respectively, is evaluated, and the re-
sults are shown in Fig. 11. Comparison of Fig. 9 shows that
there is an increase in accuracy in years with lower cloud
cover. Figure 11a presents the interannual variation results of
the accuracy metrics of fractional snow cover obtained from
MODIS clear-sky observations using snow depth observa-
tions at the selected meteorological stations. OA, PA, UA and
CK all exhibit good stability, and the range of variation in OA
is 92.80 %–99.01 %. The range of UA is 82.39 %–90.26 %.
After 2014, the two indices of PA and CK improved, with
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Figure 10. Point-based accuracy results of the AWT MODIS FSC product: (a) OA; (b) PA; (c) UA; (d) CK.

the maximum of PA reaching 95.46 % and CK reaching 0.91.
Figure 11b shows the interannual variation results of the ac-
curacy metrics of the fractional snow cover result obtained
by the spatiotemporal reconstruction of the MSTI algorithm
using the snow depth observations at the selected meteoro-
logical stations. All accuracy metrics decrease to some ex-
tent compared to the clear-sky condition. Influenced by the
amount of in situ station data used, the spatiotemporal recon-
struction results show a relatively obvious jump in 2014. The
variation range of OA before 2014 is 84.51 %–90.00 %, but
the variation range of OA after 2014 is 92.76 %–95.60 %. PA
and CK have interannual variations in the years before 2014,
but the value of the years after 2014 has a large increase,
with the maximum PA reaching 89.61 % and CK reaching
0.83. UA has only a large interannual variation, and there is
no significant jump in 2014. The results show that the accu-
racy of the fractional snow cover based on clear-sky obser-
vations is significantly better than that of the spatiotemporal
reconstruction. This is mainly due to the presence of clouds
over a long period of time and over a large area in most of
the Asian Water Tower region; the interpolation of this part
of the area relies heavily on the last two steps of the MSTI
algorithm. The last two steps of the MSTI algorithm require
a larger space–time window to complete the interpolation.
However, a larger space–time window introduces more error,
especially for snow cover, which has strong spatial hetero-
geneity and changes rapidly over time.

This study further analyzed the accuracy of the AWT
MODIS FSC product obtained from MODIS clear-sky and
cloud cover observations at each station, and the results of
the binarization accuracy metrics are shown in Fig. 12. It
can be seen from the figure that the accuracy of fractional
snow cover obtained by the clear-sky retrievals is signifi-
cantly better than that obtained by the MSTI algorithm. Ac-
cording to the OA in Fig. 12a and e, the accuracy of the ver-
ification results of fractional snow cover based on MODIS
clear-sky observations is good at all the stations, and only
a few stations are less than 90 %. However, the OA of the
fractional snow cover reconstructed by the MSTI algorithm
shows some regional differences. When comparing the accu-
racy metrics (PA, UA and CK) of fractional snow cover be-
tween the real MODIS observations and the spatiotemporal
reconstruction results achieved through the MSTI algorithm,
notable regional variations are observed in all three metrics.
In other words, the accuracy of the stable snow cover area in
northern Xinjiang, China, is obviously better than that in the
central and eastern parts of the Asian Water Tower region and
the northwestern edge of the Tarim Basin, where the snow
cover is relatively fragmented and rapidly changing.
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Figure 11. Point-based accuracy results of the AWT MODIS FSC product: (a) clear-sky observations; (b) spatiotemporal reconstruction.

5 Discussion

5.1 Comparing the AWT MODIS FSC with the Snow
CCI(MODIS), MOD10A1 and HMRFS-TP products

In order to evaluate the accuracy of AWT MODIS FSC prod-
ucts more objectively, the Snow CCI(MODIS) (Nagler et al.,
2022), MOD10A1 (Hall and Riggs, 2016) and HMRFS-TP
(Huang et al., 2022a) products are selected as benchmarks for
this study using Landsat-8 imagery. The Snow CCI(MODIS)
product has a spatial resolution of 1 km and a time span of
2001–2020, which is used to compare the accuracy differ-
ence with the AWT MODIS FSC product under the clear-sky
scenario. MOD10A1 is the most widely used MODIS snow
product, which has a long time series (since 2000) and high
spatial and temporal resolutions (i.e., 500 m and daily). This
study is based on the GEE platform to obtain the MOD10A1
(Collection 61) data from 2013 to 2022 for the Asian Water
Tower region and uses this product to evaluate the accuracy
difference with the AWT MODIS FSC product under the
clear-sky scenario. The HMRFS-TP product is a continuous
spatiotemporal binary snow product based on the MOD10A1
product and the HMRFS spatiotemporal interpolation algo-
rithm covering the Tibetan Plateau region within China and
is used in this study to compare the accuracy of the two sets
of continuous spatiotemporal products.

The Snow CCI(MODIS) product is a fractional snow cover
product generated by the SCAmod algorithm (Metsämäki
et al., 2012; Metsamaki et al., 2005). In this study, 877
Landsat images were used to compare the differences in
the continuous-value accuracy evaluation metrics between
the Snow CCI(MODIS) product and the AWT MODIS FSC
product under clear-sky conditions, and the results are shown
in Fig. 13 below. As shown in Fig. 13, the R2, RMSE and
MAE of the AWT MODIS FSC product are 0.831, 0.148 and
0.084. The R2, RMSE and MAE of the Snow CCI(MODIS)
product are 0.780, 0.159 and 0.094, respectively. From the
results, it can be concluded that the AWT MODIS FSC prod-
uct is overall better than the Snow CCI(MODIS) on the 1 km
scale, and the subsequent dynamic canopy transmittance for

different regions will help to realize high-precision snow
cover monitoring.

The accuracy of the MOD10A1 product depends on the
threshold value of the NDSI, and the commonly used thresh-
olds are 0.1 (Zhang et al., 2019), 0.29 (Zhang et al., 2021;
Tang et al., 2022) and 0.4 (Riggs et al., 2017). Since no
spatiotemporal interpolation is performed for the MOD10A1
product, in order to make a comprehensive and objective
comparative assessment, this study uses 1805 Landsat im-
ages to compare the clear-sky pixels of the two products,
and the results are shown in Fig. 14 below. The OA, PA
and UA of the AWT MODIS FSC product are 97.69 %,
98.73 % and 98.83 %, respectively. The NDSI threshold is
0.1, and the OA, PA and UA of the MOD10A1 products
are 94.51 %, 95.70 % and 99.04 %. The NDSI threshold is
0.29, and the OA, PA and UA of the MOD10A1 product
are 94. 75 %, 98.49 % and 96.52 %. The NDSI threshold is
0.4, and the OA, PA and UA of the MOD10A1 product are
91.86 %, 98.96 % and 90.82 %. As the NDSI threshold in-
creases, Fig. 14 shows that the PA of the MOD10A1 prod-
uct gradually increases and the UA gradually decreases. This
also means that the percentage of omission error is decreas-
ing and the percentage of commission error is increasing.
This is because the larger the NDSI, the higher the proba-
bility that the image pixel is snow and the probability of cor-
rectly judging snow increases accordingly, which also leads
to a lower probability of correctly judging non-snow, result-
ing in a decrease in the overall accuracy. From the results in
Fig. 14, the MOD10A1 product has the best accuracy when
the NDSI is 0.29, but its accuracy is still lower than that of
the AWT MODIS FSC product.

The NDSI of the HMRFS-TP product is 0.4 as the thresh-
old for snow identification of MOD10A1, and the spatiotem-
poral continuous product is obtained by the HMRFS spa-
tiotemporal interpolation algorithm. In this study, 372 Land-
sat images were used to quantitatively evaluate and compare
two sets of spatiotemporal continuous snow products, and the
results are shown in Fig. 15 below. As shown in Fig. 15,
the OA, PA and UA of the AWT MODIS FSC product are
89.71 %, 94.29 % and 86.21 %. The OA, PA and UA of the
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Figure 12. Point-based accuracy results of the AWT MODIS FSC product under clear-sky conditions ((a) OA, (b) PA, (c) UA and (d) CK)
and spatiotemporal reconstruction ((e) OA, (f) PA, (g) UA and (h) CK).
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Figure 13. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC and Snow CCI(MODIS) products validated by Landsat
images.

Figure 14. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC and MOD10A1 products validated by Landsat images.

HMRFS-TP product are 79.45 %, 99.20 % and 66.82 %, re-
spectively. Comparing the accuracy indices of the two sets of
products, AWT MODIS FSC products are significantly better
than HMRFS-TP products, and various accuracy evaluation
indices are around 90 %. The poor accuracy of the HMRFS-
TP products is mainly due to the value of the NDSI. Com-
bined with Fig. 14, the threshold of 0.4 will lead to serious
misclassification of products and is not applicable to the Ti-
betan Plateau region.

5.2 Area differences in fractional snow cover and binary
snow cover

Long-term-series and high-precision fractional snow cover
products are of great importance for snow hydrology re-
search in the Asian Water Tower region. However, most
of the existing snow cover products are binary products or
space–time gap-filled fractional snow cover products. In this
study, the clear-sky fractional snow cover was retrieved by
the MESMA-AGE algorithm based on MODIS observations.
The missing fractional snow cover information caused by
cloud cover was reconstructed by the MSTI algorithm, and fi-
nally the spatiotemporally continuous long-term-series AWT
MODIS FSC product was obtained. The actual snow dis-
tribution, which is difficult to capture, was identified with
binary values, especially in scenarios with mixed pixels at
medium and coarse resolutions, and the subsequent direct

application of binary products will introduce large errors.
Therefore, the AWT MODIS FSC product produced in this
study was used to quantitatively analyze the actual difference
between the binary snow cover product and the fractional
snow cover product, and the results are shown in Fig. 16.
In this study, pixels with FSC> 15 % were identified as the
binary snow product (Rittger et al., 2013; Wang et al., 2019).
Figure 16a shows the difference between the total snow cover
area obtained by the binary snow product and that obtained
by the fractional snow cover product in the Asian Water
Tower region. There is a significant overestimation of the bi-
nary snow product, with an average difference of 39 400 km2

and a maximum difference of 102 000 km2, which is very
large for the Asian Water Tower region with a total area of
only 623 000 km2. Figure 16b shows the proportion of the
difference in the total snow area obtained by the two snow
cover products in the total snow area obtained by the binary
snow product. The average difference is 34.53 %, and the
maximum difference is 59.52 %. Comparing Fig. 16a and b,
the smaller the total snow cover area, the greater the differ-
ence between the two sets of products, indicating that greater
errors in the binary snow cover product occur for more bro-
ken and smaller areas.

Earth Syst. Sci. Data, 16, 2501–2523, 2024 https://doi.org/10.5194/essd-16-2501-2024



F. Pan et al.: AWT MODIS FSC dataset 2517

Figure 15. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC and HMRFS-TP products validated by Landsat
images.

Figure 16. Difference between the binary snow cover product and the fractional snow cover product in the Asian Water Tower region:
(a) difference in the total snow cover area between the binary snow cover product and the fractional snow cover product; (b) proportion of
the total snow area difference between the two snow products compared with the total snow area obtained by the binary snow product.

5.3 Limitations of the AWT MODIS FSC product

Clouds in most of the Asian Water Tower region have the
characteristics of wide coverage and long duration. If clouds
exist for a long time, relying only on MODIS data will lead to
a serious data gap, and the accuracy of snow cover monitor-
ing will be reduced, regardless of any spatiotemporal recon-
struction algorithm. With the launch of a new generation of
geostationary satellites (FY-4A/B, GOES-17/18, Himawari-
8/9 and MSG/MTG), their sensor performance can be com-
parable to that of MODIS sensors, and at the same time the
observation can be realized once every 5–15 min. Combined
with geostationary sensors, these platforms are expected to
provide the highest-precision fractional snow cover monitor-
ing. At the same time, problems with MODIS cloud products,
such as overestimation and confusion error between clouds
and snow, can be effectively improved by combining station
observations (Dong and Menzel, 2016a, b), but this requires
enough dense stations in the study area. The applicability
of this method is limited due to terrain constraints in the
AWT region, and subsequent studies in specific small areas
may be cited to further improve product quality. Large-scale

synchronous and high-frequency observations from geosta-
tionary meteorological satellites can overcome the shortcom-
ings of the above methods and meet the needs of large-
scale applications. In this study, the monthly average cloud
cover MODIS and FY-4A data during the period April 2018–
March 2022 were collected, and the results are shown in
Fig. 17. Figure 17a shows the average monthly cloud cover
statistics from MODIS. It can be seen from the figure that
the average monthly cloud cover in areas with more snow
cover, such as the Pamir Plateau, Tianshan Mountains and
Altai Mountains, is generally more than 15 d, and some areas
of the Hengduan Mountains range can reach more than 25 d.
As shown in Fig. 17b, the average monthly cloud cover in
most regions based on the FY-4A data is generally less than
10 d, and the average monthly cloud cover in the Hengduan
Mountains region is also less than 19 d, which will provide
strong data support for the subsequent high-precision spa-
tiotemporal reconstruction of fractional snow cover informa-
tion. However, the large amount of multitemporal observa-
tion data from geostationary satellites, the lack of necessary
preprocessing steps, such as atmospheric correction, angle
correction and geometric registration, and the serious mis-
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Figure 17. Monthly average cloud cover over the Asian Water Tower region (April 2018–March 2022) from (a) MODIS and (b) FY-4A.

judgment of cloud snow in existing cloud products will limit
its further application.

6 Code and data availability

The AWT MODIS FSC product is the daily cloud-
gap-filled snow cover data for the Asian Water Tower
region. It has a spatial resolution of 0.005° and a
daily temporal resolution. This dataset is freely avail-
able from the National Tibetan Plateau Data Cen-
ter at https://doi.org/10.11888/Cryos.tpdc.272503
(Jiang et al., 2022) or from the Zenodo platform at
https://doi.org/10.5281/zenodo.10005826 (Jiang et al.,
2023a). It contains 8347 daily data files from 26 February
2000 to 31 December 2022 in NetCDF format. The filename
rule is “AWT_MODIS_FSC_yyyymmdd.NC”, where AWT_
MODIS_FSC represents the daily cloud-gap-filled MODIS
fractional snow cover product over the Asian Water Tower
region, and yyyymmdd indicates the year, month and day of
the data. The dataset contains two layers, the “fSCA” layer:
fractional snow cover (non-snow (0), snow (1–100), water
(237), cloud (250) and filling value (255)), and the “QA”
layer: cloud mask (0: clear sky, 1: cloud mask and 2: invalid
value).

The Landsat-8 fractional snow cover dataset for
verification is available on the Zenodo platform:
https://doi.org/10.5281/zenodo.10008227 (Jiang et al.,
2023b). The binary value (snow–no-snow) snow depth
dataset based on ground stations is available on the
GitHub platform (https://github.com/FangboPan/AWT_
Site_SD, last access: 18 October 2023) and Zen-
odo (https://doi.org/10.5281/zenodo.11367913, Pan,
2024a). The code is available on the GitHub platform
(https://github.com/FangboPan/AWT_MODIS_DailyFSC_
Product_code_v1, last access: 16 November 2023) and
Zenodo (https://doi.org/10.5281/zenodo.11367978, Pan,
2024b).

7 Conclusions

In this study, based on the MESMA-AGE algorithm and
the MSTI spatiotemporal reconstruction algorithm, the daily
AWT MODIS FSC product was produced with long-term-
series, high-precision and spatiotemporal continuity in the
Asian Water Tower region. The spatial resolution of the prod-
uct is 0.005° from 2000 to 2022. The new AWT MODIS
FSC product was quantitatively evaluated in two dimen-
sions: binary value and fractional snow cover using snow
depth observations from meteorological stations and high-
spatial-resolution Landsat-8 images. Based on the results of
the Landsat-8 image accuracy evaluation, the binarized iden-
tification accuracy metrics OA, PA and UA are 95.17 %,
97.34 % and 97.59 %, respectively. The fractional snow cover
accuracy metrics R2, RMSE and MAE are 0.80, 0.16 and
0.10, respectively, compared with 2745 Landsat-8 images.
All these results indicate that the AWT MODIS FSC prod-
uct has good consistency with the high-spatial-resolution
Landsat-8 images and has high accuracy. Based on the accu-
racy evaluation results after excluding the stations that can-
not observe snow at all, the OA, PA, UA and CK of the AWT
MODIS FSC product can reach 93.26 %, 84.41 %, 82.14 %
and 0.79, respectively. The AWT MODIS FSC product con-
sists of two parts: the retrieval results of MODIS clear-sky
observations and the spatiotemporal reconstruction results
based on the MSTI algorithm. Snow depth observations from
meteorological stations are also used to evaluate these two
parts. The binary precision metrics of fractional snow cover
based on MODIS clear-sky observations are as follows: OA
(95.36 %), PA (87.75 %), UA (86.86 %) and CK (0.84). The
binarization accuracy metrics of the fractional snow cover
based on the spatiotemporal reconstruction of the MSTI al-
gorithm are as follows: OA (88.96 %), PA (82.26 %), UA
(78.86 %) and CK (0.72). Therefore, it can be shown that
both the binarized identification and fractional snow cover
metrics are excellent at both the point scale and the areal
scale, which further indicates that this AWT MODIS FSC
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product has relatively high precision (Wu et al., 2021; Huang
et al., 2022a; Hao et al., 2022). The AWT MODIS FSC prod-
uct is expected to offer robust and highly accurate data sup-
port for future snow hydrology studies.
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