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S1.  Multisource data homogenization 1 

Given excessive missing values in satellite-based AOD retrievals, it is advisable to improve the gap-filling accuracy by 2 
increasing the data abundance via an integration of external observations. Benefiting from the powerful approximation capacity 3 
of machine learning algorithms, a set of machine-learned regression models were established using the random forest model 4 
to generate MODIS-like AOD estimates from diverse data sources, aiming at providing critical prior information to facilitate 5 
AOD gap-filling, especially over regions with massive data voids. Specifically, AODTerra observations were deemed the 6 
response variable, while AOD-related data (𝐴𝑅 ) from other satellites, MERRA-2 simulations, and in-situ air quality 7 
measurements were used as the critical predictors, alongside meteorological and geographic factors. The machine-learned 8 
models can be expressed as follows. 9 

𝐴𝑂𝐷!"##$~𝑅𝐹(𝐴𝑅,𝑀𝐸𝑇, 𝐴𝐸𝑅, 𝐿𝑈𝐿𝐶, 𝐷𝐸𝑀,𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃,𝑚𝑜𝑛𝑡ℎ)																						(S1) 10 
where 𝑀𝐸𝑇, 𝐴𝐸𝑅, 𝐿𝑈𝐿𝐶, 𝐷𝐸𝑀, 𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃, and 𝑚𝑜𝑛𝑡ℎ refer to meteorological variables, numerical aerosol component 11 
simulations, land use and land cover, elevation, vegetation index, population, and month identifier, respectively.  12 

By taking advantage of these data-specific machine learning models, gridded AOD products from diverse satellites and 13 
numeric simulations were harmonized to supplement 𝐴𝑂𝐷!"##$  by correcting for both the scaling effect (varied spatial 14 
resolution) and cross-sensor biases. More importantly, virtual AOD observations were derived from in situ air quality 15 
measurements, providing additional AOD prior information to facilitate AOD gap-filling, especially over regions without 16 
satellite-based AOD observations. This homogenization approach greatly favors the assimilation of multisensory AODs and 17 
heterogenous air quality data (Bai et al., 2022a; Li et al., 2022a).  18 



 

 

S2. Scene-aware ensemble learning graph attention network (SCAGAT) for global PM2.5 mapping 19 

To accommodate global big Earth observations and to account for spatial representativeness in the model extrapolation, 20 
we developed a novel SCene-Aware ensemble learning Graph Attention neTwork (SCAGAT) model for global PM2.5 21 
concentration mapping. The workflow of this method is illustrated in Figure S4. Differing from previous data-driven models, 22 
which were established using either all available data (global model) or regional observations (regional model), the SCAGAT 23 
model was dedicated to solving the scale problem in large-scale modeling practices (e.g., global PM2.5 modeling in this study). 24 
This approach avoids the determination of the scale (i.e., the boundary size like city, province, national, and global) for 25 
selecting proper training samples for constructing an appropriate training set for data-driven models. In the following, we 26 
briefly introduced the technical flows of the SCAGAT model. 27 

Firstly, we established the PM2.5 estimation model at each individual air quality monitoring site using the random forest 28 
method given its good approximation capacity. Specifically, ground-measured PM2.5 concentrations were used as the learning 29 
target while the collocated 𝐴𝑂𝐷 from the LGHAP v2 dataset were used as the proxy variable, along with a set of explainable 30 
variables. The site-specific PM2.5 estimation models can be formulated as: 31 

𝑃𝑀%.'~𝑅𝐹(𝐴𝑂𝐷,𝑀𝐸𝑇, 𝐴𝐸𝑅, 𝐿𝑈𝐿𝐶, 𝐷𝐸𝑀,𝑁𝐷𝑉𝐼, 𝑃𝑂𝑃,𝑚𝑜𝑛𝑡ℎ)																											(S2)  32 
Therefore, tens of thousands of site-specific PM2.5 concentration estimation models were established at the local scale across 33 
the globe. 34 

Secondly, an adjacency matrix was calculated between each footprint of gap-filled AODTerra and monitoring sites overlaid 35 
grids in reference to nine distinct features indicating the scene attribute of each grid cell, including latitude, longitude, AOD, 36 
relative humidity, air temperature, NDVI, elevation, population, and land use and land cover ratio. Specifically, the high-37 
dimension Euclidian distance was calculated between grids on the basis of these normalized features. The assumption is that 38 
the nonlinear interactions between AOD and PM2.5 may comply with a similar relationship over scenes with comparable 39 
ambient environment. Therefore, PM2.5 concentration over one grid could be estimated from models trained over sites with 40 
scene features similar to this given grid.  41 

Thirdly, a graph attention network was then employed to integrate multiple PM2.5 estimates derived from a set of site-42 
specific models with similar scene features. Specifically, PM2.5 estimates from 32 models with similar scene features were 43 
used as the learning input, while the normalized attribute differences were used as the weights in the adjacency matrix, and the 44 
testing accuracy of each random forest model was used as the node bias. During the graph network training, the model utilized 45 
attention operations to discern crucial associations between scene attributes, and the model was continuously optimized by 46 
adjusting graph structures and incorporating residual connections. A global pooling layer was then employed to amalgamate 47 
contextual data from all nodes. 48 

Distinct from other learning models, the proposed SCAGAT model takes advantage of powerful approximation capacity 49 
of random forest and accounts for the scene representativeness of each data-driven model. More importantly, the SCAGAT 50 
model is capable of accurately predicting PM2.5 concentration even over regions without monitoring sites.  51 



 

 

Table S1. Data accuracy of raw AOD datasets used for generating global gap-free LGHAP v2 AOD dataset by comparing 52 
against AOD observations from AERONET during 2000–2021.  53 

Dataset Region 
Mean 
AOD 

Number of 
monitors 

Number of 
samples 

R RMSE Bias 
Below 
EE (%) 

Within 
EE (%) 

Above 
EE (%) 

MCD19A2 (Aqua) 

Global 0.17 1335 341254 0.88 0.11 0.01 12.11 75.45 12.44 
North America 0.11 433 94531 0.87 0.07 -0.01 3.72 82.54 13.74 
South America 0.11 81 20537 0.93 0.07 0.00 9.46 77.61 12.93 

Europe 0.11 208 83773 0.81 0.06 0.02 10.69 83.42 5.90 
Asia 0.32 321 79146 0.90 0.14 0.00 15.53 67.80 16.67 

Africa 0.21 110 40867 0.78 0.19 0.05 29.20 56.75 14.05 
Australia 0.09 28 10272 0.79 0.06 -0.02 4.81 76.71 18.48 

VIIRS/NPP 

Global 0.19 1335 204573 0.90 0.11 -0.01 9.68 75.58 14.73 
North America 0.12 433 69371 0.86 0.12 -0.01 6.76 81.61 11.63 
South America 0.08 81 15326 0.81 0.07 0.03 18.93 75.61 5.46 

Europe 0.13 208 45874 0.82 0.06 -0.01 4.42 83.62 11.96 
Asia 0.38 321 42570 0.91 0.15 -0.02 11.88 67.43 20.69 

Africa 0.23 110 25183 0.89 0.13 0.00 17.00 61.47 21.53 
Australia 0.11 28 4409 0.58 0.11 -0.04 3.38 65.28 31.34 

MISR/Terra 

Global 0.19 1335 79125 0.87 0.11 0.00 5.24 81.72 13.04 
North America 0.13 433 20839 0.79 0.09 -0.02 1.76 82.12 16.13 
South America 0.13 81 4526 0.89 0.12 0.00 4.20 87.38 8.42 

Europe 0.14 208 18630 0.87 0.05 0.00 2.59 90.85 6.56 
Asia 0.31 321 15792 0.85 0.18 0.02 12.61 72.44 14.96 

Africa 0.25 110 10003 0.87 0.14 0.00 7.56 73.78 18.66 
Australia 0.11 28 2241 0.76 0.07 -0.03 1.56 73.05 25.39 

PARASOL/ 
POLDER 

Global 0.30 1335 72120 0.86 0.18 -0.08 4.02 54.12 41.87 
North America 0.21 433 15849 0.68 0.16 -0.10 1.54 45.09 53.37 
South America 0.25 81 3235 0.95 0.16 -0.08 1.58 54.37 44.05 

Europe 0.20 208 19960 0.72 0.12 -0.05 3.47 63.65 32.88 
Asia 0.51 321 17651 0.85 0.24 -0.11 6.10 46.07 47.83 

Africa 0.39 110 8108 0.83 0.20 -0.07 7.24 56.18 36.58 
Australia 0.10 28 2171 0.69 0.07 -0.03 1.89 71.44 26.67 

AATSR/ 
Envisat 

Global 0.19 1335 30870 0.83 0.11 0.00 10.05 76.91 13.04 
North America 0.12 433 7828 0.87 0.06 0.00 5.81 86.89 7.29 
South America 0.12 81 1578 0.75 0.10 0.01 14.32 71.55 14.13 

Europe 0.14 208 8139 0.84 0.06 0.01 9.23 85.17 5.60 
Asia 0.31 321 5358 0.79 0.15 0.00 14.73 64.11 21.16 

Africa 0.30 110 3672 0.79 0.20 0.00 18.57 61.55 19.88 
Australia 0.13 28 997 0.36 0.13 -0.05 4.01 61.79 34.20 

SeaWiFS/  
OrbView-2 

Global 0.21 1335 21643 0.88 0.12 0.00 12.34 70.64 17.02 
North America 0.12 433 4885 0.73 0.08 -0.02 5.69 75.78 18.53 
South America 0.17 81 1158 0.93 0.13 0.03 25.47 68.83 5.70 

Europe 0.16 208 3949 0.79 0.07 0.00 8.38 77.67 13.95 
Asia 0.32 321 3972 0.77 0.15 0.00 20.62 58.26 21.12 

Africa 0.34 110 3230 0.90 0.16 0.03 22.57 59.66 17.77 
Australia 0.07 28 717 0.34 0.09 0.00 11.30 73.92 14.78 

AOD estimates derived 
from air quality 

indicators 

Global 0.19 1335 203153 0.84 0.14 0.01 14.08 70.57 15.35 

North America 0.13 433 39913 0.78 0.11 -0.01 6.27 76.09 17.64 

South America 0.11 81 18282 0.81 0.10 0.02 17.27 71.44 11.29 

Europe 0.12 208 61389 0.71 0.07 0.01 10.47 81.32 8.21 

Asia 0.33 321 62283 0.84 0.19 0.03 20.41 61.96 17.62 

Africa 0.23 110 19041 0.72 0.19 0.00 19.67 50.11 30.21 

Australia 0.09 28 2245 0.67 0.07 -0.01 2.90 83.61 13.50 

54 



 

 

 55 

Figure S1.  Spatial and temporal variations in AOD data coverage from Terra across the globe during 2000 to 2020. 56 

  57 



 

 

 58 

Figure S2.  Spatial distribution of ground monitors providing AOD, PM, and atmospheric visibility used in this study across 59 

the globe. 60 

  61 



 

 

 62 

Figure S3.  Spatial distribution of data tiles used for global-scale AOD gap-filling. 63 
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 65 
Figure S4. The flow chart of the scene-aware ensemble learning graph attention network (SCAGAT) model.   66 



 

 

 67 
Figure S5. Performance evaluation of the adaptive background information updating module on improving AOD 68 
reconstruction patterns. Intercomparisons were conducted between the benchmark method (the method developed in Bai et al. 69 
(2022) to generate LGHAP v1 dataset in China) and the one embedding adaptive background information updating module. 70 
  71 
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