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Abstract. Soil bulk density (BD) serves as a fundamental indicator of soil health and quality, exerting a signifi-
cant influence on critical factors such as plant growth, nutrient availability, and water retention. Due to its limited
availability in soil databases, the application of pedotransfer functions (PTFs) has emerged as a potent tool for
predicting BD using other easily measurable soil properties, while the impact of these PTFs’ performance on soil
organic carbon (SOC) stock calculation has been rarely explored. In this study, we proposed an innovative local
modeling approach for predicting BD of fine earth (BDfine) across Europe using the recently released BDfine data
from the LUCAS Soil (Land Use and Coverage Area Frame Survey Soil) 2018 (0–20 cm) and relevant predictors.
Our approach involved a combination of neighbor sample search, forward recursive feature selection (FRFS),
and random forest (RF) models (local-RFFRFS). The results showed that local-RFFRFS had a good performance
in predicting BDfine (R2 of 0.58, root mean square error (RMSE) of 0.19 gcm−3, relative error (RE) of 16.27 %),
surpassing the earlier-published PTFs (R2 of 0.40–0.45, RMSE of 0.22 gcm−3, RE of 19.11 %–21.18 %) and
global PTFs using RF models with and without FRFS (R2 of 0.56–0.57, RMSE of 0.19 gcm−3, RE of 16.47 %–
16.74 %). Interestingly, we found that the best earlier-published PTF (R2

= 0.84, RMSE= 1.39 kgm−2, RE of
17.57 %) performed close to the local-RFFRFS (R2

= 0.85, RMSE= 1.32 kgm−2, RE of 15.01 %) in SOC stock
calculation using BDfine predictions. However, the local-RFFRFS still performed better (1R2 > 0.2) for soil sam-
ples with low SOC stocks (< 3 kgm−2). Therefore, we suggest that the local-RFFRFS is a promising method for
BDfine prediction, while earlier-published PTFs would be more efficient when BDfine is subsequently utilized for
calculating SOC stock. Finally, we produced two topsoil BDfine and SOC stock datasets (18 945 and 15 389 soil
samples) at 0–20 cm for LUCAS Soil 2018 using the best earlier-published PTF and local-RFFRFS, respectively.
This dataset is archived on the Zenodo platform at https://doi.org/10.5281/zenodo.10211884 (S. Chen et al.,
2023). The outcomes of this study present a meaningful advancement in enhancing the predictive accuracy of
BDfine, and the resultant BDfine and SOC stock datasets for topsoil across the Europe enable more precise soil
hydrological and biological modeling.
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1 Introduction

Soil plays a pivotal role in supporting ecosystems and sus-
taining life on our planet (Rabot et al., 2018). Its physical
properties are crucial for various disciplines such as agricul-
ture, environmental science, and land management. Among
these properties, soil bulk density (BD) holds particular sig-
nificance as it serves as a fundamental indicator of soil
health, structure, and water-holding capacity. BD directly in-
fluences vital factors like plant growth, nutrient availability,
and overall soil quality (Dam et al., 2005; Chen et al., 2018;
Schillaci et al., 2021). Additionally, BD plays a crucial role
in computing the stock of water, chemical elements (e.g., soil
organic carbon, SOC), or compounds by soil surface unit
or soil volume unit, making it even more essential in soil
studies. Nonetheless, the uncertainty in SOC stock estimates
arises due to the variations in methods used to substitute for
missing BD data (Benites et al., 2007; Dawson and Smith,
2007; Wiesmeier et al., 2012; Z. Chen et al., 2023). It is im-
portant to acknowledge that BD in topsoil exhibits consider-
able variations across different geographical regions due to
factors like diverse soil types, climate conditions, vegetation
cover, and land cover patterns (Hollis et al., 2012; Lark et al.,
2014; Li et al., 2019). These regional disparities underscore
the need for a comprehensive understanding of BD in soil re-
search and its implications for various aspects of ecosystem
functioning and management.

Characterizing the spatial distribution of BD across a di-
verse and extensive continent like Europe presents a complex
challenge (Chen et al., 2018; Nasta et al., 2020; Palladino
et al., 2022; Panagos et al., 2024). Conventional soil sam-
pling and laboratory analyses are time-consuming, costly,
and impractical at a broad scale (Makovníková et al., 2017).
In response to this challenge, the development of pedotrans-
fer functions (PTFs) has emerged as a powerful approach
(Van Looy et al., 2017). PTFs are mathematical models that
estimate soil properties, such as BD, based on readily avail-
able and easily measurable soil data (e.g., SOC, clay, silt, and
sand). These functions serve as invaluable tools for predict-
ing soil properties at unvisited locations, facilitating regional
soil mapping, and enhancing our understanding of soil dy-
namics across vast areas (Chen et al., 2018; Schillaci et al.,
2021; Palladino et al., 2022). Furthermore, the incorporation
of globally available predictor variables, such as topography
and land cover, showed promise in enhancing the effective-
ness and applicability of PTFs for gap-filling of BD data
(Ramcharan et al., 2017; Bondi et al., 2018; Patton et al.,
2019).

In the early stage, PTFs predominantly employed regres-
sion techniques due to their simplicity (Gupta and Larson,
1979; Rawls and Brakensiek, 1985). However, with advance-
ments in science and technology, a wide range of models
have been developed for deriving PTFs, particularly for con-
tinuous predicted variables. These methods encompass lin-
ear regression, generalized linear models, generalized addi-

tive models, regression trees, artificial neural networks, sup-
port vector machines, gradient boosted models, and random
forests (RFs) (Van Looy et al., 2017; Chen et al., 2018). The
utilization of these advanced techniques has substantially im-
proved the accuracy of BD prediction (Table 1).

PTFs have emerged as an alternative approach to address
the scarcity of BD data (Van Looy et al., 2017). They have
been implemented and tested in diverse regions and coun-
tries, providing a practical and cost-effective means for pre-
dicting BD using readily available soil properties. However,
it is noteworthy that the majority of previous studies utiliz-
ing machine learning (ML) and PTFs for BD prediction have
been conducted at regional or national scales, with limited
research focusing on the intercontinental scale (Taalab et al.,
2015; Shiri et al., 2017; Katuwal et al., 2020). Despite the
accomplishments of PTFs in BD estimation, a gap emerges
when transitioning to global modeling (a fixed model to pre-
dict all the unknown samples) endeavors. The reliance on
global models, while useful in capturing broad patterns, often
faces constraints in delivering accurate predictions at finer
scales (Gupta et al., 2018). These global models may fail
to account for the nuanced spatial and environmental vari-
ations that play a pivotal role in determining BD across dif-
ferent landscapes. While numerous studies have harnessed
ML-based PTFs (ML-PTFs) to improve the model perfor-
mance of BD at national and regional levels, the expansion
of these methodologies to encompass continental contexts re-
mains relatively limited (Nasta et al., 2020; Schillaci et al.,
2021; Palladino et al., 2022). This gap underscores the need
for a modeling approach that bridges the gap between broad-
scale global modeling and the context-specific requirements
of diverse regions and ecosystems (Wang et al., 2024). This
is where the concept of local modeling steps in. The local
model adopts a dynamic modeling strategy: it firstly selects a
part of similar samples close to each unknown sample in the
predictor space, and then it fits a predictive model using the
selected similar samples (not the entirety of the data). Since
the selected similar samples vary for each unknown sample,
the corresponding local model is different from others. A lo-
cal modeling strategy enables the consideration of environ-
mental relevance by clustering data under similar environ-
mental conditions (i.e., in the present case, similar predic-
tors feature space, including soil properties, elevation, land
cover, and climate conditions), which aids in constructing
specialized PTFs that capture soil–environment relationships
(Nocita et al., 2014; Chen et al., 2018). Thus, there is a com-
pelling need for further investigations of and developments in
local modeling techniques to improve BD predictions. Fur-
thermore, despite the wide use of PTFs in predicting BD
in SOC stock calculations from continental to global scales,
how the performances (e.g., R2, root mean square error, rel-
ative error) of PTF-based BD prediction impact the quality
of SOC stock remains poorly explored (Cotrufo et al., 2019;
Augusto and Boča, 2022; Wang et al., 2022; De Rosa et al.,
2023).
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Table 1. Summary of previous studies on using PTFs for BD prediction across scales. R2 indicates the determination coefficient.

ID Scale Sample size Model R2 Reference

1 Landscape 164
Naive BN 0.26 Taalab et al. (2015)
Hierarchical BN 0.42

2 National 2462

MLR 0.41

Katuwal et al. (2020)
RF 0.62
RR 0.60
ANN 0.61

3 National 1357 GBM 0.53 Chen et al. (2018)

4 Regional 169
k-NN 0.32

Ghehi et al. (2012)
BRT 0.30

5 National 485 GBM 0.67 Jalabert et al. (2010)

6 Regional 495
ANN 0.71

Yi et al. (2016)
MLR 0.63

7 National 188
MLR 0.21

Schillaci et al. (2021)MLR-BS 0.38
ANN 0.48

MLR is for multiple linear regression, RF is for random forest, RR is for regression rule, ANN is for artificial
neural network, GBM is for generalized boosted model, BRT is for boosted regression tree, BN is for Bayesian
network, k-NN is for k nearest neighbor, and MLR-BS is for multiple linear regression (stepwise variable
selection).

To address the aforementioned issues, we investigated an
RF model in combination with variable selection and a local
modeling strategy to evaluate the potential of different PTFs
in BD prediction, as well as in SOC stock calculation. The
main objectives of this study are as follows:

1. to compare the performances of earlier-published PTFs
and ML-PTFs for BD prediction

2. to evaluate the potential of local modeling strategies for
BD prediction

3. to investigate the impact of PTF-based BD prediction
on the accuracy of SOC stock calculation.

2 Materials and methods

2.1 Soil data

The soil data were compiled from the Land Use and Cover-
age Area Frame Survey Soil (LUCAS Soil) campaigns con-
ducted in 2009, 2015, and 2018 (Fernández-Ugalde et al.,
2022; Panagos et al., 2022). The survey encompassed a strat-
ified random sampling approach, which identified approxi-
mately 20 000 topsoil sampling locations across the Euro-
pean Union (EU) and the United Kingdom (UK) for each
campaign. At each sampling site (circle of 4 m diameter
plot), five topsoil samples (0–20 cm) were collected after
the removal of the litter layer, and the land cover (LC) was
recorded. These samples were then combined into a bulked

composite topsoil sample for analysis. Subsequently, all top-
soil samples underwent air-drying and sieving to less than
2 mm. Standard laboratory analysis was conducted in an ac-
credited laboratory (Kecskemét, Hungary), including parti-
cle size fractions (clay content, silt content, sand content,
%), coarse fragments (mass fraction, %/100), BD (whole
mass, gcm−3), pH (in water), SOC content (gkg−1), car-
bonates (CaCO3, gkg−1), total nitrogen (N, gkg−1), ex-
tractable potassium (K, mgkg−1), and cation exchange ca-
pacity (CEC, cmol(+) kg−1). For more comprehensive in-
formation about LUCAS Soil 2009/2015/2018, we refer
the reader to Orgiazzi et al. (2022). In the LUCAS Soil
2018 survey, topsoil sampling was conducted across all
EU Member States and the UK, employing the identical set
of 25 947 locations that were targeted during the 2015 sur-
vey (Fernández-Ugalde et al., 2022). However, due to the
absence of particle size fractions in LUCAS Soil 2018, we
resorted to using the data from LUCAS Soil 2009/2015 ac-
cording to the unique identifier soil ID (Panagos et al., 2022).
To ensure the reliability of the data, we excluded samples
with soil particle fractions recorded as 0. Finally, 5163 top-
soil samples were retained for further analysis (Fig. 1). In
the following parts of the article, we define BDsample as the
whole soil mass : volume ratio and BDfine as the fine-earth
mass : volume ratio.

Since BDsample was measured for the whole mass and CF
was measured as a mass fraction (CFmassfraction) in part of
the topsoil samples of the LUCAS Soil 2015/2018, they can-
not be used directly to accurately calculate SOC stock. Note
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Figure 1. Spatial distribution of 5163 topsoil samples with estimated BDfine from LUCAS Soil 2018. The colors represent six BDfine levels,
and the histogram represents the relevant percentages for these BDfine levels.

that, if the mass of the fine fraction has been measured and
recorded (as the total volume of the sample is known), the
SOC stock can be calculated directly (Poeplau et al., 2017).
However, in numerous locations, neither the mass of the fine
fraction nor BDsample was measured. This is why we needed
to estimate and use BDfine and CFvolumefraction in order to
calculate SOC stocks where BDsample was missing (Poeplau
et al., 2017). To this aim, we used a recently released dataset
for BDfine and CFvolumefraction by Pacini et al. (2023) based
on BDsample and CFmassfraction from LUCAS Soil 2018.

2.2 Predictor variables related to relief, climate, and
land cover

The elevation (ELE) was derived from the Shuttle Radar
Topography Mission (SRTM) 1 km digital elevation model
(Farr et al., 2007). Climatic data, including mean annual
precipitation (MAP) and mean annual temperature (MAT),
were acquired from the WorldClim version 2 at 1 km reso-
lution (Fick and Hijmans, 2017). The Global-PET dataset at
1 km resolution was used to extract potential evapotranspira-
tion (PET) and aridity index (AI) (Zomer et al., 2022). The

land cover (LC) was directly derived from the records of LU-
CAS Soil 2018 during the soil sampling campaign.

2.3 Earlier-published PTFs

We evaluated four earlier-published PTFs that have been
widely used to estimate BDsample or BDfine in previous stud-
ies at both local and broad scales (Adams, 1973; Atwood
et al., 2017; Chen et al., 2018; Sun et al., 2020; Tao et al.,
2023). For PTF-3 and PTF-4, soil organic matter (SOM) con-
tent was determined by the conversion factor of 1.724 using
SOC content. In the present study, we used these PTFs to
estimate BDfine. The parameters in these PTFs were refitted
by the Levenberg–Marquardt nonlinear least-square method
available in the minpack.lm R package based on our data
(Bates and Watts, 1988; Zhu et al., 1997; Elzhov et al., 2015).
These refitted parameters of PTFs are present in Table 2.

2.4 Global ML-PTFs

To compare with earlier-published PTFs, we used a random
forest (RF) model to construct global ML-PTFs for predict-
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Table 2. Summary of four earlier-published PTFs defined in the literature.

Model Function Refitted coefficients References R2

a b c

PTF-1 BD= a×%SOC b 1.197 −0.229 NA Atwood et al. (2017) 0.40
PTF-2 BD= 1

a+b×% SOC 0.733 0.0982 NA Chen et al. (2018) 0.45
PTF-3 BD= 100

% SOM
0.244 −

(100−% SOM)
a

1.231 NA NA Adams (1973)
Sun et al. (2020)

0.41

PTF-4 BD= a+ b× exp(−c×%SOM) 0.348 0.993 0.0882 Tao et al. (2023) 0.45

BD is for bulk density; depending on the authors cited in references, BD has been considered to be the BD of the fine fraction (BDfine) or
the BD of the whole sample (BDsample) (both expressed in g cm−3); here, the refitted coefficients correspond to BDfine. SOM is for soil
organic matter content (% in soil mass). SOC is for soil organic carbon content (% in soil mass). NA: not available.

Table 3. The variables used in RFFull and RFFRFS. For RFFRFS; the order of the variables is by descending importance. RFFull uses all
potential predictors, even if they may be redundant of multi-collinear (typical case of the use of clay, silt, and sand contents together). RFFRFS
applies FRFS, thus eliminating both multi-collinearity and irrelevant predictor variables (e.g., one particle size fraction (sand content) is left
out). The abbreviations are detailed as follows: SOC is for soil organic carbon content, CEC is for cation exchange capacity, AI is for aridity
index, PET is for potential evapotranspiration, MAP is for mean annual precipitation, MAT is for mean annual temperature, ELE is for
elevation, and LC is for land cover. Clay, silt, sand, and CaCO3 are expressed in %; pH is pH in a 1 : 2.5 soil : water mixture.

Model Selected predictors Number of
predictors

RFFull clay, silt, sand, pH, SOC, CaCO3, N, K, CEC, AI, PET, MAP, MAT, ELE, LC 15
RFFRFS SOC, N, pH, PET, MAP, LC, AI, MAT, ELE, CEC, clay, silt 12

ing BDfine. RF is an ensemble learning method that aggre-
gates predictions from multiple decision trees to obtain the
final estimates of the target variable. In growing a decision
tree, a random subsample of data is selected from the ver-
ification dataset, and a set of random predictor variables is
used for splitting the subsampled data. Two parameters, ntree
and mtry, were optimized by 10-fold cross-validation. Here,
15 predictor variables, such as sand content, silt content, clay
content, SOC content, and ELE (Table 3), were used to build
the global RF model.

Furthermore, we adopted a recently proposed variable se-
lection method, namely forward recursive feature selection
(FRFS), to reduce the number of predictor variables while
not losing model performance (Xiao et al., 2022a; Zhang
et al., 2023). FRFS employs a forward selection strategy, in-
volving the following sequential steps: (1) initially, an RF
model is fitted using all the n predictors, and their variable
importance is calculated; (2) the most important predictor
(only one) is selected to create an initial model, and its per-
formance is assessed using 10-fold cross-validation with a
single predictor in the pool; (3) subsequently, a series of
models are constructed using two predictors, where the first
predictor is chosen from the pool, and the second predictor
is selected from the remaining predictors. The model perfor-
mances are evaluated, and the model with the best perfor-
mance is recorded; (4) the pool of predictors is then updated
based on the predictors from the best-performing model in
the previous step; (5) the process is iteratively repeated, pro-

gressively increasing the number of predictors from 3 to n.
Ultimately, the predictors used in the model with the best
performance are selected to form the final predictive model,
as detailed in the work of Xiao et al. (2022a). The R script for
implementing FRFS is accessible at https://doi.org/10.5281/
zenodo.7141020 (Xiao et al., 2022b). In this study, FRFS was
applied to select the most relevant predictors constructing the
predictive models (Table 3).

For clarity, in global modeling, we refer to the RF model
using the full variables as global-RFFULL and the combina-
tion of the RF model with FRFS as global-RFFRFS.

2.5 Local ML-PTFs

The development of local ML-PTFs consists of four steps:
(1) use the Mahalanobis distance to calculate the distances of
predictor variables between each sample to be predicted and
all the samples in the database; (2) select k nearest-neighbor
samples to fit an RF model for each unknown sample; (3) pre-
dict the BDfine for each unknown sample using relevant RF
models. Since the number of nearest-neighbor samples (k) is
an important parameter in the local model, we evaluated its
effect on the model performance by testing k from 20 to 700
(20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500,
550, 600, 650, 700).

For clarity, we refer to the local modeling using the full
variables as local-RFFULL, and we refer to the combined use
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of the RF model and variables selected by global-RFFRFS as
local-RFFRFS.

2.6 Model evaluation

Due to the large sample size, a single random split is sta-
ble compared to k-fold cross-validation or a repeated random
split (Chen et al., 2021). Therefore, we used a random split
(80 % for calibration and 20 % for validation) to assess the
model performance of earlier-published PTFs and ML-PTFs.
It is important to note that the same validation set was used
to evaluate earlier-published PTFs and ML-PTFs. The root
mean square error (RMSE), determination coefficient (R2),
and relative error (RE) were used as performance indicators
in the validation set (Chen et al., 2022). These indices are
defined following Eq. (1), (2), and (3):

RMSE=

√
1
n

∑n

i=1
(Oi −Pi)2, (1)

R2
= 1−

∑n
i (Oi −Pi)2∑n
i

(
Oi −O

)2 , (2)

RE=
1
n

n∑
i=1

|Oi −Pi |

Oi

× 100%, (3)

where n represents the number of observations, Oi and Pi are
the observed and predicted BDfine for observation i, and o is
the mean of the observed BDfine. A good model has an RMSE
and RE close to 0 and also higher R2 close to 1.

2.7 The build-up of extended BDfine and SOC stock
datasets for topsoil in Europe

Since only part of LUCAS 2015/2018 had soil particle frac-
tions and CaCO3, we used the unique sample ID to link the
missing soil particle fractions and CaCO3 using LUCAS Soil
2009 for the same sampling sites. This operation is reason-
able since soil particle fractions and CaCO3 will not have ex-
perienced a notable change within a decade. The SOC stock
(kgm−2) at a depth of 0–20 cm for LUCAS Soil 2018 was
calculated by the SOC content (gkg−1), BDfine (gcm−3),
CFvolumefraction (%/100), and depth (20 cm) as in Eq. (4)
(Poeplau et al., 2017).

SOC stock= SOC×BDfine×Depth

× (1−CFvolumefraction)/100 (4)

3 Results

3.1 Statistics of BDfine and its correlation with predictor
variables

Figure 2 illustrates the histogram of BDfine values and their
distribution in a ternary soil texture triangle. The dataset con-
sists of 5163 topsoil samples, with BDfine ranging from 0.20

to 1.89 gcm−3. The topsoil sample with the lowest BDfine
(0.20 gcm−3) was collected from a pine-dominated mixed
woodland with an SOC content greater than 137 gkg−1.
In contrast, the topsoil sample with the highest BDfine
(1.89 gcm−3) was sampled from a sandy soil (sand and clay
of 65 % and 11 %, SOC content of 31.9 gkg−1) in cropland
(common wheat). Approximately half of the topsoil samples
exhibited BDfine between 0.8 and 1.4 gcm−3, while less than
10 % of the topsoil samples had BDfine exceeding 1.4 gcm−3.
As shown in the soil texture triangle, the selected topsoil
samples covered a wide range of soil texture classes.

Figure 3 depicts the correlation matrix between BDfine
and 15 predictor variables. BDfine exhibited positive corre-
lations with pH and MAT, with correlation coefficients (r)
greater than 0.25. On the other hand, BDfine showed no-
tably high negative correlations with most of the other pre-
dictors. The most influential negative predictor was SOC
content (r =−0.62), followed by N (r =−0.56) and CaCO3
(r =−0.33). Note that BDfine under various LC classes ex-
hibited significant differences in terms of mean BDfine of
1.16, 1.00, 0.78, and 1.02 gcm−3 for cropland, grassland,
woodland, and others, respectively.

3.2 Selection of predictor variables

Table 3 presents the predictor variables utilized in the RF
model for predicting BDfine. In the global-RFFULL model,
15 predictor variables were included, namely clay content,
silt content, sand content, pH, SOC content, CaCO3, N, K,
CEC, AI, PET, ELE, MAP, MAT, and LC. On the other hand,
the global-RFFRFS identified a subset of eight predictor vari-
ables by means of FRFS that were deemed to be most impor-
tant for BDfine prediction. These selected predictor variables,
ranked in descending order of importance, were SOC con-
tent, N, pH, PET, MAP, LC, AI, and MAT.

3.3 Comparison of ML-PTFs and earlier-published
PTFs in BDfine prediction

In this study, we compared ML-PTFs with four earlier-
published PTFs in BDfine prediction (Figs. 4 and 5). The
earlier-published PTFs had model performances with an
RMSE of 0.22 gcm−3, R2 of 0.40–0.45, and RE of 19.11 %–
20.75 %. The global-RF models had higher model perfor-
mances, with an RMSE of 0.19 gcm−3, R2 between 0.57
and 0.58, and RE of 16.53 %–16.74 % for global-RFFULL
and global-RFFRFS, respectively, though the latter performed
slightly better (see R2 values in Fig. 4). As for local models,
it was clear that the model performance showed an increas-
ing trend when the number of neighbor samples increased,
and some fluctuations were observed after the model per-
formance reached a plateau. The number of neighbor sam-
ples was optimized at 350 and 400 for local-RFFRFS and
local-RFFULL, respectively. Compared to global modeling,
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Figure 2. Histogram of BDfine (a) and USDA soil texture triangle (b). The point colors shown in the texture triangle correspond to the colors
present in the left histogram. The percentage of each bin is indicated over the bin in the histogram.

Figure 3. Correlation plot of BDfine and predictors. The sizes of the circles represent the magnitudes of the correlation, and light and
dark colors represent negative and positive correlations, respectively. The abbreviations are detailed as follows: BDfine is for bulk density
of fine earth, CEC is for cation exchange capacity, SOC is for soil organic carbon content, AI is for aridity index, PET is for potential
evapotranspiration, MAP is for mean annual precipitation, MAT is for mean annual temperature, ELE is for elevation, and LC is for land
cover.
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Figure 4. Model performance indicator (R2) of earlier-published PTFs and ML-PTFs in BDfine prediction. The performances of local RF
models (local-RFFULL and local-RFFRFS) change with the number of soil samples used for local modeling.

Figure 5. Scatter plots of BDfine predictions using earlier-published PTFs and ML-PTFs along with model performance indicators (RMSE,
R2, and RE). The lighter color indicates a higher sample density. Please note that the best models are selected for local-RFFULL and local-
RFFRFS.

the best local-RFFRFS and local-RFFULL performed slightly
better with R2 of 0.59–0.57 and RE of 16.28 %–16.47 %.

The summary of RE variations under different BDfine lev-
els and land covers using best earlier-published PTF (PTF-
4) and ML-PTF (local-RFFRFS) is shown in Fig. 6. The re-
sults indicated that local-RFFRFS (RE of 29 %) performed

much better than PTF-4 (RE of 37 %) for the topsoil with low
BDfine (< 0.8 gcm−3). The improvement in RE for other BD
levels was rather limited (1RE of 1 %–3 %). The highest RE
(30 %–57 % for PTF-4, 25 %–50 % for local-RFFRFS) was
found for topsoil with low BDfine for the whole validation set
and each land cover. Across land covers, the RE generally de-
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Figure 6. The variations in RE related to BDfine ranges of values (< 0.8, 0.8–1, 1–1.2, and > 1.2 gcm−3) and land covers using PTF-4 (a)
and local-RFFRFS (b). The number under the land cover is the corresponding topsoil sample size.

creased greatly (15 %–24 % for PTF-4, 14 %–20 % for local-
RFFRFS) for topsoil with low–median BDfine (0.8–1 gcm−3)
and then decreased to its lowest (7 %–9 % for both PTF-4
and local-RFFRFS) for topsoil with median–high BDfine (1–
1.2 gcm−3). A slight increase in RE (14 %–16 % for PTF-4,
11 %–17 % for local-RFFRFS) was observed for topsoil with
high BDfine (> 1.2 gcm−3) for all the land covers. Among
different land covers, the cropland had the greatest RE for
topsoil with low and low–median BDfine, followed by others,
woodland, and grassland. For topsoil with median–high and
high BDfine, a similar RE was found for all the land covers.
Overall, the RE for both PTF-4 and local-RFFRFS showed
the worst performances for low BDfine, but the results were
always better for local-RFFRFS, except for woodlands with
BDfine > 1, where the RE was slightly better for PTF-4.

3.4 Comparison of ML-PTFs and earlier-published
PTFs in SOC stock calculation

We investigated how using BDfine estimated by PTFs im-
pacted the accuracy of SOC stock calculation (Fig. 7). We
found that SOC stock calculation using BDfine predictions
from four earlier-published PTFs resulted in a good perfor-
mance, with an RMSE of 1.39–1.89 kgm−2, R2 of 0.70–
0.84, and RE of 17.57 %–19.46 %. Meanwhile, the perfor-
mance indicators of SOC stock calculation using BDfine pre-
diction (RMSE of 1.32–1.36 kgm−2, R2 of 0.84–0.85, RE
of 15.01 %–15.41 %) always exhibited slightly better perfor-
mances than the earlier-published PTFs. However, the per-
formances of the best earlier-published PTF (PTF-4) were

rather similar to those of the local-RFFRFS. Overall, the per-
formances of the local-RFFRFS were the best.

3.5 Summary of the extended European topsoil BDfine
and SOC stock database

To enlarge the topsoil BDfine and SOC stock database (0–
20 cm) for Europe, we refitted the best ML-PTF (local-
RFFRFS) and the best earlier-published PTF (PTF-4) using
all 5163 topsoil samples to predict topsoil samples with-
out BDfine, and then we calculated SOC stock, which re-
sulted in 15 389 and 18 945 topsoil sample predictions for
the extended database, respectively (fewer topsoil samples
had all the required variables for the use of local-RFFRFS).
As shown in Fig. 8, these extended topsoil BDfine and SOC
stock databases are more regularly distributed across the EU
and UK compared to the points in Fig. 1. In the EU and
UK, BDfine in topsoil was primarily distributed within 1.0–
1.2 gcm−3 (46 %–47 %), while the SOC stock in topsoil was
mainly comprised between 2 and 4 kgm−2.

As shown in Fig. 9, in the database created by local-
RFFRFS (15 389 topsoil samples), the topsoil samples un-
der cropland had the highest median BDfine of 1.11 gcm−3,
while woodland exhibited the lowest median BDfine at
0.84 gcm−3. Conversely, woodland had the highest median
SOC stock at 6.21 kgm−2, while cropland showed the low-
est median SOC stock at 3.06 kgm−2. As for the database
built on PTF-4 (18 945 topsoil samples), cropland also had
the highest median BDfine at 1.14 gcm−3, while woodland
exhibited the lowest median BDfine at 0.86 gcm−3. In con-
trast, the SOC stock under woodland presented the highest
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Figure 7. Scatter plots of SOC stock predictions by earlier-published PTFs and ML-PTFs along with model performance indicators (RMSE,
R2, and RE). The red points represent topsoil samples with SOC stock < 3 kgm−2, while the blue points represent topsoil samples with
SOC stock ≥ 3 kgm−2. Note that observed SOC stock is computed using SOC content, CFvolumefraction, and BDfine observations, and
while predicted SOC stock is computed using SOC content observations, BDfine predictions and CFvolumefraction are transformed from
CFmassfraction using BDfine predictions, as suggested by Pacini et al. (2023).

median SOC stock at 6.96 kgm−2, while cropland had the
lowest median SOC stock at 3.17 kgm−2.

4 Discussion

4.1 The superiority of ML-PTFs in BDfine prediction

In this study, using the LUCAS Soil and 15 predictor vari-
ables, we compared the model performance of four earlier-
published PTFs and four ML-PTFs for BDfine in topsoil
(0–20 cm). Four earlier-published PTFs showed a moderate
model performance with R2 of 0.40–0.45, which is close to a
recently developed Hollis-type PTF (R2 of 0.41, Hollis et al.,
2012) that was refitted with LUCAS Soil 2018 data (De Rosa
et al., 2023). Our results underscored the efficacy of ML-
PTFs in successfully predicting BDfine at a continental scale,
yielding a substantial R2 ranging from 0.57 to 0.59. This in-
dicates that, when adding more relevant predictor variables
(e.g., N, pH, PET, MAP) to the topsoil database, ML-PTFs is
a better choice for improving BDfine prediction than earlier-
published PTFs based on algebraic equations. Otherwise,
earlier-published PTFs are still the best choice to impute the
missing data due to their simplicity (Van Looy et al., 2017).

In addition to global PTFs that use all the soil samples,
we introduced the local modeling strategy in PTFs, which
searched similar samples first and then built the relevant PTF
for each unknown sample dynamically. Generally, the model
performance of local PTFs (local-RFFULL and local-RFFRFS)
for BDfine prediction continuously improved with the in-
creasing number of neighbor samples, and then it reached a

plateau when the number of neighbor samples reached ap-
proximately 350 to 400 (Fig. 4). Compared to the global
PTFs (4500 soil samples), the sizes of local PTFs were much
smaller (350–400 soil samples) with slightly better model
performance. Therefore, the comparison between global PTF
and local PTF performances shows that local PTFs can im-
prove the efficiency of imputing missing data using a large
soil database (Padarian et al., 2019; Sanderman et al., 2020).

In comparison to the earlier-published PTFs that were re-
fitted using our data, the local-FRFRFS model substantially
improved model performance in BDfine prediction (1R2 of
0.14–0.19). Our results suggest that ML-PTFs performed
much better than earlier-published PTFs for BDfine predic-
tion. This resulted from the fact that most of the ML mod-
els are able to handle nonlinear and complex relationships
between the predictor variables and the response variable,
thereby improving predictions compared to those of earlier-
published PTFs (Katuwal et al., 2020; Palladino et al., 2022).
Meanwhile, the earlier-published PTFs typically rely solely
on SOC or SOM content for BDfine prediction. This approach
maintains model simplicity but overlooks readily available
predictor variables such as particle size fractions, MAT, and
MAP, which are also pertinent to BDfine prediction (Abdel-
baki, 2018). Despite the high diversity in landscapes and
climates at a continental scale, the proposed local-FRFRFS
model demonstrated similar or even superior performance
compared to the ML-PTFs conducted at regional and national
scales (Table 1).

Looking into the RE for topsoil under different BDfine
levels (Fig. 6), it is clear that the best-fitted PTFs (PTF-4
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Figure 8. Spatial distributions of 15 389 topsoil samples with BDfine (a) and SOC stock (b) from LUCAS 2018 Soil using local-RFFRFS
and 18 945 topsoil samples with BDfine (c) and SOC stock (d) from LUCAS 2018 Soil using PTF-4.

and local-RFFRFS) had the highest REs for topsoil with low
BDfine (< 0.8 gcm−3) despite the fact that local-RFFRFS per-
formed better. This partly results from the low BDfine re-
quired to calculate the RE because the BDfine value is used
as the reference 100 % value in RE calculation. This is also
likely due to the general trend of broad-scale predictions
smoothing the variability and overestimating the low values
and underestimating the high values, whatever the predicted
variable is (e.g., Tifafi et al., 2018; Lemercier et al. 2022;

Richer-de-Forges et al., 2023). Most importantly, many low
BDfine observations are probably linked to large voids, re-
sulting in a large porosity, especially under disturbed top-
soil. This explains why cropland topsoil exhibited such a
large RE, likely due to the effect of soil tillage which can-
not be predicted by our predictor variables. This can also
explain the decreasing trend in RE with the increase in
BDfine up to 1.2 gcm−3, whereas, for the topsoil with high
BD (> 1.2 gcm−3), both local-RFFRFS and PTF-4 showed a
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Figure 9. Variations in topsoil BDfine and SOC stock under different land covers using PTF-4 (a) and local-RFFRFS (b).

slight increase in RE. Overall, the RE values might appear to
be a bit deceiving if we compare them to the accuracy that
one may wish for in monitoring changes in BDfine – for ex-
ample, as an indicator of compaction. We must state that this
is clearly out of the scope of this study, which is intended
to provide a wide database that can be used for broad-scale
modeling.

4.2 Performance of FRFS and variable importance in
BDfine prediction by ML-PTFs

We reduced the number of predictor variables in the RF
model from 15 to 8 using the FRFS algorithm, and the
model performance of global-RFFRFS for BDfine using FRFS-
selected variables was higher than that of global-RFFULL us-
ing full variables (Table 3). Though the local-RFFRFS (R2 of
0.59) only had marginal superiority over the local-RFFULL
model (R2 of 0.58), it facilitated the reduction of variables,
consequently enhancing prediction efficiency (Figs. 4 and 5).
This outcome validates the capacity of FRFS to simplify the
model complexity while concurrently enhancing its predic-
tive accuracy (Xiao et al., 2022a; Liu et al., 2023; Zhang
et al., 2023; Hu et al., 2024). Being a useful tool for gap-
filling the missing data, an ideal PTF requires both high par-
simony and good fit. If the developed PTF needs too many
predictors variables, its practical applicability would be lim-
ited as much fewer soil samples have all the required predic-
tor variables.

4.3 The build-up of extended BDfine and SOC stock
datasets in Europe

We used the BDfine predictions from eight PTFs together
with CFvolumefraction to calculate the SOC stock. The results
showed that the model performances of SOC stock (R2 of
0.70–0.85) were much higher than those of BDfine (R2 of

0.40–0.59) (Figs. 5 and 7). This can be explained by the
interdependence between BDfine and SOC content. For in-
stance, a soil sample with a high SOC content commonly
has a large pore space due to the large amount of organic
matter, leading to a low BDfine (Perie and Ouimet, 2008;
Chen et al., 2018). As shown in Fig. 7, high SOC con-
tent and BDfine were always underestimated, while the low
SOC content and BDfine were overestimated. By multiply-
ing these two negatively correlated variables, the predicted
SOC stock could be closer to the observed SOC stock as
the overestimation (underestimation) of BDfine can counter-
balance the underestimation (overestimation) of SOC con-
tent, resulting in better model performance than BDfine. It
is interesting to note that the model performances of the
best earlier-published PTFs (PTF-4, R2 of 0.84) and ML-
PTFs (local-RFFRFS, R2 of 0.85) were quite close in terms of
SOC stock prediction. This indicated that the improvement
of BDfine prediction by ML-PTFs did not impact the accu-
racy of SOC stock prediction. Looking into the scatter plots
shown in Fig. 5, we can observe that the ML-PTFs performed
much better than earlier-published PTFs for topsoil samples
with high BDfine (and low SOC content), while a limited dif-
ference was found for soil samples with low BDfine (and high
SOC content). Compared to earlier-published PTFs, ML-
PTFs tended to predict SOC stock better for topsoil samples
with low SOC stock (< 3 kgm−2), while similar model per-
formances can be found in topsoil samples with high SOC
stocks (≥ 3 kgm−2), which is evident in Fig. 5. As a result,
the best earlier-published PTF (PTF-4) performed quite sim-
ilarly to the best ML-PTF (local-RFFRFS) when considering
the topsoil samples with a wide range in terms of SOC stock.
This last result suggests that earlier-published PTFs could
be useful default tools in estimating BDfine which is subse-
quently used for SOC stock calculation. One of the advan-
tages of these earlier-published PTFs is their simplicity; an-
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other obvious advantage is that they require fewer training
soil samples than ML-PTFs to be fitted and validated. Oth-
erwise, if enough data are available, ML-PTFs are suggested
for more accurate BDfine prediction, especially for regions
with low SOC stocks, such as dry land regions in Spain and
Italy (Maestre et al., 2021; De Rosa et al., 2023; Wang et al.,
2023).

4.4 Limitations and perspectives

It is essential to acknowledge that our developed PTFs for
BDfine prediction were constructed based on LUCAS Soil
data (0–20 cm), confining their applicability to topsoil within
the EU and UK (Orgiazzi et al., 2022, Panagos et al., 2022).
However, the potential of their extrapolation capability to
other regions or to deep soil (> 20 cm) necessitates further
evaluation. As more soil data become available from diverse
regions, as well as for deep soil (Lal, 2018; Tautges et al.,
2019; Batjes et al., 2020; Yost and Hartemink, 2020; Palm-
tag et al., 2022; Armas et al., 2023), the proposed methodol-
ogy can be further used to update the PTFs, thereby broad-
ening their area of applicability (Chen et al., 2018; Meyer
and Pebesma, 2021). In addition, when a depth-specific soil
BDfine database is available, it will be important to develop
depth-explicit ML-PTFs to account for the effects of climate
and topography on BDfine at depths.

We acknowledge that our use of PTF-3 and PTF-4 is based
on measured SOC contents and on a fixed Van Bemmelen
factor (SOM= 1.724×SOC, Sprengel, 1826; Van Bemme-
len, 1890). One good reason to use this factor is that it en-
ables a comparison with most of the studies predicting BDfine
using SOC and other soil properties. One pitfall is that we
know that the conversion factor from SOC to SOM is not
constant (Pribyl, 2010). However, this conversion factor was
only used for PTF-3 and PTF-4. Considering the equations
used, changing this conversion factor for PTF-4 has no con-
sequence on the predicted BDfine or on the model perfor-
mance of the PTF for BDfine prediction. Changing it for PTF-
3 will lead to lower performance. We have no clear indica-
tion that we ought to try to adapt the Van Bemmelen fac-
tor to the pedological context (or to the effect of SOC on
BDfine) when we use fixed regressions such as PTF-3 and
PTF-4. One advantage of ML-PTFs, and especially of lo-
cal ML-PTFs, is that they can take into account interactions
between soil properties. Therefore, the importance of SOC
likely varies depending other local controlling factors such as
clay content, climate, or even the nature of the organic com-
pounds, which could explain the strong effect of N. In other
words, ML-PTFs were able to partially compensate for the
effect of using a fixed conversion factor between SOC and
SOM. It should be noted that the BDfine and CFvolumefraction
used in this study have been transformed from BDsample and
CFmassfraction by Pacini et al. (2023), which certainly intro-
duced some uncertainty. However, for topsoil samples with
CF close to 0, the uncertainty from data transformation is

rather low. Since many cropland soils have CF close to 0, and
because they are the most sensitive to threats, the proposed
PTFs for BDfine prediction would be helpful.

Another possible source of error is linked to re-allocating
some measured values from one LUCAS Soil sampling
campaign to another one. Indeed, BD (whether BDfine or
BDsample) is highly variable in space and time, and coarse
fragments and SOC are highly variable in space. The location
of sampling may change slightly between LUCAS Soil cam-
paigns for various reasons, and the instructions recommend
a distance of < 100 m (Fernández-Ugalde et al., 2017). This
latter case has no reason to induce a systematic bias. How-
ever, it increases the uncertainty (Munera-Echeverri et al.,
2022). Finally, soils containing large amounts of large rocks
are clearly excluded from the LUCAS Soil protocol; there-
fore, one should keep this in mind so as to not extrapolate
BDfine and SOC stock predictions to rocky soils.

If one wants to use PTF-based BDfine prediction to detect
SOC stock changes, the impact of the performance of PTFs
on the accuracy of SOC stock calculation remains unclear
since the equivalent soil mass approach also requires BDfine
as input (Schrumpf et al., 2011; Wendt and Hauser, 2013).
Therefore, this issue could be investigated in future studies.
However, the most straightforward and unbiased way to mea-
sure SOC stocks by sampling remains the direct determina-
tion of the ratio of the fine-earth mass : sample volume by
sieving and weighting the fine soil from a sample of known
volume.

Most of the predictor variables that we used for ML-PTFs
are prone to changes at different timescales. This is the case
for all predictor variables derived from climate. Some soil
predictor variables (e.g., SOC, pH) can change more or less
rapidly under the effect of practices, LC changes, and global
changes. Finally, LC can change at any given time, though
some effect of past LC may remain for a given time. Though
strong perturbations may have an immediate effect on BDfine,
the timescales at which most of these predictor variables in-
fluence or are just correlated to BDfine remain unclear. This
opens the door to further questioning about the processes that
govern the importance of these predictor variables to BDfine.
Indeed, ML tools can be used as simple predictors at a given
time or as tools to raise attention with regard to the possible
effects of some controlling factors and their changes and the
processes involved in these effects.

5 Data availability

All the soil data used in this article are available at
the following data sources: (1) Land Use and Coverage
Area Frame Survey Soil (LUCAS Soil) 2009 via https:
//esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data
(European Commission, 2013; Panagos et al., 2022),
(2) LUCAS Soil 2015 via https://esdac.jrc.ec.europa.eu/
content/lucas2015-topsoil-data (European Commission,
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2020; Fernández-Ugalde et al., 2022), and (3) LU-
CAS Soil 2018 via https://esdac.jrc.ec.europa.eu/content/
lucas-2018-topsoil-data (European Commission, 2022;
Panagos et al., 2022); (4) the European topsoil BDfine and
SOC stock dataset (0–20 cm) in this paper is available at
https://doi.org/10.5281/zenodo.10211884 (S. Chen et al.,
2023).

6 Conclusions

Using the largest extendable soil dataset for Europe, we have
developed ML-PTFs for predicting BDfine at 0–20 cm across
the EU and UK. In comparison to four earlier-published
PTFs, the best ML-PTF, namely local-RFFRFS, exhibited su-
perior performance for BDfine prediction with a percentage
increase in R2 at 31.1 %–47.5 % and a percentage decrease
in RMSE and RE at 13.6 % and 14.8 %–23.1 %, respectively.
When the predicted BDfine was subsequently used for SOC
stock calculation, we found that the best earlier-published
PTF preformed quite similarly to the best ML-PTF, indi-
cating the fact that earlier-published PTFs would be use-
ful for BDfine prediction when targeting SOC stock calcula-
tion. However, for regions with low SOC stock (< 3 kgm−2),
ML-PTFs are still recommended due to their high accu-
racy in SOC stock calculation. Finally, we established two
comprehensive pan-European topsoil BDfine and SOC stock
databases (0–20 cm) including 15 389 and 18 945 soil sam-
ples from LUCAS Soil 2018 using the best ML-PTF (local-
RFFRFS) and an earlier-published PTF (PTF-4), respectively.
Our study proposed a potential model to improve the perfor-
mance of BDfine prediction, and the resultant topsoil BDfine
and SOC stock datasets at 0–20 cm across the EU and UK en-
able more precise soil hydrological and biological modeling
at a continental scale.
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