

Supplement of

Greenhouse gas emissions and their trends over the last 3 decades across Africa

Mounia Mostefaoui et al.

Correspondence to: Mounia Mostefaoui (mounia.mostefaoui@polytechnique.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary figures and methods

Table S1. Surface flasks characteristics over the African continent. Data synthetized from NOAA website:

- 5 https://www.noaa.gov.

Station name, Country	Parameter	First sample date	Status for the three GHG	Frequency	Elevation (in meters above mean sea level)	Cooperating Agencies
Assekrem, Algeria	CO2 CH4 N2O	12/09/1995 12/09/1995 12/09/1995	Terminated since 26/08/2020	Discrete Monthly	2710	Algerian National Office of Meteorology
Gobabeb, Namibia	CO2 CH4 N2O	13/01/1997 13/01/1997 13/01/1997	Ongoing	Discrete Monthly	456	Gobabeb Training and Research Center
Mahe Island, Seychelles	CO2 CH4 N2O	15/01/1980 12/05/1983 13/06/1997	Ongoing	Discrete Monthly	2	Seychelles Bureau of Standards
Cape Point, South Africa	CO2 CH4 N2O	5/01/1980 12/05/1983 13/06/1997	Ongoing	Discrete Monthly	230	South African Weather Service
Mt. Kenya, Kenya	CO2 CH4 N2O	11/02/2010 11/02/2010 11/02/2010	Inactive since 21/06/2011	Discrete Monthly	3644	Kenya Meteorological Department

14 Table S2. List of African countries per group.

Country name	Group
Algeria Chad Egypt Eritrea Libya Mali Mauritania Morocco Niger Sudan Tunisia	Northern Africa
Benin Burkina Faso Cape verde Ivory Cote Gambia Ghana Guinea Guinea Bissau Liberia Nigeria Sao Tome and Principe Senegal Sierra Leone Togo	Subsahelian Western Africa
Cameroon Central African Republic Democratic Republic of the Congo Gabon Republic of the Congo South Sudan	Central African countries
Burundi Comoros Djibouti Ethiopia Kenya Rwanda Seychelles Somalia Uganda United Republic of Tanzania	Horn of Africa
Angola Botswana Madagascar Malawi Mauritius Mozambique Namibia Zambia Zimbabwe	Southern countries
Lesotho South Africa Swaziland	Group of South Africa

16 Methodological Supplementary S1 - discussion about the rescaling for CO₂ inversions

17

18 We operated a rescaling by subtracting back the prescribed fossil fuel fluxes to make sure that the 19 inversions do not differ regarding prior fluxes for better comparability.

Figure S1. Comparison of PRIMAP-hist, GCP versus prescribed fossil fluxes for three CO₂ inversion models at the regional scale.

Method	Product type /	Species	Overall period	References

	file name	Species	covered	
BU	GCP/CDIAC	CO ₂ fossil country totals with detailed emissions separating different subsectors	1990-2019	-GCP (Le Quéré et al., 2018; Friedlingstein et al., 2019)
				-CDIAC https://cdiac.ess- dive.lbl.gov/
BU	PRIMAP-hist	CO ₂ CH ₄ and N ₂ O fossil country totals (excluding LULUCF) with detailed emissions separating different subsectors	1990-2019	-PRIMAP https://www.pik- potsdam.de/paris-reality- check/primap-hist/

anthropogenic CH4 in tCO2e per capita, and by group color for 2009-2016.

Per capita CO₂ and CH₄ emissions in tCO₂eq. for (2013-2017) per African country and color

74 Methodological supplementary S2. Steps for computing the Gini index of African country emissions.

75

The Gini index is a metric assessing the level of dispersion and therefore the level of inequalities among the values of a given dataset. To show the inequalities of per capita emissions among the African countries, we computed the continent Gini index for each of the last three decades using the Pareto principle for the following fluxes: fossil CO_2 per capita emissions, CH_4 fossil + agriculture per capita emissions, CH_4 from agriculture per capita emissions.

We computed the Gini using the Paretto method also named 20/80 or ABC method, using an excel file for
the several countries' data manipulation. We obtained the GINI index (γ) thanks to the formula:

$$\begin{cases} 83 \\ 84 \\ 85 \end{cases} \quad \mathbf{\gamma} = \frac{\left[(\sum_{i=1}^{n} y_i \times x) - 5000 \right]}{5000}$$

When γ is bigger than 0.6, it means that the area delimited by the curve of the cumulated criterion and the graph diagonal represents more than 60% of the surface of half of the graph, and that the dispersion of the dataset is high. This method was built in the 19th century based on Vilfredo Paretto's observations regarding the inequalities of repartition of the volume of housing taxes among the taxpayers (he realized that 80% of this tax was paid by 20% of the taxpayer.) The different steps that we followed to compute the Gini are detailed below:

- 92 1) computation of the territorial emissions per capita in every African country,
- 93 2) ranking in a decreasing order (from the highest to the smallest one),
- 94 3) computation of the cumulative emissions,
- 4) creation of a column with the cumulative emissions expressed as a percentage,
- 96 5) creation of a column with a rank (integer) for those ordered emissions from the biggest to the
 97 smallest,
- 98 6) conversion of this rank as a percentage in another column,
- 99 7) distinction of the emissions representing less than 25% of emissions, less than 50%, and less than
 100 75% of emissions.
- 101 8) computation of the GINI index (γ) thanks to the Paretto's formula given above.
- 102
- 103
- 104

105 Methodological supplementary M3. Computation of correlation coefficient.

107	In mathematics, the linear correlation between two variables that we can call X and Y implies that
108	two variables have a linear relationship between each other. If there is a linear relation between
109	two variables, it can be represented by a straight line. To compute this linear correlation coefficient,
110	we use the Pearson formula that is the computation of the covariance among variables $(cov(X,Y))$,
111	divided by the product of their standard deviation (σ_X and σ_Y). Thus, we can compute the linear
112	correlation ρ_{XY} among two variables by using the following formula: $\rho_{XY} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$
113	The higher the absolute value of a linear correlation coefficient between two variables, the more
114	the variables are linearly correlated.
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	

- 148 GCP 2019 (CDIAC).

- 1.52

156 Figure S6 bis. Map of territorial mean 2013-2017 emissions and its associated bar plots in kgCO₂ per GDP, dataset taken

- 1 < 1

- ----

¹⁵⁷ from GCP 2019 (CDIAC).

Figure S7. Map of African CO₂ emissions expressed in kg per PPP\$ of GDP in 2016 - CDIAC.

 $\begin{array}{c} 170\\171 \end{array}$

- 174 Figure S8. Three maps of African countries fossil CO₂ emissions per decade: ratio percentage showing the discrepancies
- 175 between GCP and PRIMAP-hist datasets over three decades (1990-2018).

176 Table S4. List of Least Developed Countries and Small Islands Developing States in Africa.

33 Least Developed Countries (LDCs)	6 Small Islands Developing States (SIDS)
Angola, Benin, Burkina Faso, Burundi, Central African Republic, Chad,	Cape Verde, Comores, Guinea-Bissau,
Comoros, D.R. Congo, Djibouti, Eritrea, Ethiopia, Gambia, Guinea, Guinea-	Mauritius, Sao Tomé and Principe,
Bissau, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania,	Seychelles.
Mozambique, Niger, Rwanda, São Tomé and Príncipe, Senegal, Sierra Leone,	
Somalia, South Sudan, Sudan, Tanzania, Togo, Uganda, Zambia.	

181 Table S5. List of corrected countries for CO₂ LULUCF (in MtCO₂) - corrections in line with Grassi (2022)

Country	Year of most recent outlier report	Outlier value and source	Year corrected data	Corrected data and source	Mean corrected value over 2000-2020	Mean difference over 2000- 2020	Comments on the chosen correcting method.
CAF	2010	-1766 (NC2)	2016	-229 (NDC)	-229	1537	NDC 2016 because more recent than NC2 (2015), and sink in most recent NDC 2021 biophysically impossible.
Guinea- Bissau	2001	-11288 (NC1)	2010	-1 (NC2)	-1	-11287	NC1 value reports an unrealistically high sink.
Tanzania	1994	810 (NC2)	2022	77 (NDC 2022 ¹)	77	566	NDC is more recent and underlines a more realistic order of magnitude.
Guinea	2000	-444 (NC2)	2021	34 (NDC 2021)	34	478	NDC 2021 chosen because more recent than NC2 (2018), and the sink in NC2 is biophysically impossible (-444 MtCO2.yr ⁻¹ over only 5 Mha of forest). However, a remaining problem with the corrected value from nc2 is that no forest sink at all is reported.
Namibia	2000	11 (NC3)	2019	-117 (NIR 2019 ²)	-106	-117	NIR 2019 chosen because more recent than NC3 (2015) and more complete than NDC 2021 which is more recent.
Mali	2010	-245 (NC3)	Mean 2000 and 2010	-221 (mean of NC2 and NC3)	-155	66	Mean of NC2 and NC3 as more complete than REDD+. The sink in NC3 is high and here considered implausible, but it is however consistently reported in various official UNFCCC documents.
Democratic Republic of the Congo	2015	-235 (NC3)	2021	529 (NDC 2021)	529	761	NDC 2021 chosen because more recent than the NC3 (2015) and broadly consistent with REDD+ (2018). But a weakness of this correction source is that it does not report any carbon sink from forest.
Madagascar	2010	-97 (NC3)	2017	34 (REDD+ 2018)	34	131	REDD+ (2018) chosen because more recent than NC3 (2017), but it covers only deforestation. NC3 reports a biophysically impossible sink over only 9 Mha of forest.
Nigeria	2014	98 (NC2)	2017	315 (BUR2)	287	189	BUR2 (2021) chosen because more recent than NC2 (2014) and more detailed than NDC 2021 which report different numbers.
Zimbabwe	2006	-83 NC3 (2017)	2021	16 (BUR1)	11	95	BUR1 (2021) as more recent than the NC3 (2017) and more complete than NDC 2021.
Congo	Since 2000	-83 (NC2)	2009	-18 (NC2)	-18	65	NDC2021 chosen because more recent than the NC2 (2009).
Angola	2012	0.7 (NC1)	2021	55 (NC2)	55	54	NC2 (2021) chosen because more recent that NC1 (2012).
Mauritius	2013	-490 (NC3)	2016	0 (NIR 2021)	0	490	NIR 2021 more recent than NC3 (with unrealistically high value).

¹Using Tanzania GHGs Inventory Report and MRV System (2018). ²NIR = National Inventory Report (NIR).

185 Figure S9. Country details for LULUCF CO2 emissions and sinks from UNFCCC corrected (strictly consistent with 186 Grassi et al. 2022) for 13 African countries that we identified as outliers vs. UNFCCC uncorrected data, TRENDY 187 v9, DGVMs and GCP (2020) inversions. Unit is in MtCO₂. Black lines denote the PRIMAP-hist estimates for total 188 anthropogenic emissions including all IPCC sectors. Shaded green areas represent the minimum and maximum 189 ranges from GCP inversions. Shaded blue areas represent the minimum and maximum ranges for TRENDY v9 190 DGVMs. Green dashes denote the median of GCP inversions, blue dashes denote the median of TRENDY v9 191 DGVMs, green dashes the median of GCP inversions. The positive values represent a source while the negative 192 values refer to a sink.

- 193
- 194

Method	Product type / file name	Species	Overall period covered	References
BU	TRENDY v9 (2019) 14 DGVMs : CABLE, CLASS, CLM5, DLEM, ISAM, JSBACH, JULES, LPJ, LPX, OCN, ORCHIDEE- CNP, ORCHIDEE, SDGVM, SURFEX	Land-related Carbon emissions (Net Biome Productivity)	1900-2019	Met Office UK/ Le Quéré et al. (2018) www.icos-cp.eu/GCP
BU	UNFCCC	LULUCF Net CO ₂ emissions / removals	1990-2015	UNFCCC https://unfccc.int/non- annex-I-NCs
TD	GCB 2019	Total CO ₂ inverse flux (Net Biome Productivity)	2000-2018	Friedlingstein et al. (2020)
	Carbon Tracker Europe (CTE)		2000-2018	van der Laan-Luijke et al. (2017)
	CAMS (in-situ)		2000-2018	Chevallier et al. (2005) Rödenbeck (2005)
	Jena CarboScopeReg (in situ)		2006-2010	Kountouris et al. (2018)

Table S6. Data sources for the land CO₂ emissions in this analysis.

Table S7. Data sources for total CH4 emissions in this analysis.

Method/observations	Product type / number of inversions	Overall period covered	References
TD (surface stations)	Carbon Tracker-Europe CH, CTE_SURF (FMI)/ 1	2000-2017	Tsuruta et al. (2017)
TD (GOSAT NIES L2 v2.72)	Carbon Tracker-Europe CH, CTE_GOSAT (FMI)/ 1	2000-2017	Tsuruta et al. (2017)
TD (surface stations)	GELCA_SURF (NIES)/ 1	2000-2015	Ishizawa et al. (2016)
TD (surface stations)	LMDZ_PYVAR (LSCE)/ 2	2010-2016	Yin et al. (2020)
TD (GOSAT 7.2 Leicester v2)	LMDZ_PYVAR (LSCE)/ 4	2010-2016	Yin et al. (2020)
TD (GOSAT 7.2 Leicester v2)	LMDZ_PYVAR (LSCE)/ 2	2010-2017	Zheng et al. (2018)
TD (surface stations)	MIROC4- ACTM (JAMSTEC)/ 1	2010-2016	Patra et al. (2016)
TD (surface stations)	NICAM-TM (NIES)/ 1	2000-2017	Niwal et al. (2017)
TD (surface stations)	NIES-TM-FLEXPART-VAR (NETFVAR), (NIES)/ 1	2010-2017	Maksyutov et al. (2020); Wang et al. (2019)
TD (GOSAT NIES L2 v2.72)	NIES-TM-FLEXPART-VAR (NETFVAR), (NIES)/ 1	2010-2017	Maksyutov et al. (2020); Wang et al. (2019)
TD (surface stations)	TM5-CAMS (TNO)/1	2000-2017	Segers and Houweling (2018). Bergamaschi et al. (2013, 2018)
TD (GOSAT/CCI v2.3.8 and surface observations)	TM5-CAMS (TNO)/1	2010-2017	Segers and Houweling (2018). Bergamaschi et al. (2013, 2018)
TD (surface stations)	TM5-4DVAR (EC_JRC)/2	2000-2017	Bergamaschi et al. (2013, 2018)
TD (GOSAT/CCI v2.3.8 and surface observations)	TM5-4DVAR(EC_JRC)/2	2010-2017	Bergamaschi et al. (2013, 2018)
TD (surface stations)	TOMCAT (University of Leeds)/	2003-2015	McNorton (2018)

Product type / file name Method **Period covered** References Thompson et al. (2014), Tian et al. (2020) TD **PyVAR** 1998-2017 TD TOMCAT- INVICAT 1998-2015 Wilson et al. (2014), Tian et al. (2020) TD MIROC4- ACTM (JAMSTEC) Patra et al. (2018), Tian et al. (2020) 1998-2016

212 Table S8. Data sources for total N₂O inverse flux over Africa (in situ).

242 Table S9. Area of managed land reported in NC/BUR/REDD+ versus FAO forest land (2015) and FAO forest land

243 + other woodlands (2015) for Africa.

Country	Forest area in Mha. Data: FAO (2015)	Inventories forest area in Mha. Data: UNFCCC/REDD+	Forest land area + other woodland area in Mha. Data : FAO (2015)
Mauritius	0.04	0.00	0.05
Rwanda	0.27	0.00	0.53
Cape Verde	0.04	0.04	0.08
Burundi	0.28	0.71	0.28
Togo	1.22	1.00	3.33
Eritrea	1.07	1.59	7.03
Algeria	1.96	2.14	4.53
Guinea-Bissau	2.02	2.46	2.19
Eq. Guinea	2.49	2.50	2.49
Mauritania	0.34	3.00	2.74
Côte d'Ivoire	3.40	3.40	5.96
Benin	3.39	3.59	5.34
Liberia	7.77	4.52	8.07
Guinea	6.39	4.60	12.24
Kenya	3.52	4.75	35.14
Botswana	15.85	5.83	42.34
Morocco	5.68	6.00	6.97
Namibia	6.99	7.00	61.07
Niger	1.14	8.00	4.28
Ghana	7.88	8.97	7.88
Madagascar	12.50	9.00	26.96
Malawi	2.45	9.00	2.45
Nigeria	22.44	14.00	22.44
Senegal	8.27	14.00	13.42
Zimbabwe	17.67	16.00	25.13
Ethiopia	17.43	17.43	39.83
Gabon	23.59	18.27	23.59
Cameroon	20.62	20.00	33.34
South Africa	17.23	23.00	66.91
Congo	22.02	23.52	26.39
Burkina Faso Mozambique	6.47 37.94	27.30 34.00	16.45 52.36
Tanzania	48.09	48.00	63.38
Zambia	45.76	48.00	58.97
Angola	69.38	53.00	95.31
Sudan	19.21	70.00	39.96
Dem. Rep. Congo	131.66	152.00	143.17

Comparison of UNFCCC vs. FAO forest land area and FAO forest + other wood land (year 2015) in MhA

Figure S10. Bar plots comparing areas of managed land reported in Mha for NC/BUR/REDD+ versus FAO forest land

(2015) in Mha and FAO forest land + other woodlands areas (2015) for African countries. (Source: Forest Resource

- Assessment, FAO, 2021). See also Table S7 for detailed values.

264 Table S10. Synthesis of TD and BU mean CH₄ emissions and removals in MtCO₂e.yr⁻¹ for the overlapping time series

Region	Rank median PRIMAP	Rank median GOSAT	Rank median surface inversions	Rank wetlands median GMB	Rank wildfires	Rank wetlands median GMB	
North Africa	1	1	1	5	3	5	
Subsahelian West Africa	2	3	2	4	5	4	
Horn of Africa	3	2	3	3	4	3	
Southern Africa	4	5	5	2	1	2	
Central Africa	5	4	4	1	2	1	
South Africa Group	6	6	6	6	6	6	

265 (2010-2017) for whole Africa and for the six groups using Method 1 (Foss+ AGRIW + BBUR - wildfires).

- 300 Table S11. Anomalies in ranking for TD and BU mean values on the overlapping time periods (2010-2017) for whole
- 301 Africa, and for six African groups using Method 1 for anthropogenic CH₄ (FOSS + AGRIW + BBUR wildfires) in

302 MtCO₂e.yr⁻¹.

Region	PRIMAP	Median GOSAT inv.	Max GOSAT inv.	Min GOSAT inv.	Median surface inv.	Max surface inv.	Min surface inv.	Max wetlands GCB	Median wetlands GCB	Min wetlands GCB	Wildfires
Africa Total	1231	1117	1390	903	1094	1330	853	946	827	481	110
North Africa	293	270	330	174	302	396	245	146	69	34	11
Subsahelian West Africa	272	186	329	174	249	396	245	161	77	48	8
Horn of Africa	252	242	551	206	237	302	183	171	86	47	9
Southern Africa	212	114	173	99	114	146	91	214	102	65	41
Central Africa	123	130	170	106	123	142	88	615	428	195	40
South Africa Group	78	91	168	75	88	124	65	21	13	2	1

303 304

305 Table S12. Synthesis of wetlands (GCB) mean CH4 emissions and removals in MtCO2e.yr⁻¹ for the overlapping time

306 series (2010-2017) for the whole Africa and six African groups.

Region	Max wetlands GCB	Median wetlands GCB	Min wetlands GCB	
Africa	946	827	481	
North Africa	146	69	34	
Subsahelian West Africa	161	77	48	
Horn of Africa	171	86	47	
Southern Africa	214	102	65	
Central Africa	615	428	195	
South Africa group	21	13	2	

308Table S13. Comparison between N2O PRIMAP-hist mean values and the median of inversions on the overlapping309period (2010-2017) for Africa and the six African groups in MtCO2e.yr⁻¹.

Region	PRIMAP-hist	Median global inversions
Africa total	360	1647 (1502 to 1760)
North Africa	106	330 (274 to 419)
Subsahelian West Africa	68	271 (68 to 330)
Horn of Africa	46	240 (217 to 265)
Southern Africa	62	263 (214 to 310)
Central Africa	182	461 (424 to 517)
South Africa group	24	68 (51 to 81)

310

Table S14. Synthesis for the three main GHGs net African budget: comparative net emissions and removals computation by TD methods for Africa as a whole and for six sub-groups of African countries over the overlapping period (2001-2017), in MtCO₂e. Use of Method 1 for CH₄ (FOS+AGRIW+BBUR-wildfires) excluding UNFCCC outliers, and including the range for GCP CO₂ LULUCF.

Region	TD Method 1 and GCP for FCO ₂				TD Method 1 and PRIMAP for FCO ₂			
	CH ₄ median GOSAT inversions + median N ₂ O inversions	CH4 median SURF inversions + median N2O inversions	CH₄ median SURF inversions + PRIMAP N2O	CH₄ median GOSAT inversions + PRIMAP N₂O	CH ₄ median GOSAT inversions + median N ₂ O inversions	CH₄ median SURF inversions + median N2O inversions	CH₄ median SURF inversions + PRIMAP N ₂ O	CH₄ median GOSAT inversions + PRIMAP N ₂ O
Africa total	3889 ⁷²⁵⁷ 1296	3866 ⁷¹⁹⁷ 1246	2579^{5797}_{104}	2602_{154}^{5857}	3983 ⁷⁶²¹ 1390	3960 ⁷²⁹¹ 1340	2673^{5890}_{198}	2696 ⁵⁹⁵⁰ 248
North Africa	1014^{1438}_{553}	1046^{1504}_{624}	822^{1190}_{456}	$790{}^{1124}_{385}$	1022^{1446}_{591}	1054^{1511}_{632}	830^{1232}_{464}	798^{1132}_{393}
Central Africa	758^{2064}_{-758}	751^{2036}_{-776}	344_{-1145}^{1573}	351^{1602}_{-1128}	766_{-750}^{2072}	759^{2043}_{-768}	352^{1582}_{-1138}	359^{1610}_{-1120}
Subsahelian West Africa	546 ¹²⁸² -95	609^{1349}_{-24}	406^{1086}_{-24}	343 ¹⁰¹⁹ 95	542^{1278}_{-98}	605^{1345}_{-27}	403^{1083}_{-27}	340^{1016}_{98}
Southern Africa	616_{-175}^{1726}	616^{1699}_{-186}	415^{1451}_{-338}	415^{1478}_{-331}	618^{1728}_{-340}	618^{1701}_{-348}	416_{-337}^{1452}	416^{1479}_{-329}
South Africa group	458^{710}_{103}	455 ⁷⁴⁷ 93	411^{689}_{116}	414_{126}^{734}	537 ⁸⁷¹ 184	534 ⁹²⁷	490 ⁷⁶⁹ 196	493 ⁸¹³ 206
Horn of Africa	399^{1215}_{-274}	394^{966}_{-297}	201^{748}_{-467}	206997	401^{1216}_{-273}	395 ⁹⁶⁷ 296	202^{749}_{-467}	207^{998}_{-444}

- 316
- 317

- 320 Table S15. Synthesis for the three main GHGs net African budget: comparative net emissions and removals computation by
- 321 TD methods for Africa as a whole and for six sub-groups of African countries over the overlapping period (2001-2017), in
- 322 MtCO₂e. Use of Method 1 for CH₄ (FOS+AGRIW+BBUR-wildfires) excluding UNFCCC outliers, and excluding the range
- 323 for GCP CO₂ LULUCF (possible outliers).

324									
	Region	TD Method 1 and GCP FCO ₂				TD Method 1 and PRIMAP FCO ₂			
		CH4 median GOSAT inversions + median N2O inversions	CH4 median SURF inversions + median N2O inversions	CH₄ median SURF inversions + PRIMAP N2O	CH4 median GOSAT inversions + PRIMAP N2O	CH4 median GOSAT inversions + median N2O inversions	CH4 median SURF inversions + median N2O inversions	CH₄ median SURF inversions + PRIMAP N2O	CH₄ median GOSAT inversions + PRIMAP N ₂ O
	Africa total	3889 ⁴²⁷⁶ 3530	3866^{4216}_{3480}	2579 ²⁸¹⁵ 2338	2602 ²⁸⁷⁵ 2388	3983 ⁴⁶³⁹ 3624	3960 ⁴³⁰⁹ 3574	2673 ²⁹⁰⁹ 2432	2696 ²⁹⁶⁹ 2482
	North Africa	1014^{1164}_{862}	$1046^{1230}_{933.1}$	822_{765}^{916}	$790\ {}^{850}_{694}$	1022^{1171}_{870}	1054^{1237}_{941}	830 ⁹⁵⁸ 773	798 ⁸⁵⁸ 702
	Central Africa	758^{853}_{697}	751^{826}_{679}	344 ³⁶³ 309	351^{391}_{327}	766 ⁸⁶² 705	759^{833}_{687}	352^{371}_{317}	359 ³⁹⁹ 335
	Subsahelian West Africa	546 ⁷⁴⁸ 331	609^{815}_{402}	406_{402}^{553}	343^{486}_{331}	542 ⁷⁴⁵ 328	605^{812}_{399}	403 ⁵⁵⁰ 399	340^{483}_{328}
	Southern Africa	616_{552}^{722}	616_{544}^{695}	415^{447}_{392}	415^{474}_{400}	618^{724}_{390}	618^{697}_{382}	416^{448}_{393}	416_{401}^{475}
	South Africa group	458^{467}_{374}	455^{504}_{364}	411^{446}_{388}	414^{491}_{398}	537^{628}_{453}	534_{443}^{584}	490_{467}^{526}	493 ⁵⁷⁰ 477
	Horn of Africa	399 ⁷³³ 340	394^{484}_{317}	201^{266}_{147}	206^{515}_{179}	400^{734}_{341}	395^{485}_{318}	202_{148}^{267}	207^{516}_{171}

338 Table S16. Mean net total Africa and regional groups from mean TD (excluding the range for CO₂ LULUCF due to

339 outliers) and mean best fitted BU Methods excluding outliers. (For TD approaches, N2O inversions were excluded and

replaced by PRIMAP estimates. For DGVMs the range for GCP CO₂ LULUCF was not considered due to probable outliers. UNFCCC outliers are also excluded.) Net emissions and removals are expressed in MtCO₂e.yr⁻¹ over the

342 overlapping period (2001-2017).

Region	Mean of TD methods excluding N ₂ O inversions replaced with N ₂ O PRIMAP and excluding the range for GCP CO ₂ LULUCF (with probable outliers)	Ranking with TD methods	Mean net of best fitted BU methods (excluding uncorrected UNFCCC data)	Ranking with BU methods
North Africa	806 ⁸⁸³ ₇₃₀ (GCP FCO ₂) 814 ⁹⁰⁸ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 810 ⁸⁹⁵ ₇₃₃	1	$713_{641}^{807} (GCP FCO_2) 720_{649}^{816} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 717_{645}^{812}$	1
South Africa group	$\begin{array}{r} 412_{393}^{468} \ (\text{GCP FCO}_2) \\ 491_{472}^{547} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 452_{432}^{508} \end{array}$	2	$534_{443}^{613} (\text{GCP FCO}_2) \\ 613_{522}^{692} \text{ PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP (FCO}_2): \\ 574_{483}^{653} \\ \end{array}$	3
Horn of Africa	$203^{390}_{158} (GCP FCO_2) 204^{391}_{159} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 204^{391}_{159}$	6	432 ⁵²⁴ (GCP FCO ₂) 433 ⁵²⁵ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 433 ⁵²⁵ ₂₉₇	4
Subsahelian West Africa	$\begin{array}{r} 375\ {}^{520}_{367}(\text{GCP FCO}_2)\\ 371\ {}^{516}_{363}\ (\text{PRIMAP FCO}_2)\\ \text{Mean GCP \& PRIMAP (FCO}_2):\\ 373\ {}^{518}_{365}\end{array}$	4	$612_{539}^{776} (\text{GCP FCO}_2) \\ 609_{535}^{772} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP (FCO}_2): \\ 610_{537}^{774} \\ \end{array}$	2
Southern Africa	$\begin{array}{c} 415{}^{460}_{396}(\text{GCP FCO}_2)\\ 416{}^{460}_{397}(\text{PRIMAP FCO}_2)\\ \text{Mean GCP \& PRIMAP (FCO}_2):\\ 416{}^{461}_{397}\end{array}$	3	$\begin{array}{c} 228^{529}_{178}(\text{GCP FCO}_2)\\ 355^{531}_{179}(\text{PRIMAP FCO}_2)\\ \text{Mean GCP \& PRIMAP (FCO}_2):\\ 292^{530}_{178}\end{array}$	5
Central Africa	$\begin{array}{c} 348 {}^{377}_{318}(\text{GCP FCO}_2) \\ 356 {}^{385}_{326} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 352 {}^{381}_{322} \end{array}$	5	$-70_{-210}^{168}(\text{GCP FCO}_2) -62_{-202}^{176}(\text{PRIMAP FCO}_2) Mean GCP & PRIMAP (FCO}_2): -66_{-206}^{172}$	6
Africa total	$\begin{array}{c} 2591^{2845}_{2363}(\text{GCP FCO}_2)\\ 2684^{2939}_{2457} \ (\text{PRIMAP FCO}_2)\\ \text{Mean GCP & PRIMAP (FCO}_2):\\ 2638^{2892}_{2410}\end{array}$		$\begin{array}{c} 2576_{2140}^{3228} (\text{GCP FCO}_2) \\ 2669_{2233}^{3251} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 2623_{2186}^{3240} \end{array}$	

- Table S17. Mean net total Africa and regional groups from best fitted mean TD and mean BU Methods excluding outliers.
- For TD approaches, N₂O inversions were excluded and replaced by PRIMAP estimates. For DGVMs, the range for GCP
- CO2 LULUCF was considered. UNFCCC outliers are also excluded. Net emissions and removals are expressed in MtCO2.yr
- ¹ over the overlapping period (2001-2017).

Region	Mean net of TD methods (including range for CO ₂ LULUCF from GCP inversions with outliers but excluding N ₂ O inversions (N ₂ O PRIMAP)	Ranking with TD methods	Mean net of best fitted BU methods (excluding uncorrected UNFCCC data)	Ranking with BU methods
North Africa	$806_{129}^{1157} (\text{GCP FCO}_2) \\814_{428}^{1182} (\text{PRIMAP FCO}_2) \\\text{Mean GCP & PRIMAP:} \\810_{279}^{1170}$	1	$713_{649}^{807} (\text{GCP FCO}_2) 720_{649}^{816} (\text{PRIMAP FCO}_2) Mean GCP & PRIMAP (FCO}_2): 717_{645}^{812} $	1
South Africa group	$\begin{array}{c} 412^{712}_{121} (\text{GCP FCO}_2) \\ 491^{791}_{201} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP:} \\ 452^{751}_{161} \end{array}$	2	$534_{43}^{613} (\text{GCP FCO}_2) \\ 613_{522}^{692} \text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP (FCO}_2): \\ 574_{483}^{653} \\ \end{array}$	3
Horn of Africa	$\begin{array}{c} 203 \ ^{872}_{-456} (\text{GCP FCO}_2) \\ 204 \ ^{873}_{-455} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP:} \\ 204 \ ^{873}_{-456} \end{array}$	6	$\begin{array}{r} 432^{524}_{296}(\text{GCP FCO}_2) \\ 433^{525}_{297}(\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 433^{525}_{296}\end{array}$	4
Subsahelian West Africa	$\begin{array}{c} 375 \frac{1053}{36} (\text{GCP FCO}_2) \\ 371 \frac{1050}{36} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP:} \\ 373 \frac{1051}{356} \end{array}$	4	$\begin{array}{c} 612^{776}_{575} (\text{GCP FCO}_2) \\ 609^{772}_{535} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 610^{774}_{537} \end{array}$	2
Southern Africa	$\begin{array}{r} 415 \ {}^{1464}_{-335} (\text{GCP FCO}_2) \\ 416^{1466}_{-333} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP & PRIMAP:} \\ 416^{1465}_{-334} \end{array}$	3	228 ⁵²⁹ ₁₇₈ (GCP FCO ₂) 355 ⁵³¹ ₁₇₉ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 292 ⁵³⁰ ₁₇₈	5
Central Africa	348 ¹⁵⁸⁸ ₋₁₁₃₇ (GCP FCO ₂) 356 ¹⁵⁹⁶ ₋₁₁₂₉ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 352 ¹⁵⁹² ₋₁₁₃₃	5	-70_{-210}^{168} (GCP FCO ₂) -62_{-202}^{176} (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): -66_{-206}^{172}	6
Africa total	2583 ³⁰³⁷ ₂₂₅₁ (GCP FCO ₂) 2654 ³⁰⁸⁹ ₂₃₂₂ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 2638 ⁵⁸⁷³ ₁₇₆₁		2576 ³²²⁸ ₂₁₄₀ (GCP FCO ₂) 2669 ³²²³ ₂₂₃₃ (PRIMAP FCO ₂) Mean GCP & PRIMAP (FCO ₂): 2623 ³²⁴⁰ ₂₁₈₆	

- 366 Table S18. Mean net total of best fitted mean TD and mean BU methods excluding N₂O inversions (replaced by
- 367 PRIMAP estimates), using Method 1 for CH4 (FOS+AGRIW+BBUR-wildfires) excluding UNFCCC outliers, and
- 368 including the range for GCP CO₂ LULUCF, for Africa total and for regional groups, with associated ranking.

Region	Mean of best fitted TD and BU methods using both GCP and PRIMAP FCO ₂ (excluding UNFCCC outliers and N ₂ O inversions, but including range for CO ₂ LULUCF from GCP inversions)	Ranking with T methods
North Africa	761 ⁹⁸⁸ / ₄₆₀	1
South Africa group	513_{161}^{702}	2
Horn of Africa	318 ⁶⁹⁹ ₋₈₀	5
Subsahelian West Africa	492 ⁹¹³ 286	3
Southern Africa	354 ₋₇₈	4
Central Africa	143_{-670}^{-882}	6
Africa total	2630 ⁴⁵⁵⁷	

384 Table S19. Mean net total Africa and regional groups from TD inversions only including N₂O inversions (and the range

Region	Mean TD from inversions only (including range for CO ₂ LULUCF from GCP inversions and N ₂ O inversions)	Ranking with BU methods
North Africa	$1030_{589}^{1471} (GCP FCO_2) \\1038_{512}^{1479} (PRIMAP FCO_2) \\Mean GCP \& PRIMAP (FCO_2): \\1034_{600}^{1475}$	1
South Africa group	$\begin{array}{c} 457_{98}^{729} \ (\text{GCP FCO}_2) \\ 536_{178}^{899} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 496_{138}^{814} \end{array}$	5
Horn of Africa	$\begin{array}{c} 397 \ _{-286}^{1090} \ (\text{GCP FCO}_2) \\ 398 \ _{-285}^{1091} \ (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ 397 \ _{-285}^{1091} \end{array}$	6
Subsahelian West Africa	$577 \stackrel{1315}{_{-60}} (\text{GCP FCO}_2) 574 \stackrel{1312}{_{-63}} (\text{PRIMAP FCO}_2) \text{Mean GCP & PRIMAP (FCO}_2): 576 \stackrel{1313}{_{-61}}$	4
Southern Africa	$616 {}^{1713}_{-181} (\text{GCP FCO}_2)$ $618 {}^{1714}_{-344} (\text{PRIMAP FCO}_2)$ Mean GCP & PRIMAP (FCO_2): $617 {}^{1713}_{-262}$	3
Central Africa	$755_{-767}^{2050} (GCP FCO_2) 763_{-759}^{2058} (PRIMAP FCO_2) Mean GCP & PRIMAP (FCO_2): 759_{-763}^{2054}$	2
Africa total	$\begin{array}{c} 3787^{7226}_{1274} (\text{GCP FCO}_2) \\ 3971^{7456}_{1365} (\text{PRIMAP FCO}_2) \\ \text{Mean GCP \& PRIMAP (FCO}_2): \\ & 3879^{7341}_{1320} \end{array}$	

385 for CO₂ LULUCF from GCP inversions). For BU methods, UNFCCC outliers are excluded.

Africa: PRIMAP vs top-down Anthropogenic CH₄ emissions (FCH4 TOT-WETLAND-OTHER-BBUR-WF)

390

391 Figure S11. Comparison of the total anthropogenic CH₄ emissions from PRIMAP-hist and 22 top-down global 392 ensembles using Method 2 for total Africa, including wildfire emissions. Anthropogenic CH₄ emissions from TD 393 methods were computed by withdrawing the sum of available data regarding natural emissions from the total flux 394 (wetlands, "other natural" emissions, biomass burning, and wildfires (GFEDv4)). Black lines denote the PRIMAP-395 hist estimates for total anthropogenic emissions including all IPCC sectors. Shaded green areas represent the 396 minimum and maximum ranges from satellite concentration observations (GOSAT) inversions. Shaded blue areas 397 represent the minimum and maximum ranges for wetlands. Shaded yellow areas represent the minimum and 398 maximum ranges for surface stations (SURF). Green dashes denote the median of 11 global GOSAT satellites, blue 399 dashes denote the median of wetlands, yellow dashes the median of inversions using surface stations (SURF). The 400 orange lines represent wildfire emissions. Following the atmospheric convention, positive numbers represent an 401 emission to the atmosphere.

402

403

406 Figure S12. Synthesis of the different methodological steps used in this paper for assessing net African GHG trends.

41'
 Figure S13. Differences in MtCO₂e in the CH₄ emissions, N₂O emissions and total GHG net budget coming from the use of
 AR4 and AR6 GWP-100 for CH₄ and N₂O with PRIMAP fossil CO₂ emissions and LULUCF CO₂ for the 6 African regions
 and Africa total, using PRIMAP-hist for fossil CO₂ and UNFCCC data consistent with Grassi et al. (2022).

431
432
432
433
434
435
435
436
437
438
438
439
439
439
430
430
430
431
430
431
431
431
432
434
435
434
435
434
435
434
435
434
435
434
435
434
435
434
435
434
435
434
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44<

- 435
- 436

437 **References**

Andrew, R. M.: A comparison of estimates of global carbon dioxide emissions from fossil carbon sources, Earth Syst. Sci.
Data, 12, 1437–1465, https://doi.org/10.5194/essd-12-1437-2020, 2020.

Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., and Ciais, P.: Inferring CO2
sources and sinks from satellite observations: Method and application to TOVS data, J. Geophys. Res. Atmospheres, 110,
https://doi.org/10.1029/2005JD006390, 2005.

445 FAO FRA: FAO Global Forests Resource Assessment, available at: fra-data.fao.org, last access: 12 June 2022, 2020.

FAO: Emissions from agriculture and forest land, Global, regional and country trends 1990–2019 [data set], FAO,
Rome, <u>https://www.fao.org/faostat/en/#data/GT</u>, last access: 15 July 2022, 2021.

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz,
J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V.,
Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P.,
Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris,

- 454 I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V.,
- 455 Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N.,
- 456 Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B.,
- 457 Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua,

- T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J.,
 Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12,
 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.
- 461

462 Gilfillan, D., and Marland G.: CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement 463 manufacture: 1751–2017, https://doi.org/10.5194/essd-13-1667-2021, 2021.

Grassi, G., Stehfest, E., Rogelj, J., van Vuuren, D., Cescatti, A., House, J., Nabuurs, G.-J., Rossi, S., Alkama, R., Viñas,
R. A., Calvin, K., Ceccherini, G., Federici, S., Fujimori, S., Gusti, M., Hasegawa, T., Havlik, P., Humpenöder, F., Korosuo,
A., Perugini, L., Tubiello, F. N., and Popp, A.: Critical adjustment of land mitigation pathways for assessing countries'
climate progress, Nat. Clim. Change, 11, 425–434, https://doi.org/10.1038/s41558-021-01033-6, 2021.

Grassi, G., Conchedda, G., Federici, S., Abad Viñas, R., Korosuo, A., Melo, J., Rossi, S., Sandker, M., Somogyi, Z., and
Tubiello, F. N.: Carbon fluxes from land 2000–2020: bringing clarity on countries' reporting, Biogeosciences and
biodiversity, https://doi.org/10.5194/essd-2022-104, 2022.

Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., and Rocha, M.: The PRIMAP-hist national
historical emissions time series, Earth Syst. Sci. Data, 8, 571–603, https://doi.org/10.5194/essd-8-571-2016, 2016.

Gütschow, J., Günther, A., Jeffery, M. L., and Gieseke, R.: The PRIMAP-hist national historical emissions time series
(1850-2018) v2.2, https://doi.org/10.5281/zenodo.4479172, 2021.

477

478 IMF: International Monetary Fund: International Monetary Fund website. available at: 479 https://www.imf.org/en/Publications/fandd/issues/Series/Back-to-Basics/gross-domestic-product-GDP, last access: 15 480 February 2022. 481

IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C.
Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.
Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896, 2021.

Mostefaoui, M., Ciais, P., McGrath, M. J., Peylin, P., Prabir, P. K., Saunois, M., Chevallier, F., Sitch, S., Rodenbeck, C.,
Luijkx, I., and Thompson, R.: Datasets for greenhouse gasses emissions and removals from inventories and global models
over Africa v0.1, Zenodo [data set], https://doi.org/10.5281/zenodo.7347077, 2022.

492 NOAA Website, available at: https://www.noaa.gov/, last access: 16 August 2023, 2023.

Patra, P. K., Takigawa, M., Watanabe, S., Chandra, N., Ishijima, K., and Yamashita, Y.: Improved Chemical Tracer
Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM), Sola, 14, 91–96,
https://doi.org/10.2151/sola.2018-016, 2018.

496

World Bank: GDP exchange rate estimates, available at https://data.worldbank.org/indicator/NY.GDP.MKTP.CD, last
 access: 15 August 2022, 2019.

499

500 World Bank: World Bank economic data, available at: https://www.worldbank.org/, last access: 15 August 2022, 2022.