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Abstract. In the western United States, prolonged drought, a warming climate, and historical fuel buildup
have contributed to larger and more intense wildfires as well as to longer fire seasons. As these costly wildfires
become more common, new tools and methods are essential for improving our understanding of the evolution
of fires and how extreme weather conditions, including heat waves, windstorms, droughts, and varying levels
of active-fire suppression, influence fire spread. Here, we develop the Geostationary Operational Environmental
Satellites (GOES)-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression
of large wildfires and create a product of hourly fire perimeters, active-fire lines, and fire spread rates. Using
GOES-East and GOES-West geostationary satellite detections of active fires, we test the GOFER algorithm on
28 large wildfires in California from 2019 to 2021. The GOFER algorithm includes parameter optimizations
for defining the burned-to-unburned boundary and correcting for the parallax effect from elevated terrain. We
evaluate GOFER perimeters using 12 h data from the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived
Fire Event Data Suite (FEDS) and final fire perimeters from the California’s Fire and Resource Assessment
Program (FRAP). Although the GOES imagery used to derive GOFER has a coarser resolution (2 km at the
Equator), the final fire perimeters from GOFER correspond reasonably well to those obtained from FRAP, with
a mean Intersection-over-Union (IoU) of 0.77, in comparison to 0.83 between FEDS and FRAP; the IoU indicates
the area of overlap over the area of the union relative to the reference perimeters, in which 0 is no agreement
and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking products that rely
on low-Earth-orbit imagery, where perimeters are available at intervals of 12 h or longer or at ad hoc intervals
from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly
spread rates of over 5 kmh−1. Our GOFER algorithm for deriving the hourly fire progression using GOES can
be applied to large wildfires across North and South America and reveals considerable variability in the rates
of fire spread on diurnal timescales. The resulting GOFER product has a broad set of potential applications,
including the development of predictive models for fire spread and the improvement of atmospheric transport
models for surface smoke estimates. The resulting GOFER product has a broad set of potential applications,
including the development of predictive models for fire spread and the improvement of atmospheric transport
models for surface smoke estimates (https://doi.org/10.5281/zenodo.8327264, Liu et al., 2023).
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1 Introduction

Severe wildfire seasons in the western United States, such
as in 2018, 2020, and 2021, generate large negative eco-
nomic and public health impacts, displacing communities at
the wildland–urban interface and inducing hazardous smoke
pollution (Burke et al., 2021; Zhou et al., 2021). Following
the legacy of total forest fire suppression in the 20th century,
the enhanced drying of fuels from anthropogenic climate
warming and a lack of prescribed burns for fuel reduction
have increased the likelihood of destructive, fast-spreading
megafires, such as the Creek Fire in 2020 (1537 km2) and
Dixie Fire in 2021 (3898 km2) (Juang et al., 2022; Williams
et al., 2019; Kolden, 2019; Brown et al., 2023). However,
these extreme fire events, which are infrequent and outliers
in terms of fire size, are often poorly characterized in statisti-
cal models of burned area or fire intensity (Wang et al., 2021;
Joseph et al., 2019). As a consequence, it is important that we
first understand how large fires evolve through both time and
space to sufficiently model how meteorology, suppression,
and fuels modulate fire spread and emissions.

Recent efforts to map the progression of fire perimeters
include the Global Fire Atlas (Andela et al., 2019), GlobFire
(Artés et al., 2019), Fire Events Delineation (FIRED) (Balch
et al., 2020), and the Fire Event Data Suite (FEDS) (Chen
et al., 2022). These products use satellite observations of fires
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) or the Visible Infrared Imaging Radiometer Suite
(VIIRS), and they cluster burned pixels or active-fire detec-
tions into individual fire events. The Global Fire Atlas, Glob-
Fire, and FIRED use the 500 m MODIS burned-area product
to map daily fire progression, while FEDS uses the 375 m
VIIRS active-fire product to map 12 h fire progression. The
Global Fire Atlas and GlobFire operate on a global scale,
whereas FIRED and FEDS are restricted to a regional level –
the contiguous United States for FIRED and California for
FEDS.

Here, we improve the temporal scale of existing mapping
methods for fire perimeters to hourly intervals by leveraging
geostationary satellite observations from the GOES-East and
GOES-West satellites. Our baseline algorithm is based on
Google’s initial method used to produce the wildfire layer in
Google Maps (Restif and Hoffman, 2020). The wildfire layer,
which updates within 30 min of GOES retrievals, displays the
current perimeter of large fires based on GOES active-fire ob-
servations and aims to provide stakeholders with up-to-date
information on how current fires may endanger nearby struc-
tures and lead to evacuations. To create the wildfire layer,
Google Maps leverages the Google Earth Engine (GEE)
cloud-based geospatial computing platform (Gorelick et al.,
2017; Restif and Hoffman, 2020). GEE’s petabyte-scale pub-
lic data catalog maintains the GOES datasets and automati-
cally adds and preprocesses new images as soon as they are
available. GEE empowers rapid processing of a large number

of data and enables the tracking of fire progression at a high
temporal resolution.

In this study, we develop the GOES-Observed Fire Event
Representation (GOFER) algorithm to derive the hourly fire
progression of large wildfires. Our algorithm includes an op-
timized threshold for delineating the fire perimeter from un-
burned areas, parallax terrain correction for GOES images, a
dynamic smoothing kernel, and scaling adjustment for early
perimeters. As a test case of the GOFER algorithm, we cre-
ate a product that includes hourly fire perimeters, active-fire
lines, and fire spread rates for large fires that burned over
50 000 acres (202 km2) in California from 2019 to 2021. A
set of 28 fires met this criterion, including some of the largest
(August Complex and Dixie) and most destructive (North
Complex and Glass) fires in California’s history. Over this
3-year span, these fires approximately accounted for 85 % of
the total burned area and 77 % of all of the structures de-
stroyed. We evaluate GOFER perimeters and active-fire lines
using FEDS at 12 h intervals and validate the spatial accuracy
of the final perimeter with FRAP, a fine-resolution dataset of
fire perimeters derived from incident reports, remote sensing,
and ground surveys. Finally, we discuss the limitations, fu-
ture development, and applications of the GOFER algorithm
and product.

2 Data and methods

2.1 Study region

We map the hourly progression of 28 large wildfires in Cal-
ifornia (CA) from 2019 to 2021 (Tables 1 and A1; Figs. 1
and A1). Here, we define a large wildfire as a fire that burned
over 50 000 acres (202 km2). The 28 wildfires include three
“cross-border” fires (Slater and Devil, W-5 Cold Springs,
and Tamarack) that burned across the California border into
neighboring states.

2.2 Datasets and products

We use active-fire detections from the Advanced Baseline
Imager (ABI) aboard NOAA’s Geostationary Operational
Environmental Satellites (GOES)-16/East and 17/West,
which observe North and South America with a spatial res-
olution of 2 km at the Equator and a temporal resolution of
10–15 min for its full-disk view (Schmit et al., 2017; Schmidt
et al., 2020). The nominal product mapping accuracy for
the GOES-R Series Fire/Hot Spot Characterization product
is 1 km (https://www.goes-r.gov/syseng/docs/MRD.pdf, last
access: 4 January 2024). The different longitudinal posi-
tions of GOES-East (75° W) and GOES-West (137° W) yield
views of the same fire from two different perspectives, gen-
erating images with two different spatial footprints for a
given location. The Level-2 GOES Fire/Hot Spot Characteri-
zation product includes information on the data quality of the
active-fire retrieval (“fire mask categories”), fire temperature,
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Table 1. Metadata and GOFER-Combined summary statistics for the 28 large wildfires in California from 2019 to 2021 that burned over
50 000 acres (202 km2). The area (km2) refers to that of the final perimeter. Also shown are the maximum hourly concurrent (flinec=0.05) and
retrospective (fliner) active-fire-line lengths, in kilometers, and the fire spread rates, in kilometers per hour, calculated from the maximum
axis of expansion (fspreadMAE) and area-weighted expansion methods (fspreadAWE).

No. Fire name Year Area (km2) flinec=0.05 (km) fliner (km) fspreadMAE fspreadAWE
(kmh−1) (kmh−1)

1 Kincade 2019 347 45.7 25.3 4.9 2.7
2 Walker 268 62.4 23 5.6 3.2

3 August Complex∗ 2020 4343 210.5 92.2 5.1 1.7
4 Bobcat∗ 584 62.2 34 4.3 1.9
5 Creek∗ 1615 121.7 52.1 11.3 4.2
6 CZU Lightning Complex∗ 283 61.5 37.7 5 1.6
7 Dolan 501 63.1 27.9 3.6 1.9
8 Glass 353 65.5 29.4 7.6 3.5
9 July Complex 174 40.1 27.6 4.6 1.4
10 LNU Lightning Complex∗ 1539 264 114 10.5 1.8
11 North Complex∗ 1344 126.2 65.6 9.9 3.1
12 Red Salmon Complex∗ 575 59.7 26.4 3.1 1.3
13 SCU Lightning Complex∗ 1526 134.7 62.9 4.8 1.5
14 Slater and Devil∗ 697 113.9 39.1 6 2.9
15 SQF Complex∗ 786 71.4 22.1 5.2 2.8
16 W-5 Cold Springs 364 57.7 22.8 3.5 1.2
17 Zogg 223 49.1 19.1 6.2 10.8

18 Antelope 2021 599 52.9 32.7 4.8 2.3
19 Beckwourth Complex 558 76.3 31.1 4.7 1.7
20 Caldor 994 88.7 42.6 4.3 2.3
21 Dixie 4389 187.1 67.2 10.2 2.9
22 KNP Complex 389 64.2 22.6 2.6 1.6
23 McCash 406 67.7 28.6 2.7 1.5
24 McFarland 567 62.7 30.4 4.1 1.4
25 Monument 925 83.6 41 3.8 1.5
26 River Complex 931 124.2 39.8 5.2 1.5
27 Tamarack 375 64.2 23.7 3.7 3.9
28 Windy 427 64.2 30 2.2 0.9

∗ Fires used in parameter optimization.

fire area, and fire radiative power (FRP), which is a proxy for
fire intensity (Hall et al., 2019; Xu et al., 2010; Schroeder
et al., 2010). To correct the terrain-induced parallax displace-
ment in GOES images, we use the United States Geological
Survey (USGS) 3D elevation program (3DEP) digital eleva-
tion model (DEM) at a 10 m (1/3 arcsec) spatial resolution
(Archuleta et al., 2017).

We retrieve the ignition time and location of each fire
from the California Department of Forestry and Fire Protec-
tion (CAL FIRE; https://www.fire.ca.gov/, last access: 4 Jan-
uary 2024) and InciWeb, the US interagency all-risk incident
information system (https://inciweb.nwcg.gov/, last access:
4 January 2024). When CAL FIRE does not report detailed
information on fires outside of its jurisdiction (i.e., on fed-
eral lands), we rely on InciWeb to fill the gap. These meta-
data are used to check the fire ignition time against the GOES
active-fire time series and to limit the amount of GOES data

spatially and temporally to process and avoid GEE computa-
tional limits.

For optimization, validation, and evaluation of GOFER,
we use several datasets and products derived from higher-
spatial-resolution observations: FEDS, Monitoring Trends in
Burn Severity (MTBS), Fire and Resource Assessment Pro-
gram (FRAP), National Interagency Fire Center (NIFC), and
the CAL FIRE Damage Inspection (DINS) program. MTBS
uses Landsat (30 m) imagery to map the final fire perime-
ter and burn severity from 1984 to the present and is avail-
able with about a 2-year lag time; MTBS maps all fires
over 1000 acres (4 km2) in the western US (Picotte et al.,
2020). FEDS uses object-based tracking of VIIRS active
fires (375 m) to map the progression of fires in California at
12 h time steps from 2012 to 2021 (Chen et al., 2022). The
historical fire perimeters dataset from CAL FIRE’s FRAP is
the most detailed and complete dataset for California wild-
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Figure 1. Map of the final perimeters for 28 large fires in California in the GOFER product. In total, GOFER contains 2 fires in 2019,
15 fires in 2020, and 11 fires in 2021; all if the fires mapped burned over 50 000 acres (202 km2). The footprints of the fires shown are from
GOFER-Combined.

fires, which are mapped by GPS, aerial infrared observa-
tions, and other imagery (https://frap.fire.ca.gov/, last ac-
cess: 4 January 2024). FRAP standardizes and combines
perimeters from federal agencies (US Forest Service, Bureau
of Land Management, National Park Service, and Fish and
Wildlife Service). NIFC provides high-resolution intermedi-
ate perimeters derived from airborne infrared (IR) imagery
by trained analysts (https://data-nifc.opendata.arcgis.com/,
last access: 4 January 2024). The availability of these perime-
ters is sparse, varying from fire to fire, and affected by cloud
cover, thick smoke, and availability of flights and coverage
area. For example, almost all flights are during nighttime, and
some sections of the fire may not be mapped during a par-
ticular flight. We use the IR perimeters from the US Forest
Service National Infrared Operations (NIROPS) unit. After
filtering the NIROPS perimeters for data quality (e.g., miss-
ing metadata and small flight coverage) and matching with
GOFER perimeters by the nearest hour, our reference dataset
comprises over 650 snapshots across the 28 fires. For se-
lect fires (20 of 28 fires), the CAL FIRE Damage Inspec-
tion (DINS) program database also provides the location of
permanent structures inside or within 100 m of the perimeter
and the level of damage sustained by each structure (accessed
from the CAL FIRE Public Records Center at the GovQA
portal). These data are used to calculate the number of af-
fected and destroyed structures contained by our derived fire
perimeters.

2.3 Using GOES active-fire detections to derive hourly
perimeters

2.3.1 Overview of the GOFER algorithm

Restif and Hoffman (2020) show a step-by-step example of
a GOES-based image-to-vector method to map fire perime-
ters in GEE for the 2019 Kincade Fire in California. After
filtering GOES-East and GOES-West observations over a 2-
week period and over an area of interest (AOI) defined as
a 40 km buffer of the point location of the Kincade Fire,
the GOES “fire mask codes” provided by the Fire Detec-
tion and Characterization (FDC) algorithm are remapped to
fire detection “confidence” values (Table B1). This remap-
ping arbitrarily weights the fire pixels and non-fire pixels
on a continuous, interpretable scale that ranges from 0 to
1. Based on threshold tests, the GOES FDC algorithm cat-
egorizes the quality of the fire pixels as “processed,” “sat-
urated,” “cloud contaminated,” “high probability,” “medium
probability,” or “low probability” (Schmidt et al., 2020). Pro-
cessed and saturated codes refer to the highest-quality fire
pixels, while cloud contaminated, high-probability, medium-
probability, and low-probability codes refer to lower-quality
fire pixels that may be false alarms. For each satellite, the
maximum fire detection confidence is calculated from GOES
images retrieved within the input temporal limits, and the
GOES-East and GOES-West maximum fire detection values
are combined by taking the minimum. Next, the combined
GOES fire detection confidence map is smoothed using a
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2 km square kernel. A confidence threshold of 0.6 is applied
to mask low-confidence areas, and the image is then con-
verted into a vector at a spatial resolution of 200 m. As the
resulting vector retains unnatural edges from the footprint of
the image pixels, the vector is simplified within a maximum
error of 500 m, thereby smoothing any jagged edges.

Here, we expand and improve the Restif and Hoffman
(2020) method by adding four optimizations or adjustments
in our GOFER algorithm: (1) dynamic smoothing kernel
size, (2) early-perimeter adjustment, (3) parallax terrain cor-
rection, and (4) confidence threshold optimization. Specif-
ically, we reduce the arbitrary selection of parameters by
optimizing against perimeters derived from high-resolution
satellite imagery, increase the geolocation accuracy of GOES
fire pixels with a parallax terrain correction, and improve the
mapping of early perimeters. In Fig. 2, we pictorially depict
the steps to produce the final perimeter of the 2020 Creek
Fire as an example.

In step 1, following Restif and Hoffman (2020), we assign
GOES-East and GOES-West fire mask codes as fire detec-
tion confidence values (Table B1) and (for each satellite) cal-
culate the maximum fire detection confidence over the tem-
poral stack of images from ignition to the end hour. For the
Creek Fire, the average spatial resolution is about 3.2 km for
GOES-East and 2.5 km for GOES-West, calculated from the
GOES pixel area within a bounding box covering the fire’s
extent. Due to the different pixel orientations and resolutions
of the GOES-East and GOES-West grids, we overlay them
to create a combined grid at a downscaled spatial resolution.
The combined grid is heterogenous in pixel size with an area-
weighted spatial resolution of 1.7 km. The spatial resolution
of the combined grid is later used in step 3 to determine the
kernel radius to smooth the fire detection confidence image.

In step 2, we apply scaling factors from the early-perimeter
adjustment to the stack of hourly fire detection confidence
images. The early-perimeter adjustment ensures that perime-
ters are formed at the start of a fire despite dilution from
neighborhood smoothing in step 3 and despite the possible
absence of high-fire-confidence pixels to overcome the con-
fidence threshold applied in step 4. We combine the GOES-
East and GOES-West maximum fire detection confidence by
taking the average. We also correct the terrain-induced par-
allax displacement in each satellite. Due to the elevation and
location of the fire relative to the satellite’s viewing angle,
the GOES-observed fire pixels are displaced from their ac-
tual location; displacements are greater for fires at high el-
evations and located toward the edge of the GOES disk.
The early-perimeter adjustment and parallax correction are
needed steps to improve the respective temporal and spatial
accuracy of the perimeter, but they are not accounted for in
Restif and Hoffman (2020).

In step 3, we smooth the values using a square kernel with
a radius equal to the area-weighted spatial resolution of pix-
els within the AOI. Restif and Hoffman (2020) set an arbi-
trary kernel size of 2 km, whereas our dynamic calculation

of the kernel size accounts for the heterogenous pixel size of
the combined grid. Using the kernel to apply a neighborhood
mean, the smoothing transforms the fire detection confidence
values into a continuous gradient and removes “blockiness”
at the edges.

In step 4, we apply a threshold mask of 0.95 to the
smoothed confidence values. Restif and Hoffman (2020) ar-
bitrarily set the confidence threshold to 0.6, while we opti-
mize for the confidence threshold, as discussed in Sect. 2.3.3.
In addition, Restif and Hoffman (2020) use a spatial resolu-
tion of 200 m for the intermediate image with the smoothed
fire detection. We opt for a higher spatial resolution of 50 m
to reduce blockiness at the edges of the polygon formed in
step 5. At a coarser resolution, the edges of the polygon are
more staircase-like, mirroring the pixel edges of the raster.

In step 5, the image is converted to a polygon that rep-
resents the fire perimeter. To further smooth the geometric
complexity induced by the image-to-vector conversion and
reduce the file size of the polygon, we simplify the polygon
with a maximum error margin of 100 m, which is in a 2 : 1 ra-
tio with the spatial resolution of the smoothed confidence im-
age. This ratio is similar to Restif and Hoffman (2020), who
set the maximum error margin to 500 m, versus 200 m, for
the smoothed fire confidence image.

In addition to the combined GOES method, we also cre-
ate perimeters and related fire metrics solely using GOES-
East imagery or GOES-West imagery to test the efficacy of
using just one satellite. We separately optimize the confi-
dence threshold and parallax adjustment factor and calcu-
late the smoothing kernel size and early-perimeter adjust-
ment for each GOFER version. Hereafter, we refer to the
three GOFER versions as GOFER-Combined, GOFER-East,
and GOFER-West. For this study, GOFER-Combined uses
GOES-16 and GOES-17 observations, GOFER-East uses
only GOES-16 observations, and GOFER-West uses only
GOES-17 observations. We note that GOES-17 was replaced
by GOES-18 in early 2023.

2.3.2 Preprocessing: input metadata dictionary

In the preprocessing stage, we create a metadata dictionary of
input values for each fire (Fig. 3). Here, “dictionary” refers to
the data structure in code stored as “key” and “value” pairs,
where the keys, or user-specified words, are used to retrieve
the corresponding values. In particular, we set temporal and
spatial constraints for calculating fire progression, i.e., the
start and end time bounds and AOI polygon. For the start
time, we use the ignition time as reported by CAL FIRE,
when possible, or InciWeb and round down by hour (e.g.,
06:37 to 06:00 LT). However, GOES can detect active fires
prior to the ignition time for some fires – mainly lightning-
caused fires; for such cases, we set the hour of the earliest
GOES active-fire detection as the start time. We set the end
time as the hour with the last GOES active-fire detection that
occurs within a few days of previous detections, provided
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Figure 2. Pictorial depiction of the GOFER workflow used to produce fire perimeters from GOES active-fire detections in Google Earth
Engine. The gray shaded area represents the state of California; the black box shows the location of the Creek Fire in 2020. This example
shows the workflow for producing the final fire perimeter of the Creek Fire and uses all GOES images from the hour of ignition to the last
fire detection. The GOES nominal spatial resolution is 2 km at the Equator but varies based on the pixel’s location relative to the longitudinal
position of the GOES satellite; the GOES resolutions inset are specific to the Creek Fire. The background map data are from ©Google Maps
2023, rendered on the Google Earth Engine platform.

Figure 3. Overview of the GOFER workflow used to produce the GOES-derived fire perimeters and ancillary fire metrics (active-fire line
and fire spread rate). The confidence threshold and parallax adjustment factor values are optimized using the 10 largest wildfires in California
in 2020. The dark blue boxes are headings to denote the different input data.
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that the fire has converged to close to its final size recorded
by CAL FIRE or InciWeb. This is an approximate estimate
of the end time, as a later quality control step sets the end
hour as when the fire perimeter last expanded (Sect. 2.3.4).
For the AOI polygon, we start with the CAL FIRE or Inci-
Web ignition coordinates and expand to a simple rectangle
or polygon that includes the footprint of GOES active-fire
detections related only to that fire.

2.3.3 Processing: development, optimization, and
improvements

In the processing stage, we implement the four optimiza-
tions or adjustments in the GOFER fire perimeter map-
ping method: (1) dynamic smoothing kernel size, (2) early-
perimeter adjustment, (3) parallax terrain correction, and
(4) confidence threshold optimization (Fig. 3). For GOFER-
East and GOFER-West, we separately optimize the confi-
dence threshold and parallax adjustment factor and calcu-
late the smoothing kernel size and early-perimeter adjust-
ment. Software details specific to GEE are provided in Ap-
pendix B1.

Dynamic kernel size

As described above, the radius of the square kernel used for
smoothing is calculated as the spatial resolution of the com-
bined GOES grid within the AOI polygon. Opting for a dy-
namic kernel size, instead of a static value of 2 km used in
Restif and Hoffman (2020) for example, allows the algorithm
to be applied more effectively to fires outside California. The
GOES spatial resolution per pixel decreases away from the
Equator and toward the edge of the disk (Fig. B1). The ker-
nel size is calculated in the preprocessing stage and added to
the input metadata dictionary.

Early-perimeter adjustment

Some fires smolder at low intensity, leading to low-
confidence detections at the beginning of their lifetime. Con-
sequently, the GOFER algorithm fails to output these early
perimeters, as the confidence values do not meet the required
threshold. We add an adjustment to “anchor” the first perime-
ter at or close to the first available GOES fire detection by
scaling the fire detection confidence. For each hour, the scal-
ing factor is calculated as the maximum of all values in the
cumulative maximum confidence image up to that hour. The
scaling factor ranges from 0 to 1, where 1 indicates no scal-
ing; however, we set the minimum scaling factor to 0.1 to
prevent overinflation of early perimeters (Fig. 4b). To per-
form the early-perimeter adjustment, the hourly maximum
confidence is divided by the scaling factor.

Confidence threshold optimization and parallax correction

Next, we simultaneously optimize for the confidence thresh-
old and parallax adjustment factor. The confidence threshold
applies a mask to the smoothed fire detection confidence and
removes values lower than the threshold. The parallax ad-
justment factor ranges from 0 to 1 and is multiplied by the
parallax displacement in the x and y components; this range
allows us to test the efficacy of the parallax correction on
the spatial accuracy of the final perimeter. The parallax cor-
rection algorithm is a function of the terrain elevation, the
height of the satellite, the longitudinal position of the satel-
lite, Earth’s semi-minor and semi-major axes, and Geode-
tic Reference System 1980 (GRS 80) eccentricity (Spestana
et al., 2022). We use the USGS 10 m 3DEP DEM as input.
The displacement is smoothed using the same square kernel
for smoothing the GOES fire detection confidence. This pre-
vents extreme displacements of smaller 10 m pixels within a
coarse GOES pixel that may contain large variations in ele-
vation.

For optimization, we test the confidence threshold in incre-
ments of 0.01 from 0.75 to 0.99 and the parallax adjustment
factor in increments of 0.05 from 0 to 1 (Fig. 4a). For each
combination of the tested confidence threshold and parallax
adjustment factor, we calculate the IoU of the GOFER and
MTBS final perimeters. The IoU, or Jaccard index, is a com-
mon metric for evaluating spatial accuracy against ground
truth data in object detection. Here, the IoU is calculated
as the area of overlap over the area of union using the fire
perimeters, in which an IoU of 0 indicates no agreement and
an IoU of 1 indicates perfect agreement. We take the opti-
mal values at the maximum IoU (Table B2). As this process
is computationally intensive, the parameter search uses the
10 largest fires in California in 2020, a subset of the 28 fires
in this study.

2.3.4 Post-processing: quality control

In the post-processing stage, we undertake quality control of
the hourly perimeters. For each time step, we ensure that the
perimeter is spatially inclusive of previous perimeters by tak-
ing the union of that perimeter and previous perimeters. We
set the last time step as when the perimeter last grew and
remove extraneous perimeters.

2.4 Derived fire metrics

From the GOES-derived progression perimeters, we compute
several key fire metrics, including the diurnal cycle of the fire
growth in units of area (km2), active-fire-line length (km),
and fire spread rate (kmh−1). Figure 5 illustrates the methods
for calculating the active-fire line and fire spread rate. We
use simple polygons to depict hypothetical perimeters at time
steps t = 0 to t = 2, or from ignition (t = 0) to the current
hour (t = 1) to the next hour (t = 2). The ignition point is
defined as the centroid of the perimeter at t = 1.
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Figure 4. Parameter optimization and early-perimeter adjustments for deriving the GOFER-Combined fire progression perimeters. (a) Pa-
rameter optimization of the confidence threshold and parallax adjustment factor. The optimization is based on the Intersection-over-Union
(IoU) of GOFER and MTBS perimeters at the final extent of the fire, averaged across the 10 largest CA fires in 2020. At the maximum IoU,
the optimized confidence threshold is 0.95, and the parallax adjustment factor is 0.85. (b) Early-perimeter scaling. Adjustment for the fire
confidence of early perimeters is shown as a function of hours after ignition, with individual lines depicting each of the 28 largest fires in
CA from 2019 to 2021. The hourly fire confidence is divided by the early-perimeter scaling to calculate the scaled fire confidence. The min-
imum scaling, denoted by the dashed gray line, is set at 0.1 to prevent overly inflating early perimeters. The optimized confidence threshold
of 0.95 for GOFER-Combined is denoted by the dashed red line. When the early-perimeter scaling is lower than the confidence threshold, a
perimeter cannot be formed without any adjustment. The four fires depicted would have had their first perimeter formed hundreds of hours
after ignition without the early-perimeter scaling.

2.4.1 Active-fire line

We identify the active-fire line in two ways, as either the
“concurrent” or the “retrospective” active-fire line. Both
active-fire-line lengths are in units of kilometers.

The concurrent active-fire line (flinec) is defined as the
segments of a given fire perimeter that intersect with active-
fire detections of that hour above a certain threshold. For each
hour, we separately output flinec at confidence thresholds c of
0.05, 0.1, 0.25, 0.5, 0.75, and 0.9; this set of flinec at varying
thresholds allows us to progressively narrow down perime-
ter segments with the most intense burning. A lax thresh-
old, such as flinec=0.05, uses most of the active-fire detec-
tions during that hour, whereas a strict threshold, such as
flinec=0.9, only uses high-confidence detections to create the
hourly GOES fire perimeters. The flinec=0.05 is most com-
parable to active-fire lines in other satellite-derived products
such as FEDS, which uses all active-fire pixels intersecting
with the perimeter. flinec with stricter thresholds correspond
to areas with higher fire intensity. We convert the perimeters
from polygons to linestrings and use a buffer of 100 m around
the perimeter to extract intersecting active-fire pixels with a
fire detection confidence above the defined threshold.

The retrospective active-fire line (fliner) is defined as the
segments of a given fire perimeter that leads to growth in
the next hour’s perimeter. Because of this strict definition,

the fliner is generally shorter than the flinec that is defined
using low-confidence thresholds (e.g., c = 0.05), as the latter
may include segments of the perimeter that may be actively
burning but have not yet expanded during that hour.

For both the flinec and fliner, we consider the perimeter as
“growing” in a given time step if the active-fire-line length
is > 0 and “dormant” otherwise. We fill in dormant time steps
with the most recent flinec prior to that time step and the most
immediate fliner after that time step.

In general, the flinec can be calculated in near-real time
along with perimeters and is most useful for identifying po-
tential areas of spread along the perimeter and testing pre-
dictive models of future fire growth. The set of flinec at dif-
ferent confidence thresholds can be used in tandem to iden-
tify the least to most probable segments of future perime-
ter expansion. Whereas the flinec is not necessarily associ-
ated with perimeter expansion (e.g., indicates smoldering or
natural/human barriers), the fliner requires knowledge of fu-
ture perimeters but offers a more precise estimate of where
the perimeter expanded. The fliner is a stricter definition of
the active-fire line, more similar in length to flinec at high-
confidence thresholds. The fliner can be used for retrospec-
tive analysis to assess the drivers and barriers of fire growth.
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Figure 5. Pictorial overview of definitions for delineating active-fire lines and calculating the fire spread rates. A simplified representation
of perimeters is shown with the ignition point at time step t = 0, the current perimeter at time step t = 1, and the next perimeter at time step
t = 2. We use a (1) concurrent and (2) retrospective method for delineating active-fire lines. The concurrent method relies on the intersection
between the fire perimeter and concurrent active-fire detections, whereas the retrospective method uses future perimeters to determine which
portion of the current perimeter leads to a growth in area. We also define the fire spread rate from the (1) maximum axis of expansion
(MAE) and (2) area-weighted expansion (AWE). The MAE fire spread rate is calculated from the maximum shortest distance between two
perimeters, whereas the AWE fire spread rate is calculated as the area of growth normalized by the retrospective active-fire-line length.

2.4.2 Fire spread rate

To quantify the apparent horizontal expansion of the fire
perimeter, we define the fire spread rate, in kilometers per
hour, in two ways, as either the maximum axis of expansion
(fspreadMAE) or the area-weighted expansion (fspreadAWE),
between two hourly time steps. Similar to the approach
in Benali et al. (2023), fspreadMAE represents the partial
fire spread along the longest axis of expansion, whereas
fspreadAWE represents the overall fire spread. While the fire
perimeter and active-fire line describe the state of the fire at
the end of the hour (t = 1,2,3. . .), the fire spread rate, along
with the growth in the area, describes the change in state be-
tween consecutive perimeters; thus, we set these latter vari-
ables at the half hour (t = 0.5,1.5,2.5. . .). For example, the

fire spread rate at t = 1.5 is calculated from the perimeters at
t = 1 and t = 2.

The MAE fire spread rate (fspreadMAE) is calculated as the
maximum shortest distance between consecutive perimeters.
For the fspreadMAE at t = 1.5, we calculate the shortest dis-
tance from the perimeter at t = 1 outward to all pixels within
a search radius of 100 km. We then extract the maximum dis-
tance value within the area of growth between the perimeters
at t = 1 and t = 2. In the case where there is no previous
perimeter, such as the fspreadMAE at t = 0.5, we set the pre-
vious perimeter, at t = 0, as the centroid of the perimeter at
t = 1. In the case of fires merged from smaller fires, we dis-
aggregate multipolygons into separate polygons and search
for new ignitions or polygons that do not overlap with the
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Table 2. Variables in the GOFER product.

Name Short name Units

Global variables

Fire name fname
Fire year fyear

End-of-hour variables (t = 1,2,3. . .)

Hours after ignition, end of hour timestep h
UTC time tUTC
Local time, with daylight savings tLocal
Local time, without daylight savings tLocalGMT
Area within fire perimeter farea km2

Area within fire perimeter, as a percentage of the final area fareaPer %
Active-fire-line length (concurrent) cflinelen km
Active-fire-line length (retrospective) rflinelen km
Length of the perimeter fperim km
State of the fire fstate 0= dormant,

1= active

Half-hour variables (t = 0.5,1.5,2.5. . .)

Hours after ignition, half hour timestep_hh h
Growth in fire-wide area dfarea km2

Fire spread rate (MAE) maefspread kmh−1

Fire spread rate (AWE) awefspread kmh−1

previous perimeter. If no overlap exists for a polygon, we
add the centroid of that polygon to the previous perimeter.

The AWE fire spread rate (fspreadAWE) is calculated as the
fire-wide growth in area divided by the retrospective active-
fire-line length. The fspreadAWE at t = 1.5, for example, is
calculated as the change in area, in square kilometers, from
the perimeter at t = 1 to the perimeter at t = 2 divided by the
fliner length at t = 1. The calculation of fspreadAWE for the
special case of when there is no fliner at ignition, or during
the time step just prior to the first formed perimeter (here
depicted as t = 0), is similar to that for fspreadMAE, except
here we take the average rather than the maximum.

2.4.3 GOFER product structure and variables

The GOFER product for the 28 large CA fires contains
hourly fire perimeters, active-fire lines, and fire spread rates
for three GOFER versions: GOFER-Combined, GOFER-
West, and GOFER-East (Liu et al., 2023). Table 2 describes
variables contained in the GOFER product. We provide
shapefiles (.shp) of the perimeters and concurrent and ret-
rospective active-fire lines and a summary table (.csv) of all
end-of-hour and half-hour variables. End-of-hour variables
record the state of the fire each hour, whereas half-hour vari-
ables record the change in the fire between 2 consecutive
hours.

2.5 Validation and evaluation

In our framework, the spatial accuracy of the perimeters di-
rectly affects that of the active-fire lines and fire spread rates,
both of which are derived from the perimeters. Due to limita-
tions in high-resolution reference data, we focus on the vali-
dation of the perimeters with FRAP and NIROPS and evalu-
ation of active-fire lines with comparisons to FEDS here.

To validate the spatial accuracy of the GOFER perimeters,
we calculate the IoU of GOES and FRAP final perimeters.
We compare this to the IoU of the FEDS and FRAP final
perimeters. Further, to quantify the spatial error between the
GOFER and FRAP final perimeters, we calculate “break-
points” in the distribution of shortest distances from the
GOFER perimeter to the FRAP perimeter. These breakpoints
are defined by the mean and several percentiles, including the
median and maximum, and the magnitude of these distances
represents the deviation of the GOFER perimeter from the
ground truth. This spatial error is induced by a combination
of coarse spatial resolution, geolocation error, and missing
fire detections in GOES. Our analysis is similar to the eval-
uation described in Ben-Haim and Nevo (2023) for GOES-
derived fire perimeters but incorporates both false positives
and false negatives in one metric. We use the fire structure
status dataset from CAL FIRE as another way to validate the
GOFER perimeters by calculating the number of affected and
destroyed structures contained by the final perimeter. Specif-
ically, this evaluates omission error, as damaged and de-
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stroyed structures should be located within the final perime-
ter.

To validate the temporal progression of GOFER perime-
ters, we use NIROPS perimeters derived from airborne IR
imagery. We track the change in fire area between snap-
shots and the cumulative fire area relative to the final fire
size. Because NIROPS perimeters are relatively sparse and
almost all during nighttime, we additionally evaluate the per-
formance of GOFER relative to FEDS over each fire’s life-
time to check when the GOFER perimeters are relatively
stable with respect to spatial accuracy. This provides a par-
tial test of GOFER’s performance. To do so, we track the
IoU of GOFER and FEDS perimeters, as well as the frac-
tion of false positives and false negatives, at 12 h intervals.
As a caveat, the perimeters and active-fire lines in FEDS are
labeled as day or night, and the exact timing of the over-
pass, which can differ by more than half an hour from day to
day, is not provided with the product. Based on the approxi-
mate 01:30/13:30 overpasses for VIIRS, we compare FEDS
to GOFER at 02:00/14:00.

We evaluate the GOFER concurrent active-fire lines at the
different confidence cutoffs (0.05, 0.1, 0.25, 0.5, 0.75, and
0.9) compared to the FEDS active-fire lines. We determine
which cutoff leads to the highest agreement with the FEDS
active-fire lines. However, the GOFER and FEDS algorithms
still inherently differ. FEDS can take advantage of the higher
spatial resolution of 375 m VIIRS detections to identify fire
locations more accurately than GOES, whose raw active-fire
detections can lead to large biases due to its much coarser
spatial resolution. Thus, the different GOES confidence cut-
offs provide a range of concurrent active-fire lengths loosely
tied to varying levels fire intensity at the fire front. As another
check, we calculate the aggregate 12 h retrospective active-
fire-line lengths for both GOFER and FEDS perimeters.

3 Results and discussion

3.1 Evaluating the accuracy of the GOFER fire
progression perimeters

Figure 6 shows the hourly GOFER-Combined perimeters for
the 10 largest CA fires in 2020 that were used to optimize the
confidence threshold and parallax adjustment factor (Fig. 4).
The optimized confidence threshold is 0.95 for GOFER-
Combined, higher than GOFER-East (0.76) and GOFER-
West (0.83). The optimized parallax adjustment factor ranges
from 0.8 to 1 among the GOFER versions, suggesting that
the parallax correction is a needed step to improve the spa-
tial accuracy of GOES active-fire pixels (Table B2). Specifi-
cally, for GOFER-Combined, the mean IoU for the 10 fires is
0.78 when no parallax adjustment is applied (adjustment fac-
tor= 0), compared to 0.81 at the optimized adjustment fac-
tor of 0.85 (Fig. 4a). The effect of the parallax correction is
apparent for the Creek Fire, which was located on mountain-
ous terrain at a mean elevation of about 1.8 km above sea

level. Its uncorrected final perimeter deviates from the FRAP
perimeter on the northern and eastern edges, lowering the
IoU by 0.09. (Fig. B3).

We evaluate the spatial accuracy of GOFER fire perimeters
at the final time step compared to FRAP, on select days com-
pared to NIROPS, and at 12 h intervals compared to FEDS.
For the 28 large fires, the mean IoU of GOFER and FRAP
perimeters is 0.77 for GOFER-Combined, 0.67 for GOFER-
East, and 0.75 for GOFER-West (Table C1). In general, the
lower IoU for GOFER-East, due to the coarser resolution of
GOES-East compared with GOES-West in California, sug-
gests that GOES-West drives the improved spatial accuracy
of the GOFER-Combined perimeters. Because of the larger
smoothing kernels used in GOFER-East, the perimeters gen-
erally smooth over burned peninsula and inlet-type features
where the fire conforms to the sinuous, mountainous terrain
(Fig. C1, Tables B2 and C2).

The overall temporal progression of the cumulative change
in fire-wide area in GOFER agrees well with NIROPS. For
example, for hours that NIROPS perimeters are available,
we find a strong correlation between the change in fire area
(r = 0.86, RMSE= 52.8 km2) between NIROPS snapshots
and fractions of final fire size (r = 0.99, RMSE= 0.05) from
GOFER-Combined and NIROPS (Fig. C2). The high RMSE
in the change in fire area mainly stems from a few instances
of high bias between some snapshots in complex fires. The
median absolute bias is 6.7 km2, while the mean absolute
bias is 16.7 km2. GOFER has a median positive bias of 0.02
in the fractions of final fire size, suggesting that perime-
ter growth accumulates slightly earlier for GOFER than for
NIROPS. As a caveat, NIROPS does not fully map the fire
for some snapshots, so some areas of active growth may be
missing. The discrepancies may also indicate that GOFER
is unable to pick up small increments of growth later in the
fire’s lifetime when fire front is less active.

Figure 7 compares the Creek Fire progression mapped
by GOFER-Combined and FEDSv2. Although the FEDS
perimeters are more detailed, GOFER fills in gaps in the fire
progression when the fire spreads rapidly (< 50 h after igni-
tion for the Creek Fire), thereby providing insights into the
fire’s behavior when it is most explosive. We also compare
the IoU of GOFER to FEDS relative to FRAP for 25 large
fires, which excludes the three cross-border fire that are not
fully mapped in FEDSv2 (Sect. 2.1).

The IoU for FEDS is 0.83, higher than the IoU of 0.77
for GOFER-Combined, 0.68 for GOFER-East, and 0.76 for
GOFER-West (Fig. 8a, Table C1). This discrepancy is rea-
sonable considering the higher spatial resolution of the in-
put active fires in FEDS (375 m) compared with GOFER
(GOES-East: 3.1–3.6 km; GOES-West: 2.5–2.7 km; GOES-
Combined: 1.6–1.7 km) (Table B2). In addition, the average
IoU for the 10 megafires in 2020 that we used to optimize
parameters is similar to the IoU for the 7 megafires in 2021
(e.g., the IoU for GOFER-Combined and FRAP is 0.8 for
2020 fires and 0.78 for 2021 fires). The lack of a significant
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Figure 6. Maps of the GOFER-Combined hourly fire progression perimeters of the 10 large fires that burned over 100 000 acres in CA in
2020. For each fire, the official burned area (in acres and square kilometers) from CAL FIRE is inset. Cooler colors represent time steps early
in the fire’s lifetime, whereas warmer colors represent time steps later in the fire’s lifetime. The time steps are normalized across fires and
expressed as the percentage of hours elapsed relative to the time step at 95 % of total area burned.

drop in the IoU suggests that our parameters are not over-
tuned to those 10 fires in 2020.

Using FEDS perimeters as 12 h references, we find that
the IoU of GOFER and FEDS begins to stabilize around
100 h after ignition (IoU > 0.6) (Fig. 8b). We find a simi-
lar pattern using NIROPS perimeters. At < 100 h, the fires
are small and, therefore, harder to map accurately at GOES
resolution, as any small shift in the perimeter can lead to

a sizable decrease in the IoU. Another reason for the low
IoU < 100 h after ignition is that some fires required ex-
tensive early-perimeter adjustment to scale the fire detection
confidence and output a rough estimate of these early perime-
ters. In particular, the fraction of false positives is higher than
that of false negatives close to ignition due to overinflation in
GOFER early perimeters. At the cost of spatial accuracy, we
anchor the first perimeter close or at the time step with the
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Figure 7. Spatiotemporal progression and comparison of the 2020 Creek Fire. Maps of the hourly GOES-derived GOFER-Combined pro-
gression (a); 12 h VIIRS-derived FEDSv2 progression (b); and comparison of the GOFER-Combined, FEDSv2, and FRAP final perimeters
of the Creek Fire (c). (d) Time series of the hourly growth in area for the Creek Fire from GOFER-Combined.

first GOES active-fire detection. If the scaling factor from
the early-perimeter adjustment is lower than the confidence
threshold, this indicates that a perimeter could not be formed.
In extreme cases, such as the Windy, Tamarack, Red Salmon
Complex, and McCash fires for GOFER-Combined, we see
this inability to form an initial perimeter hundreds of hours
after ignition (Fig. 4b).

Certain conditions or features lower the spatial accuracy
or IoU – namely, the obscuration of the satellite view due to
clouds and heavy smoke, location of a fire along a coastal
boundary or waterbody, and presence of unburned islands
and narrow burn scar features. Of the 28 fires, the main
outlier is the July Complex Fire, which has a low IoU of
0.44 for GOFER-Combined and 0.48 for FEDS (Table C1).
Because active-fire detection relies on discovering instanta-
neous thermal anomalies, clouds or thick smoke could pre-
vent both satellite sensors from detecting active fires. On
the other hand, burned-area mapping, such as in MTBS or
FRAP, incorporates a time series of pre-fire to post-fire land
cover changes, so is possible to infer burned area during very
cloudy or smoky periods from later observations. In addi-
tion, GOFER tends to underestimate the perimeter extent for
fires that hug the coast (e.g., Dolan) or have narrow burn

scar features (e.g., LNU Lightning Complex) (Figs. 1 and 6).
The neighborhood smoothing in GOFER yields low-fire-
detection-confidence values along the edge of the coast and
around narrow burn scars, which shrinks the perimeter and
can even lead to fragmentation (e.g., SCU Lightning Com-
plex). This issue is more acute in GOFER-Combined, which
uses a higher, and therefore stricter, confidence threshold
than GOFER-East and GOFER-West. As such, we observe a
lower percentage of damaged and destroyed structures within
GOFER-Combined (92 %) and GOFER-East (93 %) perime-
ters compared with GOFER-West (99 %), signifying that the
higher omission error in GOFER-Combined is largely due
to missed or low-quality observations by GOES-East (Ta-
ble C3).

Based on the distribution of shortest distances from the
GOFER to FRAP final perimeters, we estimate the spatial
errors of GOFER-Combined as 0.75± 0.21 km for the mean
and 2.86± 1.14 km for the maximum along its perimeter
edges (Fig. C3). The spatial errors of GOFER-West are com-
parable with a mean of 0.87± 0.31 km and a maximum of
2.94± 1.04 km, while those of GOFER-East are higher with
a mean of 1.44± 0.44 km and a maximum of 5.08± 1.8 km.
The coarse resolution and geolocation errors of GOES affect
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Figure 8. Spatial accuracy of GOFER perimeters compared to
FRAP and FEDS. (a) The IoU of GOFER and FEDS final perime-
ters compared to FRAP for large fires in 2019–2021. The vertical
lines connect GOFER and FEDS IoU for the same fires. (b) Accu-
racy metrics for evaluating GOFER against FEDS perimeters at 12 h
intervals for large fires in 2019–2021. Along with the IoU, we show
the fraction of false positives (FPs) and false negatives (FNs) within
the union of the GOFER and FEDS perimeters (TP+FN+FP).
In equivalent terms, the IoU is the fraction of true positives (TPs)
within the union. Lines show the accuracy metrics for individual
fires, dots show the average of all fires in 50 h bins, and the size
of the dots represents the number of fires in each 50 h bin. Fires
that straddled the border between CA and a neighboring state (i.e.,
Slater and Devil, Tamarack, and W-5 Cold Springs) were excluded,
as FEDS perimeters cut off at the CA border.

the overall error along perimeter edges, while missing fire
detections can cause large maximum errors, such as for the
July Complex Fire.

3.2 The fire diurnal cycle derived from GOFER

The fire diurnal cycle is commonly derived from the FRP
associated with active fires (Li et al., 2022; Giglio, 2007;
Andela et al., 2015; Mu et al., 2011; Wiggins et al., 2020).
Here, we instead track the fire diurnal cycle as the growth
in fire-wide area, which the GOFER algorithm makes pos-

sible by resolving fire expansion at hourly intervals. Tradi-
tionally, burned-area products, available at daily to monthly
timescales due to algorithm constraints, have lower temporal
precision and frequency than needed to resolve diurnal vari-
ation (Giglio et al., 2018). As the fire front progresses, we
expect the diurnal cycle of the fire-wide growth in area to co-
incide with or even precede that of active fires and FRP. This
is because of a lingering fuel load behind the fire front that
takes more time to fully burn through, resulting in active-fire
detections inside the fire perimeter. Maxima in the diurnal
cycle occur when the weather is hot, dry, and windy, such
as in the afternoon, allowing the fire to easily burn through
nearby dry fuels. Minima tend to occur when the weather is
cool, wet, and stagnant, such as at night, when nearby fuels
are too moist to catch on fire, thereby preventing fire spread
(Balch et al., 2022).

We derive the fire diurnal cycle from the hourly fire-wide
growth in the area of the GOFER perimeters. For GOFER-
Combined, we observe two peaks in fire perimeter expan-
sion during the afternoon (14:00–15:00 PDT) and evening
(19:00–20:00 PDT), whereas GOFER-East and GOFER-
West yield a single peak in growth during the afternoon
(14:00–16:00 PDT) (Fig. 9a). The diurnal cycle of fire
growth in GOFER-Combined closely mirrors that of GOES
FRP (Wiggins et al., 2020). During the afternoon to evening
hours (13:00–23:00 PDT), GOES-East, when compared with
GOES-West, has higher peak-to-valley differences in FRP
(−68 % versus−31 %) and fire detection confidence (−19 %
versus −8 %), with noticeable minimums occurring during
the day-to-night transition period (16:00–20:00 PDT) (Fig.
9b); similarly, the GOES-East active-fire-pixel count devi-
ates from that of GOES-West by −7 % on average during
the same hours. Because GOES-East observes California to-
ward the edge of its disk view (Fig. B1), high solar zenith an-
gles, sun glint issues, and mountainous terrain may explain
the missed fire detections and lower fire detection confidence
(Li et al., 2022). There may also be a positive nighttime fire
detection bias, as smaller, cooler thermal anomalies are more
easily distinguishable relative to the cooler background. Be-
cause the GOES-East and GOES-West fire detection confi-
dence values are averaged, missed GOES-East detections can
lead to false negatives or to burned area that is excluded from
the perimeter. An example of this issue is seen on the south-
eastern edge of the Creek Fire, where the lack of GOES-East
active fires led to an unburned inlet carved into the GOFER-
Combined perimeter (Fig. C1).

As GOES-East is closer to the edge of its full-disk view
than GOES-West in California, GOES-East observations are
inherently less reliable and more subject to issues such as
sun glint and viewing zenith angles. As such, the lower
reliability of GOES-East during the day-to-night transition
period likely drives the temporal artifacts in the fire diur-
nal cycle in GOFER-Combined. As GOFER-Combined uses
a higher confidence threshold, the algorithm is more sen-
sitive to missed or low-confidence detections, and the fire

Earth Syst. Sci. Data, 16, 1395–1424, 2024 https://doi.org/10.5194/essd-16-1395-2024



T. Liu et al.: Systematically tracking the hourly progression of large wildfires 1409

Figure 9. Average GOFER-derived fire diurnal cycle for 28 large
CA wildfires from 2019 to 2021. The diurnal cycle is shown as the
normalized hourly fraction of the (a) growth in area derived from
the GOFER progression perimeters and (b) GOES fire detection
confidence. For panel (b), the spatial average is calculated from the
maximum fire detection confidence of each pixel for each hour. The
shaded areas represent ± 1 standard deviation.

growth in those late-afternoon hours will then be misallo-
cated to evening hours. Even though GOFER-East relies only
on GOES-East observations, its optimized confidence thresh-
old (0.76) is less stringent than GOFER-Combined (0.95).
Low-confidence active pixels are less likely to be rejected in
forming the hourly perimeter, thus resulting in more realistic
diurnal cycles of fire growth in GOFER-East and GOFER-
West compared with GOFER-Combined. This is a main lim-
itation and area of future work for the GOFER-Combined al-
gorithm, as corrections are needed to boost the fire detection
confidence during the day-to-night transition and assign dif-
ferent weights to GOES-East and GOES-West observations.

3.3 Assessing the GOFER active-fire lines and fire
spread rates

For GOFER-Combined, the maximum flinec=0.05 lengths
range from 40 to 264 km, while fliner lengths range from 19
to 114 km (Table 1).

Figure 10 shows the time series of the GOFER-Combined
flinec and fliner active-fire lengths and FEDSv2 active-fire
lengths for the Creek Fire. Both flinec and fliner lengths peak
soon after ignition and gradually decrease as the fire expan-

sion slows down (Fig. 10a and b). Based on the correlation
coefficient and slope, the FEDSv2 active-fire-line lengths are
the closest to flinec=0.05 (r = 0.5, m= 0.68, p < 0.05) at 12 h
intervals (Fig. 10a). The calculation of flinec in the FEDS al-
gorithm is slightly different from the GOFER method, as the
FEDS input active-fire data are represented as points rather
than images of the fire detection confidence. To directly com-
pare the two products, we use the same method to derive the
12 h aggregate fliner from FEDS and GOFER perimeters. For
the Creek Fire, the fliner lengths are moderately correlated
(r = 0.41, p < 0.05) with an RMSE of 24.2 km (Fig. 10c).
GOFER tends to underestimate the fliner length, with more
values of zero, suggesting that some areas of expansion are
not as well captured. This is partly because GOFER perime-
ters are less sinuous due to the lower spatial resolution of
GOES and the neighborhood smoothing applied in the al-
gorithm (Table C3). Slight day-to-day differences in the re-
trieval times of VIIRS fire detections also affect the com-
parison between GOFER and FEDS active-fire lines. While
GOFER uses all 10 min full-disk GOES images within each
hour, VIIRS can only observe the state of the fire at its re-
trieval time, so the spatial extent and state of fire may have
changed substantially at the end of the hour when GOFER
and FEDS are compared.

For the 25 large CA fires, excluding cross-border fires,
the overall correlation coefficient and slope between flinec
and FEDS active-fire-line lengths decrease as the con-
fidence threshold increases, while the RMSE increases
(Fig. C4). As such, the flinec=0.05 should be consid-
ered as the default flinec, with the flinec at higher con-
fidence thresholds representing areas with increased like-
lihood of fire perimeter expansion. Relative to FEDS,
GOFER-East fliner and flinec have consistently lower ac-
curacy than GOFER-Combined and GOFER-West. For
GOFER-Combined, the flinec=0.05 has an average r =

0.49± 0.25, slope= 0.48± 0.24, and RMSE= 21± 11 km;
the 12 h aggregate fliner has an average r = 0.65± 0.18,
slope= 0.59± 0.22, and RMSE= 17± 10 km (Fig. C4).

Figure 11 shows the time series of fire spread rates
calculated using two different methods (fspreadMAE and
fspreadAWE) for the Creek Fire. The hourly fspreadMAE
and fspreadAWE are strongly correlated (r = 0.88, p < 0.05),
with fspreadMAE being 2.59 times as high as fspreadAWE.
For all 28 large CA fires, we find strong correlations of
r = 0.93± 0.05 for GOFER-Combined, of r = 0.94± 0.02
for GOFER-East, and of r = 0.95± 0.02 for GOFER-West
(Table C4). The ratio of fspreadMAE to fspreadAWE is
2.74± 0.12 for GOFER-Combined, 2.48± 0.15 for GOFER-
East, and 2.56± 0.13 for GOFER-West. For GOFER-
Combined, the maximum fspreadMAE ranges from 2.2 to
11.3 kmh−1, whereas fspreadAWE ranges from 0.9 to 10.8 km
(Table 1). In rare cases, usually early in the fire’s lifetime, we
find higher fspreadAWE than fspreadMAE (e.g., Zogg Fire).
This happens when the fire grows explosively from a small
perimeter and active-fire line in the previous time step.
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Figure 10. A comparison of GOFER-Combined and FEDS con-
current and retrospective active-fire-line lengths for the 2020 Creek
Fire. (a) Concurrent active-fire lengths derived from GOFER
perimeters and concurrent active-fire detections are shown using
colored lines for different fire detection confidence cutoffs (0.05,
0.1, 0.25, 0.75, and 0.9). The 12 h FEDSv2 active-fire-line lengths
are depicted by the black line. The correlation coefficient (r) and
slope (m) between GOFER and FEDSv2 active-fire-line lengths are
shown in the inset. (b) Retrospective active-fire-line lengths derived
from GOFER perimeters are depicted by the black line. The frac-
tion of the active-fire-line length with respect to the total perimeter
length is depicted by the gray line. The bottom bar shows when the
perimeter is growing (red) or dormant (orange). (c) The 12 h aggre-
gate retrospective active-fire-line lengths derived from GOFER (red
line) and FEDSv2 (black line) perimeters. All correlations shown
are statistically significant at p < 0.05.

Figure 11. Hourly fire spread rate derived from GOFER-Combined
perimeters for the 2020 Creek Fire. The fire spread rate is calcu-
lated using two methods: maximum axis of expansion (MAE, black
line) and area-weighted expansion (AWE). The correlation coeffi-
cient (r) values between the MAE and AWE fire spread rates and
the MAE / AWE ratio are shown inset. The bottom bar shows when
the perimeter is growing (red) or dormant (orange).

3.4 Limitations, future work, and potential applications

3.4.1 Limitations

Here, we use 28 large fires in California from 2019 to 2021 to
test the potential of the GOFER algorithm to track the hourly
progression of large wildfires using 2 km GOES active-fire
detections. While GOFER fills in temporal gaps in tracking
fire progression, there are inherent limitations arising from
the low spatial resolution of GOES observations, missed
active-fire detections, and potential geolocation errors in the
perimeters and the active-fire lines. In particular, GOFER
is less reliable around waterbodies and mountainous ter-
rain. While GOES-East and GOES-West observations can be
combined to increase the overall spatial accuracy of GOES-
derived perimeters, we find that, in California, GOFER-West
is comparable to GOFER-Combined, and the use of GOES-
East observations can detract from the spatial and temporal
accuracy of GOFER-Combined. We expect that the suitabil-
ity of the GOFER product for scientific applications, such
as improving the fire diurnal cycle in emissions estimates
or understanding the controls on extreme fire behavior, will
grow as the algorithm is refined and additional fires are pro-
cessed. However, GOFER cannot be used to understand fine-
scale physical fire behavior, such as spotting or convection
along the fire line, due to unnatural textures arising from the
spatial limitations of GOES. Importantly, lessons learned in
developing the GOFER algorithm may be applied to obser-
vations from future geostationary satellites over North and
South America, such as NOAA’s planned GeoXO (Geosta-
tionary Extended Observations) satellite system in the 2030s
to replace the current GOES-R series with higher spatial
resolution and additional bands (Adkins, 2022), and exist-
ing geostationary satellites over other regions, such as Hi-
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mawari over East Asia, equatorial Asia, and Australia and
Meteosat over Europe and Africa (Hally et al., 2016; Roberts
and Wooster, 2008).

3.4.2 Future work and development

A useful direction for future work would be to apply the
GOFER algorithm to a diverse sample of large fires across
the GOES domain and test how its performance varies using
observations from one or both satellites. Ground truth data
for other regions may include perimeters provided by state
and federal agencies or high-resolution burned-area mapping
from Landsat and Sentinel. How GOFER-East and GOFER-
West perform relative to each other depends largely on the
longitudinal location of a given fire relative to the longitudi-
nal position of the GOES satellites. We show that GOFER-
West (IoU= 0.75) outperforms GOFER-East (IoU= 0.67) in
mapping California fires, but we can also hypothesize that the
reverse is true for fires in the Amazon and other biomes in
South America. The spatial accuracy of mapping perimeters
is influenced by substantial heterogeneity in the magnitude
of parallax displacement and GOES pixel resolution across
the GOES domain (Figs. B1 and B2). Thus, we can expect
higher mapping accuracy for fires located at the center of the
disk, near the Equator, and/or at low elevation than those at
the edge of the disk, far from the Equator, and/or at high ele-
vation.

As the GOFER algorithm is applied to fires outside
California, small adjustments may include further optimiz-
ing tunable parameters. We currently implement a dynamic
smoothing kernel size, the optimization for the confidence
threshold and parallax adjustment factor, and early-perimeter
adjustment. First, the smoothing kernel, which applies a
neighborhood mean, removes the blockiness of the fire
perimeter polygon that conforms to the pixelated footprint of
the fire confidence image. Dynamically setting the smooth-
ing kernel size equal to the GOES spatial resolution at a fire’s
location eliminates this blockiness and provides a universal
method to calculate the smoothing kernel size for fires across
the GOES domain. However, this smoothing induces errors
in some fire perimeters that hug the coast, contain unburned
islands (e.g., waterbodies), or encompass narrow swaths of
burned area. To address these limitations, rules can be im-
plemented for how the smoothing kernel is applied, such as
according to nearby land cover. Second, we optimize the
confidence threshold and parallax adjustment factor based
on the IoU of GOFER and MTBS of the 10 largest fires in
California in 2020. The two parameters can be tuned per
fire, but this may lead to overtuning and substantially in-
creases computation time. Additional optimization metrics
may be considered, such as the maximum distance between
true-positive and either false-positive or false-negative pix-
els, used by Google’s current wildfire tracking system based
on machine learning methods (Ben-Haim and Nevo, 2023).
The kernel size for smoothing the fire detection confidence,

and the shape of the kernel itself, can also be tested as an ad-
ditional tunable parameter. Future development of GOFER
should consider how the optimal set of parameters differs by
region and land cover by tuning the parameters on subsets of
fires. Third, we apply early-perimeter adjustment to anchor
the first perimeter close to or at the first GOES active-fire de-
tection. The early-perimeter adjustment works by increasing
the fire confidence if the maximum value is between 0.1 and
1. This adjustment targets fires that smolder for a long time
before rapidly expanding, where the confidence of the GOES
detections does not meet the threshold to create a perimeter.
Additionally, as the footprint of a fire early in its lifetime
(< 50 h after ignition) often encompasses only one to a few
GOES active-fire pixels, the spatial accuracy of the GOFER
early perimeters is low compared with FEDS (IoU < 0.5).
One potential adjustment is shrinking each perimeter by its
scaling factor (i.e., if < 1) to prevent overly inflating early
perimeters derived from low-confidence detections. This pro-
cess can then be tested on time steps with a maximum confi-
dence below the minimum threshold of 0.1, which currently
yield no perimeters; if successful, this adjustment will anchor
the first perimeter of every fire to the time step with the first
GOES active-fire detection.

Additional potential development areas include the adjust-
ment of the fire detection confidence and the automation
of the GOFER algorithm for use in near-real time. First, in
GOFER, we currently convert the GOES fire mask codes
to fire detection confidence following Restif and Hoffman
(2020). While we optimize the confidence threshold against
reference MTBS perimeters in the GOFER algorithm, result-
ing in spatial accuracy comparable to FEDS, we note that the
initial remapping of fire mask codes includes user-specified
elements, such as assigning a lower confidence value to satu-
rated pixels versus processed pixels. In future work, it may be
possible to use the detection confidence in 1 km MODIS ac-
tive fires (MCD14ML), which ranges from 0 to 100, and the
375 m VIIRS active fires (VNP14IMGML), which consists
of low-, medium-, and high-confidence categories, to read-
just the conversion of GOES fire mask codes to fire detec-
tion confidence. Alignment of the fire detection confidence
across GOES, MODIS, and VIIRS also enables integration
of MODIS and VIIRS observations within the GOFER work-
flow and may ultimately improve GOFER’s spatial accuracy.
Second, the GOFER algorithm is currently semiautomated
and processes each fire separately, relying on manual up-
dates to a metadata dictionary containing that fire’s bound-
ing box and start and end time. Here, we tested the GOFER
algorithm on fires that burned over 50 000 acres (202 km2),
but the lower size limit of fires that GOFER can map ef-
fectively should be explored. For operational, near-real-time
use, GOFER needs to be able to identify individual fire
events and determine these constraints automatically.

Finally, we rely on FEDS to evaluate the active-fire lines
and fire spread rates here, both of which rely on the accu-
racy of the perimeters. More extensive evaluation and vali-
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dation can be performed using aerial data and ground mea-
surements. For example, future development of the concur-
rent active-fire lines in GOFER could use FRP to threshold
and segment active-fire lines into fire intensity classes; how-
ever, this approach must account for uncertainties in the FRP
calculated for saturated and low-quality fire pixels. To com-
pare more directly to spread rates measured on the ground,
the GOFER fire spread rates could be calculated for spe-
cific points or each grid cell in a predefined grid with the
fspreadMAE approach.

3.4.3 Potential applications

We foresee several extensions and applications of the
GOFER algorithm and product. First, GOFER can be used
to improve the fire diurnal cycle for atmospheric modeling of
smoke emissions. In current global fire emissions databases,
the diurnal cycle is broadly generalized by land cover and
is generally static from day to day throughout a fire’s life-
time; for example, the 3 h fire diurnal cycles in the Global
Fire Emissions Database (GFED) are derived from historical
GOES observations from 2007 to 2009 and implemented as
climatological means based on three land cover types (van
der Werf et al., 2017; Mu et al., 2011). As is evident from
GOFER, however, large fires may have explosive days of
growth where burning extends from the afternoon to evening.
In contrast, other days with slower fire spread are gener-
ally marked only by growth during the afternoon peak. Re-
cently, GOES observations have been merged with VIIRS
observations to estimate hourly fire emissions at 3 km spa-
tial resolution in a top-down, FRP-based approach for the
Regional ABI and VIIRS fire Emissions (RAVE) product (Li
et al., 2022). Similarly, for a bottom-up, burned-area-based
approach, the GOFER diurnal cycle of the fire-wide growth
in area can be used to downscale the perimeters of select fires
in existing fire progression products, such as FEDS, to hourly
intervals. Second, the GOFER product can be used to build
statistical and machine learning models to understand how
temporal variations in weather, topography, fuels, and active-
fire suppression at the active-fire line drive fire spread rate
and fire-wide growth in area at an hourly scale. Owing to lim-
itations in the spatial resolution in both the input and output
data, GOFER is most suitable for 1D time series models. For
example, the GOFER product can be used to explore periods
of critical stress on firefighting resources, such as in mid-
August and early September of 2020 when eight or nine large
fires were simultaneously active (Fig. A1). Using the set of
available fires in GOFER as case studies, we can identify
periods when large fires are explosive or quiescent, includ-
ing extreme cases when nighttime “brakes” on fire spread
fail (Balch et al., 2022), causing evacuations and damaging
structures. For spatial analyses, GOFER could be used as a
secondary product to FEDS and high-resolution perimeters
from state and federal agencies. GOFER and FEDS can be
used to improve the parameterization of 3D fire spread mod-

els, such as ELMFIRE and WRF-Fire, during periods of ex-
treme fire spread and active nighttime burning, which are of-
ten poorly estimated compared with satellite and aircraft ob-
servations (Stephens et al., 2022; Turney et al., 2023). The
high temporal resolution of GOFER may enable advances in
the initialization of the actively burning fire line in prognos-
tic fire spread models (Stephens et al., 2022; Turney et al.,
2023); however, potential geolocation errors should be ac-
counted for. This could be done, for example, by perturbing
the location and length of active-fire-line segments using an
ensemble approach, with the sampling drawing upon the dis-
tribution of errors relative to reference perimeters.

4 Data availability

The GOFER product of the 28 fires in Califor-
nia from 2019 to 2021 is available on Zenodo at
https://doi.org/10.5281/zenodo.8327264 (Liu et al., 2023).
An online data visualization app for the GOFER product is
available at https://globalfires.earthengine.app/view/gofer
(Liu, 2024).

5 Code availability

The code for the GOFER algorithm is available at
https://doi.org/10.5281/zenodo.8327264 (Liu et al., 2023).

6 Conclusion

In summary, we use GOES observations to develop the
GOFER algorithm for deriving the hourly fire progression
perimeters, active-fire lines, and fire spread rates of large
wildfires. We test the algorithm using 28 fires that burned
over 50 000 acres (202 km2) in California from 2019 to
2021. We implement a parallax terrain correction with op-
timizations for the parallax adjustment factor and confidence
threshold, early-perimeter adjustment, and a dynamic kernel
for neighborhood smoothing. Relative to reference perime-
ters provided by FRAP, the spatial accuracy of GOFER
(IoU= 0.77) is reasonable compared to the VIIRS-derived
FEDSv2 (IoU= 0.83) at a 375 m spatial resolution. We ap-
ply two different methods to map active-fire lines (concur-
rent and retrospective) and calculate fire spread rates (MAE
and AWE). GOFER resolves the time dimension of fire pro-
gression mapping to hourly intervals and can identify criti-
cal, explosive periods of fire spread. Opportunities for future
development of the GOFER algorithm include resolving the
day-to-night transition issues that skew the fire diurnal cy-
cle of the fire-wide growth in area and testing GOFER in
different ecosystems and regions across the GOES domain.
Additionally, our GOFER product for the 28 large wildfires
in California from 2019 to 2021 is a useful case study ref-
erence for modeling weather–human–fire relationships and
improving estimates of fire emissions and smoke pollution.
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Appendix A: Study area: large wildfires in California

Table A1. Metadata for the 28 large wildfires in California from 2019 to 2021 that burned over 50 000 acres (202 km2). Statistics are from
the annual CAL FIRE Redbooks, which provide detailed information on each fire. The coordinates (longitude and latitude) and ignition times
are from CAL FIRE and InciWeb; some ignition times are adjusted earlier if there are preceding GOES active-fire detections.

No. Fire name Year Area (acres) Area (km2) Long Lat Ignition (UTC)

1 Kincade 2019 77 758 315 −122.78 38.79 24 Oct 2019 04:00
2 Walker 54 608 221 −120.68 40.06 4 Sep 2019 21:00
3 August Complex∗ 2020 1 032 648 4179 −122.67 39.78 16 Aug 2020 21:00
4 Bobcat∗ 115 997 469 −117.87 34.24 6 Sep 2020 19:00
5 Creek∗ 379 895 1537 −119.26 37.19 5 Sep 2020 01:00
6 CZU Lightning Complex 86 509 350 −122.22 37.17 16 Aug 2020 15:00
7 Dolan∗ 124 924 506 −121.60 36.12 18 Aug 2020 18:00
8 Glass 67 484 273 −122.50 38.56 27 Sep 2020 10:00
9 July Complex 83 261 337 −121.48 41.70 22 Jul 2020 17:00
10 LNU Lightning Complex∗ 363 220 1470 −122.15 38.48 17 Aug 2020 13:00
11 North Complex∗ 318 935 1291 −120.93 40.09 17 Aug 2020 16:00
12 Red Salmon Complex∗ 144 698 586 −123.43 41.19 27 Jul 2020 18:00
13 SCU Lightning Complex∗ 396 625 1605 −121.30 37.44 16 Aug 2020 11:00
14 Slater and Devil∗ 166 127 672 −123.38 41.77 8 Sep 2020 13:00
15 SQF Complex∗ 175 019 708 −118.50 36.26 19 Aug 2020 14:00
16 W-5 Cold Springs 84 817 343 −120.28 41.03 18 Aug 2020 18:00
17 Zogg 56 338 228 −122.57 40.54 27 Sep 2020 21:00

18 Antelope 2021 145 632 589 −121.93 41.50 1 Aug 2021 17:00
19 Beckwourth Complex 105 670 428 −120.37 39.88 30 Jun 2021 23:00
20 Caldor 221 835 898 −120.54 38.59 15 Aug 2021 01:00
21 Dixie 963 309 3898 −121.38 39.88 14 Jul 2021 00:00
22 KNP Complex 88 307 357 −118.81 36.57 10 Sep 2021 14:00
23 McCash 94 962 384 −123.40 41.56 1 Aug 2021 02:00
24 McFarland 122 653 496 −123.03 40.35 30 Jul 2021 01:00
25 Monument 223 124 903 −123.34 40.75 31 Jul 2021 01:00
26 River Complex 199 359 807 −123.06 41.39 30 Jul 2021 21:00
27 Tamarack 68 637 278 −119.86 38.63 4 Jul 2021 18:00
28 Windy 97 528 395 −118.63 36.05 10 Sep 2021 10:00

∗ Fires used in parameter optimization.
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Figure A1. Time series of the hourly growth in area from 2019 to 2021 in the GOFER-Combined product. For each year, the growth in area
(km2) is summed across all fires. The horizontal lines above the time series represent the duration of active growth of each fire, ordered by
start time. Annual maps of the locations of the fires are shown on the right.
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Appendix B: Development and optimization for
GOES-based mapping of fire progression

Table B1. Remapping of GOES pixels by converting fire mask
codes to continuous fire detection confidence values. All other pix-
els are presumed to be non-fire pixels and are assigned a fire detec-
tion confidence of zero.

Fire mask category Fire detection

Description Code confidence

Processed fire 10 1
Processed fire, filtered 30
Saturated fire 11 0.9
Saturated fire, filtered 31
Cloud contaminated fire 12 0.8
Cloud contaminated fire, filtered 32
High probability fire 13 0.5
High probability fire, filtered 33
Medium probability fire 14 0.3
Medium probability fire, filtered 34
Low probability fire 15 0.1
Low probability fire, filtered 35

Software details

Input metadata dictionary. For each fire, we set the spatial
and temporal constraints for processing GOES active fires
by examining the GOES active-fire time series and spatial
footprint. They are necessary to avoid computational time-
outs in GEE.

Dynamic kernel. The “reduce neighborhood” function to
smooth the fire detection confidence uses the boxcar opti-
mization, which is a fast method for computing the mean but
only works with square and rectangular kernels in GEE.

Parallax correction. To implement the GOES parallax cor-
rection in Earth Engine, we convert the Python code in the
“goes-ortho” package to JavaScript (Spestana et al., 2022). In
GEE, we use the “displace” function to correct the location
of GOES active-fire detections. We separately computed the
x and y components of the displacement for GOES-East and
GOES-West, in meters, between the coordinates (longitude
and latitude) of the DEM and satellite perspective as inputs
to this function. As a caveat, we must use a high-resolution or
downscaled DEM, as we find the displace function in GEE to
be inaccurate if the displacement is less than half the spatial
resolution of the DEM.

Table B2. The optimized confidence thresholds and parallax adjust-
ment factors and smoothing kernel sizes used in GOFER.

Version Confidence Parallax Smoothing
threshold adjustment kernel

factor size (km)

GOFER-Combined 0.95 0.85 1.6–1.7
GOFER-East 0.76 0.8 3.1–3.6
GOFER-West 0.83 1 2.5–2.7
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Figure B1. Spatial resolution of GOES-East, GOES-West, and combined GOES across the domain over land. The GOES spatial resolution,
in kilometers, is calculated on the 0.25°× 0.25° grid used by the Global Fire Emissions Database, version 4s (GFED4s). Vertical lines depict
the longitudinal position of the GOES-East (75° W) and GOES-West (137° W) satellites.

Figure B2. Parallax displacement in GOES-East and GOES-West images across the domain. The total, x component, and y component
of the parallax displacement, in kilometers, are calculated for a hypothetical object at a 1 km elevation throughout the domain. For the
x component, negative values indicate that the object is displaced westward, whereas positive values that the object is displaced eastward. For
the y component, positive values indicate that the object is displaced northward, whereas negative values indicate that the object is displaced
southward. The vertical purple lines depict the longitudinal position of the GOES-East (75° W) and GOES-West (137° W) satellites.
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Figure B3. Effect of the parallax terrain correction on the final
perimeter, using the Creek Fire as an example. The final perime-
ter of the Creek Fire with the parallax correction (red polygon)
and without parallax correction for GOFER-Combined is shown
alongside the FRAP perimeter (black polygon). For the uncorrected
perimeter, we use a confidence threshold of 0.91, which yields the
highest mean IoU among the 10 largest CA fires in 2020 when the
parallax adjustment factor is zero (Fig. 4a).

Table B3. Tunable parameters in the GOFER algorithm.

Tunable parameter Definition and format

Fire mask codes to fire
confidence conversion

Definition: converts the codes indicating the quality of active-fire detections to numeric values
Format: float, [0,1]

Confidence threshold Definition: delineates the border between burned and unburned area and indicates where to draw
the fire perimeter
Format: float, [0,1]

Smoothing kernel size Definition: the radius of the kernel used to apply the neighborhood mean and smooth the GOES
fire confidence
Format: float, > 0

Parallax adjustment factor Definition: the degree to which the parallax terrain adjustment is applied
Format: float, [0,1]

Early-perimeter scaling Definition: a scalar used to adjust the maximum fire confidence, relevant for time steps where
the maximum value up to that time step falls below one
Format: float, [0,1]
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Appendix C: Evaluation and validation of the GOFER
product

Figure C1. Spatiotemporal progression and comparison of the 2020 Creek Fire. Maps of the hourly GOFER progression for GOFER-
Combined (a), GOFER-East (b), and GOFER-West (c).

Figure C2. Comparison of the temporal progression of the 28 large fires in GOFER-Combined with NIROPS IR-based perimeters from
NIFC. (a, b) Time series of the fraction of the final fire size for each fire from GOFER (black lines) and NIROPS (red lines) for fires
(a) under 500 h in duration and (b) over 500 h in duration. For NIROPS, dots represent the availability of the IR imagery, which is almost
all from nighttime flights. (c, d) Scatterplots of the (c) change in area between perimeter snapshots and (d) fractions of final fire size from
GOFER and NIROPS for time steps when NIROPS perimeters are available. The correlation coefficient and RMSE are inset.
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Table C1. The IoU calculated for GOFER-Combined, GOFER-East, GOFER-West, FEDSv2, and MTBS relative to FRAP.

No. Fire name Year IoU (GOFER, FRAP) IoU IoU

GOFER- GOFER- GOFER- (FEDS, (MTBS,
Combined East West FRAP) FRAP)

1 Kincade 2019 0.79 0.72 0.76 0.85 0.99
2 Walker 0.7 0.61 0.71 0.82 0.93

3 August Complexa 2020 0.88 0.83 0.87 0.92 0.95
4 Bobcata 0.76 0.63 0.68 0.79 0.98
5 Creeka 0.86 0.77 0.83 0.87 0.98
6 CZU Lightning Complex 0.77 0.73 0.87 0.92 0.97
7 Dolana 0.75 0.76 0.74 0.91 0.97
8 Glass 0.73 0.62 0.69 0.8 0.99
9 July Complex 0.44 0.52 0.49 0.48 0.97
10 LNU Lightning Complexa 0.71 0.68 0.73 0.81 0.97
11 North Complexa 0.87 0.73 0.87 0.9 0.98
12 Red Salmon Complexa 0.82 0.73 0.83 0.88 0.97
13 SCU Lightning Complexa 0.84 0.79 0.84 0.85 0.97
14 Slater and Devila,b 0.77 0.64 0.78 – 0.98
15 SQF Complexa 0.76 0.66 0.71 0.73 0.96
16 W-5 Cold Springsb 0.79 0.59 0.74 – 0.98
17 Zogg 0.7 0.56 0.76 0.88 0.99

18 Antelope 2021 0.73 0.6 0.73 0.67 0.95
19 Beckwourth Complex 0.75 0.53 0.71 0.81 0.96
20 Caldor 0.8 0.71 0.8 0.89 0.97
21 Dixie 0.8 0.68 0.78 0.88 0.97
22 KNP Complex 0.79 0.67 0.76 0.81 0.98
23 McCash 0.74 0.65 0.73 0.82 0.97
24 McFarland 0.79 0.75 0.71 0.9 0.97
25 Monument 0.84 0.76 0.84 0.91 0.98
26 River Complex 0.77 0.65 0.74 0.82 0.92
27 Tamarackb 0.69 0.53 0.63 – 0.95
28 Windy 0.82 0.7 0.77 0.84 0.99

Mean IoU (all fires) 0.77± 0.08 0.67± 0.08 0.75± 0.08 – 0.97± 0.02
Mean IoU (excludes cross-border fires) 0.77± 0.09 0.68± 0.08 0.76± 0.08 0.83± 0.09 0.97± 0.02

a Fires used in parameter optimization. b The IoU for cross-border fires is omitted for FEDS, as the perimeter of these fires are not fully mapped.

Table C2. Comparison of the final perimeter sinuosity for the
25 non-cross-border fires. The sinuosity of the fire perimeter is de-
fined as the length of the perimeter divided by the diameter of a
circle with the same area.

Source Sinuosity (± 1 SD)∗

GOFER-Combined 4.9± 1.2
GOFER-East 4.3± 0.8
GOFER-West 4.6± 0.9
FEDSv2 5.9± 1.9
FRAP 14.3± 6.7

∗ SD: standard deviation.
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Table C3. The number of damaged and destroyed structures within GOFER-Combined, GOFER-East, and GOFER-West final perimeters.
Undamaged and inaccessible structures are excluded.

No. Fire name Year Within perimeter (%) Total (n)

GOFER-Combined GOFER-East GOFER-West

1 Kincade 2019 96 98 96 434

3 August Complex∗ 2020 95 98 95 99
4 Bobcat∗ 99 100 100 216
5 Creek∗ 96 99 100 929
6 CZU Lightning Complex∗ 72 83 96 1630
8 Glass 97 97 100 1810
10 LNU Lightning Complex∗ 91 95 97 1723
11 North Complex∗ 98 98 98 2471
13 SCU Lightning Complex∗ 100 100 100 251
14 Slater and Devil∗ 100 100 100 377
15 SQF Complex∗ 100 100 100 244
17 Zogg 100 100 100 231

18 Antelope 2021 100 100 100 24
19 Beckwourth Complex 100 100 100 171
20 Caldor 100 100 100 1086
21 Dixie 90 91 99 1405
24 McFarland 94 94 100 47
25 Monument 97 100 97 30
27 Tamarack 100 100 100 17
28 Windy 10 10 100 21

Mean 92± 20 93± 20 99± 2

∗ Fires used in parameter optimization.

Table C4. Comparison of GOFER fire spread rates derived from the MAE (maximum axis of expansion) and AWE (area-weighted expansion)
methods.

Version Correlation coefficient MAE / AWE
(r , ± 1 SD)∗ (± 1 SD)∗

GOFER-Combined 0.93± 0.05 2.74± 0.12
GOFER-East 0.94± 0.02 2.48± 0.15
GOFER-West 0.95± 0.02 2.56± 0.13

∗ SD: standard deviation.
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Figure C3. Distribution of shortest distances from GOFER to FRAP final perimeters for the 28 fires in this study. Each box plot represents
the distribution of the shortest distances among the 28 fires at different breakpoints in the distribution for each fire: mean; median; and the 5th,
10th, 25th, 75th, 90th, 95th, and 99th percentiles. Separate analyses are shown for the GOFER-Combined, GOFER-East, and GOFER-West
perimeters.

Figure C4. Comparison of GOFER and FEDSv2 active-fire-line lengths. The violin plots show the distribution of (a) correlation coefficients,
(b) slopes, and (c) RMSEs for 25 non-cross-border CA fires from 2019 to 2021. GOFER flinec lengths are compared to the out-of-box
FEDSv2 active-fire-line lengths, while the 12 h aggregate fliner lengths are calculated using the same method for GOFER and FEDSv2.
flinec=0.9 was not derived for GOFER-East nor GOFER-West, as the optimized confidence thresholds used to map perimeters were lower
than 0.9.
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