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Abstract. Trait-based approaches are of increasing concern in predicting vegetation changes and linking
ecosystem structures to functions at large scales. However, a critical challenge for such approaches is acquir-
ing spatially continuous plant functional trait maps. Here, six key plant functional traits were selected as they
can reflect plant resource acquisition strategies and ecosystem functions, including specific leaf area (SLA), leaf
dry matter content (LDMC), leaf N concentration (LNC), leaf P concentration (LPC), leaf area (LA) and wood
density (WD). A total of 34 589 in situ trait measurements of 3447 seed plant species were collected from 1430
sampling sites in China and were used to generate spatial plant functional trait maps (∼ 1 km), together with en-
vironmental variables and vegetation indices based on two machine learning models (random forest and boosted
regression trees). To obtain the optimal estimates, a weighted average algorithm was further applied to merge
the predictions of the two models to derive the final spatial plant functional trait maps. The models showed good
accuracy in estimating WD, LPC and SLA, with average R2 values ranging from 0.48 to 0.68. In contrast, both
the models had weak performance in estimating LDMC, with average R2 values less than 0.30. Meanwhile, LA
showed considerable differences between the two models in some regions. Climatic effects were more important
than those of edaphic factors in predicting the spatial distributions of plant functional traits. Estimates of plant
functional traits in northeastern China and the Qinghai–Tibetan Plateau had relatively high uncertainties due to
sparse samplings, implying a need for more observations in these regions in the future. Our spatial trait maps
could provide critical support for trait-based vegetation models and allow exploration of the relationships be-
tween vegetation characteristics and ecosystem functions at large scales. The six plant functional trait maps for
China with 1 km spatial resolution are now available at https://doi.org/10.6084/m9.figshare.22351498 (An et al.,
2023).

1 Introduction

Climate change has been affecting vegetation distributions
and biogeochemical cycling globally and altering their feed-
backs to the climate system (Kirilenko et al., 2000; Finzi
et al., 2011; Jónsdóttir et al., 2022). Dynamic global veg-
etation models (DGVMs) are powerful tools for predicting
changes in vegetation and ecosystem–atmosphere exchanges

(e.g., water, carbon and nutrient cycling) in a changing cli-
mate (Foley et al., 1996; Peng, 2000). However, conventional
DGVMs are still insufficiently realistic, largely due to their
dependence on the plant functional type (PFT) assumption
(Sitch et al., 2008; Yurova and Volodin, 2011; Scheiter et
al., 2013). PFTs in conventional DGVMs commonly have
fixed attributes (mostly trait values) (van Bodegom et al.,
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2012; Wullschleger et al., 2014) that do not reflect plant
adaptation to environments, limiting the quantification of
carbon–water–nutrient feedbacks between terrestrial ecosys-
tems and the atmosphere (Zaehle and Friend, 2010; Liu and
Yin, 2013). Trait-based approaches can provide a robust the-
oretical basis for developing the next generation of DGVMs
(van Bodegom et al., 2012; Sakschewski et al., 2015; Ma-
theny et al., 2017). Plant functional traits, which are closely
associated with ecosystem functions (Diaz et al., 2004; Yan
et al., 2023), can effectively reflect the response and adapta-
tion of plants to environmental conditions (Myers-Smith et
al., 2019; Qiao et al., 2023).

Attempts to predict spatially continuous trait maps have
been made at regional to global scales (e.g., Madani et al.,
2018; Moreno-Martínez et al., 2018; Boonman et al., 2020;
Loozen et al., 2020; Dong et al., 2023). Webb et al. (2010)
proposed that the environment creates a filtered trait dis-
tribution along an environmental gradient, and such trait–
environment relationships offer fundamental support to pre-
dict the spatial distributions of plant functional traits by ex-
trapolating local trait measurements. Boonman et al. (2020)
mapped the global patterns of specific leaf area (SLA), leaf N
concentration (LNC) and wood density (WD) based on a set
of climate and soil variables. As the number of available re-
gional and global trait databases increases (Wang et al., 2018;
Kattge et al., 2020), trait–environment relationships are be-
coming increasingly quantitative and accurate (Bruelheide et
al., 2018; Myers-Smith et al., 2019). Alternatively, remote
sensing approaches, such as empirical methods and physical
radiative transfer models (e.g., partial least-squares regres-
sion and the PROSPECT model), have been developed to es-
timate plant physiological, morphological and chemical traits
(e.g., leaf chlorophyll content, SLA, LNC and leaf dry matter
content – LDMC) (Darvishzadeh et al., 2008; Romero et al.,
2012; Ali et al., 2016). Vegetation indices, such as the nor-
malized difference vegetation index and the enhanced vege-
tation index (EVI), have been successful in estimating plant
functional traits of croplands, grasslands and forests (Clevers
and Gitelson, 2013; Li et al., 2018; Loozen et al., 2018).
Loozen et al. (2020) demonstrated that the EVI was the most
important predictor for mapping the spatial pattern of canopy
nitrogen in European forests. Admittedly, a recent study has
suggested that combining environmental variables and vege-
tation indices can improve the predictive accuracy of canopy
nitrogen compared to those based on vegetation indices alone
(Loozen et al., 2020).

Although there have been reports on plant functional trait
distributions in China in some global or regional studies (e.g.,
Yang et al., 2016; Butler et al., 2017; Madani et al., 2018;
Moreno-Martínez et al., 2018; Boonman et al., 2020), there
are still large uncertainties in characterizing the spatial distri-
butions of plant functional traits in China. First, global stud-
ies generally have relatively few and unevenly distributed
sampling sites across China (Butler et al., 2017; Madani
et al., 2018; Boonman et al., 2020), impeding our under-

standing of the true spatial characteristics of trait variabil-
ity. Second, the spatial patterns of traits among these studies
are usually inconsistent. For example, Moreno-Martínez et
al. (2018) and Madani et al. (2018) demonstrated that SLA
values were low in the southeastern areas but high in the
southwestern areas of China, whereas Boonman et al. (2020)
found the opposite. Third, most studies focused on leaf traits
(Yang et al., 2016; Loozen et al., 2018; Moreno-Martínez
et al., 2018), whereas traits associated with the whole-plant
strategies, such as WD, were ignored. Therefore, mapping
and verifying the spatial patterns of key functional traits that
reflect the whole-plant economics spectrum in China is a top
priority.

In this study, our main objective was to generate spatial
maps for several key plant functional traits by combining
field measurements, environmental variables and vegetation
indices. We selected six plant functional traits, i.e., SLA,
LDMC, LNC, LPC, LA and WD. As key leaf economics
traits, SLA, LDMC, LNC and LPC were selected because
they are closely linked to plant growth rate, resource acquisi-
tion and ecosystem functions (Wright et al., 2004; Diaz et al.,
2016). LA is indicative of the trade-off between carbon as-
similation and water use efficiency (Wright et al., 2017), and
WD reflects the trade-off between plant growth rate and sup-
port cost, with a higher WD linked to a lower growth rate, a
higher survival rate and a higher biomass support cost (King
et al., 2006). For each plant functional trait, we predicted a
spatial pattern at 1 km resolution using an ensemble model-
ing algorithm based on two machine learning methods (i.e.,
random forest and boosted regression trees).

2 Materials and methods

2.1 Overview

The spatial maps of plant functional traits in China were
generated based on machine learning methods trained by a
large dataset of in situ field measurements, environmental
variables and vegetation indices in three steps (Fig. 1). First,
in situ field measurements of six plant functional traits were
collected from TRY and Chinese databases as well as the
published literature, and the PFTs of plant species were clas-
sified based on plant growth form, leaf type and leaf phe-
nology. Multiple gridded predictors of climate, soil, topog-
raphy and vegetation indices were used after avoiding the
collinearity among them. Second, random forest and boosted
regression trees were used to train the relationships between
plant functional traits and predictors for each PFT individu-
ally. Third, the spatial abundance of each PFT within a 1 km
grid cell was calculated using a land cover map (100 m). A
community-weighted trait value within a 1 km grid cell was
calculated based on the abundance of each PFT and their
predicted trait values in Step 2. To reduce the variability of
different single models, we derived the final spatial maps of
plant functional traits using an ensemble model algorithm to
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merge the predictions of random forest and boosted regres-
sion trees according to their cross-validated R2 values.

2.2 Plant functional trait collection and data processing

The information on the six plant functional traits and their
ecological meanings are shown in Table 1. Plant trait data
were obtained and collected via two main sources. The
first source was public trait databases, including the TRY
database (Kattge et al., 2020) and the China Plant Trait
Database (Wang et al., 2018). The second source was from
the literature (listed in the Supplement). To ensure data qual-
ity and comparability, we only included trait observations
that met the following five criteria. (1) Measurements must
be obtained from natural terrestrial fields in order to mini-
mize the influence of management disturbance, and observa-
tions from croplands, aquatic habitats, control experiments
and gardens were excluded. (2) According to the mass ratio
hypothesis, the effect of plant species on ecosystem function-
ing is determined to an overwhelming extent by the traits and
functional diversity of the dominant species and is relatively
insensitive to the richness of subordinate species (Grime,
1998). Thus, we only included studies that measured plant
trait observations from all the species or dominant species
within a community. (3) In order to consider the intraspe-
cific trait variation, when the same species occurred at the
same sampling site from different studies, we included all
the original observed data from different studies rather than
averaging the values at the species level (Jung et al., 2010;
Siefert et al., 2015). (4) Plant trait observations must be made
on mature and healthy plant individuals, so some specific
growth stages (e.g., seedling) and size classes (e.g., sapling)
were excluded to reduce the confounding effect of ontogeny
(Thomas, 2010). (5) We only included studies with clear geo-
graphical coordinates to match predictor variables. The sam-
pling location and sampling time were also included in the
dataset. The sampling time mostly focused on the growing
season of a year (i.e., May–October), which can ensure the
relative consistency of the sampling time to minimize the ef-
fects of seasonality. Plant functional traits must be sampled
and measured according to standardized measurement proce-
dures (Perez-Harguindeguy et al., 2013) to reduce the vari-
ation and uncertainty among different data sources. In this
study, we included SLA measurements on sun leaves and
WD measurements on the main stems of woody species.

The plant trait data were checked for possible errors and
corrected in three steps as follows. First, species name and
taxonomic nomenclature were corrected and standardized
according to the Plant List (http://www.theplantlist.org/, last
access: 10 March 2021) using the plantlist package. Sec-
ond, illogical values, repeated values and outliers were re-
moved, which were defined by observations exceeding 1.5
standard deviations from the mean trait value for a given
species (Kattge et al., 2011). Third, we appended infor-
mation on plant growth form, leaf type and leaf phenol-

ogy from the TRY categorical traits database (https://www.
try-db.org/TryWeb/Data.php#3, last access: 10 March 2021)
and Flora Reipublicae Popularis Sinicae (http://www.iplant.
cn/frps, last access: 10 May 2021), which were used to match
species names to PFTs. We associated each species with a
corresponding PFT based on plant growth form (tree, shrub
and grass), leaf type (broadleaf and needleleaf) and leaf phe-
nology (evergreen and deciduous). For example, the infor-
mation on Salix matsudana is tree, deciduous and broadleaf,
and thus we were able to associate the PFT of deciduous
broadleaf forest (DBF) with this species. The species that
did not correspond to any PFT were discarded. After these
treatments, we collected a total of 34 589 trait measurements
from 1430 sampling sites for our database, representing 3447
species from 195 families and 1066 genera (Fig. 2). Infor-
mation on the statistics for the six plant functional traits col-
lected in this study is shown in Table A1 in Appendix A.

2.3 Preparing predictor variables

2.3.1 Climate data

Twenty-one climate variables were used in this study, in-
cluding 19 bioclimate variables, solar radiation (RAD) and
aridity index (AI) (Table A2 in Appendix A). The 19 bio-
climate variables and RAD were obtained from WorldClim
version 2.1 for the period from 1970 to 2000 (https://www.
worldclim.org/data/worldclim21.html, last access: 16 March
2021). The AI data were extracted from the CGIAR Con-
sortium of Spatial Information (CGIAR-CSI) for the period
from 1970 to 2000 (http://www.csi.cgiar.org, last access: 18
March 2021) (Trabucco and Zomer, 2018). The spatial reso-
lution of the climate data is 1 km.

2.3.2 Soil data

Twelve soil variables were included in this study, repre-
senting different aspects of soil properties, i.e., soil texture,
bulk density (BD), pH and soil nutrients (Table A2 in Ap-
pendix A). All the soil variables were extracted from the
Soil Database of China for Land Surface Modeling (http://
globalchange.bnu.edu.cn/research/soil2, last access: 13 June
2021) (Shangguan et al., 2013). Given the importance of top-
soil properties for community composition (Bohner, 2005),
we averaged the first four layers to represent the topsoil prop-
erties (∼ 30 cm) in our study. The spatial resolution is 1 km.

2.3.3 Topography

The topographic variable was elevation. Elevation data were
extracted from the STRM 90m dataset in China based on
the SRTM V4.1 database (https://www.resdc.cn/data.aspx?
DATAID=123, last access: 13 April 2021). The spatial res-
olution is 1 km.

Given the collinearity among climate and soil variables,
we reduced the dimensionality of these predictors based on
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Figure 1. Methodological workflow for spatial mapping of plant functional traits. Trait mapping is performed in three steps. Step 1: in situ
field measurements of plant functional traits, PFT classification of plant species and gridded predictors were collected. Step 2: two machine
learning methods were used to predict trait values by training field measurements and predictors for each PFT. Step 3: spatialization of trait
maps by calculating the abundance of each PFT using a 100 m land cover map and predicted trait values within a 1 km grid cell.

Table 1. Description of the plant functional traits selected in this study and their relevant ecosystem functions.

Trait Abbreviation Description Relevant ecosystem functions

Specific leaf area SLA As a core leaf economics trait (Wright
et al., 2004), it is related to the trade-off
between leaf lifespan and carbon acqui-
sition as well as light competition (Re-
ich et al., 1991).

Productivity, litter decomposition, com-
petitive ability (Bakker et al., 2011;
Smart et al., 2017)

Leaf dry matter content LDMC Strongly related to resource availability
and potential growth rate (Hodgson et
al., 2011)

Productivity, litter decomposition, her-
bivore resistance and drought tolerance
(Bakker et al., 2011; Smart et al., 2017;
Blumenthal et al., 2020)

Leaf N concentration LNC As a core leaf economics trait, it is
strongly related to photosynthetic ca-
pacity (Wright et al., 2004).

Productivity, nutrient cycling, litter de-
composition (LeBauer and Treseder,
2008; Bakker et al., 2011)

Leaf P concentration LPC As a core leaf economics trait, it is
strongly related to photosynthetic ca-
pacity (Wright et al., 2004)

Productivity, nutrient cycling, litter de-
composition (LeBauer and Treseder,
2008; Bakker et al., 2011)

Leaf area LA Trade-off between carbon assimilation
and water use efficiency. This is related
to the energy balance (Wright et al.,
2017).

Productivity (Li et al., 2020)

Wood density WD A measure of carbon investment, rep-
resenting the trade-off between growth
and mechanical support (Martínez-
Vilalta et al., 2010)

Drought tolerance, productivity (Hoe-
ber et al., 2014; Liang et al., 2021)
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Figure 2. The spatial distribution of sample sites across different
ecosystems in China. The white areas represent artificial land cover
types.

Pearson’s correlation coefficient (r) (Figs. A1 and A2 in
Appendix A). Among a set of highly correlated variables
(r > 0.75), only one variable was retained in subsequent
analysis to ensure a combination of different environmental
variables. The final selection of environment predictors in-
cluded 20 variables: mean annual temperature (MAT), mean
diurnal range (MDR), minimum temperature of the coldest
quarter (Tmin), maximum temperature of the warmest quarter
(Tmax), temperature seasonality (TS), mean annual precipi-
tation (MAP), precipitation seasonality (PS), precipitation of
the wettest quarter (PEQ), precipitation of the driest quar-
ter (PDQ), AI, RAD, elevation, soil sand content (SAND),
pH, BD, soil total N (STN), soil total P (STP), soil avail-
able P (SAP), soil alkali-hydrolyzable N (SAN) and cation
exchange capacity (CEC).

2.3.4 Vegetation indices

Three categories of vegetation indices were included in this
study (Table A2 in Appendix A). First, the EVI was extracted
from the MOD13A3 V006 product (https://lpdaac.usgs.gov/
products/mod13a3v006/, last access: 28 May 2021). This
product is available as a monthly average with a spatial
resolution of 1 km, ranging from January 2000 to Decem-
ber 2018. Second, MODIS reflectance data were also ex-
tracted from the MOD13A3 V006 product, including MIR
reflectance, NIR reflectance, red reflectance and blue re-
flectance. Third, the MERIS terrestrial chlorophyll index
(MTCI) was extracted from the Natural Environment Re-
search Council Earth Observation Data Centre (NEODC,
2005) (https://data.ceda.ac.uk/, last access: 28 May 2021).
MTCI data are available globally as a monthly average at

4.63 km spatial resolution and range from June 2002 to De-
cember 2011. It is noted that valid MTCI values should be
greater than 1, so our study deleted any values less than 1.

To avoid collinearity, we also reduced the dimensional-
ity of vegetation indices based on r values (Fig. A3 in Ap-
pendix A). Most selected variables were related to the grow-
ing season due to plant functional traits being measured dur-
ing the growing season. Furthermore, based on the results of
Pearson’s correlation analysis, the MTCI, MIR, NIR, red and
blue in January showed low correlations with those in the
growing season, and thus they were included in the subse-
quent analysis. The final selection included 36 variables: the
annual EVI and monthly EVI (May, June, July, August and
September) together with the monthly MTCI, MIR, NIR, red
and blue (all for January, June, July, August and September).

Both environmental variables and vegetation indices were
resampled to a consistent spatial resolution of 1 km using the
nearest-neighborhood method.

PFT is also an important factor in influencing the variation
of plant functional traits (Verheijen et al., 2016; Loozen et al.,
2020), and thus the trait predictions were performed for each
PFT individually. We used the 2015 land cover map at 100 m
spatial resolution to calculate the relative abundance of each
PFT within a 1 km grid cell, which was extracted from the
Copernicus Global Land Service (CGLS-LC100, Version 3)
(https://land.copernicus.eu/global/products/lc, last access: 24
May 2021) (Buchhorn et al., 2020). We focused on natural
terrestrial vegetation, so all artificial land cover types (e.g.,
croplands) were eliminated in our dataset. Seven categories
were included: evergreen needleleaf forest (ENF), evergreen
broadleaf forest (EBF), deciduous needleleaf forest (DNF),
deciduous broadleaf forest (DBF), shrubland (SHL), grass-
land (GRL) and bare or sparse vegetation.

2.4 Model fitting and validation

To predict the spatial patterns of plant functional traits, we
used two machine learning models, i.e., random forest and
boosted regression trees.

Random forest is an ensemble machine learning method
based on classification and regression trees using collections
of regression trees to classify observations according to a set
of predictive variables (Breiman, 2001). This method repeat-
edly constructs a set of trees from random samples of train-
ing data, and the final prediction is produced by integrating
the results of all individual trees, which makes it a robust
method. The model is controlled by two main parameters:
the number of sampled variables (mtry) and the number of
trees (ntree). The mtry was set to range from 1 to 57 (at an
interval of 1), and the ntree was set to 500, 1000, 2000, 5000
and 10 000 in subsequent runs. This analysis was performed
using the randomForest function in the randomForest pack-
age (Liaw and Wiener, 2002).

Boosted regression trees are machine learning methods
based on generalized boosted regression models using a
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boosting algorithm to combine many sample tree models to
optimize predictive performance (Elith et al., 2006). There
is no need for prior data transformation or the elimination
of outliers, and this method can fit complex nonlinear re-
lationships while automatically handling interaction effects
between predictors (Elith et al., 2008). The four parameters
to optimize in these models are the number of trees, inter-
action depth, learning rate and bag fractions. We varied the
parameter settings to find the optimal parameter combination
that achieves minimum predictive error. The number of trees
was set to 3000; the interaction depth varied from 1 to 7 (at
an interval of 1); the learning rate was set to 0.001, 0.01, 0.05
and 0.1; and the bag fraction was set to 0.5, 0.6, 0.7 and 0.75.
PFT was used as a dummy variable in the boosted regres-
sion tree models. This analysis was conducted using the gbm
function in the gbm package (Ridgeway, 2006).

We built a separate predictive model for each plant func-
tional trait. To select the optimal parameter combination and
to evaluate the final model performance for each trait, we cal-
ibrated the models 10 times using a randomly selected 80 %
of the data for training models and validating against the re-
maining 20 % based on cross-validation (Table A3 in Ap-
pendix A). The predictive performance was evaluated by re-
gressing the predicted and observed trait values from all repe-
titions of the cross-validation. The fitting performance of the
random forest and boosted regression trees was evaluated us-
ing a determinate coefficient (R2), a normalized root-mean-
square error (NRMSE) and a mean absolute error (MAE).
These scores are calculated following Eqs. (1), (2) and (3):

R2
= 1−

n∑
i=1

(pi − oi)2

n∑
i=1

(pi−ôi)2
, (1)

NRMSE=

√
1
n

n∑
i=1

(pi − oi)2

pmax−pmin
, (2)

MAE=
1
n

n∑
i=1
|oi −pi |, (3)

where pi and oi are the predictive values and observed val-
ues, respectively; ôi is the mean of the observed values.

To quantify the relative importance of each predictor
across the two models consistently, we used the method pro-
posed by Thuiller et al. (2009). This method applies corre-
lation between the standard predictions fitted with the orig-
inal data and predictions where the variable under investi-
gation has been randomly permutated. If the correlation is
high, which indicates little difference between the two pre-
dictions, the variable permutated is considered unimportant
for the model. This step was repeated multiple times for each
predictor, and the mean correlation coefficient over runs was
recorded. Then the relative importance of each predictor was

quantified as 1 minus the Spearman rank correlation coeffi-
cient (see Boonman et al., 2020). In addition, we used gener-
alized additive models to fit the relationships between plant
functional traits and the most important variables using the
gam function in the mgcv package.

2.5 Generation of plant functional trait maps and model
performance

The generation of spatial maps of plant functional traits was
performed in three steps. First, we predicted trait values sepa-
rately for each natural PFT (i.e., EBF, ENF, DBF, DNF, SHL
and GRL) within a 1 km grid cell. Second, the abundance
of individual natural PFTs within a 1 km grid cell was es-
timated using a land cover map with a spatial resolution of
100 m. Third, refer to Eq. (4), which has been widely applied
in the community (Garnier et al., 2004), and the final trait
value in a given 1 km grid cell is calculated as the sum of the
predicted trait values multiplied by the corresponding abun-
dance of each natural PFT.

CWM=
∑n

i=1
WiXi (4)

n is the total number of PFTs in a given grid, Wi is the relative
abundance of the ith natural PFT, and Xi is the predicted trait
value of the ith natural PFT.

To reduce the variability of different single models and to
construct a more stable and accurate model, the ensemble
model was further applied to merge the predictions of ran-
dom forest and boosted regression trees according to their
cross-validated R2 values. The predicted value of the ensem-
ble model was calculated in a given grid cell as described
by Eq. (5) (Marmion et al., 2009). The model accuracy was
calculated by regressing the predicted values of the ensemble
model against the observed trait values.

Pred_EMt =

∑2
m=1(predm,t × r2

m,t )∑2
m=1r

2
m,t

(5)

Pred_EMt is the predicted value of the t trait in the ensemble
model. predm,t is the predicted value of the t trait in the m

model. r2
m,t is the cross-validated R2 of the t trait in the m

model.
To evaluate the model performance (i.e., the variability in

the prediction across the models), the coefficient of varia-
tion (CV) was calculated as the difference between the pre-
dictions of random forest and boosted regression tree meth-
ods and the ensemble model. The CV is calculated following
Eq. (6):

CVt =

√∑2
m=1(predm,t−obst )2·r2

m,t∑2
m=1r

2
m,t

obst

, (6)

where predm,t is the predicted value of the t trait in the m

model, obst is the value of the t trait in the ensemble model,
and r2

m,t is the cross-validated R2 of the t trait in the m model.
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2.6 Uncertainty assessments

Multivariate environmental similarity surface analysis
(MESS) was used to identify the range of extrapolated
predictor values across the locations in the plant trait dataset
(Elith et al., 2010). This method is often used to evaluate
the extent of the extrapolation and the applicability domain.
If the value is negative, this indicates that, at a given grid
cell, at least one predictor variable is outside the extent of
the referenced predictor layer. This analysis was conducted
using the mess function in the dismo package.

All analyses were performed in R 4.0.2 (R Core Team,
2020).

3 Results

3.1 Performance of the prediction models

Cross-validation showed that the performance of the predic-
tive models differed greatly among the plant functional traits
(Tables 2, B1 and B2). WD had the best performance in all
three models, with R2 values of 0.64, 0.68 and 0.67 for the
random forest, boosted regression trees and ensemble model,
respectively. SLA and LPC had R2 values greater than 0.45,
while LDMC performed the worst, with R2 values below
0.30.

3.2 Spatial patterns of predicted plant functional traits

There were relatively consistent spatial patterns for SLA,
LNC and LPC, with high values in northeastern and
northwestern China and the southeastern Qinghai–Tibetan
Plateau, together with low values in southwestern China
(Figs. 3a, c, d, C1, C2, C3, C5 and C6). SLA and LPC in-
creased with latitude, while LNC did not vary significantly
along the latitudinal gradient. For SLA, LNC and LPC, the
variability was low among random forest, boosted regres-
sion trees and ensemble model, with an overall CV of less
than 0.30 (Fig. 4a, c and d). LDMC values were relatively
high in most regions of China, and the low values were
mainly located in eastern Yunnan Province and the Loess
Plateau (Figs. 3b, C1, C2 and C4). LA showed high val-
ues in the northeastern and southern regions (except for
the Sichuan Basin) and the southeastern Qinghai–Tibetan
Plateau (Figs. 3e, C1, C2 and C7). The strong latitudinal gra-
dient was observed in LA, where the values decreased with
latitude.

The CV values of LPC decreased with latitude, but other
traits did not show latitudinal patterns (Fig. 4). The CV
values of LA were relatively high, especially in northwest-
ern China and the Inner Mongolia–Loess Plateau region
(Fig. 4e). WD had high values in the northeastern and south-
ern regions (Figs. 2f, C1, C2 and C8), while the CV values
for WD were low throughout China (Fig. 4f).

3.3 Relative importance of predictive variables

The dominant factors explaining spatial variation differed
greatly among plant functional traits (Table 3). Overall, cli-
mate variables were more important for predicting plant
functional traits than were soil variables. Temperature vari-
ables (i.e., MAT, MDR and TS) showed close relationships
with SLA, LDMC, LPC and WD, while precipitation vari-
ables (i.e., PS, PEQ, MAP and PDQ) were more important
for predicting the spatial patterns of LNC, LPC and LA. RAD
was the fourth most dominant factor in predicting the spatial
patterns of SLA and WD. Elevation also played an impor-
tant role in LDMC and LPC predictions. Within soil vari-
ables, soil nutrients (i.e., pH and SAP) showed close associ-
ations with SLA and LNC. In addition to the environmental
variables, MTCI emerged as an important predictor for ex-
plaining SLA, LDMC and LA. Finally, the EVI was the most
important predictor for LA, and MIR values in January and
May were the primary predictors of WD. The relationships
between plant functional traits and the most important vari-
ables are shown in Figs. D1 and D2 in Appendix D.

3.4 Model performance

The distributions of the predicted values based on random
forest, boosted regression trees and ensemble model were
consistent with the original observations, especially the peak
values (Fig. 5). The mean values of the trait observations
were relatively higher than those of the predicted values.

3.5 Uncertainty assessments

The MESS values of all plant functional traits were positive
in most regions, indicating a wide applicability domain of
our models (Fig. 6). Nevertheless, trait predictions should be
interpreted carefully for northeastern China and the Qinghai–
Tibetan Plateau due to sparse samplings in these regions.

4 Discussion

4.1 Comparison with previous work

Our study predicted the spatial patterns of six key plant func-
tional traits across China using machine learning methods
and identified the applicability domain of the models. WD
had the highest precision with an average of R2 of 0.66,
which was higher than the global WD prediction (Boon-
man et al., 2020). This improvement in precision may be
attributed to the large number and dense occurrence of sam-
ple sites as well as the inclusion of vegetation indices in our
study. In addition, SLA and LPC showed good accuracy with
an R2 value of 0.50, which was higher than that of Boonman
et al. (2020) and consistent with that of Moreno-Martínez et
al. (2018). However, LNC and LA showed relatively poor
performance, which may be related to the reason that the two
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Figure 3. Spatial patterns of predicted plant functional traits in China based on the ensemble model. The grey curves to the right of the maps
display the trait distribution along with the latitude. The white areas represent artificial land cover types and bare vegetation. The lines in
grey, blue and purple represent the boundaries of the provinces, the Qinghai–Tibetan Plateau and the Loess Plateau, respectively. RF: random
forest; BRT: boosted regression trees; ensemble: ensemble model; SLA: specific leaf area; LDMC: leaf dry matter content; LNC: leaf N
concentration; LPC: leaf P concentration; LA: leaf area; WD: wood density.
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Figure 4. The variability in plant functional trait predictions among the random forest, boosted regression trees and ensemble model. The
grey curves to the right of the maps display the coefficient of variation along with the latitude. The white areas represent artificial land cover
types and bare vegetation. The lines in grey, blue and purple represent the boundaries of the provinces, the Qinghai–Tibetan Plateau and the
Loess Plateau, respectively.
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Table 2. Results of plant functional traits for cross-validated R2, NRMSE and MAE for random forest, boosted regression trees and the
ensemble model.

Random forest Boosted regression trees Ensemble model

Traits R2 NRMSE MAE R2 NRMSE MAE R2 NRMSE MAE

SLA 0.48 0.22 5.10 0.48 0.20 5.08 0.49 0.21 5.07
LDMC 0.23 0.21 0.07 0.28 0.18 0.07 0.24 0.20 0.07
LNC 0.33 0.19 4.92 0.34 0.18 4.85 0.34 0.19 4.85
LPC 0.51 0.24 0.53 0.51 0.22 0.53 0.51 0.27 0.53
LA 0.37 0.45 26.76 0.39 0.51 27.47 0.40 0.58 26.59
WD 0.64 0.20 0.10 0.68 0.13 0.10 0.67 0.17 0.10

SLA: specific leaf area (m2 kg−1); LDMC: leaf dry matter content (g g−1); LNC: leaf N concentration (mg g−1); LPC: leaf
P concentration (mg g−1); LA: leaf area (cm2); WD: wood density (g cm−3); R2: determinate coefficient; NRMSE:
normalized root-mean-square error; MAE: mean absolute error.

Table 3. List of the eight most important variables for plant functional trait predictions.

Rank SLA LDMC LNC LPC LA WD

1 SAP MAT PS MDR EVI5 MIR1
2 TS Elevation SAP PDQ PEQ TS
3 blue9 MTCI5 pH Elevation MTCI9 MIR5
4 RAD blue8 MDR MIR8 NIR9 RAD
5 MTCI4 MTCI4 MAP Tmax AI MIR6
6 MTCI6 MTCI6 PEQ MTCI6 MTCI6 pH
7 Elevation NIR1 MIR1 MIR7 MAP red5
8 MTCI7 CEC Tmax MIR9 red5 PS

SLA: specific leaf area (m2 kg−1); LDMC: leaf dry matter content (g g−1); LNC: leaf N
concentration (mg g−1); LPC: leaf P concentration (mg g−1); LA: leaf area (cm2); WD: wood
density (g cm−3); SAP: soil available P; TS: temperature seasonality; blue: blue reflectance;
RAD: solar radiation; MTCI: MERIS terrestrial chlorophyll index; MAT: mean annual
temperature; NIR: near-infrared reflectance; CEC: cation exchange capacity; PS: precipitation
seasonality; MDR: mean diurnal range; MAP: mean annual precipitation; PEQ: precipitation of
the wettest quarter of a year; MIR: middle infrared reflectance; Tmax: maximum temperature of
the warmest month of a year; PDQ: precipitation of the driest quarter of a year; EVI: enhanced
vegetation index; AI: aridity index; red: red reflectance.

traits were more influenced by phylogeny than environmen-
tal variables (Yang et al., 2017; An et al., 2021). In addition,
we found that mean values of trait predictions were lower
than those of observations, which may be attributable to the
reason that the mean values of trait observations were from
the individual level, while the mean values of predicted val-
ues were based on the relative abundance of PFTs and the
corresponding predicted values within a 1 km grid cell.

The frequency distributions of plant functional traits in
China differed between our study and previous studies
(Figs. 7 and E1, Table E1). Given that the spatial resolution
of trait maps in most previous studies was 0.5° (except for
Moreno-Martínez et al., 2018, and Vallicrosa et al., 2022),
we resampled the data products of previous studies and our
study to 0.5° spatial resolution. The distributions in our study
contained more predictions at lower values of SLA, LNC
and LPC and were broader than those for SLA and LNC in
previous global studies. However, the distribution of LNC
in our study was consistent with that in the study of Valli-

crosa et al. (2022) with 1 km spatial resolution (Fig. E1 in
Appendix E). LA in our study contained more predictions
at higher values and was also broader than those in previ-
ous global studies. WD did not show lower and higher pre-
dicted values in this study. However, the WD values in the
studies of Boonman et al. (2020) and Schiller et al. (2021)
had more predictions at higher values and no lower values
(< 0.30 g cm−3). Our predicted values of SLA showed the
highest spatial correlation with those of Dong et al. (2023),
and LNC showed the strongest spatial correlation with those
of Butler et al. (2017) (Table 4). LA and WD showed the
best spatial correlation with those of Schiller et al. (2021),
but LPC showed a relatively weak spatial correlation with
those of published studies.

In addition, we compared our results with other studies fo-
cused on China. Yang et al. (2016) predicted the spatial dis-
tributions of leaf mass per area (i.e., 1 / SLA) and LNC based
on trait–environment relationships in China and had R2 val-
ues of 0.13–0.16. The lower predictive precision may be be-
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Figure 5. Comparison of trait distribution between observations and predictions in the three models. Each panel depicts the distribution of
observations in solid black, of the RF in yellow, of the BRT in blue, and of the ensemble model in green. The dashed vertical lines indicate
mean values.

cause Yang et al. (2016) only used MAT, MAP and RAD as
predictors in estimating the spatial patterns of leaf mass per
area and LNC, which likely led to poor performance and low
heterogeneity. These results also demonstrated the advantage
of our methods in mapping the spatial patterns of plant func-
tional traits at a regional scale.

4.2 Spatial patterns of plant functional traits in China

Our study revealed the spatial patterns of different plant func-
tional traits across China, and the variability among the two
machine learning methods was relatively low. We compared
the spatial differences of trait maps between our study and
previous studies at the global scale (Figs. E2–E6 in Ap-
pendix E). For example, our study showed high SLA val-
ues in the southeastern Qinghai–Tibetan Plateau, which con-
curred with the global study of Boonman et al. (2020). The
spatial difference of SLA between our study and van Bode-
gom et al. (2014) was relatively low, and the predicted values

in most regions were slightly lower in our study than those
in van Bodegom et al. (2014). The spatial pattern of the dif-
ference in SLA between our study and Moreno et al. (2018),
Butler et al. (2017) and van Bodegom et al. (2014) was con-
sistent, and the values were higher in northeastern China and
the southwestern Qinghai–Tibetan Plateau in our study than
those studies. Our study showed higher LNC values in north-
ern Inner Mongolia, the Loess Plateau, the eastern Qinghai–
Tibetan Plateau and northwestern China than those global
studies (Butler et al., 2017; Moreno-Martínez et al., 2018;
Boonman et al., 2020; Vallicrosa et al., 2022; Dong et al.,
2023), reflecting the consistent spatial pattern among these
studies. However, Yang et al. (2016) predicted high LNC
values in northeastern and northwestern China, northern In-
ner Mongolia and the entire Qinghai–Tibetan Plateau, and
SLA and LNC had low heterogeneity overall. The discrep-
ancy with Yang et al. (2016) may be attributed to spatial ex-
trapolation based on trait–climate relationships with a low
predictive precision. There was no consistent spatial pattern
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Figure 6. Multivariate environmental similarity surface (MESS) assessments for the six plant functional traits. The blue line represents the
boundary of the Qinghai–Tibetan Plateau. The black dots represent the locations of the trait observations. More intense shades indicate a
greater similarity (blue) or difference (red) in the environmental conditions of the location compared to the predictive factors covered by the
training dataset. The white areas represent artificial land cover types and bare vegetation.

in LPC between our study and previous studies. Consistent
with the global pattern (Wright et al., 2017), LA was larger in
the southern regions than in the northern regions and showed
a decreasing trend with latitude. In addition, LA and WD
values in our study were lower in most regions than those
at the global scale. These discrepancies between our study
and previous studies at the global scale may be related to
three reasons. First, there is bias in the available in situ field
measurement data from China in global studies, with a large

gap in western China for SLA and no data in China for WD
(Boonman et al., 2020). Second, some trait–environment re-
lationships may be scale-dependent (Bruelheide et al., 2018),
and these studies we compared are from the global scale be-
cause the trait maps in China are not available. Third, the
methods used for trait mapping were different among stud-
ies, including eco-evolutionary optimality models (Dong et
al., 2023), convolutional neural networks based on RGB pho-
tographs (Schiller et al., 2021), machine learning algorithms
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Table 4. Spatial correlations for SLA, LNC, LPC, LA and WD between this study and previous trait maps, labeled by the first author of the
corresponding publication (see Table E1 in Appendix E for citations).

Spatial correlation Dong Vallicrosa Schiller Boonman Moreno Madani Butler Bodegom

SLA 0.40 −0.08 0.33 0.24 0.14 −0.04 0.32
LNC 0.16 0.36 0.23 0.25 0.39
LPC 0.14 0.06
LA 0.51
WD 0.65 0.11

The spatial correlation of leaf dry matter content (LDMC) between our study and previous studies was not included, as the LDMC maps were not
available. SLA: specific leaf area (m2 kg−1); LNC: leaf N concentration (mg g−1); LPC: leaf P concentration (mg g−1); LA: leaf area (cm2);
WD: wood density (g cm−3).

(Vallicrosa et al., 2022; Boonman et al., 2020) and multiple
regression analysis (van Bodegom et al., 2014).

Moreover, our study also identified the applicability do-
main of our models for predicting the spatial patterns of plant
functional traits across China. Five leaf traits and WD ap-
peared to have poor applicability in northeastern China and
the Qinghai–Tibetan Plateau, primarily due to sparse sam-
plings. Future studies predicting plant functional traits across
a large scale through remote sensing observations or other
supplementary data will be needed to re-evaluate our results.

4.3 The role of predictive variables

Our study indicated that environmental variables were im-
portant for predicting the spatial patterns of plant functional
traits, especially climate variables. Temperature variables
were primary predictors for SLA, LDMC, LPC and WD. The
relationships between leaf traits and temperature have been
widely discussed in global and regional studies (Reich and
Oleksyn, 2004; Bruelheide et al., 2018). The positive link-
age between WD and temperature may be driven by changes
in water viscosity. Plants can adapt to low water viscosity at
high temperatures by reducing the diameter and density of
their vessels and thickening cell walls (Roderick and Berry,
2002; Thomas et al., 2004). Precipitation variables were im-
portant predictors for leaf nutrient traits and LA. For exam-
ple, precipitation of the wettest quarter of a year was the fac-
tor that most influenced LA variation, which has been con-
firmed by a previous study (An et al., 2021). A smaller LA
could be an adaptive strategy to decrease water loss by re-
ducing the surface area for transpiration under dry environ-
mental conditions (Du et al., 2019). Although the effects of
soil on trait predictions were relatively weak, we found that
SAP and pH played key roles in SLA and LNC predictions.
These results were similar to those of the previous studies re-
porting that soil pH was an important driver of trait variation
at the global scale and in tundra regions (Maire et al., 2015;
Kemppinen et al., 2021). Additionally, from the perspective
of cost-efficient theory, the strong effects of SAP reflected
the fact that high SLA may be an adaptation for facilitating

soil exploration more efficiently in fertile soils (Freschet et
al., 2010).

Vegetation indices were recently proposed as impor-
tant predictors of spatial patterns of plant functional traits
(Loozen et al., 2018). Our results corroborated these findings
and further suggested that EVI, MTCI and MIR reflectances
were important predictors in models. Here, the underlying
mechanisms between vegetation indices and plant functional
traits were not further discussed due to their complexity.
However, our results indicated that vegetation indices and
NIR reflectance were not key predictors of LNC estimation,
which contrasted with the findings from global and regional
studies (Wang et al., 2016; Loozen et al., 2018; Moreno-
Martínez et al., 2018). This may be related to the multitude
of factors that influence the relationships between LNC and
vegetation indices and NIR reflectance, such as forest type
and canopy structure (Dahlin et al., 2013).

4.4 Uncertainties

Although our study mapped the spatial patterns of key func-
tional traits in terrestrial ecosystems across China through
large-scale field investigations and compared the predictions
with previous studies at global and regional scales, there per-
sisted some uncertainties in the interpretation of these re-
sults. First, the predictive ability of models was relatively
worse for certain traits, especially LDMC. Beyond the en-
vironmental effects, the variation in plant functional traits
is also regulated by the phylogenetic structure among plant
species (e.g., family, order or phylogenetic clade) (Li et al.,
2017). Consequently, incorporating phylogenetic informa-
tion will be a promising avenue for further improving the
accuracy of spatial predictions of plant functional traits (But-
ler et al., 2017). A second potential issue is sampling bias;
there are major spatial gaps in field investigations in north-
eastern China and the Qinghai–Tibetan Plateau. Due to the
few measurements for shrubs and herbs, WD data are mainly
confined to eastern forests, and the overall quantity of the
WD data is much lower than that of leaf traits, even in the
TRY database. The environmental information of the sam-
pling sites was not always obtained from the original litera-
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Figure 7. Frequency distributions of plant functional traits in our study (“This study”, dashed black lines) and other trait maps identified by
the first author of the corresponding publication (see Table E1 for citations).

ture, and thus using the public environmental products is a
common resolution in large-scale plant trait studies (Boon-
man et al., 2020; Vallicrosa et al., 2022). Such a mismatch
between in situ trait measurements and predictors should
be resolved in further work. Finally, an additional key chal-
lenge in data availability must be resolved to scale up from
the species to community levels, in particular with data sur-
rounding species co-occurrence and their relative cover or
abundance in ecological communities (He et al., 2023). For
example, global biodiversity data (e.g., the sPlot and Global

Biodiversity Information Agency databases) that contain in-
formation on species occurrence or the proportion of species
in a community have the potential to enable the calculation
of community-weighted trait values and the re-evaluation of
our results in future work (Telenius, 2011; Bruelheide et al.,
2019). The lack of a consistent time period and spatial res-
olution of predictors due to limitation of data availability is
a key challenge in the spatial mapping of plant functional
traits. In addition, although the WorldClim version 2.1 prod-
uct has high spatial resolution and includes various aspects
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of climatic parameters, there exist a certain limitation and
uncertainty in predicting trait maps. Therefore, integrating
satellite remote sensing monitoring methods with in situ trait
data can also provide an effective way of estimating and as-
sessing species diversity at large scales (Cavender-Bares et
al., 2022).

4.5 Potential applications

Maps of these key functional traits in terrestrial ecosystems
highlighted large-scale variability in space, which will sig-
nificantly advance ecological analyses and future interdis-
ciplinary research. First, using the spatially continuous trait
maps, one can optimize and develop trait-flexible vegetation
models to reduce the uncertainty of conventional vegetation
models based on PFTs, which allows for exploration of the
community assembly rules based on how plants with dif-
ferent trait combinations perform under a given set of en-
vironmental conditions (Berzaghi et al., 2020). When trait-
flexible vegetation models are available, incorporating trait
maps into models will bridge the gap for vegetation clas-
sifications and predictions of vegetation distribution under
global change (van Bodegom et al., 2012; Yang et al., 2019).
Second, most studies focused on the effects of plant func-
tional traits on ecosystem carbon processes at individual,
species and community scales, while how such effects scale
up to regional or larger scales remains challenging. In addi-
tion, the assessments of China’s terrestrial ecosystem carbon
sink have large uncertainties (Piao et al., 2022). The spatial
continuous trait maps will provide an effective way of linking
ecosystem characteristics to ecosystem carbon sink estimates
in China (Madani et al., 2018; Šímová et al., 2019). These
analyses will help shed light on the mechanisms underlying
plant functional traits and terrestrial ecosystem carbon stor-
age at a large scale.

5 Data availability

The original plant functional trait data collected in this
study that were used for machine learning models (named
by the data file used for machine learning models.csv) and
the final maps of plant functional traits in GeoTIFF format
(named by the plant functional trait category) are available
at https://doi.org/10.6084/m9.figshare.22351498 (An et al.,
2023).

6 Conclusions

We generated a set of spatial continuous trait maps at 1 km
spatial resolution using machine learning methods in combi-
nation with field measurements, environmental variables and
vegetation indices. Models for leaf traits (except for LDMC)
and WD showed good accuracy and robustness, whereas
models of LDMC had relatively poor precision and robust-
ness. Temperature variables were the most important pre-
dictors for leaf traits (except for LA) and WD, and precip-
itation variables were the most important predictors for leaf
nutrient traits and LA. We caution that plant functional trait
predictions should be interpreted carefully for northeastern
China and the Qinghai–Tibetan Plateau. The spatial continu-
ous trait maps generated in our study are complementary to
current terrestrial in situ observations and offer new avenues
for predicting large-scale changes in vegetation and ecosys-
tem functions under climate scenarios in China.
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Appendix A

Table A1. Summary of statistics in the plant functional traits, environmental variables and geographical distribution in China.

Trait Unit Range Mean CV (%) No. of species Entries Sites

SLA m2 kg−1 0.06–81.68 17.88 54.96 2463 9195 1032
LDMC g g−1 0.06–0.95 0.34 100.00 1582 3957 193
LNC mg g−1 3.41–66.02 21.52 37.44 2335 7407 567
LPC mg g−1 0.09–9.70 1.83 62.19 2074 6266 515
LA cm2 0.0033–2553.33 36.16 259.64 1838 5976 691
WD g cm−3 0.25–1.37 0.68 33.16 768 1788 639
Altitude m −144–5454 1430
MAT °C −12.07–24.32 1430
MAP mm 15–2982 1430
Soil total N g kg−1 0.11–10.25 1430
Bulk density g cm−3 0.83–1.45 1430

SLA: specific leaf area; LDMC: leaf dry matter content; LNC: leaf N concentration; LPC: leaf P concentration; LA: leaf area; WD:
wood density; MAT: mean annual temperature; MAP: mean annual precipitation.
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Table A2. List of all the predictors, including the environment and remote sensing variables used in this study.

Type of variable Variable name Abbreviation Units Time period Spatial resolution Source

Climate Mean annual temperature MAT °C 1970–2000 1 km WorldClim version 2.1
Mean diurnal range MDR °C 1970–2000 1 km WorldClim version 2.1
Temperature seasonality TS °C 1970–2000 1 km WorldClim version 2.1
Maximum temperature of the warmest
month

Tmin °C 1970–2000 1 km WorldClim version 2.1

Minimum temperature of the coldest
month

Tmax °C 1970–2000 1 km WorldClim version 2.1

Temperature annual range TAR °C 1970–2000 1 km WorldClim version 2.1
Isothermality IS % 1970–2000 1 km WorldClim version 2.1
Mean temperature of the wettest quarter MTEQ °C 1970–2000 1 km WorldClim version 2.1
Mean temperature of the driest quarter MTDQ °C 1970–2000 1 km WorldClim version 2.1
Mean temperature of the warmest quar-
ter

MTWQ °C 1970–2000 1 km WorldClim version 2.1

Mean temperature of the coldest quarter MTCQ °C 1970–2000 1 km WorldClim version 2.1
Mean annual precipitation MAP mm 1970–2000 1 km WorldClim version 2.1
Precipitation of the wettest month PEM mm 1970–2000 1 km WorldClim version 2.1
Precipitation of the driest month PDM mm 1970-2000 1 km WorldClim version 2.1
Precipitation seasonality PS % 1970–2000 1 km WorldClim version 2.1
Precipitation of the wettest quarter PEQ mm 1970–2000 1 km WorldClim version 2.1
Precipitation of the driest quarter PDQ mm 1970–2000 1 km WorldClim version 2.1
Precipitation of the warmest quarter PWQ mm 1970–2000 1 km WorldClim version 2.1
Precipitation of the coldest quarter PCQ mm 1970–2000 1 km WorldClim version 2.1
Aridity index AI / 1970–2000 1 km Global CGIAR-CSI
Solar radiation RAD kJ m−2 d−1 1970–2000 1 km WorldClim version 2.1

Topography Elevation / m 1 km SRTM 90m V4.1

Soil Soil sand content SAND % / 1 km Shangguan et al. (2013)
Soil silt content SILT % / 1 km Shangguan et al. (2013)
Soil clay content CLAY % / 1 km Shangguan et al. (2013)
Bulk density BD g cm−3 / 1 km Shangguan et al. (2013)
Soil pH pH / / 1 km Shangguan et al. (2013)
Soil organic matter SOC g kg−1 / 1 km Shangguan et al. (2013)
Soil total N STN g kg−1 / 1 km Shangguan et al. (2013)
Soil total P STP g kg−1 / 1 km Shangguan et al. (2013)
Soil alkali-hydrolyzable N SAN mg kg−1 / 1 km Shangguan et al. (2013)
Soil available P SAP mg kg−1 / 1 km Shangguan et al. (2013)
Soil available K SAK mg kg−1 / 1 km Shangguan et al. (2013)
Cation exchange capacity CEC me kg−1 / 1 km Shangguan et al. (2013)

EVI MODIS EVI long-term monthly aver-
ages

/ 2001–2018 1 km MOD13A3 V006

NIR MODIS NIR long-term monthly aver-
ages

/ 2001–2018 1 km MOD13A3 V006

MIR MODIS MIR long-term monthly aver-
ages

/ 2001–2018 1 km MOD13A3 V006

Red MODIS red long-term monthly aver-
ages

/ 2001–2018 1 km MOD13A3 V006

Blue MODIS blue long-term monthly aver-
ages

/ 2001–2018 1 km MOD13A3 V006

MTCI MTCI long-term monthly averages / 2003–2011 4.63 km MTCI level-3 product

Land cover Land cover map / 2015 100 m Copernicus Global
Land Service
Collection 3

The vegetation indices are calculated as long-term monthly averages from 2001 to 2018. Thus, 12 variables of each vegetation index category are obtained.
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Table A3. The number of samples of the six plant functional traits used for model training (80 %) and validation (20 %).

Traits No. of No. of samples used No. of samples used
samples for model training for model validation

SLA 9195 7356 1839
LDMC 3957 3166 791
LNC 7407 5926 1481
LPC 6266 5013 1253
LA 5976 4781 1195
WD 1787 1430 357

SLA: specific leaf area (m2 kg−1); LDMC: leaf dry matter content (g g−1); LNC: leaf N
concentration (mg g−1); LPC: leaf P concentration (mg g−1); LA: leaf area (cm2); WD:
wood density (g cm−3).

Figure A1. Correlations among climate variables. The blank indicates that the correlations are not significant (P > 0.05). The size of the
circles is proportional to the correlation coefficient. The abbreviations of the climate variables are seen in Table A2.
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Figure A2. Correlations among soil variables. The blank indicates that the correlations are not significant (P > 0.05). The size of the circles
is proportional to the correlation coefficient. The abbreviations of the soil variables are seen in Table A2.
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Figure A3. Correlations among monthly vegetation index variables. The blank indicates that the correlations are not significant (P > 0.05).
The size of the circles is proportional to the correlation coefficient. (a) Enhanced vegetation index (EVI); (b) MERIS terrestrial chlorophyll
index (MTCI); (c) MIR reflectance; (d) NIR reflectance; (e) red reflectance; (f) blue reflectance.
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Appendix B

Table B1. Optimal parameter combination and model performance of random forest for plant functional traits.

Trait ntree mtry R2 NRMSE MAE

SLA 1000 24 0.48 0.22 5.13
LDMC 1000 11 0.23 0.20 0.07
LNC 1000 57 0.39 0.00 0.10
LPC 1000 20 0.59 0.05 0.13
LA 1000 18 0.28 0.48 26.62
WD 1000 9 0.53 0.02 0.07

SLA: specific leaf area; LDMC: leaf dry matter content; LNC: leaf N
concentration; LPC: leaf P concentration; LA: leaf area; WD: wood
density; R2: determinate coefficient; NRMSE: normalized
root-mean-square error; MAE: mean absolute error.

Table B2. Optimal parameter combination and model performance of boosted regression trees for plant functional traits.

Trait n.tree Interaction depth Shrinkage Learning rate Bag fraction R2 NRMSE MAE

SLA 3000 6 0.01 10 0.75 0.49 0.20 5.08
LDMC 3000 2 0.01 10 0.75 0.28 0.19 0.07
LNC 3000 6 0.01 10 0.70 0.41 0.00 0.10
LPC 3000 7 0.01 10 0.75 0.59 0.05 0.13
LA 3000 3 0.001 10 0.75 0.28 0.55 27.56
WD 3000 4 0.01 10 0.70 0.63 0.01 0.07

SLA: specific leaf area; LDMC: leaf dry matter content; LNC: leaf N concentration; LPC: leaf P concentration; LA: leaf area; WD: wood density;
R2: determinate coefficient; NRMSE: normalized root-mean-square error; MAE: mean absolute error.

https://doi.org/10.5194/essd-16-1771-2024 Earth Syst. Sci. Data, 16, 1771–1810, 2024



1792 N. An et al.: Spatial mapping of key plant functional traits in terrestrial ecosystems across China

Appendix C

Figure C1. Spatial distributions of plant functional traits based on random forest. The grey curves on the right of the maps are the trait
distribution along with the latitude. The white areas represent artificial land cover types and bare vegetation.
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Figure C2. Spatial distributions of plant functional traits based on boosted regression trees. The grey curves on the right of the maps are the
trait distribution along with the latitude. The white areas represent the artificial land cover types and bare vegetation.
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Figure C3. Spatial distribution of the SLA for each plant functional type. The left column is obtained with the RF method, and the right
column is obtained with the BRT method. The white areas represent other natural vegetation types and artificial land cover types. EBF:
evergreen broadleaf forest; ENF: evergreen needleleaf forest; DBF: deciduous broadleaf forest; DNF: deciduous needleleaf forest; SHRUB:
shrubland; GRASS: grassland.
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Figure C4. Spatial distribution of the leaf dry matter content (LDMC) for each plant functional type. The left column is obtained with the
RF method, and the right column is obtained with the BRT method. The white areas represent other natural vegetation types and artificial
land cover types.
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Figure C5. Spatial distribution of the leaf N concentration (LNC) for each plant functional type. The left column is obtained with the RF
method, and the right column is obtained with the BRT method. The white areas represent other natural vegetation types and artificial land
cover types.
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Figure C6. Spatial distribution of the leaf P concentration (LPC) for each plant functional type. The left column is obtained with the RF
method, and the right column is obtained with the BRT method. The white areas represent other natural vegetation types and artificial land
cover types.
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Figure C7. Spatial distribution of the leaf area (LA) for each plant functional type. The left column is obtained with the RF method, and the
right column is obtained with the BRT method. The white areas represent other natural vegetation types and artificial land cover types.
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Figure C8. Spatial distribution of the wood density (WD) for each plant functional type. The left column is obtained with the RF method,
and the right column is obtained with the BRT method. The white areas represent other natural vegetation types and artificial land cover
types.

https://doi.org/10.5194/essd-16-1771-2024 Earth Syst. Sci. Data, 16, 1771–1810, 2024



1800 N. An et al.: Spatial mapping of key plant functional traits in terrestrial ecosystems across China

Appendix D

Figure D1. The relationships between SLA, LDMC, LNC, LPC and their eight most important predictors.
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Figure D2. The relationships between LA, WD and their eight most important predictors.

Appendix E: Comparisons between our study and
trait maps from previous studies

Given that the trait maps predicted for China were not avail-
able from the literature and their authors, we compared our
study with those studies performed at the global scale (Ta-
ble E1). Thus, we extracted the data in China from global
trait maps. Before the quantitative comparisons with previous
studies, we performed two steps to make the data products as
comparable as possible and to improve the consistency be-
tween different studies. First, due to the different spatial res-
olutions of the global trait maps (mainly 0.5°) and our study,
we resampled the data products of previous studies and our
maps to 0.5° spatial resolution. In addition to Vallicrosa et
al. (2022) generating the global maps of LNC and LPC with
1 km spatial resolution, we also compared the frequency dis-
tribution of Vallicrosa et al. (2022) with that of our study at
1 km spatial resolution. Second, our study focused on natu-
ral vegetation, so the global trait maps were used to filter out
nonnatural vegetation (e.g., croplands). For example, Madani
et al. (2018) predicted the spatial distribution of SLA that in-
cluded croplands. We quantitatively compared our maps with
previous studies from two perspectives. The comparisons be-
tween trait maps were made using frequency plots and spatial
correlation (Figs. 7 and E1, Table 4). The maps of the spa-
tial differences between our study and previous studies are
displayed as Figs. E2–E6 in Appendix E.
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Table E1. Summary of the related trait maps of the previous studies used in this study.

Reference Related
traits

Methods Predictors Consideration of PFTs Spatial resolution

Dong et al. (2023) SLA
LNC

Optimality models Climate Yes 0.5°

Vallicrosa et al. (2022) LNC
LPC

Neural networks Climate
Soil
N and P deposition

Yes 0.0083°

Schiller et al. (2021) SLA
LNC
LA
WD

Convolutional neural
networks

Climate
In situ RGB images

No 0.5°

Boonman et al. (2020) SLA
LNC
WD

Generalized linear
model, generalized
additive model, random
forest, boosted regres-
sion trees, ensemble
model

Climate
Soil

No 0.5°

Moreno et al. (2018) SLA
LNC
LPC
LDMC

Regularized linear re-
gression, random for-
est, neural networks,
kernel networks

Climate
Elevation
Reflectance

Yes 0.0045°

Madani et al. (2018) SLA Generalized additive
model

Climate No 0.5°

Butler et al. (2017) SLA
LNC
LPC

Bayesian model Climate
Soil

Yes 0.5°

van Bodegom et al. (2014) SLA
WD

Multiple regression
analysis

Climate
Soil

No 0.5°

The resolutions 0.5, 0.0083 and 0.0045° correspond to square grid cell sizes of about 50 km, 1 km and 500 m at the Equator. PFT: plant functional type; SLA: specific leaf area;
LDMC: leaf dry matter content; LNC: leaf N concentration; LPC: leaf P concentration; LA: leaf area; WD: wood density.

Figure E1. Frequency distributions of the plant functional traits in our study (“This study”, dashed black lines) and Vallicrosa et al. (2022)
at 1 km spatial resolution. (a) LNC (mg g−1); (b) LPC (mg g−1).
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Figure E2. Spatial differences in SLA (m2 kg−1) between our study and trait maps from previous studies (see Table E1 for citations).

https://doi.org/10.5194/essd-16-1771-2024 Earth Syst. Sci. Data, 16, 1771–1810, 2024



1804 N. An et al.: Spatial mapping of key plant functional traits in terrestrial ecosystems across China

Figure E3. Spatial differences in LNC (mg g−1) between our study and trait maps from previous studies (see Table E1 for citations).
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Figure E4. Spatial differences in LPC (mg g−1) between our study
and trait maps from previous studies (see Table E1 for citations).

Figure E5. Spatial differences in LA (cm2) between our study and
trait maps from previous studies (see Table E1 for citations).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-1771-2024-supplement.

Figure E6. Spatial differences in WD (g cm−3) between our study
and trait maps from previous studies (see Table E1 for citations).
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