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Abstract. This article introduces the 2023 National Offshore Wind data set (NOW-23), which offers the lat-
est wind resource information for offshore regions in the United States. NOW-23 supersedes, for its offshore
component, the Wind Integration National Dataset (WIND) Toolkit, which was published a decade ago and
is currently a primary resource for wind resource assessments and grid integration studies in the contiguous
United States. By incorporating advancements in the Weather Research and Forecasting (WRF) model, NOW-
23 delivers an updated and cutting-edge product to stakeholders. In this article, we present the new data set
which underwent regional tuning and performance validation against available observations and has data avail-
able from 2000 through, depending on the region, 2019–2022. We also provide a summary of the uncertainty
quantification in NOW-23, along with NOW-WAKES, a 1-year post-construction data set that quantifies ex-
pected offshore wake effects in the US Mid-Atlantic lease areas. Stakeholders can access the NOW-23 data set
at https://doi.org/10.25984/1821404 (Bodini et al., 2020).
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1 Introduction

In this article, we present the work done to create a state-
of-the-art wind resource data set for all United States off-
shore regions (except for Alaska), called the 2023 National
Offshore Wind data set (NOW-23). This work has been

performed by the National Renewable Energy Laboratory
(NREL) and its partners, the University of Colorado, Boul-
der, and Veer Renewables.

In 2015, NREL produced the Wind Integration National
Dataset (WIND) Toolkit (Draxl et al., 2015), a 7-year
wind resource data set (2007–2013) covering the contigu-
ous United States. The WIND Toolkit was built using the
Weather Research and Forecasting (WRF) mesoscale nu-
merical weather prediction (NWP) model (Skamarock et al.,
2021) and provided modeled variables up to 200 m above the
surface. Since its creation, the WIND Toolkit has become one
of the most comprehensive and commonly used data sets for
wind resource assessment and grid integration studies in the
United States, owing to the fact it has been publicly avail-
able at no cost through Amazon Web Services. A wide va-
riety of stakeholders, ranging from wind energy developers
and consultants, utilities, government organizations, and aca-
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demic and research institutions, have taken advantage of the
WIND Toolkit to foster wind energy development across the
United States.

Since the release of the WIND Toolkit, extensive research
in the field of NWP models has been completed, and many
advancements have been proposed and tested by the global
atmospheric science community. Several field campaigns
(e.g., Wilczak et al., 2015; Shaw et al., 2019; Fernando et al.,
2019) have been completed to collect observations useful
to validate and improve the capabilities of the WRF model.
Growing research has assessed the sensitivity in the modeled
wind resource to different model inputs and parameteriza-
tions (e.g., Hahmann et al., 2020). Also, new state-of-the-art
reanalysis products (namely ERA5; Hersbach et al., 2020)
have been released and can now be used as boundary con-
ditions to feed the WRF model. Finally, a broader scientific
consensus agrees that data sets of at least 20 years are needed
for a robust quantification of the long-term wind resource at
the site of interest.

Given the extensive success of the WIND Toolkit, NREL
and its partners are committed to ensuring that the latest ad-
vancements in the atmospheric modeling community are pro-
vided to stakeholders. As such, a next-generation product to
replace the WIND Toolkit is needed to ensure that the most
accurate wind resource data are given to the US wind energy
community. Given the current and expected future sparsity
of offshore hub height observations, a national state-of-the-
art mesoscale modeled wind resource data set represents an
even more critical need to support the breadth of offshore
wind energy analyses and stakeholders that rely on such data.

Here, we present NOW-23, a validated national offshore
wind resource data set for the United States. The main fi-
nal product of this research effort is a WRF-based atlas of
the offshore wind resource for all US offshore waters, cov-
ering at least 20 years, which is made available at no cost
to the public, with data at 5 min temporal resolution, 2 km
horizontal resolution, and up to 500 m above the surface. In
Sect. 2, we present the general modeling approach used to de-
velop the NOW-23 data set. Sections 3 through 10 describe
the NOW-23 data set in each modeled offshore region. Sec-
tion 11 describes our uncertainty quantification efforts. Sec-
tion 12 introduces NOW-WAKES, a post-construction data
set for the Mid-Atlantic domain. In Sect. 13, we provide in-
structions on how to access the NOW-23 data set, followed
by our main conclusions. In the Appendix, we provide ad-
ditional analyses on the seasonal and diurnal variability in
the modeled wind resource, the variability in the mean wind
speed at overlapping boundaries of neighboring regional do-
mains, and a comparison of the mean wind speed predictions
with what was modeled by the previous-generation WIND
Toolkit.

2 Description of the WRF model simulations and
general validation approach

To create the NOW-23 data set, we adopt a regional ap-
proach. For each offshore region, we perform a separate nu-
merical simulation, whose setup is selected (in most regions)
through validation against available observations, so that the
model can be customized to account for regionally unique
wind resource phenomena. Figure 1 shows the eight regional
domains of the NOW-23 data set. We note that WRF model
domains have a rectangular shape. However, to limit the stor-
age requirements for the NOW-23 data files, most of the re-
gional data sets are masked (after the WRF model simula-
tions are done) based on the extension of the exclusive eco-
nomic zone (EEZ), which is the area in which a country has
jurisdiction over natural resources, including wind, roughly
at 212 nmi from the coast.

Table 1 summarizes the main attributes for the WRF model
simulations used to build NOW-23 and compares them with
those of the older WIND Toolkit. We run the simulations in
1-month segments and then concatenate them at each grid
cell in the post-processing phase. In doing so, we consider a
spin-up period of 2 d (for example, the May 2015 run actu-
ally starts on 29 April 2015) to let the model stabilize from
the initial conditions imposed to the WRF model. The choice
of using 1-month segments is dictated by the need to have
a limited number of restart periods for grid applications, as
every restart might create false ramps, and by the desire to
reduce the overall time needed to run the simulations, given
the parallel computing capabilities offered by NREL’s super-
computer where the simulations are performed. As will be
detailed in later sections, we do not observe degraded perfor-
mance with time in each calendar month. The choice of the
5 min temporal resolution is also to accommodate needs the
of the grid integration community.

Table 1 shows that some of the WRF model parameters
were regionally tuned in NOW-23. In fact, many different
setup choices need to be made before running a WRF model
simulation so that multiple simulations run with different se-
tups will lead to a range of modeled conditions. It is there-
fore essential to tune the WRF model setup to obtain accurate
model predictions over the region of interest. For the major-
ity of the regions modeled in this work, we considered and
run multiple WRF model setups (i.e., a WRF model ensem-
ble) over a 1-year period and validated them against available
observations to select the configuration that is best suited for
long-term offshore wind resource assessment in each region.
To determine which set of WRF model setups to consider
in our validation experiments, we leveraged recent research
in the area to understand which choices strongly impact the
WRF-modeled wind resource. A detailed list of the studies
on the WRF-predicted wind speed sensitivity to the WRF
model setup is included in Optis et al. (2020c). Here, we
highlight the exhaustive effort by Hahmann et al. (2020) to
develop the New European Wind Atlas (NEWA), as well as
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Figure 1. Map of the regional WRF model domains used to build the NOW-23 data sets masked at the limit of the exclusive economic zone
of the countries with jurisdiction on the offshore regions being considered.

Table 1. Main attributes of the NOW-23 data set compared to those used in the older WIND Toolkit. Attributes in bold are the result of a
region-specific sensitivity analysis in NOW-23.

NOW-23 WIND Toolkit

Temporal extent 2000–2019/2022 (varies with region) 2007–2013

WRF model version 4.2.1 3.4.1

Nesting 6, 2 km 18, 6, 2 km

Temporal resolution (output) 5 min 5 min

Vertical levels 61 41

Near-surface-level heights 12, 34, 52, 69, 86, 107, 134, 165, 200 m 15, 47, 80, 112, 145, 177 m

Reanalysis forcing ERA5 ERA-Interim

Sea surface temperature forcing OSTIA ERA-Interim

Atmospheric nudging Spectral nudging on 6 km domain applied every
6 h∗

Spectral nudging on 18 and 6 km domains applied every 6 h

Planetary boundary layer scheme MYNN or YSU (varies with region) YSU

Surface layer scheme MYNN or MM5 (varies with region) MM5

Land surface model Noah Noah

Microphysics Ferrier

Longwave radiation Rapid radiative transfer model

Shortwave radiation Rapid radiative transfer model

Topographic database Global Multi-Resolution Terrain Elevation Data from the United States Geological Service

Land use data Moderate Resolution Imaging Spectroradiometer 30 s

Cumulus parameterization Kain–Fritsch
∗ Nudging was not applied to the Mid-Atlantic, Great Lakes, North Pacific, and Hawaii regions. Tests showed that nudging does not have a significant impact for offshore regions when using
regional domains and monthly runs.
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an offshore analysis of the WRF model sensitivity that NREL
recently completed in partnership with Rutgers University
Center for Ocean Observing Leadership (Optis et al., 2020b).
Based on the findings from recent scientific literature on the
topic, we identify the following five model setup choices as
the most influential on the WRF-predicted wind resource:
the reanalysis forcing product, the planetary boundary layer
(PBL) scheme, the sea surface temperature (SST) product,
the land surface model (LSM), and the surface layer scheme.
For each region where we run a short-term WRF model en-
semble, we consider a subset of setups resulting from the
combination of the following choices:

– Reanalysis forcing product. Reanalysis products are
used as boundary conditions for the WRF model. We
consider the state-of-the-art ERA5 reanalysis prod-
uct developed by the European Centre for Medium-
Range Weather Forecasts (Hersbach et al., 2020) and
the Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2; Gelaro et al.,
2017) developed by the National Aeronautics and Space
Administration (NASA). Both of these reanalysis prod-
ucts have been widely used in wind-energy-related ap-
plications and represent some of the most advanced re-
analysis products available to date. Data from ERA5 are
provided at an hourly resolution and 0.25°× 0.25° hor-
izontal resolution. MERRA-2 also provides data at an
hourly resolution but at a coarser horizontal resolution
of 0.50°× 0.625°.

– Planetary boundary layer scheme. The choice of the
PBL scheme has critical consequences in terms of
how the WRF model will model turbulent exchanges
in the atmospheric boundary layer, and it is ex-
pected to have a significant impact on the wind speed
predictions. Here, we consider the Mellor–Yamada–
Nakanishi–Niino (MYNN; Nakanishi and Niino, 2009)
and Yonsei University (YSU; Hong et al., 2006) PBL
schemes. These parameterizations are widely consid-
ered the two most popular PBL schemes in the WRF
model, especially when considering wind-related ap-
plications; YSU was used in the WIND Toolkit and
MYNN in the NEWA (Dörenkämper et al., 2020).

– Sea surface temperature product. Because the focus of
this research effort is on offshore wind, the choice of the
sea surface temperature product, which acts as a lower
boundary condition for the WRF model, should also
be assessed in detail. We note that the same consider-
ations apply to the Great Lakes too. The first SST prod-
uct we consider is the Operational Sea Surface Temper-
ature and Ice Analysis (OSTIA) data set produced by
the UK Met Office (Donlon et al., 2012; Hirahara et al.,
2016), which provides data at 1/20° horizontal resolu-
tion and is the standard product included in both ERA5
and MERRA-2. Next, we consider the National Centers

for Environmental Prediction (NCEP) real-time global
SST product (Thiébaux et al., 2003) at 1/12° horizontal
resolution.

– Land surface model. The choice of the land surface
model can have a significant impact on offshore waters
near the coast, as the LSM regulates the exchange of
energy and water fluxes between the land surface and
the atmosphere. We consider the Noah LSM and the
updated Noah multiparameterization (Noah-MP) LSM
(Niu et al., 2011).

– Surface layer scheme. Finally, the surface layer scheme
handles how fluxes of heat, momentum, and moisture
move from the surface to the boundary layer above. We
consider the MM5 (Grell et al., 1994; Jiménez et al.,
2012) and MYNN (Olson et al., 2021) surface layer
schemes. Both are built on the Monin–Obukhov simi-
larity theory, but the MYNN parameterization has been
designed to specifically interface with the MYNN PBL
scheme.

We consider up to 16 WRF model ensemble members result-
ing from a combination of the choices above, as detailed in
Table 2. Table 3 summarizes the ensemble members that are
considered for model setup selection and validation in each
NOW-23 region, and the selected setup that is used for the
long-term model run, as detailed in the next sections.

In the majority of the offshore regions modeled in NOW-
23, we leverage available offshore or coastal observations to
determine the best-performing WRF model setup. All the
observational data sets used in the development of NOW-
23 are shown in the map in Fig. 2 and will be described in
detail in the next sections for each offshore region. In gen-
eral, we use data from all of the offshore lidars for which we
have access. We also consider observations collected by near-
surface buoys from the National Data Buoy Center (NDBC)
and coastal radars, as resources allow.

We base our validation approach on the best practices de-
tailed in Optis et al. (2020a) and, whenever possible, use
multiple error metrics between modeled and observed wind
speed for our model validation and setup selection:

– bias,

– centered (or unbiased) root mean square error (cRMSE),

– Pearson’s correlation coefficient (r), and

– a comparison between the standard deviation of mod-
eled and observed wind speed.

A perfect model setup would have zero bias, zero cRMSE,
r = 1, and a modeled wind speed standard deviation equal to
that of the observed wind. To summarize the latter three met-
rics, we adopt the Taylor diagram (Taylor, 2001), which is
a mathematical diagram that graphically summarizes model
skills in terms of cRMSE, r , and standard deviation on a sin-
gle plot.
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Table 2. List of the 16 WRF model ensemble members considered for NOW-23 setup selection and validation.

WRF model ensemble Reanalysis product PBL scheme SST product LSM Surface layer
member name scheme

WRF1 ERA5 MYNN OSTIA Noah MYNN
WRF2 ERA5 YSU OSTIA Noah MM5
WRF3 ERA5 MYNN OSTIA Noah-MP MYNN
WRF4 ERA5 YSU OSTIA Noah-MP MM5
WRF5 ERA5 MYNN NCEP Noah MYNN
WRF6 ERA5 YSU NCEP Noah MM5
WRF7 ERA5 MYNN NCEP Noah-MP MYNN
WRF8 ERA5 YSU NCEP Noah-MP MM5
WRF9 MERRA-2 MYNN OSTIA Noah MYNN
WRF10 MERRA-2 YSU OSTIA Noah MM5
WRF11 MERRA-2 MYNN OSTIA Noah-MP MYNN
WRF12 MERRA-2 YSU OSTIA Noah-MP MM5
WRF13 MERRA-2 MYNN NCEP Noah MYNN
WRF14 MERRA-2 YSU NCEP Noah MM5
WRF15 MERRA-2 MYNN NCEP Noah-MP MYNN
WRF16 MERRA-2 YSU NCEP Noah-MP MM5

Table 3. WRF model ensemble members used for setup selection and validation in each NOW-23 region. The setup selected (sel.) and used
for the long-term NOW-23 data set in each region is also highlighted.

WRF model ensemble North Mid- South Gulf of Great South North Hawaii
member name Atlantic Atlantic Atlantic Mexico Lakes Pacific Pacific

WRF1 X (sel.) X (sel.) X X X (sel.) X X (sel.) X (sel.)
WRF2 X X (sel.) X (sel.) X X (sel.)
WRF3 X X X X X
WRF4 X X X X
WRF5 X X X X
WRF6 X X X X
WRF7 X X
WRF8 X X
WRF9 X X
WRF10 X X
WRF11 X X
WRF12 X X
WRF13 X X
WRF14 X X
WRF15 X X
WRF16 X X

3 NOW-23 data set in the Mid-Atlantic region

We start the description of the NOW-23 data set with the
Mid-Atlantic domain, an area with multiple publicly avail-
able observational data sets of hub height offshore wind and
therefore an ideal region to detail the validation approach
adopted to develop NOW-23.

For the Mid-Atlantic region, we consider all the combina-
tions resulting from the choices of reanalysis product, SST
product, PBL scheme, and LSM detailed in Sect. 2. We do
not consider for this region the impact of the surface layer
scheme due to computational limitations; we use the MYNN

surface layer option when the MYNN PBL scheme is used
and the MM5 option with the YSU PBL scheme. These com-
binations result in 16 different WRF model setups (Table 3)
which are all run over 1 year (using the general approach
described in Sect. 2) from 1 September 2019 to 31 Au-
gust 2020.

To select the best-performing WRF model setup in the re-
gion, which will be used for the long-term NOW-23 data set,
we compare modeled wind speed from the 16 WRF model
setups against observations collected by the three ZephIR
ZX300M floating lidars, as shown in the map in Fig. 2. Two
of the three lidars were deployed by the New York State
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Figure 2. Map of the observational data sets used to validate the NOW-23 data set.

Energy Research and Development Authority (NYSERDA).
The lidar on buoy E05 north is located at 39.97° N, 72.72° W;
the buoy E06 south lidar is located at 39.55° N, 73.43° W.
Wind speed and wind direction data for both lidars are avail-
able every 20 m from 20 to 200 m a.s.l. (above sea level) and
are publicly distributed at 10 min resolution after proprietary
quality checks have been applied to the data. For both lidars,
we use observations collected between 4 September 2019
and 31 August 2020. The third lidar was deployed by At-
lantic Shores Offshore Wind, LLC, closer to the coastline
at 39.27° N, 73.88° W. This lidar measures wind speed every
20 m from 40 to 200 m above the surface. For this instrument,
we leverage observations from 26 February 2020 (the start of
its deployment) to 31 August 2020.

First, we assess the variability in the mean wind pro-
files across the 16 1-year WRF model ensembles (Fig. 3).
We color code the mean wind profiles in terms of the PBL
scheme used by the various ensemble members because, as
will be detailed later, in some offshore regions we see a
significant deviation in modeled wind speeds between the
MYNN and YSU PBL schemes. In the Mid-Atlantic, the
WRF model ensemble members that adopt the YSU PBL
scheme model generally weaker wind speeds compared to
MYNN at all three lidar locations, with the largest devia-
tions occurring below 100 m a.s.l., with differences generally
lower than 0.5 m s−1 on average. While the MYNN generally
slightly overestimates wind speeds below 50 m a.s.l., we find

that all the considered setups underestimate wind shear, thus
resulting in a slightly negative bias higher aloft.

We now dive deeper into the validation by assessing more
quantitative performance metrics. All three lidars in this re-
gion provide good measurements at a wide range of heights
of interest for wind energy development. To capture the
WRF model performance across all heights, we perform our
model validation in terms of the rotor-equivalent wind speed
(REWS), which is the wind speed corresponding to the ki-
netic energy flux through a turbine’s swept-rotor area, when
accounting for the vertical shear. The REWS is calculated as

REWS=

(
n∑

i=1
WS3

i

Ai

A

)1/3

, (1)

where WSi is the wind speed at the height level i, n is
the number of available heights across the wind turbine ro-
tor disk, A is the whole area of the turbine rotor disk, and
Ai is the area of the ith segment; i.e., the area for which
WSi is representative. Here, we consider the 10 MW tur-
bine from Beiter et al. (2020) representative of a typical
commercial offshore turbine, with a rotor diameter of 196 m
and a hub height of 128 m. We consider horizontal layers in
the turbine rotor disk to be equally spaced every 20 m from
30 to 190 m a.s.l., each associated with observed and mod-
eled wind speed every 20 m from 40 to 180 m a.s.l. Finally,
the top layer extends from 190 to 226 m and is associated
with the 200 m wind speed, given the lack of lidar observa-
tions higher than 200 m a.s.l. While bigger turbines reaching
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Figure 3. Mean wind speed profiles from the 16 WRF model ensemble members and observed values at the location of the (a) NYSERDA
E05 north lidar (from 4 September 2019 to 31 August 2020), (b) NYSERDA E06 south lidar (from 4 September 2019 to 31 August 2020),
and (c) Atlantic Shores lidar (from 26 February 2020 to 31 August 2020).

higher heights are being installed in the region, the highest
height of lidar observations at 200 m limits our ability to con-
sider larger machines here.

We calculate bias, cRMSE, correlation, and standard devi-
ation in terms of observed and modeled 10 min REWS from
all 16 WRF model ensemble members and summarize results
in the Taylor diagrams in Fig. 4. Ideally, a perfect member
would be represented in the Taylor diagram by a point on top
of the black star in each diagram, which represents the ob-
served values. At all three lidars, we find that the WRF model
ensemble members that use MERRA-2 as reanalysis forcing
(WRF9 through WRF16 in red shades in the diagrams) show
a significantly worse performance compared to the setups
forced with ERA5, with larger cRMSE and lower correla-
tion. Also, the setups that adopt the YSU PBL scheme (even
numbers) have a slightly better match with the standard devi-

ation of the observed wind resource but also a larger negative
bias at all three offshore lidars compared to the MYNN se-
tups (odd numbers), as already noticed from the mean wind
profile comparison above. The use of the Noah LSM pro-
vides slightly better results than the Noah-MP LSM in terms
of correlation and cRMSE. Finally, we see that the choice of
the SST product does not have a significant impact on the
validation metrics.

Finally, we evaluate whether our choice of using a 1-month
WRF model re-initialization period has an impact on the
model performance. To do so, we take the wind speed mod-
eled by the 1-year WRF1 setup and check whether its per-
formance against the observations from the two NYSERDA
lidars gets worse in the latter part of each calendar month,
again in terms of REWS. For all metrics, we report no sign

https://doi.org/10.5194/essd-16-1965-2024 Earth Syst. Sci. Data, 16, 1965–2006, 2024



1972 N. Bodini et al.: The NOW-23 data set

Figure 4. Taylor diagram of the 10 min REWS from the 16 WRF model ensemble setups at the location of the (a) NYSERDA E05 north
lidar (from 4 September 2019 to 31 August 2020), (b) NYSERDA E06 south lidar (from 4 September 2019 to 31 August 2020), and (c)
Atlantic Shores lidar (from 26 February 2020 to 31 August 2020). For each diagram, a zoomed-in inset is also included.

of performance degradation with time (figure not shown),
which confirms the solidity of the modeling approach used.

The validation results across all three lidars show that
WRF1 and WRF3 are the best-performing setups in the re-
gion. While there is no clear winner between the two in

terms of bias, WRF1 (i.e., the setup using the Noah LSM)
provides lower cRMSE and higher correlation compared to
WRF3 (i.e., the setup using the Noah-MP LSM), so we em-
ploy WRF1 for the long-term NOW-23 simulation (Table 3),
which covers the period from 1 January 2000 to 31 Decem-
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ber 2020. We note that additional details on the validation of
the WRF1 model setup are provided in Pronk et al. (2022),
where we assess the diurnal and annual variability in the
WRF1 model setup performance, and compare it to the skills
of the ERA5 reanalysis product used to force WRF.

The 21-year mean wind speed at 160 m a.s.l. for the Mid-
Atlantic region is shown in Fig. 5. In Appendix A, we show
the diurnal and seasonal variabilities in the long-term wind
resource. The mean wind speed is stronger on the northeast
portion of the domain, but the long-term averages are partic-
ularly good for offshore wind energy purposes in the whole
extension of the domain.

4 NOW-23 data set in the North Atlantic region

We leverage the validation results from the Mid-Atlantic re-
gion to infer conclusions about the WRF model setup to
use for the long-term wind resource modeling in the adja-
cent North Atlantic region, where we only have access to
very limited hub height observations of wind speed. Given
this scenario, and considering the limited computational re-
sources available, in this region we consider a single WRF
model setup, using the same choices selected for the creation
of the NOW-23 data set in the Mid-Atlantic region.

No hub height observational data sets are publicly avail-
able for this region. So, our model validation is constrained
to values of mean 40 and 100 m wind speeds taken from
19 February 2016 through 28 October 2016 at the Deep-
CLiDAR off the Maine coast (43.77° N, 69.33° W; Fig. 2),
1.26 km west of Monhegan island (Viselli et al., 2019, 2022).
This floating lidar is a WindCube v2 offshore unit owned
and operated by the University of Maine and samples wind
speeds between 40 and 200 m at 1 Hz resolution. The NOW-
23 research team was not able to secure access to the raw
lidar observations, so our validation is limited to the mean
wind speed values, as published in Viselli et al. (2022).

Due to the particularly small sample size of available ob-
servations, we only compare the observed and modeled mean
40 and 100 m wind speed at the DeepCLiDAR location over
the deployment period of the lidar. We find good agreement
between modeled and observed data at 100 m a.s.l., whereas
the model slightly overestimates wind speed at 40 m a.s.l.
(Fig. 6).

The limited validation confirms that the chosen WRF
model setup has good agreement with the mean observa-
tions from the lidar at the considered location, so we use the
WRF1 setup to create the NOW-23 simulation in this region
(Table 3), which covers the period from 1 January 2000 to
31 December 2020.

The 21-year mean wind speed at 160 m a.s.l. for the North
Atlantic region is shown in Fig. 7. Its seasonal and diurnal
variabilities are shown in Appendix A. In this region, we find
that the dominant gradient in mean wind speed is aligned
with the east–west direction, with stronger wind speeds ob-

served further offshore. As observed in the Mid-Atlantic re-
gion, the large mean wind speed values make this region well
suited for offshore wind energy.

5 NOW-23 data set in the South Atlantic region

For the South Atlantic region, we consider six WRF model
setup combinations resulting from the choices of PBL
scheme, surface layer scheme, and LSM, as detailed in
Sect. 2. We do not consider for this region the impact of the
SST (we only consider the OSTIA product, which has shown
larger accuracy than the NCEP product based on the sensitiv-
ity analysis in the Mid-Atlantic region) and of the reanalysis
product (because we found that ERA5 has significantly bet-
ter performance than MERRA-2 in the Mid-Atlantic region).
We run all six setups (Table 3) across two sets of simulations
(using the general approach described in Sect. 2), with one
covering the whole year of 2015 and one covering the period
from 1 June 2020 to 31 December 2020.

The main validation data set we use in this region is repre-
sented by observations collected by the U.S. Department of
Energy (DOE) lidar located off the Virginia coast (36.87° N,
75.49° W) (Shaw et al., 2020). This lidar recorded obser-
vations from 11 December 2014 to 31 May 2016. For our
validation, we use data from the whole year of 2015 to en-
sure all seasons are equally represented. Conversations with
the instrument mentors at Pacific Northwest National Lab-
oratory (PNNL) revealed that only the lidar measurements
at 90 m are unaffected by biases, so we limit the NOW-23
model validation to that height. Whereas algorithms to bias-
correct the lidar measurements at other heights have been
developed, we prefer not to use them here to avoid introduc-
ing additional uncertainty in the validation. Additionally, the
Avangrid company performed a validation using proprietary
data from their Kitty Hawk north lidar, covering the period
from 1 June to 31 December 2020. Finally, we note how both
the Virginia and Kitty Hawk north lidars are near the north-
ern edge of our regional domain. Therefore, to improve the
spatial coverage of the NOW-23 validation in the region, we
leverage observations from six NDBC buoys across the do-
main to validate modeled near-surface atmospheric stability,
quantified in terms of the difference between air temperature
and sea surface temperature, over 2015.

Figure 8 shows the mean modeled wind profiles over 2015
at the location of the Virginia lidar for the six WRF model
setups, as well as the mean 90 m wind speed from the DOE
Virginia lidar over the same year. In general, a limited spread
between the different WRF model setups appears, and all se-
tups provide a limited overestimation of mean wind speed at
90 m a.s.l. compared to the lidar observations.

We formalize the regional validation with the Taylor di-
agram in Fig. 9, again at 90 m a.s.l., using wind speed at
10 min resolution. The diagram reveals that the WRF2 setup
performs best in the South Atlantic domain, with a low bias
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Figure 5. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the Mid-Atlantic region. The dashed red line represents the
limit of the US EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model
domain.

Figure 6. Mean wind speed profiles from the WRF model run
(WRF1 setup) and observed mean wind speed at 40 and 100 m a.s.l.
at the location of the DeepCLiDAR buoy from 19 February 2016
through 28 October 2016.

of +0.11 m s−1, the highest Pearson’s correlation coefficient
(r = 0.83), the lowest cRMSE (2.44 m s−1), and the best
match with observed wind speed standard deviation across
all the WRF model ensemble members.

Avangrid’s Kitty Hawk north lidar data are proprietary,
and therefore only the following qualitative results were
shared with the NOW-23 team after the company compared
the six WRF model setups against their lidar observations
over the last 7 months of 2020:

– All WRF model ensemble members performed well in
terms of their wind rose.

– Overall, ensemble members WRF2 and WRF4 per-
formed the best for both wind speed and wind shear
profiles.

– Some specific months were challenging to model for all
considered ensemble members.

Next, we leverage the more extensive spatial coverage of
the NDBC buoys in the region to validate modeled atmo-
spheric stability near the surface, and we summarize these
results in Table 4. We consider a positive difference be-
tween air temperature (at ∼ 4 m a.s.l. for the NDBC buoys;
2 m a.s.l. for the WRF model simulations) and sea surface
temperature as a proxy for stable conditions and report its
observed and modeled temporal frequency over 2015 in the
table. The WRF model setups that use MYNN as a PBL
scheme (WRF1, WRF3, WRF5, and WRF6) overestimate at-
mospheric stability. On the other hand, YSU-modeled stabil-
ity (WRF2 and WRF4) is generally more aligned with obser-
vations across the whole region. This result, if confirmed at
hub heights, is consistent with the larger wind speed bias that
the MYNN setups have in the Taylor diagram. In fact, under
stable conditions, winds aloft can decouple from surface ef-
fects and greatly accelerate.

Finally, as done in the Mid-Atlantic domain, we check for
an impact of using a 1-month WRF model re-initialization
period in our simulations. To do so, we take the WRF2 setup
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Figure 7. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the North Atlantic region. The dashed red line represents the
limit of the US EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model
domain.

Table 4. Frequency of near-surface stable conditions from NDBC buoy observations and the six WRF model ensemble members over 2015.

NDBC buoy Observed WRF1 WRF2 WRF3 WRF4 WRF5 WRF6

44 014 34 % 34 % 33 % 32 % 33 % 35 % 35 %
41 025 8 % 10 % 7 % 12 % 8 % 11 % 13 %
41 013 20 % 23 % 20 % 24 % 20 % 22 % 25 %
41 004 15 % 19 % 15 % 19 % 18 % 19 % 23 %
41 008 34 % 37 % 32 % 35 % 35 % 37 % 41 %
41 009 19 % 22 % 17 % 18 % 18 % 22 % 24 %

for 2015 and check whether its performance against the DOE
Virginia lidar observations gets worse in the latter part of
each calendar month. For all metrics, we see no sign of per-
formance degradation with time (figure not shown), as al-
ready observed further north along the Mid-Atlantic coast.

Our validation analysis across all considered instruments
and atmospheric variables reveals that the WRF2 setup is the
best-performing one in this region, and therefore we use this
setup for the NOW-23 long-term simulation, which covers
the period from 1 January 2000 to 31 December 2020. We
note that this setup differs from the setup used in the adja-
cent Mid-Atlantic region so that some discontinuity at the
interface between the two domains is expected. Such a dif-
ference should, however, be limited in magnitude given the
minimal difference between the mean wind profiles near the
northern edge of the domain in Fig. 8. This discrepancy is
described in further detail in Appendix B.

The 21-year mean wind speed at 160 m a.s.l. for the South
Atlantic region is shown in Fig. 10. Wind speed is, on aver-
age, stronger in the northern half of the domain, with a clear
north–south gradient that leads to mean differences of more
than 2 m s−1 between the northern and southern edges of the
modeled region. We note that we had to limit the extent of
the WRF model domain for this large region to reduce com-
putational requirements so that the northern portion of the
domain does not reach the limit of the US EEZ. Appendix A
shows the diurnal and seasonal variability in the 160 m wind
resource.

6 NOW-23 data set in the Gulf of Mexico

For the Gulf of Mexico, we consider six ensemble members
(Table 3). We only consider ERA5 as reanalysis forcing and
OSTIA as SST product for the same considerations listed for
the South Atlantic domain. We test both the MYNN and YSU
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Figure 8. Mean modeled wind speed profiles from 1 January 2015
to 31 December 2015 from the six WRF model setups considered
for the sensitivity analysis and mean observed winds at 90 m from
the DOE Virginia lidar.

Figure 9. Taylor diagram of the 90 m wind speed from the six WRF
model ensemble setups at the location of the DOE Virginia lidar
using 10 min data. Data from 1 January 2015 to 31 December 2015.
A zoomed-in inset is also included.

PBL schemes, each associated with the MYNN and MM5
surface layer scheme, respectively. We also consider the im-
pact of the Noah and Noah-MP LSMs. We run the six ensem-
ble members over the year 2020.

Observational wind speed data needed for model setup
choice and validation were provided by Shell at three dif-
ferent ZX300 lidars south of the Louisiana coast (Fig. 2).
These lidars, named Mars, Ursa, and Appomattox, are lo-
cated on separate floating oil platforms ∼ 50 m above the
ocean and sample winds up through∼ 150 m above the ocean
surface. Data are available from Mars and Ursa for all of

2020, whereas measurements at Appomattox are only avail-
able from January through August 2020.

Several buildings and structures are present on the Shell oil
platforms. To minimize their wake impacts on the lidar ob-
servations, we perform our validation at 140 m a.s.l. (i.e., the
maximum common height between the lidars and the WRF
model simulations). Figure 11 shows the Taylor diagrams at
the three lidars using 10 min data. At all three locations, the
WRF2 setup outperforms the other five simulation setups as
it has the smallest bias (still with a limited tendency to under-
forecast wind speeds), the smallest cRMSE, and the highest
correlation (between 0.7 and 0.8 at each lidar).

Our validation analysis shows that the WRF2 setup is
the best-performing configuration in this region, and there-
fore we use this setup for the long-term NOW-23 simulation
which covers the period from 1 January 2000 to 31 Decem-
ber 2020.

The 21-year mean wind speed at 160 m a.s.l. for the Gulf
of Mexico region is shown in Fig. 12, and Appendix A
shows the diurnal and seasonal variability in the modeled
wind resource. We observe a clear east–west gradient, with
faster winds on the western side of the Gulf and slower
winds on the eastern side. This general pattern has also been
observed in other studies (de Velasco and Winant, 1996;
Zavala-Hidalgo et al., 2014).

7 NOW-23 data set in the Great Lakes

For the Great Lakes, we only consider three ensemble mem-
bers (Table 3) by leveraging the results of the model valida-
tion in the other offshore regions. Therefore, we only con-
sider ERA5 to be reanalysis forcing and OSTIA to be a SST
product. We test both the MYNN and YSU PBL schemes,
each associated with the MYNN and MM5 surface layer
scheme, respectively. We also consider the impact of the
Noah and Noah-MP LSMs. We run the three ensemble mem-
bers for the year 2012.

To select the best-performing model setup in this region,
we leverage observations from one lidar, whose location is
shown in the map in Fig. 2. The lidar was deployed in the
middle of Lake Michigan and measured wind speed at 75, 90,
105, 125, 150, and 175 m above the surface. For this instru-
ment, we use 10 min average observations from 8 May 2012
to 17 December 2012. We discard data at 175 m as they are
deemed unrealistic.

Figure 13 shows the mean wind profiles from the three
WRF model ensemble members and the Lake Michigan lidar
during the period of record of the lidar observations. All three
WRF model setups underestimate wind speed compared to
the lidar observations. The setup using the MYNN PBL
scheme predicts higher wind speeds compared to the YSU
setups in the lowest 200 m, whereas YSU models stronger
winds higher aloft. In any case, the difference between all
models is rather limited at all heights. We see slight differ-
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Figure 10. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the South Atlantic region. The dashed red line represents
the limit of the US EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model
domain.

ences between the WRF2 and WRF3 setups, which is an ad-
ditional indication that using the Noah or Noah-MP LSMs
has a limited impact on the mean wind speed profiles, as ob-
served for the other offshore regions.

We next consider the Taylor diagram (Fig. 14) at 105 m,
using 10 min data. For the modeled data, we linearly inter-
polate wind speed at 100 and 120 m to allow for a direct
comparison with the lidar observations. All three considered
WRF model setups show similar performance in terms of
bias, correlation, and cRMSE, but the WRF1 setup shows
significantly better results in terms of the comparison with
the standard deviation of the observed wind speed.

Our validation analysis shows that the WRF1 setup is the
best-performing configuration in this region, and therefore
we use this setup for the NOW-23 long-term simulation,
which covers the period from 1 January 2000 to 31 Decem-
ber 2020.

The 21-year mean wind speed at 160 m a.s.l. for the Great
Lakes region is shown in Fig. 15. Wind speed gets stronger
near the center of the lakes, especially for the larger lakes
(Michigan, Superior, and Huron). The magnitude of the mean
wind speed across the domain is similar to what is found in
the northern portion of the US East Coast. Appendix A de-
scribes the diurnal and seasonal variability in the long-term
modeled wind resource.

8 NOW-23 data set in the South Pacific region

The South Pacific (offshore California) was the first region to
be considered for the development of this long-term wind re-
source data set as part of a Bureau of Ocean Energy Manage-
ment (BOEM)-funded pilot project, and the development of
the data set has been subject to revisions. The development of
the first version of a 20-year data set for the California Outer
Continental Shelf (OCS), called “CA20”, is described in Op-
tis et al. (2020d). As detailed in the report, 16 WRF model
ensemble members (Table 3) were considered by tweaking
the reanalysis forcing, PBL scheme, SST product, and LSM.
The WRF model setup employed for the long-term CA20
data set was selected based on a validation against available
observations at that time (an array of near-surface NDBC
buoys and coastal radars) and based on the validation results
obtained in the Mid-Atlantic region. As a result of this valida-
tion, a 20-year data set (1 January 2000–31 December 2019)
was run using the ERA5 reanalysis product, the MYNN PBL
scheme, the OSTIA SST product, the Noah LSM, and the
MYNN surface layer scheme.

The available measurements used to validate the CA20
model are less than ideal. In fact, the NDBC buoys only pro-
vide measurements close to the surface, which are insuffi-
cient to determine the wind resource at the relevant heights
for wind energy purposes. Coastal radars provide measure-
ments at heights of interest, but the WRF model validation at
their locations becomes uncertain due to large meteorologi-
cal gradients at the land–ocean interface. Also, results from
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Figure 11. Taylor diagram of the 140 m wind speed from the six WRF model ensemble setups at the location of the (a) Appomattox (from
January through August 2020), (b) Ursa (whole year of 2020), and (c) Mars (whole year of 2020) lidars, using 10 min data. For each diagram,
a zoomed-in inset is also included.

the Mid-Atlantic validation cannot be directly applied to the
US West Coast, given the different domain-specific processes
and features that might determine a different optimal WRF
model setup. When the CA20 data set was developed, the
absence of floating lidar observations in the California OCS

was recognized as a significant limitation to the analysis and
initial validation of CA20.

Two floating lidars were deployed in the region in late
2020 – one near the Humboldt wind energy lease area in the
northern part of the domain and one near the Morro Bay wind
energy lease area further south (Krishnamurthy et al., 2023).
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Figure 12. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the Gulf of Mexico region. The dashed red line represents
the limit of the US EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model
domain.

Figure 13. Mean wind speed profiles over the period from 8 May 2012 to 17 December 2012 from the three WRF model ensemble members
and lidar observations at the location of the Lake Michigan lidar.

The WRF model setup originally used in the CA20 data set
was then run over the October 2020–September 2021 period
and compared against the concurrent observations collected
by the two lidars. This comparison revealed a significant bias
in the CA20 modeled data, especially at the Humboldt lidar
location. This bias and its impact on energy assessments in
the California OCS are described in Bodini et al. (2022).

Additional analysis (Bodini et al., 2024) has shown that
the choice of the PBL scheme is responsible for the vast ma-
jority of the bias in the CA20 data set. The MYNN PBL
scheme overestimates the frequency of stable conditions, es-
pecially at Humboldt, resulting in reduced vertical turbulent
mixing and allowing the acceleration of hub height winds,
more intense low-level jets, and higher-amplitude inertial os-
cillations. Also, during synoptic-scale northerly flows driven
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Figure 14. Taylor diagram of the 105 m wind speed from the three
WRF model ensemble setups at the location of the Lake Michigan
lidar at 10 min resolution. Data from 8 May 2012 to 17 Decem-
ber 2012. A zoomed-in inset is also included.

by the North Pacific high and inland thermal low, simulations
using the MYNN PBL scheme show a coastal warm bias in
selected case studies, which contributes to the modeled wind
speed bias by altering the boundary layer thermodynamics
via a thermal wind mechanism. Furthermore, we found that
the YSU PBL scheme strongly reduces the bias at both Hum-
boldt and Morro Bay. Given the strong performance of the
YSU-based runs in the South Pacific region, we reran the
full long-term simulation in the region using the YSU PBL
scheme, and this version is the one included in the NOW-
23 data set. The results of this in-depth analysis, additional
validation against floating lidars and coastal radars, and de-
scription of the updated data set is presented in Bodini et al.
(2024). Here, we present a short summary of the main char-
acteristics of the final NOW-23 data set for the South Pacific
region for consistency with what is described for the other
offshore regions in the NOW-23 data set.

For the validation of the NOW-23 data set in this region,
we leveraged the two floating lidars at Humboldt and Morro
Bay (Krishnamurthy et al., 2023), as well as the coastal wind
profilers at McKinleyville and Bodega Bay (Fig. 2). Details
about the instruments can be found in the reports that de-
scribe the validation efforts, as listed at the beginning of this
section. We refer to the reports listed above for a compre-
hensive description of the results of the validation performed
at the various stages of the development of the South Pacific
data set. Here, we only include in Fig. 16 the vertical pro-
files of bias, cRMSE, and r for the WRF2 setup, which is

chosen for the final NOW-23 data set, at the locations of the
Humboldt and Morro Bay lidars. The setup shows a near-
zero bias at all considered heights, which represents a great
improvement compared to the bias found in the CA20 data
set. Also, as done for the Mid-Atlantic and South Atlantic
domains along the US East Coast, we verified that using a
1-month WRF model re-initialization period in our simula-
tions does not impact the validation metrics as time goes by
in each calendar month (figure not shown).

Table 3 details the WRF model setup that we select and
use for the NOW-23 long-term WRF model simulation in the
South Pacific region, which covers the period from 1 Jan-
uary 2000 to 31 December 2022. The 23-year mean wind
speed at 160 m a.s.l. for the South Pacific region is shown
in Fig. 17, and its seasonal and diurnal variabilities are de-
scribed in Appendix A. Additionally, we show in Fig. 18
the difference in mean wind speed at 160 m a.s.l. between
NOW-23 (2000–2022) and the now-deprecated CA20 data
set (2000–2019). We observe that NOW-23 models, on av-
erage, weaker wind speed across the whole region, with the
largest difference (close to 1.5 m s−1), in northern California,
near the Humboldt wind energy lease area.

9 NOW-23 data set in the North Pacific region

No publicly available hub height offshore wind speed ob-
servations exist in the North Pacific domain. Therefore, the
WRF model setup chosen for this region is based on the re-
sults obtained in the early stages of the NOW-23 develop-
ment, when both the sensitivity analyses in the South Pacific
(for the CA20 data set) and Mid-Atlantic domains pointed
toward using a MYNN-based WRF model setup. Thus, this
setup (Table 3) is selected in the North Pacific region with
no additional validation against observations. In this region,
NOW-23 covers the period from 1 January 2000 to 31 De-
cember 2019. The 20-year mean wind speed at 160 m a.s.l.
for the North Pacific region is shown in Fig. 19.

Because the review of the first-generation CA20 South Pa-
cific data set, generated using the MYNN PBL parameter-
ization, revealed a significant wind speed bias, we extend
the review northward through the North Pacific coast. This
preliminary examination consists of a comparison between
two WRF model simulations with different physics config-
urations run for the year 2020. The first simulation mimics
the setup of the main 20-year run for this region, and we
compare that with a second simulation that uses the YSU
PBL scheme and the MM5 surface layer parameterization.
We find that the mean wind speed findings are consistent
with those in the South Pacific data set, with stronger wind
speeds off the coast resulting from the MYNN/MYNN (PBL
scheme/surface layer parameterization) setup compared with
that of YSU/MM5. Differences are larger (> 0.5 m s−1) off
the southern coast of Oregon and decrease in magnitude in
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Figure 15. Map of the 21-year (2000–2020) mean wind speed at 160 m a.s.l. for the Great Lakes region. The dashed red line represents the
limit of the US EEZ.

Figure 16. Vertical profiles of bias, cRMSE, and r for the WRF2 setup at the locations of the Humboldt and Morro Bay lidars calculated
from October 2020 through September 2021.

the northern half of the regional domain and in the open
ocean.

While no hub height observations of offshore wind in the
region are available, model validation can be performed us-
ing near-surface buoy data, as well as coastal observations.
Leveraging available observations will be essential to assess
the accuracy of the chosen WRF model setup in the region
and will be subject to future work, pending funding availabil-
ity. In the meantime, NREL and its project partners warrant
caution for the stakeholders interested in using the NOW-23
data set in this region.

10 NOW-23 data set in Hawaii

Similar to the North Pacific region, we conduct no valida-
tion for the Hawaii domain, where no observations of hub
height offshore wind were publicly available when this re-
gional analysis was initiated at the early stages of the project.
The WRF model setup used in the NOW-23 Hawaii data set is
based on the results obtained in the South Pacific (for its now-
deprecated CA20 data set) and the Mid-Atlantic domains. Ta-
ble 3 details the WRF model setup that we select and use for
the long-term WRF model simulation in the Hawaii region,
which covers the period from 1 January 2000 to 31 Decem-
ber 2019. The 20-year mean wind speed at 160 m a.s.l. for
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Figure 17. Map of the 22-year (2000–2022) mean wind speed at 160 m a.s.l. for the South Pacific region. The dashed red line represents the
limit of the US EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model
domain.

Figure 18. Map showing the difference in mean 160 m wind speed
between the NOW-23 data set and the CA20 data set calculated us-
ing the full temporal extent of each data set (2000–2022 for NOW-
23; 2000–2019 for CA20).

the Hawaii region is shown in Fig. 20. We find a larger spa-
tial variability in the mean offshore wind speed compared
to the other offshore regions. In general, mean winds are
stronger south of the Hawaii islands and on the northern side
of the archipelago. A strong wind resource is also observed
in the channel between the islands of Hawaii and Maui. Ap-
pendix A shows the variability in the long-term wind re-
source.

A floating lidar was deployed in the Hawaii region by
PNNL in December 2022, and its data are publicly available.
The observations collected by this instrument, together with
other near-surface and onshore data sets, will be essential in
assessing the accuracy of the chosen WRF model setup in the
region, and will be subject to future work, pending funding
availability. In the meantime, NREL warrants caution for the
stakeholders interested in using this data set in this region.

11 Uncertainty quantification

NOW-23 is a modeled data set, and, as such, it comes with
inherent, unavoidable uncertainty. Ideally, a modeled data set
would come with full uncertainty information so that each
user can make informed decisions on whether the level of
uncertainty in a given region is acceptable for their specific
application. As part of the NOW-23 development, significant
effort was undertaken to provide stakeholders with this un-
certainty information. We tackle this aspect from different
points of view which are briefly summarized in the next para-
graphs. For each topic listed below, we refer to other peer-
reviewed publications for a detailed description of the analy-
ses performed.

11.1 Ensemble-based uncertainty

First, we focus on the characterization of what we call the
ensemble-based uncertainty, or boundary condition and para-
metric uncertainty, in modeled wind speed. When consid-
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Figure 19. Map of the 20-year (2000–2019) mean wind speed at 160 m a.s.l. for the North Pacific region. The dashed red line represents the
limit of the US EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model
domain.

Figure 20. Map of the 20-year (2000–2019) mean wind speed at 160 m a.s.l. for the Hawaii region. The dashed red line represents the limit
of the US EEZ. The continuous black line, where not overlaid with the EEZ boundary, shows the limit of the NOW-23 WRF model domain.
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ering NWP models, the choices of the model setup and in-
puts have a direct impact on the model wind speed predic-
tion and therefore on its uncertainty. Estimating the boundary
condition and parametric uncertainty associated with mod-
eled wind speed requires running a model ensemble which
can be computationally intensive for producing long-term
data over large regions as for the NOW-23 data set. There-
fore, we propose two alternative approaches that use a short-
term mesoscale ensemble (i.e., the 1-year WRF model en-
semble we use for model setup selection in several offshore
regions) alongside a single model run for the desired long-
term period (i.e., the 20+-year NOW-23 run). We quantify
hub height wind speed boundary condition and parametric
uncertainty from the short-term model ensemble as its nor-
malized across-ensemble standard deviation. Then, we use a
gradient-boosting model and an analog ensemble approach
to extrapolate the uncertainty to the full 20+-year period.

We test our proposed methods in the South Pacific do-
main (using the now-deprecated MYNN-based CA20 data
set) and find that both approaches provide accurate estimates
of long-term wind speed boundary condition and paramet-
ric uncertainty (r2 > 0.75), with the gradient-boosting model
performing slightly better than the analog ensemble. We also
assess the physical variability in the uncertainty estimates
and find that wind speed uncertainty increases closer to land,
stable and unstable cases have larger uncertainty than neu-
tral conditions, and winter has a smaller boundary condition
and parametric sensitivity than summer. Finally, we report
a median hourly uncertainty between 10 % and 14 % of the
mean 100 m wind speed values across the offshore wind en-
ergy lease areas in the region. The results of this analysis are
described in detail in Bodini et al. (2021).

11.2 Model uncertainty compared to observations

While helpful from a modeling point of view, the assess-
ment of the boundary condition and parametric uncertainty
presents several limitations. In fact, the magnitude of this
ensemble-based uncertainty is strictly connected to the (lim-
ited) number of choices sampled within the considered model
setups so that only a limited component of the actual wind
speed error with respect to observations (our best proxy for
the true wind speed) can be quantified from it. The full uncer-
tainty in NWP-model-predicted wind speed can be quantified
only when direct observations of the wind resource are avail-
able. In this scenario, the residuals between modeled and ob-
served wind speed can be calculated, and the model error is
quantified in terms of its bias (i.e., the mean of the residuals)
and uncertainty (i.e., the standard deviation of the residuals).
The obtained model uncertainty would then be added to the
inherent uncertainty in the wind speed measurements.

We apply this approach in the Mid-Atlantic region. Given
the lack of long-term (20+-year) hub height offshore wind
speed observations in the region (the same applies to all the
US offshore regions), we propose a methodological frame-

work to leverage both floating lidar and near-surface buoy
observations to quantify uncertainty in the long-term mod-
eled hub height wind resource. We train and validate a
machine learning technique to vertically extrapolate near-
surface wind speed to hub height using the available short-
term lidar data sets in the region. We then apply this model to
vertically extrapolate the long-term near-surface buoy wind
speed observations to hub height for comparison to the long-
term NOW-23 data set. Using this comprehensive approach,
we find that the mean 20-year uncertainty (including the un-
certainty coming from the observations and from the applica-
tion of the machine learning approach) in 140 m wind speed
is slightly lower than 3 m s−1 across the considered region,
with larger uncertainty in stable conditions. The results of
this analysis are described in detail in Bodini et al. (2023).

12 NOW-WAKES: a post-construction data set for
the Mid-Atlantic wind energy areas

A promising offshore wind resource is often located near
large population centers so that a rapid wind plant develop-
ment is expected. However, wind turbines and wind plants
generate wakes, which are regions of reduced wind speed
that may negatively impact downwind turbines and plants. As
part of the NOW-23 data set, we developed NOW-WAKES,
a 1-year post-construction data set to model and assess the
impact of offshore wakes from the upcoming wind plants in
some of the lease and call areas (as of 2019) in the Mid-
Atlantic region. We use WRF model and its Fitch wind farm
parameterization (Fitch et al., 2012) to calculate wake effects
and distinguish between wakes generated within one plant
and those generated externally between plants. The strongest
wakes, propagating 55 km, occur during stable stratification
in summer, which coincides with peak grid demand in New
England. The mean year-long wake impacts reduce power
output by roughly 35 %, with internal wakes causing greater
power losses (27 % on average) than external wakes (14 % on
average). The results of this analysis are described in detail
in Rosencrans et al. (2023).

As part of the NOW-WAKES effort, we also investigate
the uncertainty connected to some of the modeling choices
made in this 1-year analysis using two different PBL schemes
for these simulations, namely the MYNN PBL scheme and
the new National Center for Atmospheric Research (NCAR)
3DPBL scheme (Kosović et al., 2020; Juliano et al., 2022).
The average losses in hub height wind speeds within an ideal
plant differ between the two schemes by up to −0.20 to
0.22 m s−1, and correspondingly, capacity factors range from
39.5 % to 53.8 %. These results suggest that the choice of the
PBL scheme can also contribute to uncertainty in modeled
wakes, and therefore we recommend including PBL variabil-
ity in wind plant planning sensitivity and forecasting studies.
The results of this analysis are described in detail in Rybchuk
et al. (2022).
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Table 5. Data availability for the observational data sets used for NOW-23 validation.

Data set Publicly available? Link

NDBC buoys Yes https://www.ndbc.noaa.gov∗

NYSERDA E05, E06 floating lidars Yes https://oswbuoysny.resourcepanorama.dnvgl.com∗

Atlantic Shores floating lidar Yes https://erddap.maracoos.org/erddap/tabledap/∗

UMaine floating lidar Mostly not Mean data are available in Viselli et al. (2022)
DOE Virginia floating lidar Yes https://a2e.energy.gov/ds/buoy/buoy.z01.a0∗

Michigan mid-plateau lidar No –
Shell Gulf of Mexico floating lidars No –
Morro Bay floating lidar Yes https://a2e.energy.gov/ds/buoy/lidar.z06.b0∗

Humboldt floating lidar Yes https://a2e.energy.gov/ds/buoy/lidar.z05.b0∗

NOAA coastal wind profilers Yes https://psl.noaa.gov/data/obs/data/∗

∗ Last access: 22 April 2024.

Figure 21. Mean long-term wind speed at 160 m from the NOW-23 data set for all US offshore regions (except for Alaska). The dashed
red lines represent the limit of the US EEZ. The continuous black lines show where data from the regional domains were cut to create this
national-scale map.

13 Code and data availability

The whole NOW-23 data set is publicly available at no cost
through Amazon Web Services (AWS) at https://doi.org/10.
25984/1821404 (Bodini et al., 2020). The data are stored as
both HDF5 and WRG files. The same page also includes a
link to the NOW-23 WRF model namelists.

The HDF5 files are available for each offshore region at
both 5 min resolution and as hourly averages. The following
variables are available in the HDF5 files:

– wind speed at 10 and 20 m intervals between 20 and
300, 400, and 500 m (m s−1);

– wind direction at 10 and 20 m intervals between 20 and
300, 400, and 500 m (° from N);

– planetary boundary layer height (m);

– pressure at 0, 100, 200, and 300 m (Pa);

– temperature at 2, 10, and 20 m intervals between 20 and
300, 400, and 500 m (°C);

– friction velocity at 2 m (m s−1);

– surface heat flux (W m−2);

– inverse Monin–Obukhov length at 2 m (m−1);
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– sea surface temperature (°C);

– skin temperature (°C);

– relative humidity at 2 m (%); and

– roughness length (m).

To facilitate accessing, extracting, and manipulating data
from the NOW-23 large files, NREL has developed the RE-
source eXtraction (rex) tool. Instructions on how to install
rex, as well as examples of its usage, can be found at
https://nrel.github.io/rex (last access: 25 April 2024; DOI:
https://doi.org/10.5281/zenodo.4499033, Rossol and Buster,
2021). We note that rex allows, among others, the extraction
of a subset of variables over a single location, a customized
region, and an automatic interpolation of the wind speed data
to an arbitrary height.

The WRG file format is an industry standard format for
publishing modeled wind resource data sets. In general,
WRG files provide wind rose information at a specific height
at each modeled grid cell. This information is specified in a
WRG by providing Weibull fit parameters for reported wind
speeds in a given sector. Considerable information is lost
when pivoting to a WRG from the HDF5 format. Specif-
ically, all temporal information (e.g., seasonal and diurnal
trends) and other relevant atmospheric parameters are dis-
carded, with only wind speed and direction being preserved.
Regardless, the WRG format has been the industry standard
for decades and is still actively used for offshore wind re-
source assessment. For the NOW-23 data sets, NREL has
provided WRG files calculated at 160 m and at 30° wind di-
rection sector bins. An open-source codebase has also been
publicly released (https://github.com/NREL/wrg_maker, last
access: 25 April 2024; DOI: https://doi.org/10.5281/zenodo.
11040122, Optis and Bodini, 2024) so that stakeholders can
produce additional WRG files from the NOW-23 data set if
desired.

To further facilitate access to the NOW-23 data, Bodini
et al. (2020) also includes sample data (in an easily accessible
.csv format) at the locations of the lidars used to validate the
NOW-23 data set (locations in Fig. 2).

The NOW-23 data set can also be visualized and accessed
through NREL’s Wind Resource Database (https://wrdb.nrel.
gov/, National Renewable Energy Laboratory, 2024). Any re-
quest for technical support on the NOW-23 data set can be
directed to wrdb@nrel.gov.

Some of the observations used for model validation are
also publicly available. Details about the observational data
sets used are included in Table 5.

14 Conclusions

The NOW-23 data set is a cutting-edge, offshore-focused
wind resource assessment data set that aims to support the
growth of the offshore wind energy sector in the United

States. This comprehensive overview paper outlines the ap-
proach employed to generate and validate the data set for
each US offshore region (with the exception of Alaska). The
national mean long-term wind speed, depicted in Fig. 21, is
derived by amalgamating all the regional domains.

Anticipated to replace NREL’s WIND Toolkit and become
one of the most widely utilized data sets for offshore wind re-
source assessment in the United States, the NOW-23 data set
showcases the significance of conducting regionally focused
validation and selecting appropriate model setups based on
multiple observational data sets. The analysis underscores
the symbiotic relationship between NWP models and obser-
vations, emphasizing their interconnectedness. To mitigate
the inherent uncertainty in numerical models, an increased
quantity of long-term observations is required, which can
be facilitated through the sharing of proprietary observa-
tional data sets. In assessing the costs and benefits of data-
sharing initiatives, it is essential for stakeholders to consider
the long-term advantages that the access to additional obser-
vational data sets can offer in terms of enhanced numerical
modeling.

Further analysis and validation are needed for the NOW-
23 data set in Hawaii and the North Pacific, subject to fu-
ture work contingent on funding availability. As more off-
shore observations become accessible, the current valida-
tion efforts can be expanded to ensure the NOW-23 model
setup is validated in regions of interest for present and future
offshore wind energy lease areas. Additionally, regular up-
dates to the NOW-23 data set (pending funding availability)
are desirable, enabling stakeholders to employ the industry
standard measure–correlate–predict approach as they collect
short-term observations in the future. Also, an analysis sim-
ilar to what was done to create NOW-WAKES can be repli-
cated in different offshore regions. As offshore wind turbines
are built in the US, the simulated wake effects can and should
be validated against any available observations. Last, given
the unsatisfactory performance of the MYNN PBL scheme
on the US West Coast, further analysis is warranted to inves-
tigate the causes of its failure in the region and propose and
implement offshore-focused improvements to the parameter-
ization scheme.

Appendix A: Seasonal and diurnal variability in
long-term offshore wind speed in the NOW-23 data
set

In all offshore regions modeled in NOW-23, we observe dis-
tinct seasonal and diurnal patterns in hub height wind speed.

On the US East Coast, we observe consistent seasonal and
diurnal cycles in hub height wind speed. During the win-
ter months, winds are at their strongest, gradually weaken-
ing as we move into summer. The seasonal differences in
wind speed become more pronounced further offshore. A
comparison of the month of January, which typically expe-
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riences the highest average wind speed, with August, when
wind speed is at its lowest, reveals differences sometimes ex-
ceeding 6 m s−1 (Figs. A1, A3, and A5). Additionally, a di-
urnal cycle is evident, with variations closer to the shore be-
ing more pronounced, likely because of sea breeze effects. In
the evenings, we observe stronger winds, while the morning
hours tend to have weaker wind speeds (Figs. A2, A4, and
A6).

We find similar results in the Gulf region, where winter
months have the strongest winds, and summer months have
the weakest wind speeds. The area with the largest deviation
from the annual mean varies throughout the year, with the
eastern side of the Gulf experiencing the largest deviation in
early winter and the western side experiencing it later in the
season. A similar transition occurs from east to west during
the summer months (Fig. A7). On a diurnal basis, we observe
stronger winds at night and weaker winds during the day,
with the most significant deviations once again near the coast
(Fig. A8).

When considering the Great Lakes region, we observe the
same seasonal and diurnal cycles in hub height wind speed
as on the US East Coast; the strongest winds occur in winter
and early spring, while the weakest winds occur in summer,
with greater seasonal differences in lakes more to the south
(Fig. A9). The diurnal cycle in this region is slightly delayed
compared to the US East Coast, with stronger winds in the
late evening and weaker winds around midnight (Fig. A10).

In the North Pacific, we find consistent seasonal and di-
urnal cycles in hub height wind speed. Once again, winter
months have the strongest winds, while summer months have
the weakest winds, except for the southern part of the ocean
west of the Oregon coast where the annual cycle is opposite
(Fig. A11). On a diurnal basis, we observe stronger winds in
the afternoon and early night, and weaker winds in the late
nights and early mornings, with the largest deviations near
the coast (Fig. A12).

In the South Pacific, a different annual cycle emerges
(Fig. A13) with strongest winds observed in the spring and
early summer, with the southern portion of the domain expe-
riencing stronger winds earlier than northern California. On
a diurnal basis, we find similar results to what was observed
in the adjacent North Pacific region, with stronger winds in
the afternoon and early night (Fig. A14).

For Hawaii, the seasonal and diurnal cycles in hub height
wind speed are not as clear as in the other offshore regions.
Winds close to the islands are stronger in the summer and
weaker in the winter. Further offshore, the seasonal variabil-
ity becomes less clear (Fig. A11). On a diurnal basis, we find
stronger winds closer to the islands in the afternoon and early
night, and weaker winds in the late night and early morning,
with the largest deviations near the coast (Fig. A16).
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Figure A1. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the North Atlantic region.
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Figure A2. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the North Atlantic region.
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Figure A3. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the Mid-Atlantic region.

Earth Syst. Sci. Data, 16, 1965–2006, 2024 https://doi.org/10.5194/essd-16-1965-2024



N. Bodini et al.: The NOW-23 data set 1991

Figure A4. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the Mid-Atlantic region.
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Figure A5. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the South Atlantic region.

Figure A6. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the South Atlantic region.
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Figure A7. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the Gulf of Mexico region.

Figure A8. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the Gulf of Mexico region.
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Figure A9. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the Great Lakes region.

Figure A10. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the Great Lakes region.
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Figure A11. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the North Pacific region.
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Figure A12. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the North Pacific region.
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Figure A13. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the South Pacific region.
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Figure A14. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the South Pacific region.
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Figure A15. Maps showing the annual cycle in 160 m wind speed expressed in terms of the difference for each month’s mean wind speed
from the overall mean for the Hawaii region.
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Figure A16. Maps showing the diurnal cycle in 160 m wind speed expressed in terms of the difference for each (UTC) hour’s mean wind
speed from the overall mean for the Hawaii region.
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Appendix B: Wind speed differences between
NOW-23 overlapping regional domain boundaries

When two NOW-23 WRF model domains are adjacent
(North Atlantic and Mid-Atlantic, Mid-Atlantic and South
Atlantic, South Atlantic and Gulf of Mexico, and North Pa-
cific and South Pacific), there is some limited spatial overlap.
In this section, we compare the mean 160 m wind speed from
neighboring domains in these limited overlapping regions to
quantify the deviation between regional data sets and provide
guidance to NOW-23 stakeholders.

In most cases, we find minimal differences between the
NOW-23 regional data sets when they overlap consistently
well within the model uncertainty. The deviation between
the overlapping area from the Mid-Atlantic and the North
Atlantic regional data sets (Fig. B1), which both use the
same WRF model setup (with the MYNN PBL scheme), is
smaller than 0.2 m s−1 in either direction. Similarly, we ob-
serve limited differences in the overlapping region between
the South Atlantic and the Mid-Atlantic domains (Fig. B2),
which employ different WRF model setups. Near the coast,
the difference is smaller than 0.2 m s−1 in either direction.
The mean difference increases in the open ocean in areas
not directly relevant for offshore wind energy purposes. Ad-
ditionally, the South Atlantic data set slightly (< 0.2 m s−1)
models stronger wind speed compared to the Gulf of Mex-
ico domain (Fig. B3), with some larger differences near the
south edge of Florida.

On the US West Coast, a major difference appears, with
the North Pacific data set modeling significantly stronger
wind speed compared to the South Pacific one (Fig. B4). This
difference is mainly due to the fact that the two regional data
sets adopt different PBL schemes which have been shown to
produce significantly different results on the US West Coast,
as detailed in the previous sections.

For these limited areas where the WRF model domains
overlap, stakeholders can access NOW-23 data from both
neighboring regions for download. For all cases where mean
differences are limited, the data from either region can be
used with confidence. Considering the overlap between the
South Atlantic and Gulf of Mexico domains, it is reason-
able to expect that the Gulf of Mexico regional data set pro-
vides the most accurate data in the overlapping area south of
Florida, as it captures all the metocean dynamics in the rest of
the Gulf. Similarly, the South Atlantic domain is expected to
be more accurate in the small region north of Florida where
its WRF model domain overlaps with the Gulf of Mexico.
Cape Cod could also be considered a natural barrier influ-
encing somewhat different metocean conditions to the north
and south, suggesting that the North Atlantic data set may be
better suited for the region north of the Cape, while the Mid-
Atlantic domain could be preferred for the region south of the
Cape. It is important to note, however, that we did not vali-
date these scientific speculations by comparing the NOW-
23 modeled data in the overlapping regions against observa-

tions, given the limited differences between the regional data
sets. For the overlap between the North Pacific and South
Pacific domains, we would like to remind users that only the
South Pacific domain (and its WRF model configuration) un-
derwent a regional tuning and validation, and therefore, that
setup should be preferred for the region of overlap.

Figure B1. Map showing the difference in mean 160 m wind speed
between the North Atlantic regional data set and the Mid-Atlantic
one in the region where their WRF model domains overlap.

Figure B2. Map showing the difference in mean 160 m wind speed
between the Mid-Atlantic regional data set and the South Atlantic
one in the region where their WRF model domains overlap.

Figure B3. Map showing the difference in mean 160 m wind speed
between the South Atlantic regional data set and the Gulf of Mexico
one in the region where their WRF model domains overlap.
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Figure B4. Map showing the difference in mean 160 m wind speed
between the North Pacific regional data set and the South Pacific
one in the region where their WRF model domains overlap.

Appendix C: Comparison between NOW-23 and the
WIND Toolkit

Figure C1 presents a comparison of mean wind speeds be-
tween the NOW-23 data set and the 7-year (2007–2013)
WIND Toolkit for the offshore regions in the contiguous
United States. We note that Hawaii was not part of the WIND
Toolkit domain, so a direct comparison between the NOW-23
data set and the WIND Toolkit for this region is not possi-
ble. NOW-23 and the WIND Toolkit have many differences
(e.g., different length of the period of record, different re-
analysis forcing, and different WRF model version). How-
ever, the magnitude of the differences in mean wind speed
between the two data sets seems largely connected, in most
regions, to the PBL schemes being adopted in the two data
sets. The WIND Toolkit used the YSU PBL scheme across
all regions, whereas, as described in this paper, NOW-23 uses
either the MYNN or the YSU PBL scheme based on the re-
sults of a region-specific validation. For the Mid-Atlantic,
North Atlantic, Great Lakes, and North Pacific regions, the
NOW-23 data set (with the MYNN PBL scheme) consis-
tently models stronger wind speeds compared to the WIND
Toolkit, with differences larger than 0.5 m s−1 in the Mid-
Atlantic and North Pacific domains and even larger in the
North Atlantic and Great Lakes regions. In the South At-
lantic and Gulf of Mexico regions, the wind speeds between
the NOW-23 data set (with the YSU PBL scheme) and the
WIND Toolkit are similar across the majority of the domains.
We note how, off the coast of Florida, the NOW-23 data set
exhibits stronger hub height wind speeds, with differences
larger than 0.5 m s−1 compared to the WIND Toolkit. For the
South Pacific region, despite both NOW-23 and the WIND
Toolkit using the same PBL scheme (YSU), NOW-23 mod-
els stronger hub height winds off the coast of central and
southern California, with some local differences on the order
of 1 m s−1.
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Figure C1. Map showing the difference in mean 160 m wind speed between the NOW-23 data set and the WIND Toolkit for the EEZ in the
contiguous US where the two data sets overlap. The difference is calculated using the full temporal extent of each data set (2000–2019/2022
for NOW-23; 2007–2013 for the WIND Toolkit).
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