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Abstract. The Long-term Gap-free High-resolution Air Pollutants (LGHAP) concentration dataset generated
in our previous study has provided spatially contiguous daily aerosol optical depth (AOD) and fine particulate
matter (PM2.5) concentrations at a 1 km grid resolution in China since 2000. This advancement empowered
unprecedented assessments of regional aerosol variations and their influence on the environment, health, and
climate over the past 20 years. However, there is a need to enhance such a high-quality AOD and PM2.5 concen-
tration dataset with new robust features and extended spatial coverage. In this study, we present version 2 of a
global-scale LGHAP dataset (LGHAP v2), which was generated using improved big Earth data analytics via a
seamless integration of versatile data science, pattern recognition, and machine learning methods. Specifically,
multimodal AODs and air quality measurements acquired from relevant satellites, ground monitoring stations,
and numerical models were harmonized by harnessing the capability of random-forest-based data-driven mod-
els. Subsequently, an improved tensor-flow-based AOD reconstruction algorithm was developed to weave the
harmonized multisource AOD products together for filling data gaps in Multi-Angle Implementation of Atmo-
spheric Correction (MAIAC) AOD retrievals from Terra. The results of the ablation experiments demonstrated
better performance of the improved tensor-flow-based gap-filling method in terms of both convergence speed
and data accuracy. Ground-based validation results indicated good data accuracy of this global gap-free AOD
dataset, with a correlation coefficient (R) of 0.85 and a root mean square error (RMSE) of 0.14 compared to the
worldwide AOD observations from the AErosol RObotic NETwork (AERONET), outperforming the purely re-
constructed AODs (R = 0.83, RMSE = 0.15), but they were slightly worse than raw MAIAC AOD retrievals (R
= 0.88, RMSE = 0.11). For PM2.5 concentration mapping, a novel deep-learning approach, termed the SCene-
Aware ensemble learning Graph ATtention network (SCAGAT), was hereby applied. While accounting for the
scene representativeness of data-driven models across regions, the SCAGAT algorithm performed better dur-
ing spatial extrapolation, largely reducing modeling biases over regions with limited and/or even absent in situ
PM2.5 concentration measurements. The validation results indicated that the gap-free PM2.5 concentration esti-
mates exhibit higher prediction accuracies, with an R of 0.95 and an RMSE of 5.7 µg m−3, compared to PM2.5
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concentration measurements obtained from former holdout sites worldwide. Overall, while leveraging state-of-
the-art methods in data science and artificial intelligence, a quality-enhanced LGHAP v2 dataset was generated
through big Earth data analytics by cohesively weaving together multimodal AODs and air quality measurements
from diverse sources. The gap-free, high-resolution, and global coverage merits render the LGHAP v2 dataset
an invaluable database for advancing aerosol- and haze-related studies as well as triggering multidisciplinary ap-
plications for environmental management, health-risk assessment, and climate change attribution. All gap-free
AOD and PM2.5 concentration grids in the LGHAP v2 dataset, as well as the data user guide and relevant visual-
ization codes, are publicly accessible at https://zenodo.org/communities/ecnu_lghap (last access: 3 April 2024,
Bai and Li, 2023a).

1 Introduction

Atmospheric aerosols, produced from either natural or an-
thropogenic emissions, have been proven to pose significant
threats to human health, the ambient environment, and cli-
mate (Up in the aerosol, 2022). The risks to public health
from aerosol pollution are evident, with about 4.2 million
deaths per year attributable to the exposure of fine aerosol
particles, as stated by the World Health Organization (WHO,
2022). With increased aerosol loading, aerosols can sig-
nificantly impair atmospheric visibility because of the hy-
groscopic effect, thereby reducing direct solar radiation on
Earth’s surface (Liu et al., 2020; Wang and Yang, 2014; Wild
et al., 2021; Yang et al., 2016). In addition to the evident in-
fluence on air quality (Li et al., 2017), atmospheric aerosols
have an important and complex influence on regional and
even global climate (Guo et al., 2016, 2019; Li et al., 2019;
Yang et al., 2020; Zhao et al., 2020). Therefore, accurate
monitoring of the atmospheric aerosol loading is vital for im-
proving our understanding of the human-driven ambient en-
vironment and exposure pathways in health-risk assessment.

Aerosol optical depth (AOD), a measure of aerosols dis-
tributed within an air column from Earth’s surface to the
top of the atmosphere, has been widely used as a key in-
dicator of total atmospheric aerosol loading. Ground-based
aerosol observing networks, e.g., the internationally col-
laborated AErosol RObotic NETwork (AERONET), China
Aerosol Remote Sensing Network (CARSNET), and Sun-
Sky Radiometer Observation Network (SONET), have long
served as the ground truth for AOD monitoring (Che et al.,
2015; Giles et al., 2019; Li et al., 2018). However, the sparse
distribution of aerosol monitoring stations poses a significant
challenge in gaining a comprehensive understanding of the
aerosol variations across the globe.

Satellite-based AOD data bridge this gap by providing spa-
tially resolved AOD retrievals with extensive spatial cov-
erage. Over the past 40 years, a variety of spaceborne in-
struments, e.g., the Sea-Viewing Wide Field-of-View Sen-
sor (SeaWiFS), Moderate Resolution Imaging Spectrora-
diometer (MODIS), Visible Infrared Imaging Radiometer
Suite (VIIRS), and Polarization and Directionality of the
Earth’s Reflectances (POLDER), were deployed on board

various satellite platforms and launched into space (Wei et
al., 2020). These versatile instruments provide ample AOD
and aerosol property measurements, enabling us to map
the global AOD distribution with finer spatial resolutions.
Nonetheless, satellite-based AOD retrievals often suffer from
excessive data gaps because of extensive cloud cover and re-
trieval failures, significantly impairing the data application
potential and resulting in large uncertainties when assessing
the influence of aerosol on weather and climate.

A variety of gap-filling methods were developed and ap-
plied to reconstruct the missing values in the remotely sensed
satellite AOD images (Wei et al., 2020; Xiao et al., 2021).
The simplest method is to fill in data gaps with valid ob-
servations from alternative data sources, e.g., filling in data
gaps in MODIS AOD images from Terra with AOD observa-
tions from Aqua (Bai et al., 2019; Sogacheva et al., 2020) or
fusing with AOD simulation outputs from numerical models
(Xiao et al., 2021). Such a substitution method is straightfor-
ward and effective, particularly in an era with big Earth ob-
servation data. Nonetheless, cross-mission biases are always
salient between satellite-based retrievals because of the sig-
nificant differences in instrument properties and/or retrieval
algorithms. Thus, bias correction is essential for reducing
systematic biases (Bai et al., 2016b, a), and methods such
as linear regression and maximum likelihood estimation are
often applied for this purpose (Bai et al., 2016a, b, 2019; Ma
et al., 2016; Xu et al., 2015). More complex methods, like
Bayesian maximum entropy, were also applied to fuse AOD
products, even with varying spatial resolutions (Tang et al.,
2016; X. Wei et al., 2021).

Another type of gap-filling method works, in principle, to
recover missing information via dominant pattern recogni-
tion and reconstruction over space and time, and the Data
INterpolating Empirical Orthogonal Functions (DINEOF)
method is a representative one (Beckers and Rixen, 2003;
Liu and Wang, 2019). Two similar methods were developed
to fill data gaps in the ground-measured particulate matter
(PM2.5) concentration time series and geostationary satellite-
sensed AOD images (Bai et al., 2020; L. Li et al., 2022).
Similarly, Zhang et al. (2022) developed a spatiotemporal fit-
ting algorithm to fill gaps in the daily MODIS AOD product
by predicting AOD values based on annual trends and spa-
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tial residues inferred from neighboring pixels. Nonetheless,
filling data gaps with a single data source is always challeng-
ing, particularly for those with extensive missing values (e.g.,
satellite-based AOD). Learning missing values from exter-
nal information, e.g., numerical AOD simulations (Li et al.,
2020; Xiao et al., 2017) and meteorological factors (Bi et al.,
2019), was proven an effective and feasible way of improv-
ing the spatial coverage of reconstructed AOD fields.

The tensor-flow-based method, a more complex big data
analytics framework, was developed to integrate six satellite-
based AOD datasets, numerical aerosol diagnostics, and in
situ air quality measurements, while a machine learning
method, i.e., random forest, was applied for downscaling
and bias-correction purposes (Bai et al., 2022a). Harness-
ing multimodal data fusion and missing value reconstruction
capabilities, a long-term gap-free high-resolution MODIS-
like AOD dataset (LGHAP v1) was successfully generated in
China, with an overall data accuracy comparable to raw satel-
lite retrievals, from which gap-free PM2.5 and PM10 con-
centrations were mapped on a daily basis. Despite the good
performance, additional investigations have recently proven
the critical importance of prior information for tensor-flow-
based gap-filling, particularly over areas with substantial
missing values (Bai et al., 2022a; K. Li et al., 2022; L. Li et
al., 2022). Moreover, the strategies of maintaining an invari-
ant background field and assigning equal weights to different
AOD inputs may slow down the convergence speed and de-
grade the reconstruction accuracy.

In this study, we present a new global-scale LGHAP
dataset, referred to as LGHAP v2 hereafter, which extends
daily gap-free AOD and PM2.5 concentrations from China to
worldwide at a 1 km grid resolution for the period of 2000–
2021. To accommodate massive global Earth observations
acquired from diverse sources, an improved big Earth data
analytics approach was developed by harnessing several new
algorithmic improvements to enhance the tensor-flow-based
AOD gap-filling. Moreover, a novel deep-learning method,
i.e., the SCene-Aware ensemble learning Graph ATtention
network (SCAGAT), was applied to fulfill far more accurate
PM2.5 concentration mapping across the globe, particularly
over regions with limited air quality monitoring stations.
Benefiting from the customized algorithmic improvements
and the innovative SCAGAT PM2.5 concentration mapping
approach, the LGHAP v2 dataset has not only an extended
spatial coverage from China to worldwide, but also improved
data accuracy. As a publicly accessible and global long-term
gap-free MODIS-like AOD and PM2.5 concentration dataset,
LGHAP v2 serves as a promising data source to improve our
understanding of global aerosol pollution dynamics and its
adverse impacts on public health, ecosystems, weather, and
climate.

2 Data sources

Similarly to our previous study, here we aim to synergis-
tically integrate the big Earth data acquired from diverse
sources to generate a global long-term gap-free AOD dataset
with a daily 1 km resolution, from which spatially contigu-
ous PM2.5 concentration estimates can then be derived us-
ing a more robust and accurate data-driven approach. Ta-
ble 1 describes the array of big Earth data employed in
this study, including gridded AOD products from six polar-
orbiting satellites, numerically simulated Modern-Era Retro-
spective Analysis for Research and Applications version 2
(MERRA-2) aerosol diagnostics, 10 meteorological reanaly-
sis fields, and datasets of in situ AOD and air pollutant con-
centration measurements. Additionally, auxiliary parameters
representing land use and land cover types, elevation, pop-
ulation density, and vegetation covers were also employed
as critical explanatory variables to harmonize discrepancies
among multimodal heterogeneous aerosol datasets. Note that
the spatial and temporal resolution as well as the time pe-
riod for each data product are different from those of the
benchmark dataset, i.e., the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) AOD product, and a data
homogenization method is therefore essential to account for
such discrepancies to reduce possible bias propagation in the
subsequent data fusion procedure.

2.1 Satellite-based AOD products

The AOD retrievals, derived from the MODIS sensor
on board Terra using the MAIAC algorithm (denoted as
AODTerra afterwards), were hereby used as the benchmark
for generating the global long-term gap-free AOD dataset,
given their finer spatiotemporal resolution and longer tem-
poral coverage (Lyapustin et al., 2011, 2018; Mhawish et
al., 2019). Previous studies have demonstrated the superior
quality of AODTerra relative to other gridded AOD products
(Chen et al., 2021; Martins et al., 2017; Qin et al., 2021) in re-
gard to data accuracy and spatiotemporal completeness, even
better than those retrieved with the well-known Dark Tar-
get and Deep Blue algorithms (Jiang et al., 2023; Liu et al.,
2019). Figure S1 in the Supplement presents the spatial and
temporal distribution of the coverage ratio of valid AODTerra
from 2000 to 2021 at each satellite footprint across the globe.

Satellite-based AOD retrievals from a few key instruments
other than MODIS were also applied to support gap-filling of
AODTerra, and they include the (1) VIIRS on board Suomi-
NPP, (2) Multi-angle Imaging SpectroRadiometer (MISR,
on board Terra), (3) Advanced Along-Track Scanning Ra-
diometer (AATSR, on board Envisat), (4) POLDER on board
PARASOL, and (5) SeaWIFS on board SeaStar. Meanwhile,
MAIAC AOD data from MODIS on board Aqua were also
applied as an important complementary data source. Given
their varied overpassing times and temporal spans, these mul-
tisensory AOD datasets can provide complementary obser-
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Table 1. Summary of the diverse big Earth data used in this study to generate global gap-free AOD and PM2.5 concentrations at daily and
1 km resolutions (LGHAP v2) from 2000 to 2021. Note spatial resolution is not applicable (n/a) for site-based data.

Category Product Temporal Spatial Time period
resolution resolution

AOD MCD19A2 (MAIAC) Daily 1 km 2000–2021
Terra/MISR Daily 4.4 km 2000–2021
NPP/VIIRS Daily 5 km 2012–2021
Envisat/AATSR Daily 10 km 2000–2012
PARASOL/POLDER Daily 10 km 2005–2013
SeaWiFS/OrbView-2 Daily 10 km 2000–2010
AERONET Hourly n/a 2000–2021

Meteorological factors Air temperature Hourly 0.25° 2000–2021
UV component of wind Hourly
Relative humidity Hourly
Surface pressure Hourly
Boundary layer height Hourly
Total column water vapor Hourly
Surface solar radiation downwards Hourly
Total precipitation Hourly
Instantaneous moisture flux Hourly
Visibility 3 h n/a 2000–2021

Air quality measurements PM2.5, PM10, NO2, SO2, CO Hourly n/a 2000–2021

Population WorldPop Annual 1 km 2000–2020

Land cover Impervious (GISA) Annual 30 m 2000–2020
MCD12Q1 Annual 500 m 2000–2021

NDVI MOD13A3 Monthly 1 km 2000–2021

Aerosol diagnostics MERRA-2 Hourly 0.5°× 0.625° 2000–2021

Elevation SRTM DEM n/a 90 m n/a

vations to help reduce random errors during the AOD data
reconstruction procedure because of the known prior knowl-
edge. More details of these AOD products can be found in
Bai et al. (2022a) and Wei et al. (2020).

2.2 Ground-based AOD observations and air quality
measurements

2.2.1 AERONET AOD observations

Ground-based AOD observations from AERONET have
long been used as the ground truth for validating AOD re-
trievals from other instruments, particularly diverse satellite-
based AOD retrievals. In this study, AOD observations from
AERONET during the study period were employed as an in-
dependent data source to validate the data accuracy of the
global gap-filled AOD dataset. To guarantee an adequate
number of AERONET AOD samples, the Level 1.5 AOD
observations instead of Level 2.0 were applied, though the
latter has stricter screening criteria for quality control. For
spatial registration, each AERONET AOD observation was
spatially collocated with mean AOD values over grids within

a 5× 5 km window size. Figure S2 presents the spatial distri-
bution of the AERONET sites used in this study.

2.2.2 Air quality measurements

Concentrations of PM2.5 and other relevant air pollutants,
like NO2, SO2, PM10, and CO, were acquired from a few
environmental agencies and monitoring centers, e.g., the
United States Environmental Protection Agency, European
Air Quality Portal, China National Environmental Monitor-
ing Centre, Canada National Air Pollution Surveillance, and
Japan National Institute for Environmental Studies, to name
a few. Moreover, air quality measurements acquired from the
World’s Air Pollution Index, an open-source data hub, were
included as well. Given potential differences in measuring
principles and quality control criteria, we performed rigor-
ous data cleaning measures to harmonize these multisource
air quality measurements, including not only the removal
of outliers, but also a unification of timescales to the daily
average. Aiming to provide critical information to facilitate
the AOD gap-filling, ground-based air quality measurements
were used as an important proxy for regional in situ AOD
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prediction, largely because of the relatively dense distribu-
tion of air quality monitoring networks and the associations
between aerosol loadings and regional air pollutant concen-
trations.

Atmospheric visibility, a common air quality indicator
highly associated with aerosol loadings, was acquired from
worldwide meteorological monitoring stations and used to
predict AOD over each monitoring site via data-driven mod-
eling. Given the much denser distribution of ambient air qual-
ity and meteorological monitoring sites, as shown in Fig. S2
in the Supplement, a global virtual AOD monitoring network
was in turn established, harnessing the associations between
AOD and air-quality-relevant parameters. Such a virtual net-
work provides us with an unparalleled opportunity to im-
prove AOD gap-filling accuracy and efficiency, particularly
over regions with massive data voids in satellite AOD images
(Bai et al., 2022b; Li et al., 2022b).

2.3 Numerical simulations

2.3.1 MERRA-2 aerosol diagnostics

The MERRA-2 aerosol diagnostics, including total AOD and
aerosol components like black carbon, organic carbon, dust,
and sulfate aerosols, were employed to provide prior infor-
mation to advance AOD gap-filling. As NASA’s latest re-
analysis for the satellite era, MERRA-2 is generated us-
ing the new Earth system model, the Goddard Earth Ob-
serving System version 5 (GEOS-5), providing global sim-
ulations of a variety of geophysical and chemical variables
on Earth’s surface. More details of the assimilation system
and the data quality of MERRA-2 aerosol reanalysis can be
found in Buchard et al. (2017) and Randles et al. (2017). By
taking AODTerra as the learning target, data-driven models
were established to spatially downscale and bias-correct the
MERRA-2 AOD field, with meteorological, geographical,
and socioeconomic factors used as covariates. This down-
scaled and bias-corrected MERRA-2 AOD field, given its
spatially contiguous coverage, was then used as critical in-
formation to facilitate the gap-filling of AODTerra.

2.3.2 ERA5 reanalysis

As the latest atmospheric reanalysis produced by the Euro-
pean Centre for Medium-Range Weather Forecasts, ERA5
provides hourly estimates of a variety of atmospheric, ter-
restrial, oceanic, climatic, and meteorological variables. The
data are provided for a 30 km grid resolution on Earth’s sur-
face, delineating the atmosphere layer using 137 levels from
the surface up to a height of 80 km, covering the period from
January 1940 to the present (Hersbach et al., 2020). Atmo-
spheric parameters, including surface pressure, air tempera-
ture, relative humidity, wind speed, total column water, to-
tal precipitation, surface solar radiation downward, instan-
taneous moisture flux, and boundary layer height, were ac-
quired from ERA5 and used as important modeling covari-

ates in both data harmonization and PM2.5 mapping models.
A simple bilinear interpolation was applied to the ERA5 re-
analysis data to convert them to the AODTerra footprint reso-
lution for spatial registration.

2.4 Auxiliary data

Several socioeconomic and geographic factors were also ap-
plied as covariates to support AOD gap-filling and PM2.5
concentration mapping. Specifically, gridded population data
from WorldPop were used to indicate the spatial distribution
of residents, serving as a critical proxy for anthropogenic
air pollutant emission intensity. To characterize the land-use-
dependent aerosol emissions, land cover types and the veg-
etation index derived from MODIS products along with the
coverage ratio of an impervious surface calculated from the
land use dataset generated by Huang et al. (2022) were also
applied. The digital elevation data collected from the Shut-
tle Radar Topography Mission (SRTM) with a resolution of
1 arcsec were used to characterize the potential impact of to-
pography on aerosol loadings.

3 Methods

3.1 Tensor-flow-based AOD reconstruction

3.1.1 Overview of the AOD gap-filling method

Deriving spatially contiguous PM2.5 concentrations from
gap-filled AOD images has proven more promising for a
better analysis of large-scale PM2.5 distribution (Bai et al.,
2022b). In this study, the big Earth data analytics frame-
work proposed in Bai et al. (2022a) was further adapted
and improved for generating global gap-free AOD images
to support various content-based mappings. As shown in
Fig. 1, the improved big Earth data analytics framework also
consists of three primary data manipulation procedures, in-
cluding (1) machine-learned multimodal data homogeniza-
tion, (2) knowledge-reinforced AOD tensor compiling, and
(3) tensor-flow-based AOD reconstruction, with algorithmic
improvements primarily conducted in the latter two proce-
dures. This improved big Earth data analytics approach em-
powered us to weave together multimodal AODs and versa-
tile big Earth observations from diverse sources via a syn-
ergy of state-of-the-art machine learning and tensor comple-
tion methods. Because the technical flow of this big Earth
data analytics framework was previously detailed in Bai et
al. (2022b), here we only provide an overview of this method
while describing more details of the newly developed algo-
rithmic components in the following subsections.

The overall architecture of this big Earth data analytics
framework was summarized as follows. Multimodal AODs
and relevant aerosol data acquired from different satellites,
ground monitoring stations, and numerical models were first
harmonized to resemble the baseline dataset of AODTerra,
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Figure 1. A schematic illustration of the improved big Earth data analytics for generating the MODIS-like global gap-free AOD dataset.

aiming to minimize both cross-sensor biases and spatial het-
erogeneities. This data homogenization process is vital for
the tensor-flow-based AOD gap-filling, because the bias-
corrected and downscaled AOD estimates were critical in-
puts to form the AOD data cube. More details related to the
multisource data homogenization are given in Sect. S1 in the
Supplement. To fill data gaps in each individual AODTerra
image, an AOD data cube was then constructed by aggre-
gating harmonized multisensory AOD data on the same date

along with historical AODTerra images resembling similar
spatial patterns over the same region. Because of the exces-
sive nonrandom missing values in the AODTerra images, both
the downscaled MERRA-2 AOD grids and AOD estimates
derived from air quality and visibility measurements were
used conjunctively to identify similar AODTerra images from
the historical image series. The selected historical AODTerra
images and bias-corrected AOD images from other satellites
on the same date were used individually as a slice of the ten-
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sor. Additionally, dispersed in situ AOD estimates and 5 %
of the randomly selected downscaled MERRA-2 AOD data
were directly overlaid onto the corresponding AODTerra grids
without valid AOD retrievals. These implementations helped
improve the gap-filling accuracy and greatly boosted the con-
vergence speed given the provision of prior knowledge.

High-order singular value decomposition (HOSVD), an
orthogonal Tucker decomposition method, was applied to
each well-compiled AOD data cube for tensor-flow-based
pattern recognition and data completion. Data gaps within
the input AOD tensor were first filled with the spatial av-
erage of each individual AOD image to initialize the tensor
decomposition. The AOD tensor was then decomposed along
each two-dimensional slice independently, and a new tensor
was subsequently reconstructed based on the principal modes
via a low-rank approximation (i.e., generating an approxi-
mating matrix with reduced rank for compression). During
this procedure, the AODTerra observations in the target image
to be gap-filled were deemed hard data (i.e., true-state and
invariant throughout the tensor completion procedure), while
multisensory AOD estimates and historical AODTerra images
served as soft data (Supplement and updated by iterates till
convergence). By iteratively adjusting the dimension-varied
ranks, the data values over grids to be gap-filled were updated
and tuned to optimize both spatial homogeneity and informa-
tion entropy concurrently (Bai et al., 2020, 2022a). The ten-
sor completion process continued till it reached an agreement
(with a bias decay ratio < 0.1 %) between the reconstructed
values and the previously reserved AODTerra observations.

3.1.2 Algorithmic improvements

To accommodate the massive data analytics for global-scale
AOD gap-filling, three major algorithmic enhancement mod-
ules were incorporated to help improve reconstruction effi-
ciency and accuracy, with particular focus on the optimiza-
tion of data manipulation procedures in tensor-flow-based
AOD gap-filling. Algorithm 1 presents the pseudo code of
the optimized algorithm used for tensor-flow-based AOD re-
construction.

Attention-reinforced AOD tensor construction

In our previous study, both the target data (i.e., the AODTerra
image) and the soft data (i.e., AOD estimates from other data
sources and historical AODTerra images) were treated equally
in the AOD tensor throughout the tensor decomposition and
reconstruction process (Bai et al., 2022a). This indifferent
data treatment strategy neglected the information abundance
of soft data and the spatial similarity between the soft and
target data, making the reconstructed field more likely to
resemble the dominant patterns learned from images with
fewer data gaps rather than those with spatial patterns sim-
ilar to the target image. To account for this drawback, an at-
tention mechanism was hereby introduced to assign different

Algorithm 1 The pseudo code of the optimized algorithm
used for tensor-flow-based AOD reconstruction.

weights to each data slice in the input AOD tensor, aiming
to improve the AOD reconstruction performance by learn-
ing from spatiotemporal features embedded in more relevant
data fields instead of all the available data.

As a widely used technique in deep learning, the attention
mechanism is a mimic of cognitive attention allowing the
model to focus on specific parts of the input data, achieved by
assigning higher weights to more crucial elements in ensem-
ble learning. Regarding the tensor-flow-based AOD recon-
struction task, data slices with a greater similarity to the tar-
get image and fewer data gaps are supposed to play more im-
portant roles than less similar ones with extensive data gaps
during tensor completion. Three statistical metrics, includ-
ing mutual information (Shannon, 1948), the spatial cover-
age ratio of common observations (Rcommon) between soft
data and hard data, and the spatial coverage ratio of extra ob-
servations beyond common observations in soft data (Rextra),
were calculated to determine the overall weight that should
be assigned to each slice of data in the input AOD tensor.
Specifically, mutual information was applied to characterize
the mutual dependence between the target image and each
slice of soft data, while the common spatial coverage ratio
was used to indicate the data amount for mutual informa-
tion calculation, and the extra spatial coverage ratio was em-
ployed to depict additional information content that can be
provided by soft data. Equations (1)–(3) provide the formu-
las to calculate these three statistical metrics.

MI(X,Y )=
∑
y∈Y

∑
x∈X

p (x,y) log
(

p (x,y)
p (x)p (y)

)
(1)

Rcommon =8(X,Y )× 100% (2)

Rextra =8
(
X̃,Y

)
× 100% (3)
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Note that X and Y refer to common observations in soft
and hard data, respectively. X̃ denotes extra observations in
soft data. p (x,y) is the joint probability mass function of
X and Y , while p (x) and p(y) are the marginal distribu-
tion mass functions of X and Y , respectively. Additionally,
8(X,Y ) is the spatial coverage ratio of the common obser-
vations, and 8

(
X̃,Y

)
is the spatial coverage ratio of extra

observations in the soft data. By multiplying these three nor-
malized weights by the corresponding soft data, an attention-
reinforced AOD tensor was constructed in turn, which was
then used as the input data cube for tensor completion.

Adaptive prior information updating

To facilitate the AOD gap-filling over regions with substan-
tial data gaps, in our previous method, 5 % random samples
from the downscaled MERRA-2 AOD image (AODM2 here-
after) on the same date were used as prior information and
directly overlaid onto grids without observational AOD (i.e.,
AODTerra and site-based AOD estimates from air quality and
visibility measurements). Although this enabled us to im-
prove the convergence speed during tensor completion, the
spatial patterns of the reconstructed field over regions with
excessive data gaps were more likely to resemble the distri-
bution of AODM2 because of this unchanged prior informa-
tion. In this context, large modeling biases in AODM2 might
be introduced into the final reconstruction fields.

In this study, we introduced an adaptive prior information
updating scheme to mitigate the potential bias propagation
problem. The main principle is to force the AOD prior infor-
mation in the input AOD tensor to update iteratively through-
out the tensor completion process rather than maintaining
it as invariant observations. Specifically, random AODM2
samples were only used to initialize the tensor construction,
while weighted averages of the prior information and the cor-
responding reconstructed values were then used as new prior
information for the next iteration. Meanwhile, the weights as-
signed to the reconstructed fields were gradually increased by
iteration till convergence. The goal was to improve the contri-
bution of reconstruction fields learning from actual observa-
tions while reducing the influence of background fields. The
ablation experiments demonstrated the effectiveness of this
scheme in improving the reconstruction performance over re-
gions with limited observational data.

Optimized global data tile partition and rank updating

The high spatiotemporal resolution of AODTerra images
presents a great challenge in performing global-scale AOD
gap-filling because of the huge computational burden. To
improve computational efficiency and to make the comput-
ing workload manageable, the following algorithmic adjust-
ments were implemented. First, the continental AODTerra
data worldwide were divided into 480 data tiles, with AOD
gap-filling performed over each tile independently. Through

a set of gap-filling trials with varying tile sizes, a nominal tile
size covering 700× 700 pixels (refer to Fig. S3 for the spatial
distribution of the optimized data tiles) was finally applied
to balance the computing workload and reconstruction accu-
racy. Moreover, a 50-pixel overlap on the boundary of each
tile was enforced, and an inverse distance weighting scheme
was applied to these overlapped pixels when mosaicking the
gap-filled tiles, aiming to eliminate the boundary effects be-
tween tiles toward a smooth distribution of AOD across the
globe.

Since the tensor’s decomposition and reconstruction pro-
cesses in the tensor completion are driven by iteratively up-
dated tensor ranks, an optimized rank updating strategy was
hereby proposed to improve the learning efficiency. Specifi-
cally, the ranks were updated in ascending order along with
the first and second dimensions in the inner loops to enhance
the spatial details of the reconstructed AOD fields. In con-
trast, the ranks were updated in a descending fashion along
the third dimension in the outer loop to aggregate the target
AODTerra image with the soft data in a low-rank approxima-
tion manner. This new rank updating strategy not only helps
better resolve spatial details of AOD, but also accelerates the
convergence speed of tensor completion.

3.2 Global PM2.5 concentration modeling

The sparse and uneven distribution of ground-based air qual-
ity monitoring stations poses significant challenges to global
PM2.5 concentration mapping, particularly over regions with
fewer PM2.5 concentration measurements (e.g., Africa and
South America in Fig. S2). Nonetheless, how to reinforce the
spatial representativeness of data-driven models to improve
the spatial extrapolation accuracy is still elusive. In this study,
a recently developed deep-learning method, i.e., SCAGAT,
was hereby applied to better estimate global PM2.5 concen-
trations from gap-filled AOD images. Instead of establish-
ing a single PM2.5 estimation model using all available data
samples collected from worldwide monitoring stations, site-
specific PM2.5 estimation models were first developed using
random forest over each air quality monitoring station with
adequate PM2.5 concentration measurements.

For a given grid, raw PM2.5 concentration estimates were
estimated from a set of independent site-specific PM2.5 esti-
mation models, which should resemble similar geographic
scene features to the given grid cell – under the assump-
tion that the relationship between AOD and PM2.5 is sim-
ilar over regions with an analogous environmental back-
ground. Nine distinct factors covering geographic locations,
land cover types, climate zones, AOD levels, and population
density were utilized to characterize the scene attributes of
each grid cell. Subsequently, a graph attention network was
used to aggregate raw PM2.5 concentration estimates derived
from site-specific models to produce an ensemble estimate
over the target grid cell. In the graph network, weights as-
signed to the adjacency matrix were determined in reference
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Figure 2. Performance evaluation of different algorithmic enhancement modules on the reconstructed AOD distribution. Raw AODTerra
denotes the actual AOD retrievals from Terra, while simulated AODTerra refers to partially masked AODTerra. The benchmark method is
the AOD gap-filling approach proposed in Bai et al. (2022a). The latter three columns present the reconstructed fields using the enhanced
benchmark methods. The R and bias denote the correlation coefficient and deviations between the holdout observed and reconstructed AOD
data, respectively. The percent numbers shown in the two left panels indicate a spatial coverage ratio of valid AOD retrievals over the selected
scenes.

to the differences between nine different scene features, and
the node bias was given as the testing accuracy of each site-
specific PM2.5 prediction model. This innovative ensemble
learning method enables us to better predict PM2.5 concen-
trations across the globe, particularly over regions with lim-
ited or even no in situ PM2.5 concentration measurements.
Figure S4 depicts the workflow of the proposed SCAGAT
model, and additional details are introduced in Sect. S2. For
more detailed descriptions of this method, please refer to Li
et al. (2024).

4 Results

4.1 Efficacy assessment of algorithmic enhancement
modules

Ablation experiments were first conducted to evaluate the ac-
curacy improvement potential of each newly developed algo-
rithmic enhancement module. Three case studies were sim-
ulated by masking actual AODTerra retrievals with randomly

selected cloud masks on different dates, and the methods re-
inforced with different enhancement modules were then ap-
plied to reconstruct the former holdout AOD values. For in-
tercomparison, the AOD gap-filling framework developed in
Bai et al. (2022a) was used as the benchmark method. As
shown in Fig. 2, the AOD distributions reconstructed us-
ing methods embedding attention mechanism and adaptive
background information updating modules have smaller bias
levels compared to the benchmark method, which in turn
justifies the efficacy of these two new algorithmic enhance-
ment modules. Given an equal weight of each slice of data in
the input AOD tensor, the reconstructed data fields from the
benchmark method were prone to resembling a mean state
determined largely by the principal mode of the input ten-
sor. In this context, peak values in the target image might
be underestimated (or overestimated for low values) because
of relatively few soft data resembling similar patterns in the
input tensor (e.g., Fig. 2c).

By incorporating the attention mechanism, each slice of
data in the raw AOD data cube was adaptively weighted,
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Figure 3. Impact of the missing rate on the AOD gap-filling accuracy. The numbers on the top indicate the percentage of removed AOD data
in the raw AODTerra image. The second row shows the distribution of the gap-filled AOD with zoomed-in maps present in the third row. The
bottom panel presents scatter plots between the observed and reconstructed AOD.

with greater weights given to those with broader spatial cov-
erage and closer similarities to the target AODTerra image.
This strategy is vital for reducing contributions from irrel-
evant data, particularly when encountering imbalanced data
samples within the raw AOD data cube, i.e., more irrelevant
data and fewer similar images. Moreover, the importance of
the target image was maximized during the tensor comple-
tion procedure by assigning a 100 % weight. Compared to
the benchmark method, extreme values in raw AODTerra im-
ages were better reconstructed using the method embedding
the attention mechanism. For instance, in Fig. 2b, the bench-
mark method apparently overestimated low AOD values in
the north, whereas such a discrepancy was largely mitigated
using methods involving the attention mechanism.

In contrast to the benchmark method, which used an in-
variant background throughout the tensor completion pro-
cess, an adaptive background updating scheme was incor-
porated here to accelerate the convergence speed and miti-
gate possible error propagation arising from numerical sim-
ulations to the final reconstruction fields. Compared to the
benchmark method, as illustrated in Fig. S5, the adaptive
background updating module enabled us to reduce the ad-
verse impact of manually added outliers in raw background

fields, thereby avoiding large error propagation from back-
ground fields into the reconstructed AOD data. Although the
better quality of the reconstructed fields derived from the im-
proved methods demonstrates the efficacy of these two newly
developed algorithmic enhancement modules, the benefits
could be largely cancelled out when confronted with images
containing excessive data gaps (e.g., Fig. 2c). The inherent
reason could be attributed to few observational data in the
target image for reference to leverage the attention mecha-
nism to pinpoint similar AOD images from the historical data
series.

In Fig. 3, we evaluated the impact of the missing rate of the
target image on the AOD gap-filling accuracy. By masking
one truly observed AODTerra image with arbitrarily selected
cloud masks, a series of target images at different missing
rates, as shown in the top row of Fig. 3, were simulated for
gap-filling trails. As shown, the reconstructed fields agreed
fairly well with the observed AOD fields, resembling the ac-
tual AOD distribution over the outlined region well, even in
extreme situations with excessive data gaps, demonstrating
an excellent performance of the proposed gap-filling method.
As expected, the accuracy of the reconstruction fields de-
creased along with an increase in the missing rate. For in-
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Figure 4. Data accuracy of daily gap-free AOD grids in the LGHAP v2 dataset compared to AOD observations from AERONET across
the globe during 2000–2021. Note that the AERONET AOD observations were independent data and had not been used in the gap-filling
process.

stance, when the missing rate was greater than 80 %, the low
values in the upper left of the raw AODTerra image were not
properly reconstructed, largely because of the limited prior
knowledge in the target image for use when constructing the
raw AOD tensor. This effect also highlights the crucial im-
portance of prior information for the gap-filling accuracy.
Therefore, increasing prior information is the most promis-
ing way to improve the gap-filling accuracy, in particular for
regions with substantial data gaps.

4.2 Data accuracy of global gap-free AOD in LGHAP v2

The gap-free AOD grids in LGHAP v2 were generated
by filling in data gaps in AODTerra images with recon-
structed AOD estimates at each collocated footprint over
land. In comparison to the independent AOD observations
from AERONET, the data accuracy of the gap-free AOD in
LGHAP v2 was comprehensively evaluated across the globe.
Figure 4a–c present the spatial distribution of the site-specific
correlation coefficient (R), root mean square error (RMSE),
and bias between AOD in the LGHAP v2 and AERONET
observations, respectively. Regardless of the uneven distri-
bution of ground-based aerosol observing stations and vari-
ations in data samples between sites, the ground valida-

tion results indicate good agreement between the AOD in
the LGHAP v2 and AERONET observations, with a site-
specific R of 0.76± 0.14 and an RMSE of 0.09± 0.08 on
a global scale. Note that site-specific data accuracy metrics
vary across regions, with larger biases mainly observed in
central and East Asia as well as in Africa – regions always
suffering from high aerosol loadings.

Figure 4d–i present scatter plots between the LGHAP v2
AOD and AERONET observations in six major continental
regions. As shown, the reconstructed AOD estimates were
prone to an underestimation of large AOD values (> 0.80)
versus an overestimation of low values (< 0.2) across these
six regions. This effect is particularly common in machine
learning, largely because of the imbalanced distribution of
data values in the training samples (Johnson and Khoshgof-
taar, 2019; Shi et al., 2022). A similar reason could also be
applied for the tensor completion as the missed AOD ex-
tremes may not be accurately reconstructed to their nominal
levels; instead, they tend to resemble a mean state that was
determined by principal modes via a low-rank approxima-
tion.

To further verify the data accuracy of the imputed AOD
estimates, we compared the gap-filled AODs in the LGHAP
v2 dataset with two major gridded products of AODTerra and
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Table 2. An intercomparison of AOD data accuracy between satellite-based retrievals (raw MAIAC AOD), numerical aerosol diagnostics
(downscaled MERRA-2 AOD), purely reconstructed data, and the final gap-free product (LGHAP v2 AOD) by comparing AOD observations
from AERONET across the globe during 2000–2021. Note that the term “purely reconstructed AOD” refers to the imputed AOD estimates,
while “LGHAP v2” refers to the gap-filled AOD dataset combining both satellite-based retrievals and purely reconstructed data. The expected
error (EE) envelope for AOD over land was defined as ±(1.5×AODAERONET+ 0.05).

AOD dataset Region Mean Number of Number of R RMSE Bias Below EE Within EE Above EE
AOD monitors samples (%) (%) (%)

MAIAC (AODTerra) Global 0.17 1335 402 886 0.88 0.11 0.02 13.95 74.59 11.45
North America 0.11 433 112 438 0.83 0.08 −0.01 4.62 80.93 14.44
South America 0.11 81 28 265 0.94 0.07 0.02 14.17 75.85 9.97
Europe 0.11 208 96 715 0.80 0.06 0.02 11.29 82.22 6.49
Asia 0.31 321 90 821 0.90 0.14 0.02 18.79 68.22 12.99
Africa 0.21 110 48 877 0.81 0.19 0.06 31.45 57.11 11.44
Australia 0.09 28 12 427 0.62 0.07 −0.01 6.16 75.34 18.49

Downscaled MERRA-2 (AODM2) Global 0.18 1335 811 438 0.83 0.14 0.02 11.76 78.98 9.26
North America 0.12 433 216 264 0.80 0.09 0.00 5.71 86.22 8.07
South America 0.13 81 49 721 0.90 0.11 0.02 12.87 81.64 5.49
Europe 0.13 208 177 125 0.79 0.07 0.01 8.54 86.07 5.39
Asia 0.29 321 175 781 0.78 0.24 0.06 22.54 65.14 12.32
Africa 0.24 110 88 374 0.85 0.15 0.02 16.13 67.59 16.28
Australia 0.10 28 21 051 0.76 0.06 –0.02 2.44 83.60 13.96

Purely reconstructed AOD Global 0.21 1335 449 452 0.83 0.15 0.01 12.21 65.52 22.27
North America 0.16 433 129 716 0.80 0.10 –0.02 5.23 67.52 27.25
South America 0.17 81 30 073 0.88 0.11 0.00 10.51 67.11 22.38
Europe 0.16 208 107 961 0.73 0.09 0.00 9.63 73.63 16.74
Asia 0.33 321 107 876 0.81 0.24 0.03 18.64 56.60 24.76
Africa 0.27 110 31 568 0.80 0.20 0.06 29.57 53.88 16.55
Australia 0.13 28 9628 0.62 0.08 −0.03 4.60 64.62 30.77

LGHAP v2 Global 0.19 1335 756 166 0.85 0.14 0.01 12.96 69.44 17.59
North America 0.13 433 216 055 0.82 0.09 −0.01 4.86 73.12 22.02
South America 0.14 81 49 707 0.90 0.10 0.01 12.57 71.08 16.34
Europe 0.13 208 176 959 0.76 0.08 0.01 10.24 77.40 12.36
Asia 0.32 321 175 728 0.83 0.21 0.03 19.08 61.40 19.52
Africa 0.23 110 75 110 0.81 0.19 0.06 29.61 56.64 13.75
Australia 0.11 28 21 048 0.63 0.08 −0.02 5.11 70.30 24.59

AODM2. As shown in Table 2, the purely reconstructed AOD
estimates have an R of 0.83 and an RMSE of 0.15 com-
pared to the AERONET AOD observations at the global
scale – comparable to the data accuracy of AODM2 (R =
0.83, RMSE = 0.14) but lower than that of AODTerra (R =
0.88, RMSE = 0.11). Nevertheless, the imputed AOD es-
timates achieved comparable data accuracies to AODTerra
in Africa (R = 0.80, RMSE = 0.20) and Australia (R =
0.62, RMSE = 0.08), largely because of the availability of
abundant satellite-based AOD prior information (refer to the
AOD coverage ratio shown in Fig. S1 in the Supplement) to
facilitate AOD tensor completion. In contrast, the LGHAP
v2 AOD estimates in Europe and Asia have poorer data
accuracies relative to AODTerra, particularly in East Asia.
The possible reasons could be extensive missing values, se-
vere aerosol pollution levels, and significant spatial varia-
tions in aerosol loadings over these regions. Compared to
AODTerra, the gap-filled AOD data tended to overestimate
the AERONET AODs (17.59 % versus 11.45 % above the en-
velope of expected error), resulting in an even larger global
mean AOD (0.19 versus 0.17) and implying that a greater
number of large AOD values were reconstructed in the im-

puted AOD estimates. Moreover, the accuracy of LGHAP v2
AOD data outperforms that of the gap-filled AOD dataset
(R2
= 0.6031 and RMSE = 0.1350) generated by Guo et

al. (2023), in which missing AODs in AODTerra were pre-
dicted using various proxy variables (e.g., meteorological
factors and population density) via a random forest model.

In Fig. 5, we compared temporal variations in AOD be-
tween the LGHAP v2 dataset and ground-based observations
at six AERONET sites with long-term records. Compared
to discrete AOD observations from AERONET, the gap-free
AOD time series accurately reconstructed long-term varia-
tions of aerosol loading from 2000 to 2021 at these moni-
toring sites, with R ranging from 0.83 to 0.97 and RMSEs
varying between 0.04 and 0.24. Note that the large RMSEs
observed at the Alta Floresta and Beijing sites are more likely
ascribed to the reconstruction failures of abnormal AOD
peaks, largely because of very limited peak values for ref-
erence in the AOD tensor. Referring to histograms of AOD
deviations between the LGHAP v2 and AERONET observa-
tions, more than 80 % of the AOD biases fell within the range
of −0.1 to 0.1, demonstrating a high accuracy of gap-filled
AOD in the LGHAP v2 dataset.
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Figure 5. Temporal variations in the monthly AOD over six AERONET sites with long-term AOD observations from 2000 to 2021. The
panels on the right present histograms of AOD deviations between the LGHAP v2 and AERONET observations at each individual site.

4.3 Data accuracy of global gap-free PM2.5
concentrations in LGHAP v2

Global gap-free PM2.5 concentration estimates were derived
from gap-filled AOD images by taking advantage of the
novel SCAGAT method that was specifically developed for
global PM2.5 concentration mapping. Additional details of
the SCAGAT method were provided in another study (Li
et al., 2024), and here we focused on the data accuracy of
the global gap-free PM2.5 concentration estimates. Figure 6
presents the validation accuracy of the daily gap-free PM2.5
concentration estimates by comparing them to the ground-
based PM2.5 concentration records measured at 350 former
holdout sites. As indicated, by accounting for the spatial rep-
resentativeness of the prediction models during the spatial
extrapolation, PM2.5 concentration estimates derived from
the SCAGAT model are in better agreement with ground-
based PM2.5 concentration measurements, with an R of 0.91
and an RMSE of 9.587 µg m−3, surpassing the performance
of our traditional machine-learned models (Bai et al., 2019,
2022a, 2023). Meanwhile, the data accuracy was further im-
proved by correcting modeling biases using sparsely dis-
tributed in situ PM2.5 concentration measurements via op-

timal interpolation, resulting in an improvement in R to 0.95
and a decrease in RMSE to 5.7 µg m−3 (Fig. 6b). As shown
in Fig. 6e, the PM2.5 concentration estimates over China in
LGHAP v2 have a higher data accuracy (R = 0.97, RMSE
= 7.93 µg m−3) than those in LGHAP v1 (R = 0.95, RMSE
= 12.03 µg m−3). Figure 6c–d present a site-based distribu-
tion of R and RMSE for the LGHAP v2 PM2.5 concentra-
tions over each individual validation site. Compared to the
United States of America and Europe, as depicted in Fig. 6e–
g, larger PM2.5 concentration biases were observed in China
because of higher PM2.5 loadings therein.

Table 3 presents the data accuracy of the gap-free PM2.5
concentrations in the LGHAP v2 dataset during the period
of 2000–2021 over nations with sufficient records of ground-
based PM2.5 concentration measurements. It indicates that
the data accuracy of PM2.5 concentration estimates varied
across regions, with R changing from 0.71 to 0.98 and RM-
SEs ranging between 1.15 and 32.69 µg m−3. Regardless of
the substantial differences in the total number of data pairs,
larger RMSEs are mainly observed in regions like Mongolia
(32.69 µg m−3) and India (25.34 µg m−3), which often suf-
fered from severe PM2.5 pollution episodes. The spatially
varying accuracy metrics highlight the great complexity in
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Figure 6. Site-based validation accuracy of PM2.5 concentration estimates derived from gap-free AOD images using the proposed SCAGAT
method. (a) Scatter plots between PM2.5 estimates derived from the SCAGAT model and the withheld PM2.5 concentration measurements.
(b) Same as panel (a) but for gap-free PM2.5 estimates fusing ground-measured PM2.5 concentration measurements. (c–d) Site-based corre-
lation coefficient and RMSE, respectively, for LGHAP v2 PM2.5 concentrations. (e–g) Histograms of the LGHAP v2 PM2.5 concentration
bias over China, the United States, and Europe, respectively. Note that the ground-based PM2.5 concentration data used here for validation
were not used in the model training or in the data fusion procedures.

large-scale PM2.5 modeling, which also underscores the crit-
ical importance of accounting for spatial representativeness
when applying models over other regions for data extrapola-
tion.

In Fig. 7, we examined long-term variations in PM2.5
concentrations in four different cities from 2000 to 2021.
Good agreement with the previously withheld PM2.5 con-
centration measurements demonstrated a high accuracy of
the LGHAP v2 PM2.5 concentration estimates. Compared to
temporally discrete PM2.5 concentration records measured
by ground monitors, the gap-free LGHAP v2 PM2.5 con-
centration time series enabled us to better understand the
long-term variability of haze pollution across the globe. As
shown, declining trends were observed in PM2.5 concentra-
tions as early as 2006 in New York (United States), whereas
apparent reductions were mainly observed after 2012 in Jilin

(China) and 2015 in Toyama (Japan). Overall, the gap-free
and high-accuracy merits render PM2.5 concentrations in the
LGHAP v2 dataset reliable data sources for assessing long-
term trends of haze pollution across the globe.

Figure 8 presents the temporal variations in the global
annual mean PM2.5 concentration distribution from 2000
to 2021. As shown, the daily gap-free LGHAP v2 dataset
seamlessly supports the derivation of comparable annual
mean PM2.5 concentration maps between years, and data-
gap-related biases in raw AODTerra images were eliminated.
Meanwhile, the quality-assured annual mean PM2.5 concen-
tration maps enable us to easily pinpoint the hotspot re-
gions suffering from severe haze pollution and to analyze the
long-term variability of global PM2.5 concentrations. Specif-
ically, Mongolia, northern India, eastern China, and central
Africa were identified as four major regions with relatively
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Figure 7. An intercomparison of temporal variations in monthly
mean PM2.5 concentrations in four different cities between the
LGHAP v2 and collocated ground-based PM2.5 concentration mea-
surements from 2000 to 2021.

high PM2.5 loadings, in particular northern India, becoming
a hotspot region suffering from more severe PM2.5 pollution
on the planet. Substantial PM2.5 reductions were observed
in eastern China from 2014 onwards, with PM2.5 concentra-
tions reduced to levels even comparable to countries in cen-
tral Asia.

5 Discussion

Spatially contiguous AOD and PM2.5 concentration grids are
pivotal in regional air quality management, haze pollution
exposure risk assessment, and aerosol radiative forcing di-
agnosis. By seamlessly gearing up state-of-the-art machine
learning and tensor completion methods, a novel big Earth
data analytics framework was developed to fulfill the gen-
eration of long-term high-resolution AOD and PM2.5 con-
centration grids (LGHAP v1) in our previous study (Bai et
al., 2022a). Specifically, multimodal AODs and relevant air
quality data acquired from diverse satellites, numerical mod-
els, and ground monitoring stations were first harmonized us-
ing random forest models. Next, multisource AOD data flows
were weaved neatly as the tensor inputs, with data gaps in
daily MODIS AOD images properly reconstructed via low-
rank tensor completion. Finally, gap-free PM2.5 concentra-
tion grids were mapped from gap-filled AOD images using

a random forest model. This big data analytics framework
provided an effective solution to integrate multimodal Earth
observations from diverse sources to generate high-quality
AOD and PM concentrations in China.

In this study, aiming to generate global gap-free AOD and
PM2.5 concentration grids, i.e., the LGHAP v2 dataset, the
previous big Earth data analytics framework was adopted
but enhanced with several new features, with particular fo-
cuses on accommodating the rocketing data size and global-
scale modeling demand other than reducing modeling bi-
ases. Specifically, an attention mechanism, inspired by deep-
learning techniques, was hereby introduced to weight each
data slice in the input tensor to account for the drawback in-
duced by the equal weight strategy, with larger weights as-
signed to data slices with fewer data gaps and more similar
to the target image. In other words, both the spatial cover-
age ratio of valid observations in all soft data and the mutual
information between the target and soft data were consid-
ered simultaneously to weight each data slice in the AOD
tensor. A weighted AOD tensor was then calculated for ten-
sor completion instead of using all the available information
in the AOD tensor indifferently. Although the ablation ex-
periments shown in Fig. 2 have demonstrated the efficacy of
this attention-reinforced tensor construction strategy, the un-
derlying philosophy, in particular the relative importance of
mutual information and extra spatial coverage, has not yet
been fully justified and assessed.

An adaptive background field updating scheme was also
introduced to iteratively update prior information in the target
AOD images. Compared to the invariant prior information,
adaptively updated prior information allowed for mitigation
of the influence of uncertainties in the prior information on
the reconstruction accuracy, particularly large modeling bi-
ases from numerical simulations. Despite these algorithmic
improvements, a slightly reduced data accuracy of gap-filled
AODs in China from the LGAHP v2 dataset was observed
compared to those in the LGHAP v1 dataset. Further inves-
tigations revealed that this was mainly due to the relatively
poor data accuracy of the downscaled AODM2 data because a
global-scale versus regional downscaling model was applied.
Nonetheless, benefiting from the adaptive background updat-
ing scheme, the modeling biases in AODM2 were effectively
suppressed in the final reconstructed AOD fields, evidenced
by larger biases of AODM2 (R = 0.77, RMSE= 0.36) versus
smaller biases of the purely reconstructed AOD (R = 0.82,
RMSE = 0.26).

The global gap-free and high-resolution benefits render
the LGHAP v2 dataset a promising data source to monitor
global aerosol distribution and variations in space and time.
As illustrated in Fig. 9, aerosol-related environmental distur-
bance episodes, e.g., sandstorms, wildfires, or haze pollution
events, can be indicated well by local rising AODs. More
importantly, the gap-filled AOD dataset provides us with an
unprecedented opportunity to monitor aerosol loadings and
variations even under cloud cover, e.g., the haze pollution
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Table 3. The data accuracy of gap-free PM2.5 concentrations in the LGHAP v2 dataset compared to ground-based measurements in countries
with sufficient PM2.5 records. N denotes the total number of PM2.5 concentration data pairs for calculating R, RMSE, and bias.

Country N R RMSE Bias Country N R RMSE Bias
(µg m−3) (µg m−3) (µg m−3) (µg m−3)

China 3 113 160 0.97 8.27 0.36 Iran 67 434 0.74 10.14 −0.09
United States 2 048 983 0.84 3.34 0.06 Brazil 50 252 0.81 5.63 0.78
Japan 1 810 436 0.96 1.82 0.07 Portugal 47 782 0.82 3.49 0.14
Canada 1 206 176 0.89 2.12 0.05 Hungary 41 524 0.92 4.59 −0.17
South Korea 526 138 0.96 3.49 0.16 Sweden 40 839 0.91 1.61 −0.23
France 502 555 0.96 2.25 0.13 Norway 40 001 0.86 2.45 −0.07
Germany 472 103 0.97 1.94 0.04 Finland 38 884 0.93 1.15 −0.08
Italy 371 888 0.93 5.23 0.04 South Africa 35 314 0.71 10.84 −2.91
United Kingdom 309 181 0.94 1.95 0.11 Serbia 34 795 0.87 9.70 0.01
Spain 297 202 0.87 2.63 0.23 New Zealand 26 654 0.73 3.63 0.20
Czech Republic 209 274 0.97 3.38 0.24 Colombia 26 332 0.95 4.60 0.45
Australia 208 772 0.72 3.70 −0.03 Ukraine 22 692 0.84 5.79 −0.08
India 207 974 0.92 25.34 1.64 Bosnia-Herzegovina 20 297 0.94 12.08 1.59
Belgium 177 036 0.98 1.54 0.01 Greece 19 410 0.79 5.41 −0.10
Poland 175 782 0.95 5.03 0.52 Croatia 17 926 0.90 5.82 −0.44
Türkiye 171 381 0.84 10.27 −0.99 Switzerland 14 719 0.75 3.98 −2.26
Austria 131 186 0.97 2.28 −0.14 Russia 14 357 0.84 4.06 0.58
Netherlands 119 047 0.97 1.72 −0.07 Estonia 13 793 0.91 1.48 0.19
Mexico 112 379 0.80 11.42 0.45 Lithuania 13 405 0.87 4.49 0.07
Chile 111 416 0.80 12.64 0.16 Ecuador 12 517 0.88 2.92 0.28
Slovakia 104 892 0.95 3.77 0.18 Vietnam 12 480 0.78 12.94 0.63
Thailand 82 206 0.89 13.21 1.25 Macedonia 10 416 0.92 10.81 2.17
Israel 68 012 0.83 5.08 0.32 Mongolia 9926 0.91 32.69 −0.17

Figure 8. Spatial distribution of the global annual mean PM2.5 concentrations derived from the LGHAP v2 dataset between 2000 and 2021.
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Figure 9. An illustration of AOD responses to wildfires, sandstorms, and haze pollution episodes across the globe, as characterized by
gap-free AOD in the LGHAP v2 dataset. The global map in the middle panel shows the spatial distribution of major land cover types in 2020.

episodes over southern India and eastern China shown in
Fig. 9d and e. This largely benefited from the intelligent spa-
tiotemporal pattern recognition as well as the assimilation of
air quality measurements from ground monitoring stations
and numerical aerosol diagnostics. While this global air qual-
ity mapping approach greatly facilitates the surveillance and
management of air pollution around the world, the LGHAP
v2 dataset would also significantly reduce uncertainties in the
health-related aerosol exposure risk assessment results be-
cause of the gap-free and high-resolution advantages.

Global AOD variation trends were carefully examined by
taking advantage of the LGHAP v2 AOD dataset. Figure 10a
presents the AOD deviations between the AOD averages dur-
ing the first and second decades of the 21st century across the
globe. As shown, substantial AOD increases in the 21st cen-
tury are primarily present over India and central Africa, with
remarkable AOD decreases observed in the middle of South
America. In North America, AOD increases were mainly ob-
served in Canada and the western United States, whereas
AOD decreases were found in the eastern United States. Ad-
ditionally, in reference to temporally varying AOD trends in
regions A and B, evident AOD increasing trends were ob-
served in the United States from 2012 onwards, while sig-
nificant decreasing trends in the eastern United States were
entirely reversed after 2015. This effect could be partially at-
tributed to more frequent and intensive wildfire emissions in
North America during the second decade of the 2000s (Burke
et al., 2023; X. Wei et al., 2021). A similar effect was also
observed in Europe, with an apparent slowdown in the AOD
decreasing trend after 2010.

Inverse effects were also observed in China but with to-
tally different temporal transition patterns. As shown, statis-

tically significant AOD increasing trends were observed in
eastern and southern China in the first decade, with a slow-
down starting around 2007, followed by a sudden reversion
to decreasing trends after 2010. This was also the most sig-
nificant AOD decreasing trend during the 2010s around the
world. This observational evidence confirms the success of
clean air action in improving air quality in China during re-
cent decades (Bai et al., 2022a; Liang et al., 2020; Zhang et
al., 2019). A similar temporal variation pattern was also ob-
served in the Middle East but with relatively weak trends.
In contrast, India was a hotspot area showing an increasing
trend in AOD throughout the 2000s, despite a short period of
increasing hiatus from 2013 to 2015.

Global gap-free PM2.5 concentrations were derived based
on gap-filled AOD grids by taking advantage of a novel
SCAGAT model. Unlike many other data-driven models, the
spatial representativeness was accounted for in the SCA-
GAT model, providing a unique solution to modeling PM2.5
concentrations over regions even without PM2.5 monitoring
sites. Daily gap-free PM2.5 concentration grids favor the as-
sessment of the pandemic’s influence on regional air quality.
Figure 11a and b present the spatial distribution of PM2.5
concentrations before and during the COVID-19 pandemic,
respectively. Neglecting long-term variation trends in PM2.5
concentrations, the substantial PM2.5 decreases in central and
eastern China as well as in central Europe clearly indicate
the positive effect of pandemic-related mobility restrictions
on air quality improvement (by comparing PM2.5 concentra-
tions in 2019 and 2020 during the synchronous period). In
contrast, PM2.5 reductions were relatively small in the United
States due to the lack of mobility restriction measures, with
apparent PM2.5 reductions observed mainly in regions like
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Figure 10. AOD trends over 12 regions of interest worldwide from 2000 to 2021 estimated from gap-free AODs in the LGHAP v2 dataset.
The top row shows the spatial distribution of global AOD deviations between the first and second decades in the 21st century. The 12
diagrams in the bottom panel show the linear trend of mean AOD over the outlined region of interest at different starting times with varying
time window sizes.

Chicago. Overall, the LGHAP v2 dataset enables us to better
investigate global aerosol variations and assess PM2.5-related
health exposure risks.

6 Data availability

The LGHAP v2 dataset provides global gap-free AOD and
PM2.5 concentration grids from 2000 to 2021 with a daily
1 km resolution. To facilitate the data sharing, each daily
map was saved as a single NetCDF file, and the data in
each individual month were then archived as one zip file.
Table 4 summarizes the permanent digital object identifiers
for data in each calendar year from 2000 to 2021. All these
datasets are publicly available at the LGHAP community link
via https://zenodo.org/communities/ecnu_lghap (Bai and Li,
2023a). The data user guide and visualization codes (Python,
MATLAB, R, and IDL) were also provided to guide the users

in retrieving data from the NetCDF files, which can be ac-
cessed at https://doi.org/10.5281/zenodo.10216396 (Bai and
Li, 2023b).

7 Conclusions

In this study, the LGHAP v2 dataset, a successor of LGHAP
v1, was generated to provide global gap-free AOD and PM2.5
concentration grids with a daily 1 km resolution from 2000
to 2021, by leveraging an improved big Earth data analytics
approach. The ground validation results confirm high accu-
racies of these two gap-free products, with AOD having an
R of 0.85 and an RMSE of 0.14 compared to the AERONET
AOD observations, which are slightly worse than the original
MCD19A2 product (R = 0.88 and RMSE= 0.11). Similarly,
PM2.5 concentration estimates derived from gap-free AOD
via the SCAGAT method show agreement with the withheld
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Figure 11. Influence of the COVID-19 pandemic on PM2.5 concentrations in the United States, Europe, and China. PM2.5 concentrations
from LGHAP v2 were averaged over synchronous periods in 2019 and 2020 for intercomparison.

Table 4. List of data links for AOD and PM2.5 concentration grids in the LGHAP v2 dataset for each individual year.

Year LGHAP v2 AOD grids LGHAP v2 PM2.5 grids

2000 https://doi.org/10.5281/zenodo.8281206 (Bai and Li, 2023c) https://doi.org/10.5281/zenodo.8307595 (Bai and Li, 2023d)
2001 https://doi.org/10.5281/zenodo.8281216 (Bai and Li, 2023e) https://doi.org/10.5281/zenodo.8307597 (Bai and Li, 2023f)
2002 https://doi.org/10.5281/zenodo.8281218 (Bai and Li, 2023g) https://doi.org/10.5281/zenodo.8307599 (Bai and Li, 2023h)
2003 https://doi.org/10.5281/zenodo.8281222 (Bai and Li, 2023i) https://doi.org/10.5281/zenodo.8307601 (Bai and Li, 2023j)
2004 https://doi.org/10.5281/zenodo.8281226 (Bai and Li, 2023k) https://doi.org/10.5281/zenodo.8307605 (Bai and Li, 2023l)
2005 https://doi.org/10.5281/zenodo.8281228 (Bai and Li, 2023m) https://doi.org/10.5281/zenodo.8307607 (Bai and Li, 2023n)
2006 https://doi.org/10.5281/zenodo.8287125 (Bai and Li, 2023o) https://doi.org/10.5281/zenodo.8308225 (Bai and Li, 2023p)
2007 https://doi.org/10.5281/zenodo.8287129 (Bai and Li, 2023q) https://doi.org/10.5281/zenodo.8308227 (Bai and Li, 2023r)
2008 https://doi.org/10.5281/zenodo.8287133 (Bai and Li, 2023s) https://doi.org/10.5281/zenodo.8308231 (Bai and Li, 2023t)
2009 https://doi.org/10.5281/zenodo.8287995 (Bai and Li, 2023u) https://doi.org/10.5281/zenodo.8308233 (Bai and Li, 2023v)
2010 https://doi.org/10.5281/zenodo.8288389 (Bai and Li, 2023w) https://doi.org/10.5281/zenodo.8308237 (Bai and Li, 2023x)
2011 https://doi.org/10.5281/zenodo.8288395 (Bai and Li, 2023y) https://doi.org/10.5281/zenodo.8310586 (Bai and Li, 2023z)
2012 https://doi.org/10.5281/zenodo.8288397 (Bai and Li, 2023aa) https://doi.org/10.5281/zenodo.8310590 (Bai and Li, 2023ab)
2013 https://doi.org/10.5281/zenodo.8287207 (Bai and Li, 2023ac) https://doi.org/10.5281/zenodo.8310702 (Bai and Li, 2023ad)
2014 https://doi.org/10.5281/zenodo.8288387 (Bai and Li, 2023ae) https://doi.org/10.5281/zenodo.8310704 (Bai and Li, 2023af)
2015 https://doi.org/10.5281/zenodo.8289613 (Bai and Li, 2023ag) https://doi.org/10.5281/zenodo.8310706 (Bai and Li, 2023ah)
2016 https://doi.org/10.5281/zenodo.8289615 (Bai and Li, 2023ai) https://doi.org/10.5281/zenodo.8310708 (Bai and Li, 2023aj)
2017 https://doi.org/10.5281/zenodo.8294100 (Bai and Li, 2023ak) https://doi.org/10.5281/zenodo.8310711 (Bai and Li, 2023al)
2018 https://doi.org/10.5281/zenodo.8301364 (Bai and Li, 2023am) https://doi.org/10.5281/zenodo.8313603 (Bai and Li, 2023an)
2019 https://doi.org/10.5281/zenodo.8301367 (Bai and Li, 2023ao) https://doi.org/10.5281/zenodo.8313611 (Bai and Li, 2023ap)
2020 https://doi.org/10.5281/zenodo.8301375 (Bai and Li, 2023aq) https://doi.org/10.5281/zenodo.8313613 (Bai and Li, 2023ar)
2021 https://doi.org/10.5281/zenodo.8301379 (Bai and Li, 2023as) https://doi.org/10.5281/zenodo.8313615 (Bai and Li, 2023at)

ground-based PM2.5 measurements, achieving an R of 0.91
and an RMSE of 9.57 µg m−3, while the data accuracy was
improved to an R of 0.95 and an RMSE of 5.7 µg m−3 with
the fusion of ground-measured PM2.5 concentrations.

Several new algorithmic enhancement modules were in-
corporated into the big data analytics framework to improve
both the computing speed and the reconstruction accuracy.

The ablation experiments demonstrated the effectiveness and
advantages of the newly implemented attention mechanism
in weighing each slice of soft data in the AOD tensor. Updat-
ing prior information in the target image after each tensor re-
construction iteration helped mitigate the risk of error propa-
gation from numerical aerosol diagnostics to the final recon-
structed field and improve the convergence speed of tensor
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completion. Overall, this study provides a compelling illus-
tration of big Earth data analytics to generate high-quality
remote sensing datasets by synergistically integrating and
assimilating multimodal data from diverse sources via ma-
chine learning techniques. Additionally, this big data analyt-
ics approach could also be used for near-term gap-free AOD
mapping by simply replacing numerical AOD reanalysis with
forecasting fields (e.g., CAMS forecasts).

This study also provides new insights into how to deal
with the scale problem when developing large-scale environ-
mental variable (e.g., PM2.5 concentration) mapping models.
Instead of constructing a global model with all paired data
samples, site-specific PM2.5 prediction models were first es-
tablished using a random forest model, and a graph atten-
tion network was then developed to establish an ensemble
learning model to integrate multiple PM2.5 estimates derived
from site-specific random forest models trained over sites
with similar scene features to the target grid. By account-
ing for the scene similarity between geographic regions, the
proposed deep-learning model attempted to address the scale
problem in large-scale PM2.5 modeling practices.

The LGHAP v2 dataset is publicly accessible using
the aforementioned links. The gap-free and high-resolution
dataset can be used as a reliable data source for assessing
aerosol–climate interactions as well as PM2.5 exposure risks
and related health outcomes around the world. Researchers
are also encouraged to use this dataset to evaluate the sta-
tus and trends of urban aerosol pollution across the globe to
support the assessment of Sustainable Development Goals.
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