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Abstract. Land evapotranspiration (ET) plays a crucial role in Earth’s water–carbon cycle, and accurately esti-
mating global land ET is vital for advancing our understanding of land–atmosphere interactions. Despite the de-
velopment of numerous ET products in recent decades, widely used products still possess inherent uncertainties
arising from using different forcing inputs and imperfect model parameterizations. Furthermore, the lack of suf-
ficient global in situ observations makes direct evaluation of ET products impractical, impeding their utilization
and assimilation. Therefore, establishing a reliable global benchmark dataset and exploring evaluation method-
ologies for ET products is paramount. This study aims to address these challenges by (1) proposing a collocation-
based method that considers non-zero error cross-correlation for merging multi-source data and (2) employing
this merging method to generate a long-term daily global ET product at resolutions of 0.1° (2000–2020) and
0.25° (1980–2022), incorporating inputs from ERA5L, FluxCom, PMLv2, GLDAS, and GLEAM. The result-
ing product is the Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data (CAMELE).
CAMELE exhibits promising performance across various vegetation coverage types, as validated against in situ
observations. The evaluation process yielded Pearson correlation coefficients (R) of 0.63 and 0.65, root-mean-
square errors (RMSEs) of 0.81 and 0.73 mm d−1, unbiased root-mean-square errors (ubRMSEs) of 1.20 and
1.04 mm d−1, mean absolute errors (MAEs) of 0.81 and 0.73 mm d−1, and Kling–Gupta efficiencies (KGEs) of
0.60 and 0.65 on average at resolutions of 0.1 and 0.25°, respectively. In addition, comparisons indicate that
CAMELE can effectively characterize the multiyear linear trend, mean average, and extreme values of ET. How-
ever, it exhibits a tendency to overestimate seasonality. In summary, we propose a reliable set of ET data that can
aid in understanding the variations in the water cycle and has the potential to serve as a benchmark for various
applications. The dataset is publicly available at https://doi.org/10.5281/zenodo.8047038 (Li et al., 2023b).

1 Introduction

Land evapotranspiration (ET) plays a critical role in the
global water and energy cycles, encompassing various pro-
cesses such as soil evaporation, vegetation transpiration,
canopy interception, and surface water evaporation (Zhang
et al., 2019; Zhao et al., 2022; Lian et al., 2018). Accurately
estimating global land evapotranspiration is vital for under-
standing the hydrological cycle and land–atmosphere inter-
actions, as it serves as an intermediary variable connecting
soil moisture, air temperature, and humidity (Miralles et al.,

2019; Gentine et al., 2019). Therefore, providing a reliable
ET dataset as a benchmark for further research is crucial.

In recent decades, numerous studies have focused on es-
timating global land evapotranspiration, resulting in many
datasets (Yang et al., 2023). However, discrepancies often
arise among these simulations due to algorithm and princi-
ple variations (Restrepo-Coupe et al., 2021; Han and Tian,
2020). Additionally, evaluating ET products is challenging
due to the limited availability of global-scale observations,
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which hampers their direct use (Pan et al., 2020; Baker et al.,
2021).

The fusion of multi-source data is a suitable option for
addressing these uncertainties. Recent studies have explored
several approaches to integrate multiple ET products, includ-
ing simple averaging (SA) (Ershadi et al., 2014), Bayesian
model averaging (BMA) (Hao et al., 2019; Ma et al., 2020;
Zhu et al., 2016), reliability ensemble averaging (REA) (Lu
et al., 2021), empirical orthogonal functions (EOFs) (Feng
et al., 2016), and machine-learning-based methods (Chen et
al., 2020; Yin et al., 2021). However, the primary challenge
lies in calculating reliable input weights based on a selected
“truth” (Koster et al., 2021), which can involve averaging
or incorporating other relevant geographical information as
a benchmark.

Recently, collocation methods have emerged as promising
techniques for estimating random error variances and data–
truth correlations in collocated inputs (Stoffelen, 1998; Li et
al., 2022; X. Li et al., 2023; Park et al., 2023). These meth-
ods consider the errors associated with collocated datasets
as an accurate representation of uncertainty without assum-
ing the absence of errors in any datasets. It is important to
note that while collocation methods, such as the triple col-
location (TC) and the extended double instrumental variable
technique (EIVD), can estimate the variance (or covariance)
of random errors, they cannot evaluate the bias of the prod-
ucts. One primary advantage of collocation analysis is that it
does not require a high-quality reference dataset (Su et al.,
2014; Wu et al., 2021). However, a crucial prerequisite for
applying collocation methods is the availability of many spa-
tially and temporally corresponding datasets. For instance,
the classic TC method requires a trio of independent datasets.
Su et al. (2014) used the instrumental regression method
and considered lag-1 time series as the third input, propos-
ing the single instrumental variable algorithm (IVS). Dong et
al. (2019) introduced the lag-1 time series from both inputs,
proposing the double instrumental variable algorithm (IVD)
for a more robust solution. Gruber et al. (2016a) extended the
original algorithm to incorporate more datasets, partially ad-
dressing the independence assumption to calculate a portion
of error cross-correlation (ECC) by using the extended collo-
cation (EC) method. Dong et al. (2020a) further proposed the
EIVD method, enabling ECC estimation using three datasets.
Collocation methods have found widespread application in
the evaluation of geophysical variable estimates, including
soil moisture (Deng et al., 2023; Ming et al., 2022), precipi-
tation (Dong et al., 2022; Li et al., 2018), ocean wind speed
(Vogelzang et al., 2022; Ribal and Young, 2020), leaf area
index (Jiang et al., 2017), total water storage (Yin and Park,
2021), sea ice thickness and surface salinity (Hoareau et al.,
2018), and near-surface air temperature (Sun et al., 2021).

Recently, many studies have utilized collocation ap-
proaches to evaluate evapotranspiration products, with the
TC method to assess uncertainties. For example, Barraza
Bernadas et al. (2018) considered the uncertainties of ET

from the Breathing Earth System Simulator, BESS (Jiang et
al., 2020; Jiang and Ryu, 2016), Moderate Resolution Imag-
ing Spectroradiometer, MOD16 (Mu et al., 2011), and a hy-
brid model; Khan et al. (2018) utilized extended triple collo-
cation (ETC) (McColl et al., 2014) to investigate the reliabil-
ity of ET from MOD16, the Global Land Data Assimilation
System (GLDAS) (Rodell et al., 2004), and the Global Land
Evaporation Amsterdam Model (GLEAM) (Martens et al.,
2017) over East Asia; Li et al. (2022) employed five colloca-
tion methods (i.e., IVS, IVD, TC, EIVD, and EC) to analyze
the uncertainties of ET from ERA5-Land (ERA5L) (Muñoz-
Sabater et al., 2021), GLEAM, GLDAS, FluxCom (Jung et
al., 2019), and the Penman–Monteith–Leuning evapotranspi-
ration V2 (PMLv2) (Zhang et al., 2019).

Moreover, error information derived from collocation
analysis is valuable for merging multi-source data. This was
initially applied by Yilmaz et al. (2012) in the fusion of multi-
source soil moisture products and later improved by Gruber
et al. (2017) and further applied in the production of the Eu-
ropean Space Agency Climate Change Initiative (ESA CCI)
global soil moisture product (Gruber et al., 2019). Dong et
al. (2020b) also adopted this approach to fusing multi-source
precipitation products. In the study of evapotranspiration,
X. Li et al. (2023) and Park et al. (2023) utilized a weight
calculation method that does not consider non-zero ECC and
fused multiple ET products in Nordic and East Asia, respec-
tively, achieving satisfactory fusion results.

Although the above studies have demonstrated that collo-
cation analysis can effectively assess the random error vari-
ance of ET products and integrate error information from
multiple data sources, these studies have primarily over-
looked a critical aspect: non-zero ECC between ET prod-
ucts. Li et al. (2022) global ET product evaluation research
revealed clear non-zero ECC conditions between ERA5L,
GLEAM, PMLv2, and FluxCom. In TC analysis, non-zero
ECC can result in significant biases in TC-based results (Yil-
maz and Crow, 2014). Furthermore, when using TC-based
error information for fusion, it is crucial to consider the in-
formation related to ECC, as this can help improve the fusion
accuracy (Dong et al., 2020b; Kim et al., 2021b).

It is worth noting that non-zero ECC conditions pose
unique challenges. Unlike other violations of mathemati-
cal assumptions adopted by TC, they cannot be effectively
mitigated through rescaling or compensated for by equal-
magnitude adjustments across inputs. Thus, the implications
of non-zero ECC in the context of merging strategies are a
critical consideration often overlooked in previous research.
This oversight can lead to significant biases and inaccuracies.
We aim to bridge this gap by systematically accounting for
non-zero ECC in weight calculation, contributing to a more
robust and accurate assessment.

In this study, we propose a collocation-based data ensem-
ble method, considering non-zero ECC conditions, for merg-
ing multiple ET products to create the Collocation-Analyzed
Multi-source Ensembled Land Evapotranspiration data, ab-
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breviated as CAMELE. The second section of this paper
presents the selected data information. In the third section,
we explain the error calculation method for collocation anal-
ysis and the weighted calculation method that considered
ECC. The fourth section analyzes the global errors of dif-
ferent ET products obtained through these calculations and
the distribution patterns of the corresponding weights. We
evaluate the accuracy of the fused products and compare
them with existing products using reference values from site
measurements. In the fifth section, we discuss the inherent
errors in the methods, analyze the ECC between the prod-
ucts, and compare the differences between the different fu-
sion schemes. Finally, in the sixth section, we summarize the
results obtained from this research.

2 Datasets

We selected five widely used ET products that spanned the
period from 1980 to 2022. When selecting these products,
our aims are to ensure (1) consistency in the original spa-
tiotemporal resolution among the products: minimize po-
tential downscaling operations and avoid introducing addi-
tional errors; (2) three or more products within the same
resolution or period: incorporate more information for effec-
tive fusion; and (3) products with extensive global observa-
tional sequences: gain basic recognition from the commu-
nity. While we acknowledge the existence of other higher-
precision products, their integration would require either
downscaling or upscaling of other products, potentially in-
troducing uncertainties. Therefore, we chose the combina-
tion outlined in the paper. Despite its relatively lower reso-
lution compared to some products, it still contributes to our
understanding of ET variations, facilitating advantageous ex-
ploration. Furthermore, we incorporated in situ observations
and the Lu et al. (2021) global 0.25° daily-scale ET product
derived using REA to compare our merged product compre-
hensively. Table 1 shows the spatial and temporal resolutions
of the input datasets.

2.1 ERA5-Land

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) produces the latest advanced ERA5L, a
global hourly reanalysis dataset with a spatial resolution
of 0.1°. It covers the period from January 1950 until ap-
proximately 1 week before the present (Muñoz-Sabater et
al., 2021). ERA5-Land is derived from the land compo-
nent of the ECMWF climate reanalysis, incorporating nu-
merous improvements over previously released versions. It
is based on the Tiled ECMWF Scheme for Surface Ex-
changes over Land incorporating land surface hydrology (H-
TESSEL), utilizing version CY45R1 of the ECMWF’s Inte-
grated Forecasting System (IFS). The dataset benefits from
atmospheric forcing data, which acts as an indirect con-
straint on the model-based estimates (Hersbach et al., 2020).

The dataset is available through the Climate Change service
of the Copernicus Center at https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview (last
access: 10 April 2024).

Evapotranspiration in ERA5L, defined as “total evapora-
tion”, represents the accumulated amount of water that has
evaporated from the Earth’s surface, including a simplified
representation of transpiration from vegetation into the va-
por in the air. The soil water and energy balance are com-
puted using standard soil discretization. Readers could con-
sult Sect. 8.6.5 of the IFS documentation (ECMWF, 2014).
The original dataset is interpolated from (1801, 3600) to
(1800, 3600) using kriging interpolation and then upscaled
from an hourly to a daily resolution, changing the spatial res-
olution from 0.1 to 0.25°.

2.2 GLDAS

The GLDAS product utilizes advanced data assimilation
methodologies, integrating model and observation datasets
for land-surface simulations (Rodell et al., 2004). GLDAS
employs multiple land-surface models (LSMs), i.e., Noah,
Mosaic, Variable Infiltration Capacity (VIC), and the Com-
munity Land Model (CLM). Together, these models gen-
erate global evapotranspiration estimates at fine and coarse
spatial resolutions (0.01 and 0.25°) and temporal resolu-
tions (3-hourly and monthly). The most recent iteration of
GLDAS, version 2, consists of three components: GLDAS-
2.0, GLDAS-2.1, and GLDAS-2.2. GLDAS-2.0 relies en-
tirely on the Princeton meteorological forcing input data,
providing a consistent temporal series from 1948 to 2014
(Sheffield et al., 2006). The GLDAS-2.1 simulation com-
mences on 1 January 2000, utilizing the conditions from the
GLDAS-2.0 simulation. On the other hand, GLDAS-2.2 is
simulated from 1 February 2003, employing the conditions
from GLDAS-2.0 and forcing with meteorological analy-
sis fields from the ECMWF IFS. Additionally, the GRACE
satellite’s total terrestrial water anomaly observation is as-
similated into the GLDAS-2.2 product (B. Li et al., 2019).

This study aimed to cover the research period from 1980
to 2022. Non-zero ECC between the transpiration estimates
of GLDAS-2.2 and ERA5L was reported in a recent study
(Li et al., 2023a). Considering the similarities in the calcu-
lation of ET and transpiration of GLDAS and ERA5L, this
report partially indicates a correlation. Therefore, GLDAS-
2.0 and GLDAS-2.1 were selected as inputs instead. The
“Evap_tavg” parameter representing evapotranspiration is
derived from the original products and aggregated to a daily
scale. For more detailed information on the GLDAS-2 mod-
els, please refer to NASA’s Hydrology Data and Informa-
tion Services Center at https://disc.gsfc.nasa.gov/datasets?
keywords=GLDAS (last access: 10 April 2024).

Despite the same forcing between GLDAS-2.1 and
GLDAS-2.2, significant differences exist between the model
results of different GLDAS versions (Qi et al., 2020, 2018;
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Table 1. Summary of the evapotranspiration products involved.

Name Schemes Resolution Period Reference

ERA5-Land H-TESSEL 0.1° Hourly 1950–present Muñoz-Sabater et al. (2021)

GLDAS-2 CLSM/Noah/LSM 0.25° 3-hourly
Daily

2.0: 1948–2014
2.1: 2000–present
2.2: 2003–present

B. Li et al. (2019), Rodell et al. (2004)

GLEAM-3.7 GLEAM model 0.25° Daily 3.7a: 1980–2022
3.7b: 2003–2022

Martens et al. (2017)

PMLv2-v017 Penman–Monteith–Leuning 0.083° 8 d average 2000–2020 Zhang et al. (2019)

FluxCom Machine learning 0.083° 8 d average 2001–2015 Jung et al. (2019)

Jiménez et al., 2011). The non-zero ECC will generally still
be met between different versions. Thus, we still need to
analyze the non-zero ECC situations between ERA5L and
GLDAS-2.0 and GLDAS-2.1, which will be assessed in the
Discussion section.

2.3 Global Land Evaporation Amsterdam Model 3.7
(GLEAM-3.7)

The version of the GLEAM-3.7 dataset (Martens et al.,
2017; Miralles et al., 2011) at 0.25° is used. This version
of GLEAM provides daily estimations of actual evapora-
tion, bare soil evaporation, canopy interception, transpira-
tion from vegetation, potential evaporation, and snow sub-
limation. The third version of GLEAM contains a new DA
scheme, an updated water balance module, and evapora-
tive stress functions. Two datasets that differ only in forc-
ing and temporal coverage are provided: GLEAMv3.7a 43-
year period (1980 to 2022) based on satellite and reanalysis
(ECMWF) data and GLEAMv3.7b 20-year period (2003 to
2022) based only on satellite data. GLEAMv3.7a is used in
this study. The data are freely available on the GLEAM web-
site (https://www.gleam.eu, last access: 10 April 2024).

The cover-dependent potential evaporation rate (EP) is
calculated using the Priestley–Taylor equation (Priestley and
Taylor, 1972). Then, a multiplicative stress factor is used to
convert EP into actual transpiration and bare soil evapora-
tion, which is a function of microwave vegetation optimal
depth (VOD) and root-zone soil moisture. For a detailed de-
scription, please refer to the paper by Martens et al. (2017).
The GLEAM data were validated at 43 FluxNet flux sites and
have been proven to provide reliable ET estimations (Majozi
et al., 2017).

2.4 Penman–Monteith–Leuning version 2 global
evaporation model (PMLv2)

PMLv2 has been developed based on the Penman–Monteith–
Leuning model (Zhang et al., 2019; Leuning et al., 2008).
Initially proposed by Leuning et al. (2008), the PML model
underwent further enhancements by Zhang et al. (2010).

The PML version 1 (PMLv1) incorporates a biophysical
model that considers canopy physiological processes and soil
evaporation to estimate surface conductance accurately (Gs),
which is the focus of the PM-based method. This version was
subsequently enhanced by incorporating a canopy conduc-
tance (Gc) model that couples vegetation transpiration with
gross primary productivity, resulting in the development of
PMLv2 as described by Gan et al. (2018). Zhang et al. (2019)
applied the PMLv2 model globally. The daily inputs for this
model include leaf area index (LAI), broadband albedo, and
emissivity obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) as well as temperature variables
(daily maximum temperature – Tmax, daily minimum tem-
perature – Tmin, daily mean temperature – Tavg), instanta-
neous variables (surface pressure – Psurf, atmosphere pres-
sure – Pa, wind speed at 10 m height – U , specific humid-
ity – q), and accumulated variables (precipitation – Prcp, in-
ward longwave solar radiation – Rln, inward shortwave so-
lar radiation – Rs) from GLDAS-2.0. Evaporation is divided
into direct evaporation from bare soil (Es), evaporation from
solid water sources (water bodies, snow, and ice) (ETwater),
and vegetation transpiration (Ec). To ensure its accuracy, the
PMLv2 ET model was calibrated against 8-daily eddy co-
variance data from 95 global flux towers representing 10 dif-
ferent land cover types.

In this study, we employ the latest version, v017.
The data are freely available through Google Earth En-
gine (https://developers.google.com/earth-engine/datasets/
catalog/CAS_IGSNRR_PML_V2_v017, last access:
10 April 2024).

2.5 FluxCom

FluxCom is a machine-learning-based approach combining
global land–atmosphere energy flux data by combining re-
mote sensing and meteorological data (Jung et al., 2019).
To achieve this, FluxCom utilizes various machine-learning
regression tools, including tree-based methods, regression
splines, neural networks, and kernel methods. The outputs of
FluxCom are designed based on two complementary strate-
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gies: (1) FluxCom-RS, which exclusively merges remote
sensing data to generate high-spatial-resolution flux data; and
(2) FluxCom-RS+METEO, which combines meteorological
observations with remote sensing data at a daily temporal res-
olution. The exclusive use of remote sensing data in the en-
semble allows production of gridded flux products at a spatial
resolution of 500 m, albeit with a relatively low frequency of
8 d. It is important to note that the FluxCom-RS data only
cover the period after 2000 due to data availability.

In contrast, the merging of meteorological and remote
sensing data extends the coverage back to 1980 at the
cost of a coarser spatial resolution of 0.5°. For more de-
tailed information about the FluxCom dataset, please refer
to the FluxCom website (http://FluxCom.org/, last access:
10 April 2024). The data are freely available by contacting
the authors.

In this study, we utilized the FluxCom-RS 8-daily 0.0833°
energy flux data and converted the latent heat values to evap-
otranspiration using ERA5L-aggregated daily air tempera-
ture. Furthermore, the original ET data were interpolated to a
spatial resolution of 0.1° using the MATLAB Gaussian pro-
cess regression package.

2.6 Global in situ observation: FluxNet

The latest FluxNet2015 4.0 eddy covariance data were used
in our study (Pastorello et al., 2020). Following the filtering
process by Lin et al. (2018) and X. Li et al. (2019), firstly,
only the measured and good-quality gap-filled data were used
for quality control. Secondly, we excluded days with rainfall
and the subsequent day after rainy events to mitigate the im-
pact of canopy interception (Medlyn et al., 2017; Knauer et
al., 2018). Additionally, previous studies have indicated an
energy imbalance problem in FluxNet2015 data. Therefore,
following the method proposed by Twine et al. (2000), the
measured ET data were corrected using the residual method
based on energy balance.

After data filtering and processing, 212 sites are selected
as shown in Fig. 1. The selected sites are distributed globally,
primarily in North America and Europe. The International-
Geosphere–Biosphere Program (IGBP) land cover classifica-
tion system (Loveland et al., 1999) was employed to distin-
guish the 13 plant functional types (PFTs) across sites. The
IGBP classification was determined based on metadata from
the FluxNet official website, including evergreen needleleaf
forests (ENF, 49 sites), evergreen broadleaf forests (EBF,
15 sites), deciduous broadleaf forests (DBF, 26 sites), crop-
lands (CRO, 20 sites), grasslands (GRA, 39 sites), savannas
(SAV, 9 sites), mixed forests (MF, 9 sites), closed shrub-
lands (CSH, 3 sites), deciduous needleleaf forests (DNF, 1
site), open shrublands (OSH, 13 sites), snow and ice (SNO,
1 site), woody savannas (WSA, 6 sites), and permanent wet-
lands (WET, 21 sites). Changes in the IGBP classification
during the study period are possible, but such information is

not publicly available. Interested parties can obtain relevant
information by directly contacting the site coordinators.

3 Methods

In this study, the fusion of products consisted of three steps:
(1) the collocation method (IVD and EIVD) was used to cal-
culate the random error variance of the selected input prod-
ucts, determine the regionally optimal products, and set an
error threshold; (2) aiming for a minimum mean-square er-
ror (MSE), the weights of the different products on each grid
were calculated; (3) the products were fused according to
the weights to obtain a long sequence of evapotranspiration
products. Since IVD and EIVD were developed by combin-
ing instrumental variable regression and the extended collo-
cation system, a description of the TC and EC algorithms was
also included.

3.1 Triple collocation analysis

Since its development in 1998, the implications and formu-
lations of the triple collocation problem have been investi-
gated in many studies. Here, we used difference notation for
demonstration.

The commonly used error structure for triple collocation
analysis (TCA) is

i = αi +βi2+ εi, (1)

where i ∈ [X,Y,Z] are three spatially and temporally collo-
cated datasets; 2 is the unknown true signal for the relative
geographical variable; αi and βi are additive and multiplica-
tive bias factors against the true signal, respectively; and εi
is the additive zero-mean random error.

The above structure is also a typical IV regression. Thus,
this provides another perspective to introduce more variables
(> 3) (Dong and Crow, 2017; Su et al., 2014) and polynomial
models (Yilmaz and Crow, 2013; De Lannoy et al., 2007) to
the standard TC. We recommend that the readers refer to Su
et al. (2014) for a more detailed discussion on using the IV
framework.

The basic assumptions adopted in TC are as follows:
(i) linearity between the true signal and datasets, (ii) signal
and error stationarity, (iii) independence between the random
error and true signal (error orthogonality), and (iv) indepen-
dence between random errors (zero ECC). Although many
studies have indicated that some of these assumptions are of-
ten violated in practice (Li et al., 2018, 2022; Jia et al., 2022),
the formulation based on these assumptions is still the most
robust implementation (Gruber et al., 2016b). A discussion
of these assumptions will be provided in the Discussion sec-
tion.

The datasets first need to be rescaled against an arbitrary
reference (e.g.,X). The others are scaled through a TC-based
rescaling scheme:
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Figure 1. Global distribution of selected FluxNet sites.
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When selecting various scaling references, it is essential
to note that the absolute error variances remain consistent.
However, this choice can have an impact on the estimation of
data sensitivity to the actual signal (β2

i σ
2
2), which serves as a

crucial indicator for comparing spatial error patterns. In order
to address the reliance on a specific scaling reference, Draper
et al. (2013) introduced the fractional root-mean-squared er-
ror (fMSEi). This measure is obtained by normalizing the
unscaled error variance with respect to the true signal vari-
ance:
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while SNR= 1 corresponds to the variances of estimates
equal to that of the true signal.

Following similar ideas, McColl et al. (2014) extended the
framework to estimate the data–truth correlation, known as
the ETC:

R2
i =

β2
i σ

2
2

β2
i σ

2
2+ σ

2
εi

=
SNRi

1+SNRi
,

R2
i = 1− fMSEi . (7)
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In comparison to the conventional coefficient of determi-
nation Rij , which is influenced by data noise and sensitivity,
it is important to note that R2

i is merely based on the dataset
i, whereas Rij is influenced by both the dataset i and refer-
ence j . In other words, R2

i incorporates the dependency on
the chosen reference. Thus, TC-derived fMSEi and R2

i serve
as superior indicators for assessing the actual quality of data,
as discussed by Kim et al. (2021b) and Gruber et al. (2020).

3.2 Double instrumental variable technique

The assumed error structure in TC is also a typical instru-
mental variable (IV) regression. In practical usage, finding
three completely independent sets of products is usually
tricky. Su et al. (2014) effectively improve the applicabil-
ity of the TC method by using the lag-1 time series (e.g.,
Xt−1 = αX +βX2t−1+ εX,t−1) from one of the two sets of
data as the third input for TC. In this way, we only need two
independent products for input.

Such a process includes another assumption that all the
datasets contain serially white errors (i.e., < εi,tεi,t−1>=0,
zero auto-correlation). Building upon this, Dong et al. (2019)
utilize the lag-1 time series from both datasets as inputs and
propose the more stable IVD method.

For a double input
[
X,Y with σεXεY = 0

]
, the linear error

model and related lag-1 time series can be expressed as{
X = αX +βX2+ εX, I = αX +βX2t−1+ εXt−1 ,

Y = αY +βY2+ εY , J = αY +βY2t−1+ εYt−1 ,

(8)

where I and J are the lag-1 time series of X and Y , respec-
tively.

Assuming product errors are mutually independent and or-
thogonal to the truth, the covariance between the products is
expressed as
σ 2
X = β

2
Xσ

2
2+ σ

2
εX
, σ 2

Y = β
2
Yσ

2
2+ σ

2
εY
,

σXY = βXβYσ
2
2,

σIX = β
2
XL22, σJY = β

2
YL22,

(9)

where Lii =< it it−1 > is the auto-covariance. Therefore, the
IVD-estimated dynamic range ratio scaling factors yield

sivd ≡
βX

βY
=

√
σIX

σJY
. (10)

Hence, the random error variances of X and Y can be
solved as{
σ 2
εX
= σ 2

X − σXY · sivd,

σ 2
εY
= σ 2

Y −
σXY
sivd
.

(11)

3.3 Extended double instrumental variable technique

Furthermore, by adopting the designed matrix in the EC
method (Gruber et al., 2016a), Dong et al. (2020a) present

the EIVD method to estimate the error variance matrix with
only two independent datasets.

For a triplet input
[
i,j,k with σεiεj 6= 0

]
, the dynamic

range ratio scaling factors can be estimated as follows:

sij ≡
βi

βj
=

√
Lii

Ljj
, (12)

where Lii =< it it−1 > is the auto-covariance of the inputs.
Subsequently, the sensitivity and absolute error variance of
the dataset follow

β2
j σ

2
2 = σij

√
Lii

Ljj
, σ 2

εj
= σij

√
Lii

Ljj
− σ 2

i . (13)

The cross-multiplied factors can be estimated by

βiβjσ
2
2 = σik

√
Ljj

Lkk
= σjk

√
Lii

Lkk
σεiεj

= σij −βiβjσ
2
2. (14)

Hence, for a triplet with an input of [X,Y,Z with σεXεY 6=
0], the matrix notation of the above system with y = Ax is
given as follows.

y =



σ 2
X

σ 2
Y

σ 2
Z

σXY

σXZ

√
LXX
LZZ

σYZ

√
LYY
LZZ

σZX

√
LZZ
LXX

σZY

√
LZZ
LYY

σXZ

√
LYY
LZZ

σYZ

√
LXX
LZZ


10x1

A=



I4x4 I4x4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


6x4

06x4


10x8

x =



β2
Xσ

2
2

β2
Yσ

2
2

β2
Zσ

2
2

βXβYσ
2
2

σ 2
εX

σ 2
εY

σ 2
εZ
σεXεY


8x1

(15)
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Likewise, the least-squared solution for the unknown x is
then solved by

x =
(
ATA

)−1ATy. (16)

3.4 Weight estimation

Our objective is to predict an uncertain variable, such as ET
over time at a specific location, by utilizing parent prod-
ucts that may contain random errors. The underlying concept
of weighted averaging is to extract independent information
from multiple data sources to enhance prediction accuracy
by mitigating the effects of random errors. The effective-
ness of this approach relies on the independence of the indi-
vidual data sources under consideration. Weighted averaging
has found applications in various fields following the influ-
ential work of Bates and Granger (1969), who proposed an
optimal combination of forecasts based on a minimum MSE
criterion. In this context, the term “optimal” refers to min-
imizing the variance of residual random errors in the least-
squares sense. Mathematically, this weighted average can be
expressed as follows:

x =WTX =

N∑
i=1

ωixi, (17)

where x is the merged estimate; X = [x1, . . .,xn]T contains
the temporally collocated estimates from N different parent
products, which are merged with a relative zero-mean ran-
dom error e = [ε1, . . .,εn]T; and W = [ω1, . . .,ωn]T contains
the weights assigned to these estimates, whereωi ∈ [0,1] and∑
ωi = 1 ensure an unbiased prediction.
The averaging weights can be expressed as the solution to

the problem:

minf (W )= E
(
eTW

)2
, (18)

where E is the operator for mathematical expectation. The
solution of this problem is determined by the individual ran-
dom error characteristics of the input datasets and can be de-
rived from their covariance matrix (Bates and Granger, 1969;
Gruber et al., 2017; Kim et al., 2021b):

W =
(
ITE

(
eeT)−1

I
)−1

E
(
eeT)−1

I ,

σ 2
εx
=

(
ITE

(
eeT)−1

I
)−1

, (19)

where E
(
eeT) is the N ×N error covariance matrix that

holds the random error variance σ 2
εi

of the parent products in
the diagonals and relative error covariances σεiεj in the off-
diagonals. I = [1, . . .,1]T is a ones vector of length N . σ 2

εx
represents the resulting random error variances of the merged
estimate.

When only two groups of products are used as input (N =
2), it is generally assumed that the errors between them are

independent. In this case, the weights are as follows:

E
(
eeT)
=

[
σ 2
ε1

0
0 σ 2

ε2

]
,

ω1 =
σ 2
ε2

σ 2
ε1
+ σ 2

ε2

, ω1 =
σ 2
ε1

σ 2
ε1
+ σ 2

ε2

. (20)

In most cases, we can identify three sets of products as
inputs (N = 3). In this scenario, we consider the possibility
of error homogeneity, assuming a non-zero ECC exists be-
tween inputs 1 and 2. In this case, the error matrix can be
represented as

E
(
eeT)
=

 σ 2
ε1

σε1ε2 0
σε1ε2 σ 2

ε2
0

0 0 σ 2
ε3

 . (21)

The weights can then be written as

W =



σ 2
ε2
−σε1ε2(

σ 2
ε1
σ 2
ε2
−σ 2

ε1ε2

)
·z
,

σ 2
ε1
−σε1ε2(

σ 2
ε1
σ 2
ε2
−σ 2

ε1ε2

)
·z
,

1
σ 2
ε3
·z
,

z=
σ 2
ε1
+ σ 2

ε2
− 2σε1ε2

σ 2
ε1
σ 2
ε2
− σ 2

ε1ε2

+
1
σ 2
ε3

. (22)

It is essential to acknowledge that, before applying these
weights for merging the datasets, it is necessary to ad-
dress any existing systematic differences. Typically, this is
achieved by rescaling the datasets to a standardized data
space. Consequently, the weights can be derived from the
rescaled datasets using Eqs. (2)–(3) and converge accord-
ingly. This procedure ensures the accuracy and reliability of
the merged datasets for further analysis.

If ECC is not considered (i.e., setting σε1ε2 = 0), Eq. (22)
represents the weight calculation method commonly used
in most TC fusion studies. In contrast to the fusion stud-
ies mentioned above for evapotranspiration products, for the
first time, the consideration of non-zero ECC is incorpo-
rated into the fusion process and integrated into the weight
calculation. Yilmaz and Crow (2014) demonstrated that TC
underestimates error variances when the zero ECC assump-
tion is violated. Li et al. (2022), in their evaluation study of
global ET products using the collocation method, also in-
dicated the existence of error homogeneity issues between
commonly used ET products (such as ERA5L and GLEAM),
necessitating the consideration of the influence of non-zero
ECC. The merging technique employed in this study pro-
vides a more explicit characterization of product errors and
facilitates the derivation of more reliable weight coefficients,
thereby achieving promising fusion outcomes.

The differences in results are evaluated at the site scale by
contrasting the scenarios without considering non-zero ECC
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and directly using simple averages to compare and validate
the advantages of the weight calculation method used in our
study.

3.5 Merging combination

In this study, we employ five commonly used global land
surface ET products as described in the Datasets section.
PMLv2 and FluxCom-RS have an original resolution of
0.083° and an 8 d average. In this research, they are inter-
polated to 0.1° resolution, and the values for each data pe-
riod of 8 d are kept consistent. For example, the values for
5 March to 12 March 2000 are the same. ET values often
exhibit variability over an 8 d period, making the use of an
8 d average to represent temporal dynamics potentially in-
troduce further uncertainties. This operation is performed to
ensure adequate data for the collocation analysis (Kim et al.,
2021a). We openly acknowledge the possible sources of er-
ror and express our commitment to addressing and improving
them in future work.

As mentioned in the Methods section, it is vital to con-
sider the issue of random error homogeneity among different
products before applying the collocation method. Although
the EC or EIVD methods can be used to calculate the ECC
between specific pairs of products, it is necessary to deter-
mine which pairs of products have non-zero ECC condi-
tions. In previous research, Li et al. (2022) employed five
collocation methods (IVS, IVD, TC, EIVD, and EC) to an-
alyze the performance of five sets of ET products (ERA5L,
PMLv2, FluxCom, GLDAS2, and GLEAMv3) at the global
scale and applied the EC and EIVD methods to calculate the
ECC between the different products. The results indicated
a relatively significant error homogeneity between PMLv2
and FluxCom at a resolution of 0.1° (with a global average
ECC of approximately 0.3). The error homogeneity could be
attributed to both products utilizing GLDAS meteorological
data as input, despite their different methods for ET estima-
tion. At a resolution of 0.25°, ERA5L and GLEAM exhib-
ited a more apparent error correlation (with a global average
ECC of approximately 0.4). Considering the long temporal
data of GLEAMv3 version a, ECMWF meteorological data
were chosen as the driving force, making the error correla-
tion between the two products predictable.

Therefore, this study assumes that non-zero ECC sit-
uations occur between PMLv2–FluxCom and ERA5L–
GLEAM. We also calculated the possible ECC situations
among other products, presented in the Discussion section
and the Supplement. Based on the analysis, our assumed non-
zero ECC situations align reasonably well with the actual cir-
cumstances.

In addition, previous research suggests that the IVD
method outperforms the IVS method in scenarios involving
two sets of inputs, while the EIVD method is considered
more reliable than the TC method in situations with three sets
of inputs (Li et al., 2022; Kim et al., 2021a). Therefore, in

this study, the IVD and EIVD methods are selected for com-
putation based on different combinations of inputs. Table 2
presents the data and methods used during the correspond-
ing periods. When only two sets of products are available,
we employ the IVD method for fusion and calculate weights
using Eq. (20). When three sets of products are available, we
utilize the EIVD method for fusion and calculate weights us-
ing Eq. (22).

It should be noted that the same product can have differ-
ent versions. In this study, appropriate versions are selected
based on the following principles: (1) selecting based on
the corresponding data coverage duration and ensuring more
products to gain more information; (2) choosing the latest
version while considering the assumption of non-zero ECC
conditions; and (3) making efforts to select the exact product
versions for different periods to avoid uncertainties caused by
version changes. We selected a subset of sites to compare the
fusion results using different versions, and the corresponding
details will be presented in the Discussion section.

3.6 Evaluation indices

Five statistical indicators, i.e., root-mean-squared error
(RMSE), Pearson’s correlation coefficient (R), mean abso-
lute error (MAE), unbiased RMSE (ubRMSE), and Kling–
Gupta efficiency (KGE), are selected for comparison with
existing products. The relative equations are shown as fol-
lows:

RMSE=

√√√√√ n∑
i=1

(simi − obsi)2

n
, (23)

R =

n∑
i=1

(
simi − sim

)(
obsi − obs

)
√

n∑
i=1

(
simi − sim

)2 n∑
i=1

(
obsi − obs

)2 ,
− 1≤ R ≤ 1, (24)

MAE=
1
n

∑n

i=1
|simi − obsi |, (25)

ubRMSE=

√√√√√ n∑
i=1

[(
simi − sim

)
−
(
obsi − obs

)]2
n

, (26)

where sim is the simulations, and obs is the observation as a
reference.

The modified KGE (Kling et al., 2012) offers insights into
reproducing temporal dynamics and preserving the distribu-
tion of time series, which are increasingly used to calibrate
and evaluate hydrological models (Knoben et al., 2019). For
a better understanding of the KGE statistic and its advan-
tages over the Nash–Sutcliffe efficiency (NSE), please refer
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Table 2. Combination of inputs and accessible methods.

Scenario 1 (0.1°)

Period Selected inputs Method

26 February–31 December 2000 ERA5L/PMLv2 IVD
1 January 2001–27 December 2015 ERA5L/FluxCom/PMLv2 EIVD
28 December 2015–26 December 2020 ERA5L/PMLv2 IVD

Scenario 2 (0.25°)

Period Selected inputs Method

1 January 1980–31 December 1999 ERA5L/GLDAS20/GLEAMv3.7a EIVD
1 January 2000–31 December 2022 ERA5L/GLDAS21/GLEAMv3.7a

to Gupta et al. (2009). The equation is given by

KGE=

1−

√
(r − 1)2

+

(
σsim

σobs
− 1

)2

+

(
σsim/µsim

σobs/µobs
− 1

)2

, (27)

where σobs and σsim are the standard deviations of observa-
tions and simulations; µobs and µsim are the mean of ob-
servations and simulations. Similar to NSE, KGE= 1 indi-
cates perfect agreement of simulations, while KGE< 0 re-
veals that the average of the observations is better than the
simulations (Towner et al., 2019).

4 Results

In this study, we aimed to compare and evaluate the perfor-
mance of fused products at both site and global scales. At the
site scale, the performance of the fused products was eval-
uated against 212 FluxNet observations and compared with
other products, including the simple average. At the global
scale, the mean and temporal variations of the land surface
ET calculated by the fused products were compared with
those of other products.

4.1 Analysis of error variances and weights

This section examines the random error variances and iden-
tifies the predominant product based on assigned weights for
the 0.1 and 0.25° inputs obtained through the EIVD method.

Figure 2 represents the random errors of the corre-
lation products calculated using the EIVD method from
2001 to 2015 at 0.1°, where a non-zero ECC is as-
sumed between FluxCom and PMLv2. The areas with
missing values are due to the absence of data from ei-
ther FluxCom or PMLv2 in those regions. The global
random error variances (mean± standard deviation) ob-
tained using the EIVD method are as follows: ERA5L:
0.58± 0.53 mm d−1, FluxCom: 0.12± 0.13 mm d−1, and
PMLv2: 0.17± 0.14 mm d−1. These results indicate that

FluxCom performs best overall, while ERA5L performs
poorest. Regarding the spatial distribution, regions with more
significant random errors in ERA5L are mainly located in
East Asia, Australia, and southern Africa. On the other hand,
FluxCom and PMLv2 show relatively more considerable un-
certainties in the southeastern United States. The latitude dis-
tribution reveals that ERA5L has the highest uncertainty, pri-
marily in the vicinity of 20 to 30° north and south, consistent
with its spatial distribution.

It is important to note that, due to missing data in specific
regions at 0.1°, such as northern Africa, the Sahara region,
northwestern China, or Australia, the error results obtained
may not accurately reflect the performance of FluxCom and
PMLv2 in these areas. Considering the current results, we
can cautiously conclude that FluxCom and PMLv2 demon-
strate better performance. Future data supplementation in
these regions would further enhance our ability to analyze
the products’ accuracy.

The distribution of random error variance for ERA5L
(0.59± 0.58 mm d−1), GLDAS2.0 (0.37± 0.44 mm d−1),
and GLEAMv3.7a (0.38± 0.36 mm d−1) from 1980 to 1999
at 0.25° is shown in Fig. 3. Here, we assumed a non-zero
ECC between ERA5L and GLEAM. The ERA5L data were
resampled from a 0.1° resolution to 0.25°, and their error
distribution pattern is like that of the 0.1° resolution. It ex-
hibits higher uncertainties in East Asia, Australia, and south-
ern Africa. GLDAS and GLEAM exhibit relatively higher
uncertainty over the southeastern United States and the Ama-
zon Plain. GLDAS and GLEAM show similar performance
among the three products, while ERA5L performs rela-
tively worse. Regarding the average distribution with lati-
tude, ERA5L demonstrates a more even distribution, whereas
GLDAS and GLEAM exhibit relatively higher uncertainties
in tropical regions.

The ET calculations in both GLDAS and GLEAM involve
complex surface parameterization processes. In tropical re-
gions, the high non-heterogeneity in land covers poses a chal-
lenge, and the 0.25° resolution grid may not capture the in-
tricacies of the underlying surface conditions. This mismatch
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Figure 2. Global distribution of absolute error variances (σ 2
εi

) of ERA5L, FluxCom, and PMLv2 using EIVD at 0.1° from 2001 to 2015,
depicted alongside the corresponding variation curves of the average σ 2

εi
with latitude.

could impact the parameterization process, leading to errors.
Future work could involve in-depth model analyses or sensi-
tivity experiments to identify sources of error in complex ET
models, facilitating improvements.

In addition, Fig. 4 presents the distribution of ran-
dom error variance for ERA5L (0.32± 0.33 mm d−1),
GLDAS2.1 (0.35± 0.29 mm d−1), and GLEAMv3.7a
(0.38± 0.36 mm d−1) from 2000 to 2022 at a resolution of
0.25°. The non-zero ECC assumption was made between
ERA5L and GLEAM. In this combination, ERA5L shows
significantly lower errors than in previous periods, indicating
an improved ERA5L performance during this time frame.
However, ERA5L still exhibits more significant errors in
the East Asian and Australian regions compared to the
other two datasets. The overall errors for GLDAS and
GLEAM have also decreased, but there are still random error
variances exceeding 1.0 mm d−1 in the Amazon Plain and

the Indonesian region. Regarding the latitudinal distribution,
ERA5L shows relatively smooth changes, while GLDAS
and GLEAM exhibit similar trends. However, GLEAM
demonstrates a noticeable increase in errors near the Arctic.

Next, in Fig. 5, we present the dominant product for each
grid cell in the three scenarios, where “dominance” refers to
the product with the highest assigned weight. The results in
Fig. 5 indicate that, at 0.1° resolution, the weights for Flux-
Com and PMLv2 are significantly higher than ERA5L, align-
ing with the error calculations presented in Fig. 2. This un-
derscores the effectiveness of error and weight analysis based
on collocation in reflecting product performance, thereby al-
lowing for a rational adaptation of weights. At 0.25° res-
olution, the dominant regions for the ERA5L, GLDAS-2,
and GLEAM products are relatively balanced. In the fusion
scenario from 1980 to 1999, GLDAS20 predominantly cov-
ers the Northern Hemisphere, while GLEAM dominates the
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Figure 3. Global distribution of absolute error variances (σ 2
εi

) of ERA5L, GLDAS2.0, and GLEAMv3.7a using EIVD at 0.25° from 1980 to
1999, depicted alongside the corresponding variation curves of the average with latitude.

Southern Hemisphere, with ERA5L prevalent in the Amazon
region. However, in the fusion scenario from 2000 to 2022,
GLEAM’s dominant region significantly expanded, primar-
ily covering the central United States and southeastern China.
The Amazon region continues to be dominated by ERA5L.
The variation in the dominant products highlights that the
calculation of product weights evolves with changes in the
fusion scenario. The error and weight computation methods
based on collocation can only provide the minimum MSE
solution for a given combination of inputs. It is important to
note that changes in inputs will impact the results.

For the analysis at a resolution of 0.1°, we also applied
the IVD method to calculate the errors between ERA5L and
PMLv2 for two time periods: 2000 and 2015–2020. Since the
analysis of product errors is not the focus of this paper, we
provide the results of the IVD in the Supplement. Grids with

higher random error variances correspond to smaller weights
when calculating the weights. The weight distribution cal-
culated at different time intervals is available in the Supple-
ment.

4.2 Site-scale evaluation and comparison

At the site scale, the performance of CAMELE was com-
pared with FluxNet as a reference. In this subsection, Fig. 6
and Table 3 correspond to each other, as they integrate data
from 212 sites for all available periods, allowing for a com-
parative analysis of the performance of different products at
different times. Similarly, Fig. 7 and Table 4 correspond to
each other, where different product metrics were calculated
for each site and the calculated metric results were subjected
to statistical analysis.
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Figure 4. Global distribution of absolute error variances (σ 2
εi

) of ERA5L, GLDAS2.1, and GLEAMv3.7a using EIVD at 0.25° from 2000 to
2022, depicted alongside the corresponding variation curves of the average with latitude.

The scatter plots in Fig. 6 demonstrate that CAMELE con-
sistently performs at 0.1 and 0.25° resolutions. At 0.1° res-
olution, FluxCom and PMLv2 showed superior performance
with fewer data points due to their original 8 d average reso-
lution. CAMELE exhibited a performance like ERA5L. At
0.25° resolution, CAMELE performed comparably to the
other datasets, demonstrating reasonable accuracy. Notably,
there was an improvement in the KGE and R indices. The
fitted line closely approximated the 1 : 1 line, indicating a
solid agreement with the observed values. Moreover, the re-
sults obtained from the simple average were also acceptable,
but SA (0.25°) had a concentration of data points between 2
and 4 mm d−1, possibly due to the inputs having a high con-
centration within that range. The assumption that a simple
average implies equal performance of each product on every
grid cell is inaccurate; variations in performance exist among
different products across distinct grid cells (regions).

The information in Table 3 corresponds to Fig. 6 and
presents the results of various product indicators. The bold
parts indicate the products with the best corresponding indi-
cators. The results indicate that CAMELE performed well at
both the 0.1 and 0.25° resolutions, mainly showing improve-
ments in the KGE and R indicators. FluxCom exhibited the
best performance; however, considering that this product uti-
lized FluxNet sites for result calibration, this phenomenon
is reasonable. In this study, we pooled the data from all
212 available periods at the stations as a reference without
considering the differences between individual sites. This
approach provided an initial validation of the reliability of
CAMELE at all the sites.

The information in Fig. 7 corresponds to the data presented
in Table 4, which involve the calculation of five indicators
at each site, followed by statistical analysis of these indica-
tors. From the distribution of the violin plots, it can be ob-
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Figure 5. Map of the prevailing product at individual pixels based on scenario-specific weights.

served that a violin plot with a closer belly to 1 indicates bet-
ter results in terms of the R and KGE indicators. CAMELE
performs well overall, closely resembling PMLv2 and Flux-
Com. On the other hand, the results obtained from the SA
are relatively poorer. Regarding the RMSE, ubRMSE, and
MAE indicators, a violin plot with a closer belly to 0 suggests
fewer errors. CAMELE demonstrates a notable enhancement
in performance at the 0.1° level. This suggests that the fusion
method effectively reduces errors, aligning with the original

intention of weight calculation, and it compares favorably
with the products used in the merging scheme.

Additionally, FluxCom and PMLv2 exhibit minimal er-
rors, which is expected considering their utilization of
FluxNet sites for error correction. Furthermore, SA shows
significantly larger errors. Although the SA method can com-
pensate for positive and negative errors between inputs in
some instances, it can also lead to error accumulation, as ev-
idenced by the results in the violin plots.
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Figure 6. Scatter plots of the product corresponding to the available period data from 212 FluxNet sites. The color bar represents the density,
with darker colors indicating higher concentrations. The left and right columns present results for the 0.1 and 0.25° resolutions, respectively,
with “SA” indicating the results for the simple average. Relevant statistical metrics are annotated in their respective figures.
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Table 3. Average values of the different metrics for CAMELE and other fusion schemes corresponding to the available period data from 212
FluxNet sites. The bold sections indicate the schemes with the best performance in their respective metrics.

Product RMSE ubRMSE MAE KGE R

(mm d−1) (mm d−1) (mm d−1)

0.1°-daily CAMELE 1.21 1.20 0.81 0.61 0.63
SA 1.23 1.21 0.83 0.61 0.62
ERA5L 1.22 1.20 0.82 0.60 0.62
FluxCom 1.03 1.02 0.69 0.59 0.69
PMLv2 1.06 1.06 0.70 0.57 0.64

0.25°-daily CAMELE 1.06 1.04 0.73 0.65 0.68
SA 1.16 1.14 0.80 0.63 0.64
REA 1.09 1.03 0.79 0.63 0.69
GLDAS21 1.23 1.21 0.85 0.59 0.62
GLEAMv3.7a 1.16 1.14 0.79 0.60 0.61

Table 4. Average values of indicators corresponding to different products, calculated based on the comprehensive results obtained for each
site. The bold sections indicate the schemes with the best performance in their respective metrics.

Product RMSE ubRMSE MAE KGE R

(mm d−1) (mm d−1) (mm d−1)

0.1°-daily CAMELE 0.83 0.71 0.64 0.57 0.71
SA 1.05 0.93 0.82 0.47 0.61
ERA5L 1.05 0.94 0.82 0.47 0.63
FluxCom 1.07 0.93 0.64 0.55 0.74
PMLv2 0.84 0.74 0.84 0.47 0.61

0.25°-daily CAMELE 1.03 0.87 0.75 0.51 0.67
SA 0.97 0.84 0.80 0.48 0.66
REA 1.02 0.86 0.80 0.48 0.67
GLDAS21 1.10 0.97 0.83 0.46 0.63
GLEAMv3.7a 1.03 0.93 0.79 0.49 0.64

Table 4 presents the average values of different metrics in
Fig. 7, boldly highlighting the optimal products correspond-
ing to each metric. It can be observed that CAMELE exhibits
significant improvements in performance at a resolution of
0.1°, particularly in terms of the error metrics RMSE and
ubRMSE, surpassing other products. This further confirms
the effectiveness of our fusion scheme in reducing product
errors. Additionally, although the performance of CAMELE
at a resolution of 0.25° is comparable to other products, there
is still a slight decline compared to its performance at 0.1°.
This can be attributed partly to the inherent errors in the in-
put products and partly to the decreasing representativeness
of FluxNet, which serves as the reference at the 0.25° grid.
Nevertheless, we can still consider CAMELE to have good
accuracy.

Furthermore, we classified 212 sites according to PFTs
and analyzed the statistical indicators of different PFTs cor-
responding to each site. The results are represented in Fig. 8
as a heatmap, and the corresponding optimal products for
other PFT sites are shown in Table 5. The results show that
CAMELE performs the best in almost all the PFT categories,

as indicated by various indicators, while on sites where other
products perform better, CAMELE’s indicators are compa-
rable to the optimal products, albeit slightly inferior. This
indicates that our fusion approach effectively combines the
advantages of different products, resulting in superior fusion
results across different vegetation types.

From the results, it is evident that CAMELE performs well
across various vegetation types. To delve deeper into the rea-
sons behind this performance, we conduct site-scale analyses
at two resolutions, evaluating errors and computed weights
for different PFT sites. These are visualized in radar chart
format in Fig. 9.

The results from Fig. 9 demonstrate that the error-
weighting calculation method based on collocation effec-
tively considers the error situation of inputs, thereby pro-
viding reasonable weight assignments. At 0.1° resolution,
ERA5L’s error is significantly higher across all the PFTs than
FluxCom and PMLv2, resulting in relatively lower corre-
sponding weights. FluxCom and PMLv2 exhibit closer per-
formance, with higher weights at most of the PFT sites. At
0.25° resolution, ERA5L, GLDAS21, and GLEAM perform
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Figure 7. Violin plots obtained by aggregating five different statistical indicators calculated separately for each site. In each violin plot, the
left side represents the distribution, with the shaded area indicating the box plot, the dot representing the mean, and the right side showing
the histogram.

more evenly with minimal differences, resulting in closer
weights. The weights for different inputs vary noticeably
with changes in PFTs, depending on the performance of other
products within the same combination. Products with more
significant errors correspondingly have lower weights, af-
firming the rationale behind the fusion method. However, it
is essential to note that the presented results depict the mean

values of errors and weights across all the sites; there might
be variations among sites with the same PFTs.

In summary, using the filtered daily-scale data from 212
FluxNet sites as a reference, we conducted a benchmark anal-
ysis with CAMELE and demonstrated its good fit with the
observed data. Additionally, by comparing the performance
of different products at each site, we further illustrated that
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Figure 8. Heatmaps of five statistical indicators, where each row corresponds to the mean value for all sites of the specific PFT, and each
column corresponds to a product. The product with the best performance for that PFT is highlighted in bold within each row. Panels (a)–(c)
represent three error indicators: RMSE, ubRMSE, and MAE. Panels (d)–(e) represent two goodness-of-fit indicators: KGE and R.

CAMELE exhibits similar or slightly improved accuracy and
minor errors compared to existing products.

4.3 Assessment and comparison of the multiyear
average

In this section, we will first analyze and compare the per-
formance of CAMELE with other products in estimating the
multiyear mean and extreme values of ET at the site scale.
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Table 5. Optimal product corresponding to different PFTs under various statistical indicators against observations from FluxNet sites.

IGBP (n sites) RMSE (mm d−1) ubRMSE (mm d−1) MAE (mm d−1) KGE R

CRO (20)

CAMELE

CAMELE
CAMELE

PMLv2 CAMELE

CSH (3) PMLv2 FluxCom

FluxComDBF (26)

CAMELE

REA

DNF (1) FluxCom CAMELE

EBF (15) CAMELE GLEAM

ENF (49)
FluxCom CAMELE

GRA (39) PMLv2 CAMELE

MF (9)

CAMELE

CAMELE REA

FluxCom
OSH (13)

FluxCom CAMELE
SAV (9)

SNO (1) CAMELE REA

WET (21) PMLv2
FluxCom CAMELE

WSA (6) CAMELE

Subsequently, a global-scale analysis will be conducted for
the same periods (0.1°: 2001 to 2015; 0.25°: 2000 to 2017)
to examine the distribution of the multiyear daily average ET
calculated by different products. For site comparisons, we
have selected monthly mean ET values and three quantiles
(5th, 50th, and 95th) to represent the products’ performance
in estimating ET average and extreme values.

The information in Fig. 10 corresponds to the data pre-
sented in Table 6, which involve the calculation of the KGE
and RMSE at each site, followed by statistical analysis. From
the distribution of the violin plots, it can be observed that a
violin plot with a closer belly to 1 indicates better results in
terms of the KGE.

The results show that CAMELE outperforms other prod-
ucts in the estimation of monthly averages and the 5th, 50th,
and 95th percentiles at both 0.1 and 0.25° resolutions. Its per-
formance in capturing monthly averages is noteworthy, with
a noticeable improvement in the KGE and RMSE metrics
relative to the inputs. Examining the results for percentiles,
CAMELE shows a relatively poorer estimation for shallow
values (5th percentile) but still demonstrates some improve-
ment compared to the input data, albeit influenced by input
errors.

At 0.1°, PMLv2 and FluxCom perform just below the fu-
sion result, aligning with the previous error and weight anal-
ysis. At 0.25°, GLEAM and REA closely follow CAMELE,
with REA exhibiting slightly better estimation results for ex-
tremely high values (95th percentile) than CAMELE. De-
spite this, the analysis results still indicate that the products
obtained reflect well the multiyear averages and extremes of

Table 6. Average values of KGE and RMSE corresponding to dif-
ferent products, calculated based on the results obtained for each
site. The bold sections indicate the schemes with the best perfor-
mance in their respective metrics.

Product KGE

Mean 5th 50th 95th

0.1°-daily CAMELE 0.54 0.28 0.57 0.54
ERA5L 0.41 0.21 0.40 0.42
FluxCom 0.45 0.09 0.42 0.42
PMLv2 0.52 0.19 0.46 0.50

0.25°-daily CAMELE 0.47 0.26 0.50 0.45

REA 0.40 0.21 0.46 0.50
GLDAS21 0.37 0.23 0.37 0.40
GLEAMv3.7a 0.43 0.22 0.42 0.40

Product RMSE (mm d−1)

Mean 5th 50th 95th

0.1°-daily CAMELE 0.63 0.73 0.66 0.83
ERA5L 0.89 0.83 0.91 1.09
FluxCom 0.87 0.83 0.89 1.07
PMLv2 0.63 0.80 0.68 0.91

0.25°-daily CAMELE 0.81 0.74 0.84 1.01
REA 0.86 0.85 0.88 1.01
GLDAS21 0.90 0.95 0.93 1.08
GLEAMv3.7a 0.85 0.75 0.88 1.10
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Figure 9. Mean collocation-based errors and weights of different products at various PFT sites at (a) 0.1° and (b) 0.25° resolutions. The
parentheses next to each PFT name denote the corresponding number of sites.

ET, holding promise as reliable products for analyzing ET
variations.

The results in Fig. 11 indicate significant differences in
the multiyear daily average distribution of global ET among
different products. Specifically, ERA5L shows noticeably
higher values in East Asia than other products, while Flux-
Com and PMLv2 exhibit higher values in the Amazon rain-
forest and southern Africa regions. This distribution pattern
is consistent with the error results obtained from the EIVD
calculation, indicating that these products possess certain un-
certainties in the regions. In terms of the latitudinal distri-
bution pattern, except for FluxCom, which displays distinct
fluctuations, the variability among the other products is rel-
atively similar. This suggests that, despite spatial differences

among the different products, they maintain consistency in
the overall quantity.

Figure 12 presents the results with a resolution of 0.25°.
It can be observed that, compared to the 0.1° distribution,
the spatial distribution of annual average ET is more con-
sistent among different products at 0.25°, showing larger ET
values in tropical regions. The main differences are concen-
trated in the Amazon rainforest and the Congo Basin, where
GLEAM and GLDAS results are higher than REA’s. The as-
signed weights for REA’s inputs (MERRA2, GLDAS, and
GLEAM) are approximately equal in these two regions, each
contributing about one-third to the overall calculation (Lu et
al., 2021). This balanced allocation results in the REA being
distributed among them roughly equally over multiple years
in these two regions. The latitude variation plots show that
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Figure 10. Violin plots depicting the KGE and RMSE metrics calculated for CAMELE and other products based on the monthly mean, 5th,
50th, and 95th percentiles at each FluxNet site. The four left columns represent KGE plots, while the four right columns represent RMSE
plots. The dots in the violin plots represent the median, and the horizontal lines represent the mean.

the results from each product are very close, providing addi-
tional evidence for the reliability of CAMELE.

In parallel, it is worth noting that, despite the regional
disparities that may arise when contrasting the trends by
CAMELE with inputs, a noteworthy consistency emerges
when examining these trends along latitudinal gradients. This
notable alignment signifies the robustness of CAMELE to
some extent. It underscores the capacity of CAMELE to cap-
ture ET patterns, providing further insights for the scientific
community.

4.4 Assessment and comparison of linear trend and
seasonality

In this section, we first validate and compare the performance
of CAMELE with other products in estimating multiyear
trends and seasonality at the site scale. Due to the incon-
sistent time lengths of FluxNet sites, trends at many sites
are not significant. Therefore, we deliberately selected 13
sites with continuous ET observations for the same 11-year
period (2004 to 2014) and with significant trends. The an-
nual ET values for each year were calculated as the mean of
the 13 sites for that year, allowing the computation of linear
trends and seasonality. We employed singular spectrum anal-
ysis (SSA), which assumes an additive decomposition A =

LT+ ST+ R. In this decomposition, LT represents the long-
term trend in the data, ST is the seasonal or oscillatory trend
(or trends), and R is the remainder.

In Figs. 13 and 14, based on observations from FluxNet
sites, we analyzed the performance of CAMELE and other
products in estimating the linear trend and seasonality of
ET over multiple years. It is important to note that we only
present the analysis results for 13 sites with continuous 11-
year observations, and the performance of different ET prod-
ucts in trend estimation at individual sites still varies, not
fully reflecting the overall performance on all grids in terms
of trend and seasonality. Nevertheless, such a comparison
can still provide valuable insights.

Examining the results of the linear trend, both PMLv2 and
FluxCom exhibit a significant upward trend, well above the
observations. By contrast, ERA5L, GLDAS, and REA show
a noticeable downward trend, while CAMELE demonstrates
a gradual upward trend closer to the observations. Addition-
ally, GLEAM slightly outperforms CAMELE at a resolution
of 0.25°. Overall, CAMELE shows good agreement with site
observations in capturing the multiyear linear trend of ET.

Continuing with the analysis of seasonality, the KGE in-
dex comparing each product’s results with observed values
is provided in parentheses next to the product name. Gener-
ally, all the products exhibit a good representation of ET’s
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Figure 11. Global distribution of multiyear daily average ET at 0.1° for CAMELE, ERA5L, FluxCom, and PMLv2, depicted alongside the
corresponding variation curves of the multiyear daily average ET with latitude.

seasonal variations. CAMELE’s 0.1° seasonal results closely
match FluxCom (with the two lines almost overlapping).
However, the fluctuations it reflects are higher than the ob-
served values.

This is likely due to keeping the 8 d average results of
FluxCom consistent with PMLv2 every 8 d, and the vari-
ability in ET primarily originates from ERA5L results. This
aspect may need improvement in subsequent research. At
0.25°, CAMELE’s seasonal representation is closer to the ob-
served results. The differences in CAMELE’s performance at

the two resolutions are mainly attributed to input variations,
which we discuss in the following section as potential areas
for improvement.

Furthermore, we present the linear trend estimated by
CAMELE from 2004 to 2014 at 13 sites, along with the
KGE values for monthly seasonality. The results indicate
that, regardless of the resolution, whether 0.1° or 0.25°, the
trends estimated by CAMELE are consistent with the ob-
served trends, with minor differences. In comparison to the
observed monthly seasonality, the KGE values exceed 0.5 at
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Figure 12. Global distribution of the multiyear daily average ET at 0.25° for CAMELE, GLDAS2.1, GLEAMv3.7a, and REA, depicted
alongside the corresponding variation curves of the multiyear daily average ET with latitude.

all the sites, with some sites exceeding 0.7, indicating that
CAMELE can effectively capture the seasonal variations.

The results indicate that CAMELE effectively captures
the multiyear changes in ET, but at 0.1°, it tends to over-
estimate seasonal fluctuations. We further generated global
maps of multiyear linear trends in ET, estimating trends us-
ing the Theil–Sen slope method and testing significance with
the Mann–Kendall method. The dotted areas indicate trends
passing a significance test at a 5 % level.

Figures 15 and 16 present the linear trends of multiyear
daily-scale ET calculated for different products at resolutions

of 0.1 and 0.25°, respectively. The corresponding latitude-
dependent variations of the rate of change are shown on the
right side. It can be observed that the differences in linear
trends among the different products are more significant than
the multiyear averages, and in some regions they even ex-
hibit opposite trends. For example, at 0.1° resolution, PMLv2
shows a global increase of 1.0 % in ET in most regions, while
the results from CAMELE, ERA5L, and PMLv2 indicate
a milder increase in ET in the Amazon rainforest, south-
ern Africa, and northwestern Australia. At 0.25° resolution,
except for GLDAS2.1, which shows an apparent global in-
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Figure 13. Comparison of the linear trend from 2004 to 2014 among 13 FluxNet sites using CAMELE and other products. The trends have
been subjected to SSA decomposition, removing seasonality. The gray enveloping line represents the mean plus the standard deviation of the
13 sites.

Figure 14. Comparison of seasonal variations from 2004 to 2014 among 13 FluxNet sites using CAMELE and other products. The season-
ality has been obtained through SSA decomposition, with the gray area representing the observed values. The parentheses in each product
name indicate the KGE coefficient compared with the observed values.

crease in ET, the results from CAMELE, GLEAMv3.7a, and
REA indicate milder variations in the global ET.

5 Discussion

5.1 Impact of the underlying assumptions on the
collocation analysis

The collocation analysis system relies on key assumptions,
including linearity (linear regression model), stationarity
(unchanged probability distribution over time), error orthog-
onality (independence between the random error and the true

signal), and zero error cross-correlation (independence be-
tween random errors). Potential error autocorrelation is con-
sidered with lag-1 (day) series. Various studies have exam-
ined the validity and impact of these assumptions. Numer-
ous studies have examined the validity of these assumptions
and their impact on the outcomes if violated (Tsamalis, 2022;
Duan et al., 2021; Gruber et al., 2020).

The linearity assumption shapes the error model by includ-
ing additive and multiplicative biases and zero-mean random
error. Although some studies have explored the application
of a nonlinear rescaling technique (Yilmaz and Crow, 2013;
Zwieback et al., 2016), those efforts are primarily limited to
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Table 7. Comparison of CAMELE results at 13 continuous 10-year observational sites. (a) Comparison of linear trends. (b) KGE values for
monthly seasonality.

(a) Linear trend (mm yr−1) (2004–2014) (b) KGE of seasonality

Site name Observation CAMELE (0.1) CAMELE (0.25) CAMELE (0.1) CAMELE (0.25)

BE_Lon 0.15 0.06 0.05 0.65 0.71
CH_Lae −0.33 −0.36 −0.35 0.80 0.80
CH_Oe2 0.25 0.37 0.67 0.85 0.49
CZ_BK1 −0.44 −0.53 −0.66 0.54 0.71
DE_Gri 0.11 0.03 0.24 0.61 0.54
DE_Kli 0.68 0.77 0.85 0.78 0.52
FR_Gri 0.41 0.36 0.55 0.71 0.55
GF_Guy −0.47 −0.50 −0.45 0.77 0.73
IT_BCi 0.21 0.25 0.28 0.61 0.56
IT_Noe 0.11 0.02 0.04 0.61 0.51
US_GLE −0.14 −0.17 −0.01 0.64 0.49
US_SRM −0.42 −0.45 −0.63 0.52 0.61
US_Wkg 0.16 0.22 0.09 0.56 0.51

soil moisture signals and often fail to accurately represent
the true signal unless all the datasets share a similar signal-
to-noise ratio (SNR). However, it is worth noting that, after
rescaling processes, such as cumulative distribution function
(CDF) matching or climatology removal, the resulting time
series (anomalies) are often considered linearly related to the
truth since higher-order error terms are removed. In addition,
multiplicative relationships have been more commonly iden-
tified in rainfall products (Li et al., 2018). In contrast, collo-
cation analysis within the context of ET products frequently
suggests that linear relationships are reasonable (Li et al.,
2022; Park et al., 2023). Therefore, the linear error model
remains a robust implementation, though it has the potential
for improvement through rescaling techniques.

Regarding violating the stationarity assumption, the evap-
otranspiration signal does not strictly adhere to this charac-
teristic. However, by collocating triplets with similar magni-
tude variations, the influence of this violation is minimized.
Nonetheless, disparities in climatology between datasets can
still arise for various reasons (Su and Ryu, 2015). Several
proposed alternatives aim to address this issue, such as re-
moving the climatology of inputs (Stoffelen, 1998; Yilmaz
and Crow, 2014; Draper et al., 2013) and subsequently ana-
lyzing the random error variance of the anomalies (Dong et
al., 2020b). Nevertheless, obtaining a reliable estimation of
climatology proves challenging in practice.

The assumption of error orthogonality assumes indepen-
dence between the random error and true signal, i.e., σεi2 =
0. A few studies have examined this assumption. Yilmaz and
Crow (2014) investigated such violations using four in situ
sites and concluded that the impact is negligible since rescal-
ing mitigates or compensates for bias. Additionally, non-
orthogonality results in non-zero ECC, although the latter is
considered more important. Vogelzang et al. (2022) also in-

vestigated this violation recently and demonstrated minimal
second-order impact.

Non-zero ECC conditions introduce more substantial bias
in the results compared to other violations, mainly for two
reasons: (1) they cannot be mitigated by rescaling; (2) they
cannot be compensated even with equal magnitude for all
inputs; and (3) they have been frequently reported in recent
studies for various variables (Li et al., 2018, 2022; Gruber
et al., 2016b). Gruber et al. (2016a) proposed the extended
collocation method, which effectively addresses the ECC of
selected pairs. Moreover, the EIVD method adopts the ECC
framework. In the following section, we will analyze the
ECC between pairs.

5.2 Analysis of error cross-correlation

This study assumes that non-zero ECC conditions exist be-
tween FluxCom and PMLv2 at 0.1° and between ERA5L and
GLEAM at 0.25°. However, non-zero ECC conditions were
also possible between other pairs. Therefore, we presented
the EIVD-based ECC results of various pairs.

As depicted in Figs. 17 and 18, at a resolution of 0.1°, the
ECC values of FluxCom and PMLv2 were notably higher
than those of ERA5L–FluxCom and ERA5L–PMLv2. The
global average ECC value for FluxCom–PMLv2 was 0.16,
and regions with high ECC values were identified in the east-
ern United States, most of Europe, and the western Ama-
zon, areas densely covered by measurement sites. Since
both FluxCom and PMLv2 incorporated corrections based
on FluxNet measurement sites, there is likely some overlap
between the sites used by both products in the high-ECC re-
gions. This partially explains the shared source of random
errors between the two datasets.

The global error correlations of GLEAM–GLDAS and
ERA5L–GLDAS are relatively low. The random error of
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Figure 15. Global distribution of the multiyear linear trend at 0.1° for CAMELE, ERA5L, FluxCom, and PMLv2, depicted alongside the
corresponding average trend with latitude. The trend is estimated with the Theil–Sen slope method, and the significance level is tested with
the Mann–Kendall method. The dotted area indicates that the trend has passed the significance test at the 5 % level.

ERA5L correlates with that of GLEAM, primarily in arid re-
gions such as the Sahara, northwestern China, and central
Australia, where the average ECC exceeds 0.20. The global
average ECC of ERA5L–GLEAM is approximately 0.14. A
higher error correlation is observed for ERA5L–GLEAM,
with a mean ECC value of 0.26, which is expected since me-
teorological information from the ECMWF is reanalyzed for
both datasets. However, ECC values for GLEAM–GLDAS

and ERA5L–GLDAS are generally low globally, supporting
the assumption of zero ECC for these two pairs.

Our findings highlight the significant impact of ECC be-
tween FluxCom–PMLv2 and ERA5L–GLEAM at the 0.1
and 0.25° resolutions, respectively. Mathematically, when a
triplet exhibits a high ECC value (> 0.3) between two sets, it
indicates a preference for the remaining independent product
as the “better” one, potentially leading to an underestima-
tion of its error variance. However, it is essential to note that
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Figure 16. Global distribution of the multiyear linear trend at 0.25° for CAMELE, GLDAS2.1, GLEAMv3.7a, and REA, depicted alongside
the corresponding average trend with latitude. The trend is estimated with the Theil–Sen slope method, and the significance level is tested
with the Mann–Kendall method. The dotted area indicates that the trend has passed the significance test at the 5 % level.

the overall ECC values for other pairs are relatively small,
suggesting that the zero ECC assumptions can be considered
valid for these pairs across most areas. Therefore, these as-
sumptions are unlikely to affect the relevant results of un-
certainties significantly. Nevertheless, we have considered
the non-zero ECC condition between FluxCom–PMLv2 and
ERA5L–GLEAM in this study, as it requires careful consid-
eration.

5.3 Comparison of different fusion schemes

In this section, we conducted comparisons in three aspects:
(1) comparing the performance of CAMELE at different res-
olutions; (2) comparing the performance of different change
fusion schemes, explicitly changing the input products’ ver-
sions (GLDAS21 to GLDAS20 or GLDAS22, GLEAMv3.7a
to v3.7b); and (3) comparing the performance of the results
obtained without considering the ECC impact.
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Figure 17. Global distribution of the estimated error cross-correlation (ECC) between ERA5L, FluxCom, and PMLv2 pairwise using EIVD
alongside relevant variation curves of the average with latitude.

We made a comprehensive comparison of our fusion
approach with several alternative schemes. Specifically,
these schemes encompassed utilization of only ERA5L and
PMLV2 at 0.1° based on the IVD method (Comb1), changing
the versions of GLDAS2 and GLEAM at 0.25° based on the
EIVD method (Comb2–5), and two TC fusion approaches at
0.1 and 0.25°, which did not incorporate ECC.

It should be noted that the Comb2 scheme, which includes
GLDAS20, covers the period from 1980 to 2014, while the
other 0.25° comparison schemes (Comb3–5) span from 2003
to 2022. The combinations based on TC (assuming zero
ECC) had the same inputs as CAMELE at both resolutions.

According to the information in the table, CAMELE (0.1°)
results were superior in all the indicators. Firstly, when com-
paring the performance of CAMELE at resolutions of 0.1
and 0.25°, it was observed that the fused product performed
slightly worse at the 0.25° resolution. Additionally, the rep-
resentative of FluxNet sites at the 0.25° resolution decreased,
leading to degraded statistical indicators.

At the 0.1° resolution, we conducted a comparison of
results obtained by exclusively fusing ERA5-Land and
PMLv2. Multiple indicators indicated that this approach did
not enhance the accuracy of ET estimates and fell signifi-
cantly short of the scheme employed in CAMELE. This im-
plies that using only two product sets as input did not allow
for effective error analysis through collocation analysis, re-
sulting in suboptimal fusion results. More importantly, the
limitation of employing only two datasets prevented us from
effectively acquiring error information through collocation
analysis (Dong et al., 2020a, 2019). Consequently, we made
the strategic decision to ensure the inclusion of three datasets
as inputs, facilitating the utilization of the EIVD method and
maintaining methodological consistency between the 0.1 and
0.25° resolutions.

Furthermore, when comparing the results of different fu-
sion schemes between CAMELE and Comb2–5 at the 0.25°
resolution, CAMELE performed better regarding error met-
rics (RMSE, ubRMSE, MAE). The differences in the fit-
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Figure 18. Global distribution of the ECC between ERA5L, GLEAMv3.7a, and GLDAS21 pairwise using EIVD alongside the relevant
variation curves of the average with latitude.

ting metrics (KGE, R) were insignificant, indicating that
the choice of fusion scheme primarily affected the errors
of the fusion results. The relatively poorer performance of
other fusion schemes could be due to the lack of considera-
tion for non-zero ECC. For example, non-zero ECC between
GLDAS-2.2 and ERA5L has been reported in a recent study
(Li et al., 2023a).

For the comparative analysis of the GLDAS-2.0 and
GLDAS-2.1 schemes, the usage of GLDAS-2.1 yielded bet-
ter performance. The GLDAS-2.1 simulation leverages con-
ditions from the GLDAS-2.0 simulation, with improved
models driven by a combination of datasets. Previous re-
search has demonstrated that GLDAS-2.1 offers improve-
ments in the regional-scale simulation of hydrological vari-
ables compared to GLDAS-2.0 (Qi et al., 2018, 2020). Con-
sequently, we chose to incorporate GLDAS-2.1 data for as
much of the time series as possible.

Moreover, when comparing the fusion effects considering
and not considering non-zero ECC conditions, it was evident
that considering ECC information could effectively improve

the performance of the fused product, which further demon-
strated the reliability and advantages of the fusion method
employed in this study.

We further provided violin plots for different metrics,
comparing the results of each fusion scheme to CAMELE
(0.1°), as shown in Fig. 19. The results indicated that the
fusion schemes adopted were significantly superior to other
schemes based on the distribution of results for all the met-
rics across all the sites. Regarding KGE and R, CAMELE’s
results were concentrated near 1 for most of the sites. Re-
garding RMSE, ubRMSE, and MAE, their results were con-
centrated below 1 mm d−1. The results in the plots also sug-
gested that CAMELE performed slightly worse at 0.25° com-
pared to 0.1° but still outperformed other combination re-
sults. Additionally, comparing CAMELE and the zero-ECC
scheme in the plots further highlighted the importance of
considering non-zero ECC conditions.
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Table 8. Average metrics for CAMELE and other fusion schemes at all the sites. The bold sections indicate the schemes with the best
performance in their respective metrics.

Product RMSE ubRMSE MAE KGE R

(mm d−1) (mm d−1) (mm d−1)

CAMELE (0.1) 0.83 0.71 0.64 0.57 0.71

CAMELE (0.25) 1.03 0.87 0.75 0.51 0.67

ERA5L+PMLV2
(Comb1-0.1 | IVD)

1.13 1.00 0.89 0.46 0.61

ERA5L+GLDAS20+GLEAMv3.7a
(Comb2-0.25 | EIVD)

1.09 0.89 0.87 0.44 0.66

ERA5L+GLDAS22+GLEAMv3.7a
(Comb3-0.25 | EIVD)

1.20 0.95 0.94 0.44 0.68

ERA5L+GLDAS22+GLEAMv3.7b
(Comb4-0.25 | EIVD)

1.19 0.94 0.93 0.44 0.69

ERA5L+GLDAS21+GLEAMv3.7b
(Comb5-0.25 | EIVD)

1.05 0.90 0.80 0.49 0.69

ERA5L+FluxCom+PMLv2
(Zero-ECC-0.1 | TC)

1.06 0.91 0.80 0.46 0.60

ERA5L+GLDAS21+GLEAMv3.7a
(Zero-ECC-0.25 | TC)

1.26 1.03 0.99 0.39 0.61

5.4 Potential applications and future enhancements

In this section, we delve into the potential applications of our
product and outline our commitment to future enhancements
to maintain its accuracy and relevance.

Here, we identify three potential applications for our tran-
spiration product. (1) Global ET trends: our product fa-
cilitates global-scale analysis of current ET patterns and
long-term trends, essential for comprehending ecosystem re-
sponses to evolving environmental conditions in a warm-
ing climate. (2) Transpiration-to-evapotranspiration ratio:
our merging approach can fuse multi-source global grid-
ded transpiration data, allowing for the examination of the
transpiration-to-evapotranspiration ratio. This analysis can
enhance water resource management and water availability
predictions in diverse regions. (3) Attribution analysis: our
product is a valuable tool for attribution analysis, helping
researchers identify the drivers of patterns. This knowledge
is crucial for understanding the roles of climate variability,
land-use changes, and other factors in shaping terrestrial wa-
ter fluxes.

Furthermore, we are committed to enhancing our product
proactively. Key strategies include the following. (1) Data
update and validation: to ensure our product’s continued ac-
curacy and reliability, we will prioritize regularly updating
the data used in this study to the latest versions. By adopting
this approach, we aim to provide users with results that re-
flect the latest advancements in scientific knowledge. (2) En-
hanced integration and error reduction: we continually refine

estimates by incorporating additional data sources and im-
plementing an extended collocation method to minimize er-
rors. (3) Integration of high-resolution regional ET data: rec-
ognizing the significance of regional-scale insights, we will
focus on improving the accuracy of CAMELE by integrat-
ing higher-resolution regional ET data. This integration will
enable more precise regional estimation.

In summary, these endeavors collectively represent our
commitment to maintaining our product’s quality and rele-
vance, ensuring its value to the scientific community.

6 Code and data availability

The datasets utilized in this research can be accessed through
the links provided in the dataset section. The CAMELE prod-
ucts are available at https://doi.org/10.5281/zenodo.5704736
(Li et al., 2023b). The data are distributed under a Creative
Commons Attribution 4.0 License. Additionally, we provide
example MATLAB codes to read and plot CAMELE data
and employ the IVD and EIVD methods to merge the inputs.
Please refer to the latest version, 202306.

7 Conclusions

This study used a collocation-based approach for merging
data considering non-zero conditions. We successfully gen-
erated a long-term daily CAMELE evapotranspiration (ET)
product at resolutions of 0.1° (2000 to 2020) and 0.25° (1980
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Figure 19. Violin plot comparing the KGE, R, RMSE, ubRMSE, and MAE of CAMELE with other fusion schemes. The right half of each
violin plot represents the distribution, with shaded areas indicating the box plot, where the horizontal line corresponds to the median and the
dot represents the mean. The left half represents the results of CAMELE (0.1°) for comparison.

to 2022) by integrating five widely used datasets: ERA5L,
FluxCom, PMLv2, GLDAS, and GLEAM. The key findings
of our study are as follows.

1. Collocation analysis methods proved to be a reliable
tool for evaluating ET products without a reference
dataset. This approach shows promising potential for er-
ror characterization, especially in regions with limited
data availability or on a global scale. The evaluation re-
sults provided valuable insights into the data merging
process.

2. Compared to five input products, REA, and SA, the
CAMELE product performed well when evaluated
against FluxNet flux tower data. While CAMELE may

not excel in all individual metrics, it effectively re-
duces errors associated with the input products. The
result showed Pearson correlation coefficients (R) of
0.63 and 0.65, root-mean-square errors (RMSEs) of
0.81 and 0.73 mm d−1, unbiased root-mean-square er-
rors (ubRMSEs) of 1.20 and 1.04 mm d−1, mean ab-
solute errors (MAEs) of 0.81 and 0.73 mm d−1, and
Kling–Gupta efficiencies (KGEs) of 0.60 and 0.65 on
average at resolutions of 0.1 and 0.25°, respectively.
This robust performance is especially evident when as-
sessing its comprehensive station-scale evaluation.

3. For different plant functional types (PFTs), the
CAMELE product outperformed the five input prod-
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ucts, REA, and SA in most PFTs. Although FluxCom
and PMLv2 performed slightly better than CAMELE at
some PFT sites, considering that both utilized FluxNet
sites for product calibration, it indirectly demonstrates
the promising and robust performance of CAMELE.

4. Based on site-scale observations, CAMELE effectively
captures the multiyear linear trend of ET. The accuracy
of the multiyear mean value depicted by CAMELE is
improved compared to the input data. Moreover, it accu-
rately characterizes extreme ET values. However, there
is a slight overestimation in representing the seasonality,
which needs further improvement in future research.

5. When utilizing the error information derived from col-
location analysis for merging, it is crucial to consider
the potential presence of non-zero ECC. Comparing the
merging schemes with and without considering non-
zero ECC, it was found that considering ECC improves
the accuracy of the merging process. Additionally, when
using collocation analysis, it is necessary to identify
which products may have ECC in advance, providing
more effective support for data merging and obtaining
more accurate product error information.

In conclusion, our proposed collocation-based data merging
approach demonstrates promising potential for merging ET
products. The resulting CAMELE product exhibited good
overall performance at site-based and regional scales, meet-
ing the requirements for more detailed research. Further-
more, further evaluation of the merged product in specific re-
gions is necessary to improve its accuracy. In future studies,
dynamic weights could be computed by considering suitable
merging periods for different products to enhance the quality
of the merged product, and more sophisticated combination
schemes could be explored to improve accuracy.

Supplement. The supplement related to this article is available
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