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Abstract. In situ measurements from sparsely distributed networks worldwide are a critical source of reference
data for validating or correcting biases in satellite products. However, due to the substantial difference in spatial
scales between in situ and satellite measurements, the two cannot be compared except for the fact that the under-
lying surface of in situ sites is absolutely homogeneous. Instead, the in situ measurements needed to be upscaled
to be matched with the satellite pixels. Based on the upscaling model, we also proposed the consideration that
in situ observation generally lacks spatial representativeness due to the widely distributed spatial heterogeneity,
and we have developed a coarse pixel-scale ground “truth” dataset based on ground measurements of 416 in situ
sites from the sparsely distributed observation networks. Furthermore, we thoroughly assessed the effectiveness
of the dataset at sites with different degrees of spatial representativeness. The results demonstrate that using
this dataset in validation outperforms the direct comparison between satellite and in situ site measurements over
heterogeneous surfaces when in situ measurement footprints are less than satellite pixel size. The accuracy of
the reference data employed for validation or bias correction can be boosted by 17.09 % over the regions with
strong spatial heterogeneity. However, the degree of improvement with this dataset displays a decreasing trend
with the reduction in spatial heterogeneity. At a global scale, the pixel-scale ground “truth” dataset enhances
the accuracy of pixel-scale reference data in general, with the overall relative root-mean-square error (RRMSE)
decreasing by 6.04 % compared to in situ single-site measurements. Our results suggest that in situ single-site
measurements are limited in their ability to capture surface spatial variability information at a coarse pixel scale
(i.e., the kilometer scale). The dataset we provided, which merges temporal information from ground-based ob-
servations and spatial information from high-resolution data, represents a valuable resource for validating and
correcting worldwide surface albedo products over heterogeneous surfaces. To the best of our knowledge, this
dataset is unique in providing a coarse pixel-scale ground “truth” with the widest spatial distribution and longest
time series. The dataset is publicly available through https://doi.org/10.5281/zenodo.8008454 (Pan et al., 2023).
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1 Introduction

Surface albedo is an important variable in climate and bio-
geochemical models because it determines the amount of
energy absorbed by the Earth’s surface. Coarse-pixel (i.e.,
with a kilometer pixel scale) satellite albedo products such
as MODIS and the Suomi National Polar-orbiting Partner-
ship (NPP) Visible Infrared Imaging Radiometer Suite (VI-
IRS) have been widely used to tackle global challenges and
support a range of initiatives (e.g., the Paris Agreement and
Sustainable Development Goals). However, satellite albedo
products generally suffer from different degrees of errors due
to the error in satellite observation data and the limitation of
the inversion algorithm, and the error in the remote-sensing
product brings great uncertainty to the next application of the
product. Taking albedo as an example, the change in albedo
of 11 % will cause a fluctuation in surface net radiation
of 3.5 Wm−2 on global and annual averages (GCOS-154,
2011), which in turn will cause the change in global tem-
perature of 0.1 K. An increase of 0.00106± 0.00008 (mean
± standard deviation) in albedo will cause the radiation at
the top of the atmosphere to cool by −0.15± 0.1 Wm−2

(Ghimire et al., 2014). Therefore, it is very important to eval-
uate the uncertainty of remote-sensing albedo products. In
particular, when the error is relatively large, it is urgent to
correct the error in remote-sensing albedo products to im-
prove the application accuracy of remote-sensing products.
Both the validation and correction of remote-sensing prod-
ucts rely on reference data, which can represent the ground
“truth” on the coarse pixel scale.

The sparsely distributed in situ sites (i.e., at most one site
within a specific product grid cell) from networks such as
FLUXNET, Baseline Surface Radiation Network (BSRN),
and Surface Radiation (SURFRAD) provide an important
data source for the validation of remote-sensing albedo prod-
ucts (Chu et al., 2021; Augustine et al., 2000; Driemel et
al., 2018). However, in situ measurements cannot be directly
used as a coarse pixel-scale “truth” if the footprint of in situ
sites (depending on tower height) is far less than the scale of
a coarse pixel. A practical method of using in situ site mea-
surements as the coarse pixel-scale “truth” is to conduct the
spatial representativeness assessment of in situ sites (Román
et al., 2009; Wang et al., 2014b; Moustafa et al., 2017). How-
ever, since these in situ sites were not originally established
for the validation or bias correction of satellite products, only
a small part of them was proven to be spatially representative,
and most of them were rejected. Even for the representative
site, the representativeness errors of in situ measurements are
still inevitable, because land surfaces are not absolutely ho-
mogeneous throughout the year (Colliander et al., 2017; Xu
et al., 2018; Lei et al., 2018; Williamson et al., 2018). Con-
sequently, the representative in situ measurements are only
limited to a few locations on the globe and cover discrete
time periods, which cannot support a comprehensive vali-

dation and bias correction over a wide range of conditions
(Loew et al., 2016).

To overcome the representative errors of in situ measure-
ments and to promote the utilization ratio of in situ sites from
these sparse networks in validation, Wu et al. (2020) pro-
posed an upscaling method specified for the single-site in situ
measurements. However, the effectiveness of this method has
not been comprehensively assessed, and its transferability to
in situ sites all over the world is still unknown. As the contin-
uation and deepening of our previous work (Wu et al., 2020),
this study places an emphasis on the comprehensive evalu-
ation and extensive use of this upscaling method based on
416 in situ sites throughout the world. Furthermore, a coarse
pixel-scale ground “truth” dataset was provided for valida-
tion and bias correction of satellite surface albedo products.
The potential usage of this dataset was also discussed.

It is important to note that the Copernicus Global Terres-
trial Monitoring Service partners have instituted a centralized
validation database known as the Copernicus Global Ter-
restrial Product Validation (GBOV, http://land.copernicus.eu/
global/gbov/home, last access: 18 December 2023) ground-
based observation dataset, providing direct access to the set
of reference measurements. However, the Copernicus GBOV
ground-based observation dataset merely comprises 20 sta-
tions that provide albedo reference data, and the scope of
these reference data is inadequate for systematically eval-
uating remote-sensing products globally. Thus, our collec-
tion of ground-based “truth”, which covers the widest spatial
range and the longest time series on the coarse pixel scales, is
essential for supplementing the scientific efforts on existing
albedo datasets and delivering a more precise and consistent
albedo reference dataset on the coarse pixel scale for hetero-
geneous regions.

2 The experimental data

2.1 In situ site observation

In this study, in situ radiometric measurements from
SURFRAD, BSRN, FLUXNET, Heihe Watershed Allied
Telemetry Experimental Research (HiwaterWSN) (Li et al.,
2013), and Huailai station (Ma et al., 2013) were incorpo-
rated to generate the coarse pixel-scale “truth” dataset. These
measurements include half-hourly observations of ecosystem
fluxes and meteorological data. Figure 1 illustrates the spatial
distribution of these in situ sites. The geographical distribu-
tion of these sites is predominantly concentrated in Europe
and North America, accounting for 50 and 272 sites, respec-
tively, which represent 12 % and 65 % of the total. These
regions have a long history of conducting continuous and
high-quality ecosystem flux measurements (Baldocchi et al.,
2001). Additionally, there are several long-term observation
sites located in tropical Amazonia, East Asia, and Australia.
However, the coverage in Africa and polar regions remains
limited in terms of both the number of sites and the years
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Figure 1. The distribution of the 416 in situ sites over different land cover types.

Figure 2. The distribution of stations across 15 land cover types
indicated by the International Geosphere-Biosphere Programme
(IGBP). WAT, BSV, SNO, CVM, URB, CRO, WET, GRA, SAV,
WSA, OSH, CSH, MF, DBF, EBF, and ENF are the abbreviations of
water bodies, barren, snow and ice, cropland or natural vegetation
mosaics, urban and built-up lands, cropland permanent wetlands,
grassland, savanna, woody savanna, open shrubland, closed shrub-
lands, mixed forest, deciduous broadleaf forest, evergreen broadleaf
forest, and evergreen needleleaf forest. The numerical value dis-
played above each bar in the chart indicates the total number of
stations associated with the corresponding land cover type.

observed. Despite this uneven geographical distribution, the
selected in situ measurements ensure comprehensive cover-
age of the main plant functional types, including grasslands
(GRA), croplands (CRO), woody savannas (WSA), decidu-
ous broadleaf forests (DBF), mixed forests (MF), and ever-
green needleleaf forests (ENF). These functional types are
prominently represented, comprising 25 %, 19 %, 11 %, 9 %,
8 %, and 6 % of the sites, respectively.

These in situ sites were equipped with double pyranome-
ters mounted back to back, one pointed downward and the
other upward, measuring the downward radiation and the up-

ward radiation. Surface albedo is typically measured in the
spectral range 280–2800 nm (which accounts for over 98.5 %
of the surface solar radiation according to the ASTM G-
173 reference spectra), which is parallel to the broadband
MODIS albedo (300–5000 nm). The slight inconsistency of
the spectral range between in situ and satellite measurements
is negligible because the downwelling solar energy in the
spectral region below 0.35 µm or above 2.2 µm is very low
(Wright et al., 2014). It should be noted that the footprint
of in situ sites is variable due to the different measurement
heights of the albedometers from the underlying surface,
which typically depends on both the height of albedometers
and the height of the canopy top. Furthermore, the field of
view of the various sensors and the ideal and non-ideal cosine
responses of the sensors need to be considered (Balzarolo et
al., 2011; Cescatti et al., 2012; Song et al., 2019; Marion,
2021). To reduce the possible effects of unstable lighting on
flux measurements and to align with satellite albedo products
that generally report local solar noon albedo, the in situ site
measured blue-sky albedo was calculated using the ratio of
the mean upward radiation to the mean downward radiation
around local solar noon (11:00–13:00) as suggested by Lin
et al. (2022).

2.2 The high-resolution albedo

Landsat Enhanced Thematic Mapper Plus (ETM+) imagery
with eight distinct bands, including three in the visible spec-
trum, four in the infrared spectrum, and one in the panchro-
matic band, was incorporated as the pivotal component to up-
scale ground measurements to the scale of the coarse pixel.
This integration of ETM+ imagery served a twofold purpose,
Firstly, it enabled the capture of spatial variability attributes
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at the coarse pixel scale surrounding each site, establishing
the foundation for a robust upscaling model. Secondly, it fa-
cilitated coarse pixel-level aggregation within a 17 pixel× 17
pixel window (an approximately 510 m× 510 m area, con-
sidered a coarse-scale pixel), serving as the reference value
of the coarse-pixel albedo. All Landsat ETM+ surface re-
flectance (SR) imagery from 2012 to 2018 were collected
through the Google Earth Engine (GEE) platform. There are
an average of 65 ETM+ images collected at each site. Each
ETM+ image has been atmospherically and geometrically
corrected (Teixeira et al., 2020). The bad pixels such as those
associated with cloud, cloud shadow, and saturated pixels
were identified and masked by the CFMask algorithm (Zhu
et al., 2015; Zhu and Woodcock, 2012).

The retrieval of high-resolution surface albedo was carried
out using the algorithm proposed by Liang (2001). It relies
on a spectral reflectance library and simulations conducted
under various atmospheric and surface conditions with the
Lambertian assumption so that the surface reflectance numer-
ically equals the spectral albedo (Liang et al., 2002). Notably,
the anticipated accuracy of this algorithm approximates 0.02.
The algorithm provides formulae for converting spectral in-
formation to broadband albedos for ETM+ imagery (Liang,
2001). In this study, we employed the following equation to
calculate shortwave blue-sky albedo estimates.

αshort = 0.356α1+ 0.130α3+ 0.373α4+ 0.085α5

+ 0.072α7− 0.0018 (1)

αshort denotes the shortwave blue-sky surface albedo, and αi
denotes the spectral albedo at the wavelength of the ith satel-
lite spectral band.

2.3 Coarse pixel-scale satellite albedo product

The MCD43A3 V061 product was used in this paper to serve
as an example of coarse-pixel satellite albedo products due to
its wide acceptance. The shortwave (3000–5000 nm) albedo
was extracted to match the spectral range of in situ measured
albedo. It provides black-sky albedo (BSA) and white-sky
albedo with a spatial resolution of 500 m and a temporal res-
olution of daily (Schaaf et al., 2002). The blue-sky albedo
encompasses both direct and diffuse components character-
izing the albedo of the surface under actual atmospheric con-
ditions. It can be expressed as a linear combination of BSA
and WSA with an assumption of an isotropic distribution of
diffuse radiation. In this study, the following equation is used
to calculate the MODIS blue-sky albedo (α) (Román et al.,
2010; Lewis and Barnsley, 1994; Lucht et al., 2000; Pinty et
al., 2005; Wang et al., 2019).

α = αWSA× r +αBSA× (1− r) (2)

r is the proportion of diffuse irradiation at a certain solar
zenith angle (SZA), and α, αWSA, and αBSA represent the
blue-sky albedo, WSA, and BSA of MCD43A3, respectively.

The proportion of diffuse radiation originates from light scat-
tering and the reflection and transmission processes involv-
ing clouds and aerosols within a clear blue sky. In this study,
we approximated the proportion of diffuse irradiation as a
function of the cosine of the SZA at noon using an empir-
ical statistical equation (i.e., Eq. 3). Although this equation
is approximate, it avoids the excessive amount of calculation
while capturing the major phenomenon (Pinker and Laszlo,
1992). In fact, this empirical function has been widely used
by previous studies (An et al., 2022; Mao et al., 2022; Wang
et al., 2014a; Lewis and Barnsley, 1994).

r = 0.122+ 0.85× exp(−4.8× cosθ ) (3)

θ denotes the solar zenith angle at local solar noon.

2.4 The ancillary dataset

Auxiliary data were used to detect the potential control fac-
tors that influence the accuracy of coarse pixel-scale ground
“truth”. In this study, several common surface parameters,
including elevation, land cover type, and spatial heterogene-
ity, were considered, as they were believed to be related
to albedo. Elevation data were obtained from the Multi-
Error-Removed Improved-Terrain (MERIT) digital elevation
model (DEM) (Mcclean et al., 2020; Yamazaki et al., 2017),
with a high horizontal resolution of 3 arcsec (approximately
90 m). The MERIT DEM addresses a range of error compo-
nents within the SRTM3 DEM, including stripe noise arising
from sensor errors, speckle noise associated with surface re-
flectance, and absolute bias stemming from limited ground
control points (Uuemaa et al., 2020). Land cover informa-
tion was sourced from MCD12Q1, with a spatial resolution
of 500 m at an annual time step from 2012 to 2018. The IGBP
classification scheme was selected in this study based on its
recognized precision and widespread acceptance. With the
consideration of the slight difference in land cover types at
certain sites across different years, we opted to select the
dominant land cover type for each site.

3 Methodology

3.1 The upscaling model specified for single in situ site
measurements

In situ measurements taken at a single in situ site can pro-
vide accurate measurements on the point scale and offer con-
tinuous temporal variation information for long time series.
However, they are insufficient for representing albedo at the
coarse pixel scale due to the spatial heterogeneity within the
coarse pixel. High-resolution albedo maps can capture the
spatial variation information within the coarse pixel. The ba-
sic idea of the upscaling model is to derive the upscaling co-
efficients based on high-resolution albedo maps and to then
apply these upscaling coefficients to long-term in situ mea-
surements (Wu et al., 2020). In this way, both the spatial vari-
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Figure 3. The flowchart of generating the coarse pixel-scale ground “truth” based on the upscaling model.

ation information and the temporal variation information of
surface albedo can be captured through the combination of
high-resolution albedo maps and long time series in situ mea-
surements deriving the long time series pixel-scale ground
“truth” data.

Since the high-resolution albedo maps serve as an im-
portant linkage between the in situ measurement scale and
the satellite coarse pixel scale, they should meet several re-
quirements. First, its spatial resolution should be minimal to
ensure the surface homogeneity within the fine pixel scale
and stable radiation acquisition. Second, approximately 80 %
of the energy of the in situ observed signal originates from
within 10–20 m of the flux tower (Cescatti et al., 2012; Wang
et al., 2014a), and the pixel size of the high-resolution dataset
should be near the footprint of in situ sites. Third, since the
upscaling coefficients were determined by long time series
high-resolution albedo maps and then were applied to long
time series in situ measurements, the high-resolution albedo
maps should cover at least one full cycle period, typically
a year, to account for seasonal changes in surface hetero-
geneity caused by phenology and to guarantee the stability
of the upscaling coefficients. For these reasons, the Landsat
ETM+ albedo data were adopted in this study. In this paper,
the Landsat ETM+ pixel is also called a subpixel relative to
the coarse pixel.

The upscaling coefficients were calculated for each sub-
pixel within the coarse pixel extent by establishing a regres-
sion relationship between one subpixel albedo time series

and the subpixel albedo time series corresponding to the in
situ site (Eq. 4). To avoid the uncertainty caused by different
data sources, both of them were simulated by ETM+ albedo.
Using the same data source can reduce the influence of errors
in ETM+ albedo to a certain extent.

θETM+(x,y,d)=W (x,y)T θETM+_in situ′ (d) (4)

θETM+_in situ′ (d)=
[
1,θETM+_in situ(d)

]T (5)

x and y correspond to the location of a single ETM+ pixel
within a coarse pixel, while d denotes the date of the ETM+
albedo map. θETM+_in situ denotes the ETM+ albedo time se-
ries corresponding to the in situ site. The vector W represents
the upscaling coefficients to be derived.

To ensure a robust estimation, a cost function J is estab-
lished by combining all the ETM+ albedo data throughout
the whole time series (i.e., 2012–2018).

J =min

{
L∑
d=1

[
θETM+(x,y,d)−W (x,y)T

θETM+_in situ′ (d)
]2} (6)

Using the ordinary least-squares (OLS) algorithm, the vector
of coefficients W can be obtained by minimizing the cost
function.
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W (x,y)=
[
θTETM+_in situ′θETM+_in situ′

]−1

θTETM+_in situ′θETM+(x,y) (7)

When the upscaling coefficients were determined, they were
applied to in situ site measurements (θin situ) to simulate the
in situ reporting of surface albedo (θin situ_ETM+) over each
ETM+ pixel within the coarse pixel.

θin situ_ETM+ (x,y,d)=W (x,y)T θin situ(d) (8)

Then the coarse-pixel ground “truth” (θin situ_ref) can be de-
rived by aggregating all the θin situ_ETM+ within the coarse
pixel using the point spread function (PSF) of the MODIS
albedo characterized by Peng et al. (2015).

θin situ_ref (d)=

∫
(x,y)∈DfPSF(x,y)θin situ_ETM+ (x,y,d)∫

(x,y)∈DfPSF(x,y)
(9)

D denotes the spatial extent of the coarse pixel, and fPSF
represents the PSF.

The upscaling coefficients in Eqs. (8)–(9) remain time-
independent and can be used to upscale in situ measure-
ments throughout the entire time series, except when sudden
changes like wildfires or deforestation on the land surfaces
occur. It is noteworthy that a high-resolution albedo map is
no longer a prerequisite for the practical upscaling process
once the upscaling coefficients have been obtained.

3.2 The evaluation of upscaling models and pixel-scale
ground “truth”

3.2.1 The evaluation of the upscaling model

The accuracy of the generated albedo dataset hinges signif-
icantly on the quality of the upscaling model employed. In
the study, a critical component of the upscaling approach in-
volves the acquisition of upscaling coefficients derived from
30 m ETM+ albedo covering the period from 2012 to 2018.
Consequently, the accuracy of the upscaling model is intri-
cately tied to the performance of these coefficients. Inspired
by the evaluation approach proposed by Wu et al. (2016),
we conducted an assessment to gauge the accuracy and ro-
bustness of these upscaling coefficients. This evaluation in-
volved a comparison between aggregated fine-scale albedo
and reference coarse-scale albedo, utilizing ETM+ albedo
data acquired from 2019 to 2021. The aggregated fine-scale
albedo with the upscaling coefficients can be determined
with Eqs. (10)–(11), and the reference coarse-scale albedo
is the aggregated ETM+ albedo on the coarse pixel scale as
recommended by Wu et al. (2016) (Eq. 12).

θRETM+ (x,y,d)=W (x,y)T θETM+(d) (10)

θupscaling (d)=

∫
(x,y)∈DfPSF(x,y)θRETM+ (x,y,d)∫

(x,y)∈DfPSF(x,y)
(11)

θreference (d)=

∫
(x,y)∈DfPSF(x,y)θETM+(d)∫

(x,y)∈DfPSF(x,y)
(12)

θETM+ and θRETM+ are the ETM+ albedo corresponding to
the in situ site and each ETM+-simulated pixel albedo incor-
porating upscaling coefficients and θETM+. θupscaling denotes
the upscaling results based on the θETM+ and upscaling coef-
ficients. θreference represents the reference coarse pixel-scale
albedo.

The similarity and consistency between θupscaling and
θreference were evaluated by three metrics: bias, coefficient of
determination (R2), and root-mean-square error (RMSE).

RMSE=

√√√√ L∑
d=1

(
θupscaling(d)− θreference(d)

)2
/L (13)

Bias=
L∑
d=1

(θupscaling(d)− θreference(d))/L (14)

R2
=

[∑L
d=1

(
θupscaling(d)− θupscaling

)
(
θreference(d)− θreference

)]2∑L
d=1

(
θupscaling(d)− θupscaling

)2∑l
d=1

(
θreference(d)− θreference

)2
(15)

3.2.2 Assessment of the coarse pixel-scale ground
“truth”

When the upscaling coefficients are determined, they can
be applied to in situ measurements to derive the pixel-scale
ground “truth” that aligns with the spatial resolution of
coarse-resolution products. The evaluation process adheres
to the previously outlined methodology (Sect. 3.2.1). That
is, the reference coarse pixel-scale albedo (θreference) was
also utilized to assess the accuracy of the coarse pixel-scale
ground “truth” (θin situ_ref) as suggested by previous studies
(Wu et al., 2016, 2020) as follows.

RMSE=

√√√√ L∑
d=1

(θin situ_ref(d)− θreference(d))2/L (16)

To eliminate the influence of the magnitude of surface albedo
on accuracy indicators, the relative root-mean-square error
(RRMSE) was used here, which is defined as the ratio of the
RMSE to the mean surface albedo at the coarse pixel scale.

RRMSE=
RMSE
θin situ_ref

× 100% (17)
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θin situ_ref and θin situ_ref represent the coarse pixel-scale
“truth” and the mean value of the coarse pixel-scale “truth”,
and L denotes the length of the temporal sequence of data.

It is important to note that the θreference dataset used here
is not necessarily the same as that in Sect. 3.2.1 due to the
different match pairs in the temporal domain. In Sect. 3.2.1,
θreference is the result of the match between θETM+ and
θRETM+ as shown in Eqs. (11)–(12). By contrast, in this
section, θreference is the result of the match between θETM+
and θin situ as shown in Eqs. (8)–(9) and Eq. (12). In ad-
dition to these accuracy indicators, the performance of the
coarse pixel-scale ground “truth” was also assessed through
the comparison with single in situ site measurements.

3.2.3 Measure of spatial heterogeneity

Spatial heterogeneity is a critical factor influencing the
spatial-scale match between in situ and satellite measure-
ments, because it reduces the spatial representativeness of in
situ measurements (Wu et al., 2022). It refers to the uneven
distribution of surface albedo within a coarse pixel. A pixel
that exhibits spatial heterogeneity shows that the value of the
surface albedo at one location is different from that of other
locations. To quantify the spatial heterogeneity of surface
albedo within a coarse pixel, the spatial variability (standard
deviation, SD) of all subpixel albedos within a coarse pixel
was calculated as recommended by previous studies (Col-
liander et al., 2017; Jin et al., 2003). Here, the subpixel albe-
dos denote the high-resolution pixel albedo (i.e., the Landsat
ETM+ pixel albedo) within the coarse pixel.

SD=

√√√√ 1
L− 1

L∑
i=1

(Zi −Z)2 (18)

Zi denotes the high-resolution albedo, and Z is the averaged
albedo of all high-resolution albedos within the extent of the
coarse pixel.L refers to the number of high-resolution albedo
pixels with a coarse pixel.

4 Results and discussion

4.1 The performance of the upscaling model

The performance of the upscaling coefficients has been com-
prehensively evaluated over the 416 in situ sites. The wide
spread of in situ sites across different elevations, different
land cover types, and different degrees of spatial heterogene-
ity can ensure the objectivity of the evaluation results. To
show the agreement between θupscaling and θreference more in-
tuitively, we present the scatterplots between them in Fig. 4.
As shown in Fig. 4, the scatterplots between θupscaling and
θreference are generally distributed around the 1 : 1 line, with
R2 close to 0.9. The upscaling coefficients show no system-
atic error, indicated by the biases close to 0. However, the
performance of the upscaling models is site-dependent. For

instance, the accuracy of the upscaling models over the US-
Ha2 site obviously outperforms that of the IT-Tor site (Fig. 4c
vs. f). It is apparent that the RMSE, R2, and sample size are
unrelated. For instance, US-UMB and CA-NS2 share compa-
rable environmental conditions despite their dissimilar sam-
ple sizes, yet their RMSE and R2 are similar. To fully under-
stand the performance of upscaling coefficients under differ-
ent conditions, the accuracy indicators of the upscaling coef-
ficients throughout these 416 in situ sites are summarized as
the histograms (Fig. 5).

Based on the results presented in Fig. 5, it can be seen
that the overall accuracy of the upscaling coefficients is sat-
isfactory. The biases range from −0.06 to 0.10, and more
than 90 % of them are within the range of ±0.02 (Fig. 5b).
The highest density of R2 is between 0.9 and 1 as shown in
Fig. 5c, and only a small part of the sites show a relatively
small R2 of lower than 0.8 but larger than 0.5. Nevertheless,
it should be noted that those sites exhibit a more scattered
distribution of RMSE values, with a maximum of 0.1 and a
minimum of 0.01 (Fig. 5a). The highest density is between
0.03 and 0.05 for the RMSE.

As can be seen from the accuracy distribution of the up-
scaling model, the proportion of the sites with a reasonable
RMSE and R2 is more than 65 %. Moreover, the RMSE and
R2 show consistent instructions about the performance of the
upscaling model as shown in Fig. 6. For instance, in the case
of optimal R2, the RMSE is very likely to be less than 0.05.
By contrast, the poor RMSE is generally accompanied by
the poor R2 of the model. The distribution of the sites with
poor RMSE and R2 is dispersed and is not location-specific.
Both GCOS (GCOS-154, 2011) and CEOS LPV albedo best-
practice protocols (Wang et al., 2019) indicate the better per-
formance of BSRN than the other networks. However, this
phenomenon does not occur with this upscaling model given
the comparable RMSE and R2 among the different networks.

Given the fact that the accuracy of the upscaling models
shows great variability, it is necessary to explore the influ-
encing factors on the performance of the upscaling models.
In this study, the effects of land cover type, elevation, and
spatial heterogeneity were considered. The influence of spa-
tial heterogeneity on the accuracy of the upscaling model is
displayed in Fig. 7. The RMSE exhibits a significant positive
correlation with spatial heterogeneity (Fig. 7a), with superior
performance often observed in areas with lower spatial het-
erogeneity. Similarly, the R2 of different sites typically de-
creases with the increase in spatial heterogeneity (Fig. 7b). It
is worth noting that, when the spatial heterogeneity exceeds
0.1, the R2 of the model fluctuates considerably, indicated
by the larger height of the boxplots. Based on these results, it
can be seen that the spatial heterogeneity has enormous im-
plications for the performance of the upscaling models. One
possible reason is that the assumption of a linear relationship
between the subpixel albedo of the other locations and the
subpixel albedo containing the in situ site cannot be satisfied
over the surface with large spatial heterogeneity.
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Figure 4. The scatterplots between the upscaling results (θupscaling) with the upscaling models and the coarse pixel-scale reference
(θreference). Only parts of the results are shown for conciseness. Specifically, only one in situ site is shown for each land cover type.

Table 1. Description of the in situ sites used in the model performance analysis.

Networks US-UMB CA-NS2 US-Ha2 FR-Gri CA-Lp1 IT-Tor

Location (lat, long) (45.5598, (55.9058, (42.5393, (50.9500, (55.1119, (45.8444,
−84.7138) −98.5247) −72.1779) 13.51259) −122.8414) 7.5781)

Spatial heterogeneity 0.0133079 0.0640852 0.0065224 0.5564959 0.18694994 1.01929451
Elevation (m) 236.72682 271.09771 367.29669 377.65914 749.265564 2162.78979
Land cover type DBF EBF MF CRO WSA GRA

Figure 8 illustrates the RMSE and R2 of the upscaling
model as a function of elevation. Notably, the upscaling
model exhibits the highest accuracy at elevations below sea
level, with the lowest median RMSE of about 0.03 and the
highest median R2 of more than 0.95. In contrast, the model
performs poorly at elevations exceeding 2500 m, with the
highest RMSE and the lowest R2. However, there are no sig-
nificant trends of RMSE and R2 in the areas with an alti-
tude between 0 and 2500 m above sea level. There is merely
a slight decreasing trend as the altitude increases from 0–
200 m to 500–1500 m, but then a slightly increasing trend
appears as the altitude increases from 500–1500 m to above
2500 m. Both RMSE and R2 exhibit significant variability,
indicated by the large heights of the boxplot, except for re-
gions where the elevation is less than 0 m. These results im-
ply that the accuracy of the upscaling models is subject to
a diverse array of factors. The good performance of the up-
scaled model in the area below sea level may be attributed
to the limited spatial variability given that the spatial hetero-
geneity of the region below sea level is less than 0.1 as shown

in Fig. 9. By contrast, the poor accuracy of the upscaling
model above 2500 m may be partly attributed to the fact that
the areas above 2500 m have complex and undulating topog-
raphy with elevations ranging from 2500 to 4000 m. These
results demonstrate that the substantial variation in elevation
also significantly impacts the performance of the upscaling
model.

As illustrated in Fig. 9, the RMSE significantly rises with
the augmentation of spatial heterogeneity at each level of ele-
vation. This indicates that spatial heterogeneity plays a dom-
inant role in determining the performance of the upscaling
models. Nevertheless, the influence of spatial heterogeneity
seems to be related to the elevation. As shown in Fig. 9a,
there is a tendency for the difference in the median RMSE
between different levels of spatial heterogeneity, which in-
crease gradually with the elevation, and a similar pattern is
observed for R2. However, the trends of RMSE and R2 with
altitude are not the same for each level of spatial hetero-
geneity. The trends for regions with low spatial heterogeneity
(< 0.1) were not significant. In contrast, regions exhibiting

Earth Syst. Sci. Data, 16, 161–176, 2024 https://doi.org/10.5194/essd-16-161-2024



F. Pan et al.: A coarse pixel-scale ground “truth” dataset 169

Figure 5. Distribution of the RMSE (a), bias (b), and R2 (c) of the upscaling coefficients. The histograms presented here combine the results
of the 416 in situ sites.

Figure 6. Spatial distribution of the RMSE (a) and R2 (b) of the
upscaling model.

high spatial heterogeneity (> 0.3) showed an increasing or
decreasing trend for the RMSE or R2 with elevation, partic-
ularly for the area above 500 m.

The influence of land cover type on the accuracy of the
upscaling model is displayed in Fig. 10. It is revealed that
the performance of the model is considerably insufficient for
evergreen broadleaf forest (EBF), as most of the RMSEs ex-
ceed 0.05 and the R2 values are below 0.90. By contrast,
the model delivers the optimal outcomes for barren (BSV),
with the smallest RMSE being approximately 0.01 and with
a relatively high R2 value of around 0.97. The accuracy of
the model is comparable across all the other surface cover
types, with RMSE and R2 values of approximately 0.05 and
0.90, respectively. Additionally, the accuracy remains con-
sistent for CSH, URB, and CVM based on the small range

Figure 7. Boxplots showing the dependence of the RMSE (a) and
R2 (b) of the upscaled albedo on spatial heterogeneity. Three differ-
ent degrees of spatial heterogeneity are marked by different colors.
Black lines indicate median values. Outliers are values that are far-
ther than the 1.5 interquartile ranges. The number of in situ sites
with spatial heterogeneities of [0–0.1], [0.1–0.3], and [0.3–1.5] are
337, 49, and 30, respectively.

of RMSE boxplots, indicating an overall stable model per-
formance. On the other hand, the RMSE boxplots for ENF
and EBF exhibited a significant range of values, highlighting
the substantial variation in the model performance in these
regions. Furthermore, the impact of the land cover type is
elaborately connected to the influence of spatial heterogene-
ity. Figure 11 illustrates that there is limited spatial hetero-
geneity for the BSV, while considerable locations with EBF
exhibit pronounced spatial heterogeneity.

As shown in Fig. 11a, the RMSE of the upscaling model
basically presents an increasing trend with spatial hetero-
geneity over each land cover type, further indicating the dom-
inant role of spatial heterogeneity in determining the accu-
racy of the upscaling model. The stable accuracy of the up-
scaling models at OSH, URB, and CVM is attributed to fewer
sites with a relatively large spatial heterogeneity. Neverthe-
less, the influence of spatial heterogeneity shows dependence
on land cover type, which is most significant on GRA.
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Figure 8. The variations of RMSE (a) and R2 (b) with elevation. The accuracy of upscaling models responds to different elevations when the
elevation is below sea level (n= 9), [0–200] (n= 114), [200–500] (n= 162), [500–1500] (n= 78), and [1500–2500] (n= 32), above 2500 m
(n= 21). Black lines indicate the median values. Outliers are values that are farther than the 1.5 interquartile ranges.

Figure 9. The plots show the combined results of the RMSE (a) and R2 (b) variations based on elevation and spatial heterogeneity. Black
lines indicate the median values. Outliers are values that are farther than the 1.5 interquartile ranges.

4.2 The accuracy of the pixel-scale ground “truth”

Since there are a considerable number of in situ sites, the ac-
curacy of the pixel-scale ground “truth” was summarized as
the boxplots (Fig. 12). For comparison purposes, the errors
in single-site measurements when they were directly used as
the pixel-scale reference were also calculated and summa-
rized as the boxplots. It can be seen that the errors in the
pixel-scale ground “truth” show a slight variation with spa-
tial heterogeneity, with the median RRMSE ranging from
88.35 % to 113.69 % and then to 138.26 %, resulting in the
overall RRMSE of 95.20 %. It is important to note that this
variation pattern is not the same as the accuracy of the up-
scaling model, which shows a monotonous decreasing trend
with the increase in spatial heterogeneity. The wide range
of the boxplots shows that the accuracy of the pixel-scale
ground “truth” is also influenced by other factors. Although
the errors of the pixel-scale ground “truth” are not negligi-
bly small, it is important to note that this kind of error can-
not reveal the absolute accuracy of the pixel-scale ground
“truth” given that the reference data themselves contain er-
rors. In fact, the focus of this evaluation is not the value of
RRMSEs but the difference in RRMSEs between the pixel-
scale ground “truth” and single in situ site measurements.
It can be seen that the accuracy of the pixel-scale ground
“truth” is consistently better than the single-site measure-
ments over the surfaces with different levels of spatial het-

erogeneity as shown in Fig. 12. The smaller RRMSE of
the pixel-scale ground “truth” (95.20 % vs. 101.24 %) indi-
cates that this dataset can improve the overall accuracy of
pixel-scale reference data a lot compared to the single-site
measurements. Nevertheless, the degree of improvement de-
pends on the situation, which is most significant over the sites
with the strongest spatial heterogeneity, with the RRMSE de-
creasing from 155.35 % to 138.26 %. The in situ sites with
medium spatial heterogeneity follow, with the RRMSE de-
creasing from 127.91 % to 113.69 %. The improvements are
smallest over the sites with the smallest spatial heterogene-
ity, with the RRMSE decreasing from 92.03 % to 88.35 %.
Hence, it can be concluded that the degree of improvements
of this dataset shows an increasing trend with spatial hetero-
geneity. Furthermore, the accuracy of the pixel-scale ground
“truth” dataset is more stable than that of the single-site mea-
surements, indicated by the smaller height of the boxplots of
the former.

The aforementioned results confirm the effectiveness of
our pixel-scale ground “truth” dataset in different scenar-
ios, which is superior to single-site measurements whether
for sites with higher or lower spatial heterogeneity. The im-
provement of this dataset is more significant over the hetero-
geneous sites. Hence, it is highly helpful over heterogeneous
surfaces in the validation or bias correction of satellite albedo
products.
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Figure 10. The variations in RMSE (a) and R2 (b) are depen-
dent on land cover. Different colors refer to the 15 different land
cover types. The accuracy of the upscaling models responds to
the different land cover types when the land cover types are ENF
(n= 25), EBF (n= 10), DBF (n= 39), MF (n= 35), CSH (n= 4),
OSH (n= 23), WSA (n= 46), SAV (n= 21), GRA (n= 104), WET
(n= 11), CRO (n= 77), URB (n= 8), CVM (n= 4), BSV (n= 6),
and WAT (n= 3). Black lines indicate median values. Outliers are
values that are farther than the 1.5 interquartile ranges.

Figure 11. The plots show combined results of the RMSE (a) and
R2 (b) variations based on land cover and spatial heterogeneity.
Black lines indicate median values. Outliers are values that are far-
ther than the 1.5 interquartile ranges.

4.3 The usage of the pixel-scale ground “truth” dataset

Validation is important for both satellite product manufactur-
ers and end-users as it provides a quantitative assessment of
the advantages and disadvantages of satellite products. How-
ever, due to diverse locations, coverage, scaling, and repre-
sentation of in situ measurements, the accuracy of satellite

Figure 12. The boxplots of the RRMSE of the pixel-scale ground
“truth” and single-site measurements. The boxplots are categorized
by different degrees of spatial heterogeneity and overall accuracy.
The median of the boxplots is indicated by the numbers around the
plots. Black lines indicate median values. Outliers are values that
are farther than the 1.5 interquartile ranges.

products can vary greatly. As a result, direct comparisons
of validation results are challenging, which ultimately limits
the overall usefulness of satellite products. As highlighted by
GCOS (GCOS-200, 2016), one solution to tackle this issue is
to adopt a comprehensive and uniform validation process that
relies on a standardized, consistent, and systematized refer-
ence dataset. The ground “truth” for the pixel scale was ac-
quired using a standardized operational procedure that lever-
aged a considerable number of measurements collected from
in situ sites scattered around the world. Such standardiza-
tion enables fair comparison between the accuracy of vari-
ous satellite products of the same essential climate variable
(ECV). Thus, it provides a foundation for coordinating the
use of diverse satellite albedo products and maximizing their
potential capabilities. Figure 13 presents an example of the
validation of MCD43A3 V0061 using the coarse pixel-scale
ground “truth” dataset.

Apart from serving as the reference for evaluating the ac-
curacy of satellite albedo products, the pixel-scale ground
“truth” database can also be used as a reference for address-
ing the influence of biases in satellite albedo products. Var-
ious models have been developed for such bias corrections
(Wang et al., 2022). For this research, the CDF (cumulative
distribution function) approach (Calheiros and Zawadzki,
1987) has been employed to correct the bias in MCD43A3
V0061 as an example. As indicated in Fig. 13 and Table 1,
correcting the bias generally makes satellite albedo products
more accurate, especially in regions with significant hetero-
geneity (Fig. 13d–f). Therefore, it is reasonable to assume
that this dataset could enhance the quality of satellite albedo
products in regions with prominent surface heterogeneity.
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Figure 13. The scatterplots between the MCD43A3 and pixel-scale ground “truth” (green dots) as well as the scatterplots between the
CDF-corrected MCD43A3 and pixel-scale ground “truth” (brown dots). US-UMB, CA-NS2, and US-Ha2 represent the regions with small
heterogeneity. FR-Gri, CA-LP1, and IT-Tor represent the regions with medium and strong heterogeneities.

5 Data availability

The processed coarse pixel-scale ground “truth” dataset is
publicly available and can be obtained through Zenodo
(https://doi.org/10.5281/zenodo.8008454, Pan et al., 2023).
The dataset files are available in machine-readable data for-
mat (.tab) and have been categorized separately into fold-
ers for FLUXNET, BSRN, SURFRAD, HIWATERWSN, and
the Huailai station, facilitating easy accessibility and utiliza-
tion.

6 Conclusions

The validation and correction of satellite reflectance products
are essential for promoting reasonable use of such products
in various scientific applications. Typically, these tasks de-
pend on extensive in situ single-site-based albedo measure-
ments. However, as satellite-based albedo and tower-based
albedo are generated at different spatial scales, direct com-
parison can only be performed on certain homogeneous sur-
faces. Nevertheless, spatial heterogeneity is a fundamental
feature of most land surfaces, which limits the spatial repre-
sentativeness of measurements from single sites. Therefore,
the most critical aspect of validation and correction is obtain-
ing the ground “truth” albedo at the pixel level based on field
measurements.

However, the methods used to acquire the ground “truth”
at the pixel scale differ greatly with regard to field measure-
ments, location, coverage, scale, and representation, lead-
ing to various accuracy levels of pixel-scale “truth” datasets.
Consequently, most validation or correction outcomes are
not easily comparable, thereby further hindering applica-
tions of satellite products. There is a requirement for a
consistent, impartial, and representative coarse pixel-scale
ground “truth” dataset of surface albedo. As far as is cur-
rently known, such a dataset with global coverage is currently
lacking. Therefore, we have developed a coarse pixel-scale
ground “truth” dataset using data collected from 416 in situ
sites in sparsely distributed observational networks including
SURFRAD, BSRN, and FLUXNET and a specified upscal-
ing model for individual site measurements to fill this gap.

The suitability of the upscaling model for application to
the in situ measurements was initially evaluated globally. The
upscaling coefficients displayed an acceptable overall accu-
racy, with 90 % bias following a normal distribution within
the range of ±0.02. The performance of the upscaling model
is significantly influenced by the spatial heterogeneity. How-
ever, the impact of spatial diversity depends on the altitude
and type of land coverage, and it becomes more significant
as elevation increases and covers the land cover type of GRA.

It is important to note that the absolute truth on the coarse
pixel scale is unattainable due to the limitations in instru-
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ments and measurement methods as well as the uncertainty
in the upscaling model (Wu et al., 2019; Wen et al., 2022).
Instead, the relative truth can be used to approximate the ab-
solute truth. What can be done is to improve the accuracy of
pixel-scale relative truth (also denoted as “truth”) as much
as possible. For instance, the in situ measurements can be
directly used as the pixel-scale reference over homogeneous
surfaces or in the case that the satellite acquisition and in
situ measurement footprints are similar, and the upscaling
model is not necessary as it has its own source of uncertainty.
However, the upscaling model is useful for heterogeneous
areas when in situ measurement footprints are less than the
satellite pixel size, because it increases the representativeness
of the sampling for direct validation. The accuracy assess-
ment results of the pixel-scale ground “truth” dataset demon-
strate that the accuracy of the reference data can be enhanced
by 17.09 % over the regions with strong spatial heterogene-
ity. However, the degree of improvement with this dataset
displays a decreasing trend as the reduction in spatial het-
erogeneity. At a global scale, the pixel-scale ground “truth”
dataset enhances the accuracy of pixel-scale reference data
in general, with the overall RRMSE decreasing by 6.04 %
compared to in situ single-site measurements.

Currently, a community-based validation tool such as
SALVAL (Surface Albedo VALidation) (Sánchez-Zapero et
al., 2023) could provide a framework for undertaking perfor-
mance assessments through well-defined and uniform pro-
cedures, metrics, and reference observations for all the in-
volved datasets, resulting in increased comparability in addi-
tion to the ability to import new product datasets. Our dataset,
obtained through standardized operational procedures, per-
mits expansion of established datasets to spatially underrep-
resented sites. This newly introduced dataset serves as a rem-
edy to the inadequacy and inconsistency of the reference
data currently employed in validation or correction efforts,
thereby paving the way for the coordinated use of various
satellite albedo products and unlocking the full capacity of
different albedo products.
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