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Abstract. Stable isotopes in precipitation can effectively reveal the process of atmospheric water circulation,
serving as an effective tool for hydrological and water resource research, climate change, and ecosystem stud-
ies. The scarcity of stable isotope data in precipitation has hindered comprehension of the regional hydrology,
climate, and ecology due to discontinuities on a temporal scale and unevenness on a spatial scale. To this end,
we collated stable hydrogen and oxygen isotope data in precipitation from 842 stations in Eurasia from 1961
to 2022, totalling 51752 data records. Stable isotopes in precipitation across various regions of Eurasia, as a
whole, decrease with increasing latitude and distance from the coast. In the summer, stable isotopes in precip-
itation are relatively enriched, while in the winter, they are relatively depleted. In recent decades, the stable
isotope values of Eurasian precipitation show an overall trend of increasing variation with the advancement of
years, which is associated with global warming. Geographical location, underlying surface conditions, seasons,
and atmospheric circulation are all factors that determine the characteristics of stable isotopes in precipitation.
The dataset of stable isotopes in Eurasian precipitation provides a powerful tool for understanding changes in
regional atmospheric water circulation and assists in conducting hydrological, meteorological, and ecological

studies in related regions. The datasets are available at https://doi.org/10.17632/rbn35yrbd2.2 (Zhu, 2024).

1 Introduction

In recent years, the impacts of global climate change have
become increasingly severe, particularly the significant in-
crease in the frequency of various types of extreme weather
and climate events (Faranda et al., 2023; Liu et al., 2022;
Zhang et al., 2016). The World Meteorological Organiza-
tion’s 2022 report on the state of the climate in Asia shows
that the rate of warming in Asia is higher than the global av-
erage, with droughts, floods, and heatwaves affecting most
parts of the world (WMO, 2023). Severe fluctuations in cli-
matic elements can alter water circulation processes, affect
regional climate change, and even change the evolution-
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ary patterns of ecological environments. Among these, sta-
ble isotopes in precipitation are an excellent comprehensive
tracer, playing an important role in revealing water cycle pro-
cesses, climate change information, and mechanisms of wa-
ter resource use in ecosystems (Bowen et al., 2019; Wang
et al., 2022). Therefore, in the face of increasingly complex
climate conditions, we need more comprehensive data on
stable isotopes in precipitation at various space scales and
timescales to help understand climate change phenomena.
Stable isotopes in precipitation serve as a crucial medium
connecting the hydrological and climatic systems. Precipita-
tion, being both a product of the climate system and a pri-
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mary source for the hydrological system (Sun et al., 2018),
plays a pivotal role. Additionally, stable isotope fractionation
accompanying the water cycle not only carries rich climate
information throughout its variations but also facilitates the
tracing of contributions to various surface water bodies (Hao
et al.,, 2019; Ren et al., 2017; Shi et al., 2022). Although
stable isotopes in precipitation (8*H and §'80) constitute a
small proportion of natural water bodies, they exhibit sen-
sitivity to changes in climatic factors (Craig, 1961; Dans-
gaard, 1964). The quantification of precipitation stable iso-
topes, influenced by factors such as temperature, precipita-
tion, wind speed, relative humidity, and water vapour sources
(Gat, 1996; Jiao et al., 2020), deepens our procedural un-
derstanding of the water cycle. This quantification provides
relevant information about water vapour transport processes
and precipitation formation (Kathayat et al., 2021), determi-
nation of the proportions of different types of precipitation
(Aggarwal et al., 2016), and comprehension of the mecha-
nisms behind extreme events (Sun et al., 2022), offering ro-
bust evidence to explore the inherent mechanisms of meteo-
rological events and climate change processes. Water recov-
ery is a significant component of land water flux (Jasechko
et al., 2013), but its direct measurement still faces numerous
challenges. Deuterium excess (d excess) §2H=8 x 880, a
stable isotope quantity sensitive to water recovery effects,
remains constant throughout the entire process from water
vapour evaporation into the atmosphere to final condensation
and rain formation (Merlivat and Jouzel, 1979). Therefore,
in current water recovery quantification efforts, precipitation
stable isotopes are a primary means (Cropper et al., 2021;
F. Zhang et al., 2021; Zhu et al., 2019). §°H and §'80, as im-
portant climate tracers, are also employed in reconstructing
the continental paleoclimate. Accurate understanding of pre-
cipitation stable isotopes’ response to modern climate lays
the foundation for paleoclimate reconstruction. On the other
hand, using general atmospheric circulation models to simu-
late isotope circulation is a major method for comparing iso-
tope distributions in precipitation under both modern and an-
cient conditions (Joussaume et al., 1984; Brady et al., 2019).
Simultaneously, the comparison between simulated and ob-
served precipitation stable isotopes provides valuable valida-
tion for the physical components of atmospheric circulation
models (Joussaume et al., 1984; Ruan et al., 2019). In con-
clusion, the comprehensive data on stable isotopes in precip-
itation offer more detailed information about the climate and
hydrological systems.

In 1961, the International Atomic Energy Agency (IAEA)
and the World Meteorological Organization (WMO) began
establishing the Global Network for Isotopes in Precipitation
(GNIP), which is the world’s primary observation system. To
date, research on stable isotopes in precipitation primarily
relies on the GNIP database. However, the GNIP’s observa-
tions are very unevenly distributed in time and space. Global
and regional-scale research on stable isotopes in precipitation
mainly depends on model simulations. The relationship be-

Earth Syst. Sci. Data, 16, 1543—-1557, 2024

tween predicted data from models and actual measured data
is “comparative” (Joussaume et al., 1984). Although model
simulations can compensate for the absence of measured data
and are particularly advantageous in revealing the operating
mechanisms of large-scale climate systems and water cycles,
existing models for stable isotopes in precipitation are often
insufficiently accurate. They cannot check long-term trends
or characteristics of interannual variation. By integrating in-
dependent data to provide a higher density of data, it is pos-
sible to enhance the precision of model simulations.

We have compiled stable isotopes in precipitation data
from the Eurasian continent since 1961 with the aim of pro-
viding more comprehensive data support for the following
research areas.

— Climate research: stable isotopes in precipitation exhibit
geographical and seasonal variations, which can be used
to study climate change and the impact of solar radia-
tion. By comparing and analysing the stable isotopes of
precipitation in different regions of the Eurasian conti-
nent, long-term climate trends can be revealed, such as
changes in precipitation distribution and the evolution
of monsoon systems.

— Earth system research: stable isotopes in precipitation
are influenced not only by the climate and water cy-
cle, but also by geological and biological processes.
By integrating precipitation stable isotope data from the
Eurasian continent, it is possible to investigate in depth
the interactions between different components of the
Earth system, such as the interaction between the at-
mosphere, the ocean, and the water cycle in terrestrial
ecosystems. This will contribute to a better understand-
ing of the functioning and changes in the Earth system.

— Water cycle research: stable isotopes in precipitation
serve as important indicators of the water cycle and
can track the sources, evaporation, and precipitation
processes of water. By analysing the spatial distribu-
tion and variations of precipitation stable isotopes in
the Eurasian continent, it is possible to understand the
processes of water evaporation, precipitation, and recy-
cling, revealing the patterns of water resource distribu-
tion and changes. This provides support for water re-
source management and hydrological modelling.

— Paleoclimate reconstruction: well-established precipita-
tion stable isotope observational data are advantageous
for validating paleoclimate models under modern condi-
tions. Simultaneously, they contribute to richer compar-
ative data for stable isotopes in precipitation collected
in geological archives.

2 Study area

continent  (10°45'=77°44'N,  9°30/ W-
spans a vast territory, with considerable

The Eurasian
169°45’ E)

https://doi.org/10.5194/essd-16-1543-2024



L. Chen et al.: Dataset of stable isotopes of precipitation in the Eurasian continent

variations in natural geographic conditions within the region
(Fig. 1). Significant thermal differences between sea and
land have given rise to a typical monsoon climate system on
the south-eastern coast, while interactions between Atlantic
moisture and planetary wind systems result in the western
coast and wide inland areas being perennially subject to
westerly moisture. These two major systems play significant
roles in global climate systems (Li et al., 2022; Wang et al.,
2010). Moreover, the interactions across multiple heat zones
with sea and land provide conditions conducive to a wide
variety of climate types. The uplift of the Qinghai-Tibet
Plateau not only alters the climate patterns dominated by
the planetary wind system in the Eurasian continent and the
moisture movement paths in the Indian Ocean (Zhisheng et
al., 2001) but also changes the natural surface conditions,
such as numerous rivers, including the Yangtze, Yellow,
Ganges, and Mekong rivers, which play a vital role in
hydrological processes and human life. The plateau itself
forms a relatively complete vertical ecological environment
differentiation, enhancing the complexity of the natural
environment in the FEurasian continent. Therefore, the
research data and studies on climate environmental changes
in Eurasia have significant representativeness in addressing
global changes.

3 Data and methodology

3.1 Data sources and collection

We have collected §'80 and §%H stable isotope data from
precipitation at 842 sampling points across the Eurasian
continent from 1961 to 2022 (Supplement Table S1). The
dataset includes both measured data and data collected
from various sources. The data collected are primarily
from the Water Isotopes website (https://wateriso.utah.edu/
waterisotopes/index.html, last access: 6 June 2023) and the
Global Network of Stable Isotopes in Precipitation (GNIP)
operated by the IAEA. In this study, we have compiled a to-
tal of 45782 data records, including 3676 records from liter-
ature sources. The measured data were collected, analysed,
and organized at the Shiyang River Basin Integrated Ob-
servation Station of Northwest Normal University in China,
comprising 2297 data records. Additionally, the meteoro-
logical data used in this study are from the CRUTS v.
4.07 dataset (https://crudata.uea.ac.uk/cru/data/hrg/, last ac-
cess: 10 July 2023; Harris et al., 2020), the NCEP-NCAR
Reanalysis 1 dataset (https://psl.noaa.gov/data/gridded/data.
ncep.reanalysis.html, last access: 10 July 2023); Harris et al.,
2020), and the global climate classification data of K&ppen
(Beck et al., 2018) (Supplement Sect. S2).

3.2 Data processing steps and quality control

Data collection: the data collected include a variety of issues
such as missing values, outliers, and duplicates as well as
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gaps in dates and missing or incorrect latitude and longi-
tude information. Therefore, the collected raw data under-
went pre-processing and data cleaning. Missing data were
interpolated, entries that could not be completed were re-
moved, and duplicate data were eliminated.

Measured data: standard rain gauges were used to col-
lect precipitation samples. After each precipitation event, the
collected samples were immediately transferred to 100 mL
high-density sample bottles. To prevent data errors caused
by evaporation, the collected water samples were stored in
a refrigerator at a temperature of approximately 4 °C. Prior
to analysis, the precipitation samples were naturally thawed
at room temperature. Impurities were filtered out using a
0.45 pm filter membrane, and the samples were transferred to
2 mL sample bottles. Isotope values were measured using a
liquid water isotope analyser (DLT-100, Los Gatos Research,
USA). For any abnormal values or values that did not pass the
liquid water isotope analyzer (LWIA) post-analysis software
check, parallel samples were selected for re-measurement to
ensure data accuracy (Zhu et al., 2022; Czuppon et al., 2021).
The isotopic abundances of 80 and 2H were expressed us-
ing the § notation relative to the IAEA Vienna Standard Mean
Ocean Water (V-SMOW) reference, following the equation

R sample

(Ssample(%O) = |: - 1i| x 1000.

Rv_smow
Here, R represents the ratio of the heavier isotope to
the lighter isotope (i.e. '80/1°0 or 2H/'H). We used the
IAEA standard (V-SMOW?2) to validate our isotope measure-
ments, ensuring comparability between isotopic measure-
ments across laboratories and instruments.

In 1982, V. I. Ferronsky and V. A. Polyakov conducted
a study that found a general distribution of §'80 and §°H
values in natural substances, indicating that the range of sta-
ble isotope values for hydrogen and oxygen in atmospheric
precipitation is typically —400 %o to —30 %o and —60 %o to
10 %o, respectively (Ferronsky and Polyakov, 1982). After
data processing, the data generally fall within a reasonable
range.

In addition, we selected the two climatic zones with the
most significant differences, namely the tropical and polar
zones. The reason for this choice is that the boundaries be-
tween temperate, frigid, and arid zones are relatively un-
clear, with subtle changes in trends. Mann—Kendall (MK)
tests were conducted on the temporal variations of stable iso-
topes in precipitation for both climatic zones (Fig. 3). For
the tropical climate (A), the stable isotopes of precipitation
(8%H and §'80) exhibit multiple non-significant periods of
abrupt changes. There is a significant increasing trend from
1971 to 2005, followed by a non-significant decreasing trend
since 2009. Overall, the d excess shows a non-significant de-
creasing trend, but this trend has weakened since 1990. In
the polar climate (E), there is a significant increasing trend
before 1973, followed by non-significant periods of both in-
crease and decrease after 1975. However, after 2010, a gradu-
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Figure 1. Distribution map of the precipitation stable isotope sampling sites in the Eurasian continent.

ally significant increasing trend is observed. Since 1985, the
deuterium excess has undergone a non-significant decreas-
ing process, and after 2010, it gradually reaches a significant
increasing trend. The uncertainty of the tests is mainly at-
tributed to the spatiotemporal distribution and volume of the
data.

4 Results and discussion

4.1 Temporal and spatial variation characteristics of
precipitation stable isotopes

On a temporal scale, stable isotopes in precipitation exhibit
pronounced seasonal variations, with higher values during
the summer and lower values during the winter (Fig. 4). This
is attributed to seasonal variations in evaporation caused by
temperature changes, resulting in the evaporative fractiona-
tion of stable isotopes in precipitation. Considering the com-
pleteness of the time series and regional differences within
the Eurasian continent, we constructed a time series of pre-
cipitation stable isotopes based on the K&ppen climate classi-
fication “climate zones” (Supplement Fig. S1 and Table S2).
The temporal changes in precipitation stable isotopes with
different climate types show significant differences. In trop-
ical climates (A), the values of precipitation stable isotopes
are higher, with low values reflecting enhanced precipitation.
The “precipitation effect” in the Eurasian continent is par-
ticularly significant in tropical climates (Tharammal et al.,
2017), and the composition of precipitation stable isotopes
reflects the correlated changes between temperature and pre-
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cipitation. However, the seasonal fluctuations in tropical pre-
cipitation stable isotopes are minimal, and there is a fluctu-
ating trend over approximately 20 years. Most arid climates
(B) and temperate climates (C) in the Eurasian continent are
under the influence of the westerly system. Before 1980, tem-
perate climates experienced significant fluctuations in precip-
itation stable isotopes, followed by a stable period of about
30 years. After 2010, an unstable trend has become more
pronounced, reflecting an increase in extreme weather events
(Yao et al., 2021; Zhang et al., 2012). In arid climate regions,
precipitation stable isotopes have undergone significant de-
creases. The Central Asian arid region is a typical temperate
arid region, and numerous studies have pointed out a “warm
and humid” trend in the climate of this region (Wang et al.,
2020; Yan et al., 2019). The strengthening of the West Pa-
cific subtropical high, North American subtropical high, and
Asian subtropical westerly jet is believed to increase precip-
itation in this region (Chen et al., 2011). The enhancement
of high-latitude water vapour transport is a major factor in-
fluencing the increase in precipitation in the Central Asian
arid region, which is also the reason for the decreasing trend
in deuterium excess (Fig. 4c1). Cold climates (D) and polar
climates (E) have the smallest values of precipitation stable
isotopes, but they exhibit significant differences on an an-
nual scale and a gradually increasing trend on an interannual
scale. With global warming, high-latitude regions will pro-
vide more sources of water vapour for the water cycle (Ding
etal., 2017).

On a spatial scale, the topographic differences and lati-
tude variations in the region are the primary causes of spa-
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Figure 2. Flowchart of precipitation stable isotope dataset construction.

tial differences in stable isotopes in precipitation across the
Eurasian continent. The multiyear average values of §”H and
8180 at different latitudes are as follows: from 0 to 30°N,
they are —30.20 %o and —5.99 %o; from 30 to 60°N, they
are —58.94 %o and —8.77 %o; and from 60 to 90° N, they are
—92.98 %0 and —12.69 %o. The Alps and the Tibetan Plateau
form regions of low-precipitation stable isotopes that differ
from those at the same latitudes. The gradual uplift of the
Tibetan Plateau’s mountains leads to changes in the atmo-
spheric circulation patterns over a larger area, altering the in-
herent characteristics of water vapour source regions, vapour
transport paths, and precipitation stable isotope values. The
response of precipitation stable isotopes to the plateau’s cli-
mate reflects changes in the large-scale circulation state (Yao
et al., 2013). The isotopic variations in the surrounding re-
gions of the Alps reflect differences in water vapour sources
due to regional topography (Natali et al., 2021; Rindsberger
et al., 1983). Spatial variations in deuterium excess can ef-
fectively reflect differences in regional water vapour sources,
with average values of approximately 10 %o for tropical and
temperate climates. Cold climate regions have lower deu-
terium excess values, and due to the overlap of arid climates
with other climate zones, the distribution range of deuterium
excess values in arid climates is larger. Therefore, it can be
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hypothesized that if isotope-related variables (e.g. d excess)
are included in climate zone classification criteria, more cli-
mate zones influenced by circulation patterns could be iden-
tified.

4.2 Seasonal changes in the meteoric water line and
precipitation stable isotopes

The temporal and spatial variations of stable isotopes in pre-
cipitation are greatly influenced by meteorological factors,
and the changes in the precipitation isotopes are consistent
with the climatic regions. Therefore, based on the K&ppen
climate classification, we performed climate zoning for sta-
ble isotopes in precipitation sites. We used the least-squares
method to fit the meteoric water line for different climate re-
gions (Fig. 6) and considered the seasonal variations of pre-
cipitation stable isotopes in different climate regions (Fig. 7).
The meteoric water line for different climate types indicates
relatively small differences in various climate precipitation
amounts in tropical climates. The variations in the slope and
intercept of the meteoric water line are determined by the
combined effects of precipitation and temperature, with con-
vective precipitation weakening the impact of the “temper-
ature effect”. Intense convective rainfall and oceanic water

Earth Syst. Sci. Data, 16, 1543-1557, 2024
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Figure 3. Time series MK test for temperate (C) and cold (D) climates.

vapour transport bring abundant precipitation to tropical re-
gions. The fractionation mechanisms and variations of pre-
cipitation stable isotopes not only reveal the inherent pat-
terns of weather pattern occurrence and development (Sun
et al., 2022) but also correlate weather patterns with supply
sources, tracing the water sources of surface water bodies
(Scholl and Murphy, 2014; Yu et al., 2017). Stable isotopes
in precipitation in arid climates are influenced by secondary
evaporation below clouds, and intense unbalanced fractiona-
tion processes lead to relative enrichment of stable isotopes
in precipitation (Wang et al., 2021; Zhu et al., 2021). Wa-
ter resources are the most limiting factor in the ecological
and social environment in arid climate regions (Garcia-Ruiz
et al., 2011). Therefore, compared to other climate regions,
water recovery becomes more critical. Stable isotopes in pre-
cipitation can accurately quantify water recovery and effec-
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tively assess the impact of evaporation on different water
bodies in arid regions. The majority of the global popula-
tion is distributed in temperate regions. Therefore, with the
global temperature rise, the climate change situation in tem-
perate regions deserves more attention. In temperate climate
zones, the differences in the stable isotope composition be-
tween different climate types become more significant. In the
Mediterranean region controlled by the summer dry warm
climate, the slope and intercept are the lowest, indicating that
the temperature rise dominates the fractionation of hydrogen
and oxygen stable isotopes in precipitation, and the region
shows a trend of aridification under long-term average condi-
tions. The westerly system is the main controlling circulation
in this region, and the changes in precipitation stable isotopes
reflect the attenuation trend of mid-latitude westerly moisture
inward migration (Zhu et al., 2023; Shi et al., 2021). In polar

https://doi.org/10.5194/essd-16-1543-2024
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Figure 4. The time series variations of 82H, 8180, and d excess in the Eurasian continent.

climates, the atmospheric water line exhibits a higher slope
and intercept. The influence of unbalanced fractionation pro-
cesses after water vapour condensation in cloud systems is
relatively small, resulting in a slope close to 8.

The seasonal variation of hydrogen and oxygen stable iso-
topes in precipitation in the Eurasian continent generally ex-
hibits a pattern of higher values in summer and lower values
in winter (Fig. 7) (hydrogen isotopes. However, there are still
significant differences in different climate zones. The sea-
sonal differences in tropical climates are less pronounced,
with the Tropical Sparse Forest Climate (Aw) showing a de-
crease and increase with the months, possibly due to an in-
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crease in precipitation. Temperate and cold climates gener-
ally exhibit significant seasonal variations. The deuterium
excess in the Eurasian continent shows a lower pattern in
summer and a higher pattern in winter, indicating seasonal
changes in water vapour sources and transport distances
(F. Zhang et al., 2021). This overall suggests that the sum-
mer climate in Eurasia is more humid, while the winter cli-
mate is drier. Deuterium excess usually indicates the degree
of imbalance in seawater sources during their evaporation
process, and it typically only depends on the environmen-
tal conditions of the evaporation source. Compared to §°H
(Supplement Fig. S2) and §'80, deuterium excess displays a

Earth Syst. Sci. Data, 16, 1543-1557, 2024
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Figure 5. The spatial variations of 82H, §180, and d excess in the Eurasian continent. Panels (a), (b), and (c) display the spatial distribution
of isotope values in the spring season. Panels (d), (e), and (f) show the spatial distribution of isotope values in the summer season. Panels
(g), (h), and (i) present the spatial distribution of isotope values in the autumn season. Panels (j), (k), and (I) exhibit the spatial distribution
of isotope values in the winter season. Panels (m), (n), and (o) display the spatial distribution of isotope values averaged over multiple years.

more stable pattern and is distributed around the global av-
erage (10%o). The westerly and monsoon systems are the
primary atmospheric circulation systems over the Eurasian
continent, carrying water vapour from the ocean inland and
gradually weakening. This indicates that the humidity in the
vast region of Eurasia is strongly influenced by ocean water
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vapour. Ocean conditions and large-scale atmospheric circu-
lation changes can have profound effects on the climate en-
vironment of the Eurasian continent.

The differences in precipitation stable isotopes among dif-
ferent climate types are not only responses to different cli-
mate characteristics but also provide effective tools for a
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deeper understanding of the process, climate change mech-
anisms, water vapour transport between land and sea, and
supply relationships between water bodies. The precipitation
stable isotope dataset we have constructed for the Eurasian
continent can be combined with traditional meteorological
data to provide more information for climate and hydrologi-
cal research.

4.3 Drivers of stable isotope variation in precipitation in
Eurasia

Meteorological variables accompany the fractionation pro-
cess of stable hydrogen and oxygen isotopes in precipita-
tion, impacting the composition of stable isotopes (Sun et
al., 2019). We utilized a random forest regression model
to assess the importance of meteorological variables in the
Eurasian continent for stable isotopes. Random forest regres-
sion is a non-parametric method used to solve prediction
problems. It predicts regression problems based on the av-
erage results of random decision trees, which use bootstrap-
ping to eliminate the possibility of overfitting (Erdélyi et al.,
2023). The random forest regression analysis of the fitted
stable isotopes of hydrogen and oxygen showed good good-
ness of fit for both the training and testing sets, indicating
that temperature, precipitation, potential evapotranspiration,
vapour pressure, wind speed, and relative humidity have a
high explanatory power for stable isotopes of hydrogen and
oxygen (Fig. 8). The results of cross-validation for the model
indicate superior predictive performance for the target vari-
able 8'80 compared to the target variable §°H, as reflected in
the smaller root mean square error (RMSE) and mean abso-
lute error (MAE) for § 180 (Supplement Table S3). The com-
position of stable isotopes in precipitation is greatly influ-
enced by meteorological variables. Among the six variables
considered, temperature has the strongest explanatory power
for the variation of stable isotopes of hydrogen and oxygen,
and potential evapotranspiration also has a relatively strong
explanatory ability, indicating that temperature change pri-
marily drives the variation of stable isotopes in precipitation
in the Eurasian continent. The relative humidity is the ra-
tio of actual vapour pressure to saturated vapour pressure,
but there is a significant difference in the explanatory power
of vapour pressure and relative humidity in stable isotopes.
Vapour pressure has a wider range of variation in the atmo-
sphere, and thus it may have greater variability in the regres-
sion model, leading to a smaller impact when predicting sta-
ble isotopes in precipitation. Relative humidity, on the other
hand, is a relative indicator with a relatively smaller range
of variation, and so it may have a stronger predictive ability
for stable isotopes in precipitation in the regression model.
The driving factors in the variation of stable isotopes in pre-
cipitation in the Eurasian continent include climate change,
seasonal variations, topography, landforms, and water cycle
processes, which collectively influence the isotopic compo-
sition of precipitation. Atmospheric circulation directly af-
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fects the source of water vapour and the path of moisture,
while other factors primarily influence the composition of
stable isotopes in precipitation by altering temperature. For
example, potential evapotranspiration plays a crucial role in
explaining the variation of stable isotopes in precipitation.
However, the control of meteorological variables on stable
isotopes in precipitation varies between regions. Studies on
two precipitation stations in Crimea have shown weak cor-
relations between temperature, precipitation, and stable iso-
topes in precipitation. The complex natural environment de-
termines that no single factor has a dominant control over the
stable isotopes in precipitation in that region, and the com-
position of stable isotopes in precipitation is influenced by
both local and distant factors (Dublyansky et al., 2018). In
the eastern coastal region of China, the relative enrichment
of stable isotopes in precipitation is due to the proximity to
the evaporative source of the ocean, leading to an increased
abundance of heavy isotopes (J. Zhang et al., 2021). In the
arid region of Central Asia, there is a strong correlation be-
tween stable isotopes in precipitation and temperature, and
the enrichment or depletion of stable isotopes in precipitation
reflects the trend of temperature change (Zhu et al., 2023). In
summary, the meteorological control factors of the compo-
sition of stable isotopes in precipitation vary in different re-
gions. There is a strong relationship between stable isotopes
in precipitation and meteorological variables, and stable hy-
drogen and oxygen isotopes may be considered essential cli-
mate response variables, which will contribute to describing
the hydrological cycle and better predicting the response of
future climate change and ecosystem changes.

Stable isotopes in precipitation, serving as indicators of the
climate and the environment, play a unique role in enhanc-
ing the process-oriented understanding of extreme weather
events and exploring hydrological connections between dif-
ferent water bodies. However, a limitation remains in the
insufficient observation of stable isotopes in precipitation.
Therefore, isotope atmospheric circulation models based on
physical mechanisms have been widely applied to predict
stable isotopes in water (Risi et al., 2012; Bowen et al.,
2019). Physical models with different driving mechanisms
can meet various usage needs, including paleoclimate recon-
struction. For example, CAM3 simulation outputs precipita-
tion oxygen isotope data (Lin et al., 2024). Machine learning
is a novel approach for predicting stable isotopes in precipita-
tion, and European simulation practices indicate that oxygen
isotope simulations have shown good results, while simula-
tions for hydrogen isotopes remain challenging (Nelson et
al., 2021). In general, uncertainties in both physical models
and machine learning need continuous improvement and re-
finement through real-world data. Additionally, an accurate
understanding of the influencing factors of stable isotopes in
precipitation is fundamental for achieving successful predic-
tions through machine learning.
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Figure 6. Different meteoric water lines in various climate zones.

5 Data availability

The data that support the findings of this study are
openly available at https://doi.org/10.17632/rbn35yrbd2.2
(Zhu, 2024).

6 Summary and outlook

Stable isotopes in precipitation play a crucial role in both
the climate and hydrological systems, exhibiting sensitivity
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to variations in both time and space. Research indicates sig-
nificant differences in isotopic values between summer and
winter, correlating with seasonal changes in temperature and
evaporation. The temporal and spatial variations of precipi-
tation stable isotopes vary significantly across different cli-
mate types, reflecting the influence of climate characteris-
tics on isotopic distribution. Terrain and latitude differences
are the primary reasons for spatial variations in stable iso-
topes in precipitation. Meteorological factors have a notable
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Figure 7. Seasonal distribution and variations of stable isotopes in precipitation (8180, d excess).
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impact on precipitation stable isotopes, as evidenced by the
meteoric water line in different climate types, revealing the
influence of climate on isotopic fractionation. Observations
of precipitation stable isotopes contribute to understanding
weather patterns, water vapour sources, and transport path-
ways, providing important insights into stable isotope vari-
ations in arid climates. The integrated dataset of stable iso-
topes in precipitation from the Eurasian continent that we
have compiled can offer more detailed climate and hydro-
logical information. However, future research efforts should
focus on improving observational data for stable isotopes in
precipitation. The uncertainties in physical models and ma-
chine learning methods need refinement through additional
real-world data to enhance the accuracy of predicting precip-
itation stable isotopes.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-1543-2024-supplement.
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