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Abstract. Land-cover change has been identified as an important cause or driving force of global climate change
and is a significant research topic. Over the past few decades, global land-cover mapping has progressed; how-
ever, long-time-series global land-cover-change monitoring data are still sparse, especially those at 30 m reso-
lution. In this study, we describe GLC_FCS30D, a novel global 30 m land-cover dynamics monitoring dataset
containing 35 land-cover subcategories and covering the period 1985–2022 in 26 time steps (maps were updated
every 5 years before 2000 and annually after 2000). GLC_FCS30D has been developed using continuous change
detection and all available Landsat imagery based on the Google Earth Engine platform. Specifically, we first
take advantage of the continuous change-detection model and the full time series of Landsat observations to cap-
ture the time points of changed pixels and identify the temporally stable areas. Then, we apply a spatiotemporal
refinement method to derive the globally distributed and high-confidence training samples from these tempo-
rally stable areas. Next, local adaptive classification models are used to update the land-cover information for
the changed pixels, and a temporal-consistency optimization algorithm is adopted to improve their temporal sta-
bility and suppress some false changes. Further, the GLC_FCS30D product is validated using 84 526 globally
distributed validation samples from 2020. It achieves an overall accuracy of 80.88 % (±0.27 %) for the basic clas-
sification system (10 major land-cover types) and 73.04 % (±0.30 %) for the LCCS (Land Cover Classification
System) level-1 validation system (17 LCCS land-cover types). Meanwhile, two third-party time-series datasets
used for validation from the United States and Europe Union are also collected for analyzing accuracy variations,
and the results show that GLC_FCS30D offers significant stability in terms of variation across the accuracy time
series and achieves mean accuracies of 79.50 % (±0.50 %) and 81.91 % (±0.09 %) over the two regions. Lastly,
we draw conclusions about the global land-cover-change information from the GLC_FCS30D dataset; namely,
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that forest and cropland variations have dominated global land-cover change over past 37 years, the net loss of
forests reached about 2.5 million km2, and the net gain in cropland area is approximately 1.3 million km2. There-
fore, the novel dataset GLC_FCS30D is an accurate land-cover-dynamics time-series monitoring product that
benefits from its diverse classification system, high spatial resolution, and long time span (1985–2022); thus,
it will effectively support global climate change research and promote sustainable development analysis. The
GLC_FCS30D dataset is available via https://doi.org/10.5281/zenodo.8239305 (Liu et al., 2023).

1 Introduction

Land-cover data are important and necessary for supporting
sustainable development goals, maintaining biodiversity, and
monitoring natural resources (L. Liu et al., 2021; Potapov et
al., 2022). Land-cover changes directly or indirectly influ-
ence global climate patterns and the speed and magnitude of
climate change (Song et al., 2018), and they increasingly af-
fect biogeochemical cycles, the carbon cycle, and the Earth’s
energy balance (Foley et al., 2005; Hong et al., 2021; Winkler
et al., 2021). Since the Industrial Revolution, under the dual
pressure from global climate change and human activities,
global land cover has undergone drastic changes. According
to a Global Carbon Project report in 2020, since the industri-
alization period, land-cover and land-use changes have con-
tributed to approximately 25 % of all global greenhouse gas
emissions (Friedlingstein et al., 2020), and this trend is exac-
erbated by the ongoing increase in population and per capita
energy consumption (Xian et al., 2022). Therefore, under-
standing and studying land-cover changes is of vital signifi-
cance for addressing global environmental changes, promot-
ing sustainable development, and safeguarding the Earth’s
ecological environment.

Remote-sensing techniques, with their periodic Earth ob-
servation capability and archived massive long-term ob-
servation data since 1972, provide the most cost-effective
and practical solutions for long-time-series, large-area land-
cover-change monitoring. In the past few decades, with
the continuous improvement of remote sensing technology
and storage and computing capabilities, global land-cover-
change monitoring (GLCCM) has transitioned from 1 km
spatial resolution to fine resolutions of 30 or 10 m and from
single-phase mapping to long-term monitoring (Ban et al.,
2015; Friedl et al., 2010, 2022; Giri et al., 2013). In its early
stages, GLCCM mainly relied on time series of MODIS,
AVHRR, and Project for Onboard Autonomy (PROBA)-V
imagery (Buchhorn et al., 2020; Friedl et al., 2010); for
example, Sulla-Menashe et al. (2019) generated a global
500 m annual land-cover product (MCD12Q1) covering the
period from 2001 to the present using MODIS time-series
imagery with an overall accuracy of 73.6 %. Defourny et
al. (2018) integrated PROBA-V and Medium Resolution
Imaging Spectrometer (MERIS) time-series observations to
develop a global 300 m annual land-cover dynamics dataset
(CCI_LC: Climate Change Initiative Global Land Cover) for

the period from 1992 to 2020 with an overall accuracy of
71.5 %. These coarse land-cover-change products compre-
hensively captured the spatial patterns of various land-cover
types and quantified the global land-cover changes caused
by human and natural activities. However, they still had ma-
jor limitations, especially in regions with intense human ac-
tivity and high spatial heterogeneity, because these broken
and heterogeneous land-cover changes cannot be captured by
coarse-resolution satellite observations (Hansen et al., 2013;
Herold et al., 2008; L. Liu et al., 2021; Y. Zhang et al., 2021).

Recently, benefiting from the free access to fine-resolution
satellite imagery and powerful computing and storage capa-
bilities and the rise of cloud computing (such as the Google
Earth Engine (Gorelick et al., 2017) and Microsoft Planetary
Computer) in particular, fine-resolution land-cover dynam-
ics monitoring has been experiencing rapid development.
Correspondingly, numerous national and global 30 m land-
cover dynamics products have been developed (Chen et al.,
2015; Homer et al., 2020; H. Liu et al., 2021; Potapov et al.,
2022; Yang and Huang, 2021; Zhang et al., 2022). For ex-
ample, Yang and Huang (2021) used China’s land-use/cover
datasets (CLUDs) as the prior dataset and then combined
multitemporal classification and spatiotemporal consistency
post-processing methods to develop an annual 30 m land-
cover dataset (CLCD) for China from 1990 to 2019. Simi-
larly, H. Liu et al. (2021) combined pixel-based classification
and spatiotemporal consistency post-processing methods to
generate the first global 30 m land-cover change products.
However, many studies have demonstrated that multiperiod
independent classifications lead to significant classification
error accumulation in land-cover-change time-series moni-
toring (Sulla-Menashe et al., 2019; Zhu, 2017). For example,
Xian et al. (2022) stated that the independent classification
strategy suffered from the constraints of the post-processing
requirements that ensure the temporal consistency of land-
cover change maps. Therefore, although GLCCM has pro-
gressed significantly over the past few decades, an accurate
global 30 m land-cover change-detection product generated
by an efficient land-cover change method is still urgently re-
quired.

One of the greatest challenges in large-area land-cover
change detection is to select the optimal algorithm to cap-
ture the land-cover changes from time-series observations
(Healey et al., 2018; Zhu, 2017). Over the past few decades,
a series of change-detection algorithms have been proposed
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for monitoring forest disturbance (Huang et al., 2009; Jin
et al., 2023; Kennedy et al., 2007, 2010; Qin et al., 2021),
urban expansion (Liu et al., 2019; X. Zhang et al., 2021a),
cropland dynamics (Dong et al., 2015; Potapov et al., 2021),
and land-cover changes (Bullock et al., 2019; Jin et al., 2017;
Verbesselt et al., 2010; Zhu et al., 2019). However, most of
them are only suitable for regional land-cover change mon-
itoring, and some of the algorithms need prior knowledge
(such as that for urban expansion). Zhu (2017) systematically
reviewed the performance and limitations of various change-
detection methods based on multitemporal satellite data and
further explained that the high-temporal-frequency and mul-
tivariate change-detection algorithms are more suitable for a
long time series of land-cover changes in a large area, pro-
vided that the problem of the huge amount of computation
involved can be solved. Similarly, Xian et al. (2022) and Liu
et al. (2019) concluded that dense and continuous change-
detection methods provided higher accuracy and more ro-
bustness than traditional change-detection methods for cap-
turing multiple, complicated changes.

The continuous change-detection and classification
(CCDC) algorithm, a classical change-detection method
based on dense time-series observations proposed by Zhu
and Woodcock (2014b), is widely used for regional and
national land-cover monitoring (Xian et al., 2022; Xie et
al., 2022). It uses all available Landsat observations to
build time-series regression models and then captures the
outliers by analyzing the differences between the actual
observations and model estimations. Zhu and Woodcock
(2014b) demonstrated that the CCDC algorithm attained a
general accuracy of 90 % and temporal accuracy of 80 % for
capturing land-cover changes. Thus, it has been adopted by
the United States Geological Survey (USGS) as the official
algorithm for monitoring land-cover changes over the United
States (Pengra et al., 2016). For example, Xian et al. (2022)
implemented the CCDC algorithm and all available Landsat
data to develop annual land-cover-change products that
cover the contiguous United States (CONUS) for 1985–2017
with an overall accuracy of 82.5 %.

In summary, in recent decades, land-cover mapping and
monitoring has made significant progress; however, global
30 m land-cover-dynamics time-series products derived from
change-detection algorithms are still lacking. In this study,
we had three aims: (1) to use the continuous change-
detection algorithm and the full time series of Landsat ob-
servations to generate the first global 30 m land-cover dy-
namics product that covers the period from 1985 to 2022 and
uses a fine classification system that contains 35 fine land-
cover subcategories with 26 time steps (the maps are updated
every 5 years before 2000 and annually after 2000), known
as GLC_FCS30D (it should be noted that GLC_FCS30D is
updated every 5 years before 2000 due to the sparse avail-
ability of Landsat 5 imagery; thus, we combine the satel-
lite observations from 2 years before and after the nominal
center year from 1985 to 1995 to ensure the mapping ac-

curacy of GLC_FCS30D before 2000); (2) to quantify the
land-cover changes and analyze the spatiotemporal change
patterns of various land-cover types based on the devel-
oped GLC_FCS30D dataset; and (3) to quantitatively ana-
lyze the performance of the GLC_FCS30D product using
multisourced validation datasets.

2 Datasets

2.1 Continuous Landsat imagery from 1984 to 2022

All available Landsat imagery from 1984 to 2022 – covering
the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), Landsat 8 Operational Land
Imager (OLI), and Landsat 9 OLI missions – were collected
via the Google Earth Engine (GEE) cloud-computing plat-
form. Specific measures were taken to build a high-quality,
continuous Landsat time-series collection. First, all Landsat
images underwent atmospheric correction to convert them to
surface reflectance using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) and Land Surface
Reflectance Code (LaSRC) methods (Vermote, 2007; Ver-
mote and Kotchenova, 2008). Then, although the Landsat 5,
7, 8, and 9 missions share similar spectral bands, the wave-
length differences between the TM, ETM+, and OLI cannot
be ignored. Relative radiometric normalization was applied
to the TM and ETM+ imagery using the transformation co-
efficients suggested by Roy et al. (2016).

2.2 Global land-cover dataset at 30 m for the year 2020

The global 30 m land-cover product with a fine classifica-
tion system for the year 2020 (GLC_FCS30-2020) is the
baseline for generating training samples and identifying
land-cover information in the temporally stable regions in
Sect. 3. The GLC_FCS30 dataset was developed using lo-
cal adaptive classifications and confident and globally dis-
tributed training samples, and then validated to reach an
overall accuracy of 82.5 % with the basic validation system
(X. Zhang et al., 2021b). Cross-comparisons with other land-
cover products showed obvious advantages for GLC_FCS30
in terms of mapping accuracy and diversity of land-cover
types. The GLC_FCS30-2020 dataset is freely available at
https://doi.org/10.5281/zenodo.4280923 (Liu et al., 2020).

2.3 Global impervious surface dynamics dataset at 30 m
from 1985 to 2022

Many studies found that high spatiotemporal heterogeneity
of impervious surfaces and broken impervious surface con-
structions caused high uncertainty and difficulty when mon-
itoring the dynamics of such surfaces (Gong et al., 2019a;
Zhang et al., 2022), and issues with both missed detec-
tions and false alarms are encountered when change de-
tection methods are applied to the dynamic monitoring of
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heterogeneous impervious surfaces. Thus, we independently
produced a global impervious-surface-dynamics time-series
dataset at 30 m (GISD30) for 1985–2022 and then overlaid
this thematic dataset on the GLC_FCS30D dataset to en-
sure high confidence in the impervious surface dynamics.
The GISD30 dataset was developed by combining the sample
migration, spectral generalization, and local adaptive mod-
eling methods and then optimized by the spatiotemporal-
consistency correction method (Zhang et al., 2022). It was
validated and found to attain a mean overall accuracy of
90.1 % around the globe and to perform better than other sim-
ilar products in capturing the changes in impervious surfaces
over time and across different types of landscapes. At the
same time, third-party validation also indicated that GISD30
exhibited superior performance to similar global 30 m imper-
vious surface products (Wang et al., 2022).

2.4 Global 30 m wetland datasets from 1985 to 2022

Like the impervious surface dataset, the global wetland dy-
namics dataset is independently produced because the re-
flectance spectra of the wetlands and phenological variations
changed daily with the water levels. The continuous change-
detection method would suffer from serious commission
and omission errors if used for wetland dynamics monitor-
ing (Gallant, 2015). In this study, the GWL_FCS30 (global
30 m wetland map with a fine classification system) wetland
dataset from 1985 to 2022 – developed by integrating the au-
tomatic sample extraction method, a stratified classification
strategy, and the time series of Landsat observations (Zhang
et al., 2023) – is superimposed on the GLC_FCS30D land-
cover dynamics dataset. GWL_FCS30 was quantitatively as-
sessed as having a mean overall accuracy of 86.44 % us-
ing 25 708 validation points, and it demonstrated a higher
level of performance than other wetland products when it
came to capturing the spatial patterns of wetlands during
cross-comparisons (Zhang et al., 2023). GWL_FCS30 fur-
ther splits wetlands into seven wetland subcategories (four
inland and three coastal subcategories) and is overlaid di-
rectly onto the GLC_FCS30D dataset to not only improve the
monitoring accuracy for wetlands but also enrich the number
of land-cover types (see Table 1).

2.5 Validation datasets

To comprehensively analyze the accuracy metrics for the
GLC_FCS30D dataset, two types of validation datasets were
collected: an independent global validation dataset from
2020 and two third-party time-series datasets used for vali-
dation for the United States and the European Union.

2.5.1 Global validation dataset

A total of 84 526 globally distributed validation sam-
ples are collected to analyze the accuracy metrics for the

GLC_FCS30D dataset for 2020, and their spatial distribu-
tion is illustrated in Fig. 1. Intuitively, the spatial patterns
of the global validation dataset are consistent with the ac-
tual global land-cover situation. Specifically, to ensure con-
fidence in and the rationality of the validation datasets, sev-
eral measures are taken, which were explained in detail in
our previous work (Zhao et al., 2023). First, a stratified ran-
dom sampling method is applied by combining the landscape
heterogeneity, population density data, and Köppen climate
groups, which effectively increases the sample size in the het-
erogeneous landscapes and for some rare land-cover types
(such as impervious surfaces, permanent ice, and snow). Sec-
ond, for each validation sample, the land-cover type is de-
termined through independent interpretation by trained in-
terpreters after combining high-resolution aerial photogra-
phy, multitemporal Landsat images, and other relevant ancil-
lary datasets (such as vegetation coverage, tree height, phe-
nological curves, and terrain characteristics). Independent
interpretation software based on the GEE platform (https:
//eliza-ting.users.earthengine.app/view/crd-vit, last access:
12 March 2024) for efficiently recognizing the land-cover
types of each sample was also developed. Third, a quality-
control operation based on duplicate interpretations is used to
ensure the confidence level of each validation sample. Each
sample is independently labeled by three junior interpreters
and then double-checked by the senior experts, and valida-
tion samples with huge disparities are discarded. In addition,
because the impervious-surface and wetland datasets were
produced independently and were validated in our previous
works (Zhang et al., 2023, 2022), the corresponding high-
quality validation samples of these two thematic types are
also imported into the global validation datasets.

2.5.2 Third-party regional time-series datasets used for
validation

Due to the great difficulty in collecting global long time-
series datasets used for validation, we used two third-party
regional datasets for the CONUS and the European Union.
The first time-series validation dataset assessed the perfor-
mance of the Land Cover Monitoring, Assessment, and Pro-
jection (LCMAP) Collection 1.0 annual land-cover prod-
ucts (Stehman et al., 2021) (called LCMAP_Val, https://
www.usgs.gov/special-topics/lcmap/validation-data, last ac-
cess: 12 March 2024). LCMAP_Val consisted of 24 971 val-
idation samples with 30 m spatial resolution and covered the
time period of 1985 to 2017. It was developed by combin-
ing a simple random sampling method and visual interpre-
tation from high-resolution aerial photography, multitempo-
ral Landsat images, and other auxiliary datasets. Meanwhile,
to guarantee the reliability of each validation sample, the
TimeSync auxiliary tool was also adopted to capture the
land-cover changes (Stehman et al., 2021). Quality control
was implemented through duplicate interpretations (Xian et
al., 2022).
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Figure 1. Spatial distribution of 84 526 global validation points relating to 17 fine land-cover types in the normal year of 2020.

The second regional validation dataset was the Land Use/-
Cover Area frame Survey (LUCAS), which is the most com-
prehensive and largest land-cover validation dataset for the
European Union and is freely available at https://esdac.jrc.
ec.europa.eu/projects/lucas (last access: 12 March 2024). It
contains 1 090 863 validation points based on a systematic
2 km× 2 km grid and covers the period from 2006 to 2018
in intervals of 3 years (d’Andrimont et al., 2020). Five LU-
CAS surveys in 2006, 2009, 2012, 2015, and 2018 assessed
the accuracies of the time series of GLC_FCS30D. LUCAS
was developed from a combination of field observations and
photo interpretation (Ballin et al., 2018); thus, it can be used
with high confidence and also attracts widespread attention
for land-cover validations (Gao et al., 2020; Venter et al.,
2022).

3 Methods

Figure 2 presents a detailed flowchart for monitoring
land-cover changes by combining the continuous change-
detection (CCD) algorithm proposed by Zhu and Woodcock
(2014b) with the local adaptive updating method. Specifi-
cally, the flowchart contains four main procedures: (1) de-
tecting the temporally stable pixels and the time points of

abrupt changes in the other land-cover pixels using the con-
tinuous change-detection model; (2) deriving the spatiotem-
porally stable training samples by using the spatiotemporal
refinement method from the GLC_FCS30 land-cover product
and temporally stable masks; (3) building the local adaptive
classification models for each local region and then updating
the land-cover information in the changed pixels; and (4) us-
ing the spatiotemporal consistency optimization method to
improve the quality of land-cover change maps and suppress
false changes.

Before detecting the changed land-cover pixels, all
poor-quality pixels (cloud, shadow, and saturated pixels as
well as the “scan line corrector off” pixels in Landsat 7)
in the continuous-time-series Landsat imagery were first
masked using the CFmask algorithm, which has been
demonstrated to achieve an overall accuracy of 96.4 %
and was adopted by the USGS as its official cloud and
shadow detection algorithm (Zhu et al., 2015; Zhu and
Woodcock, 2012). Then, in terms of these residual cloud
pixels (i.e., those contaminated with light cloud and haze),
the Tmask (multiTemporal mask) algorithm, which uses the
temporal information from the clear-sky pixels to improve
the cloud-detection capability (Zhu and Woodcock, 2014a),
was used to mask the residual cloud pixels (note that Tmask
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is integrated into the CCD algorithm on the GEE platform as
ee.Algorithms.TemporalSegmentation.Ccdc()).
In other words, the effect of poor-quality pixels was mini-
mized.

3.1 The fine classification system used in
GLC_FCS30D

Determining the classification system is usually a prerequi-
site for land-cover mapping and monitoring. In this study, as
we used GLC_FCS30-2020 as the baseline land-cover prod-
uct and overlaid the GWL_FCS30 dataset on GLC_FCS30D
to ensure high accuracy in the wetland areas, the fine clas-
sification system used in this study is inherited from those
of GLC_FCS30-2020 and GWL_FCS30. Table 1 lists the
details of the fine classification system. It contains 35 fine
land-cover types and has obvious advantages when identify-
ing forest and wetland subcategories.

3.2 Detecting changes using the CCD algorithm and
continuous Landsat imagery

In general, land-cover changes can be grouped into three cat-
egories: periodic changes caused by phenological variabil-
ity, trend changes driven by natural behavior (such as veg-
etation growth), and abrupt changes caused by natural or
human disturbances (such as deforestation or urban expan-
sion). Thus, capturing these abrupt changes and simultane-
ously suppressing the periodic and trend changes is the key
to land-cover monitoring. In this study, the CCD algorithm
(Zhu and Woodcock, 2014b) was used to capture these abrupt
changes. This algorithm uses Fourier transformation to fit the
time-series observations with the trend term (estimating the
trend changes) and harmonic terms (describing the periodic
changes) in Eq. (1):

ρ̂ (i, t)= a0,i + c1,i × t +
∑n

k=1

(
ak,i × cos

(
2kπ
T
t

)
+bk,i × sin

(
2kπ
T
t

))
, (1)

where ρ̂ (i, t) represents the predicted value of the ith band on
the t th Julian day; c1,i and a0,i are the regression slope and
intercept of the ith band, respectively; ak,i and bk,i represent
the coefficients of the kth-order harmonic term for the ith
band; n denotes the number of harmonic terms; and T is the
day number of the year (usually defined as 365). In relation
to determining the value of n, Zhu and Woodcock (2014b)
explained that higher-order harmonic terms provided bet-
ter performance when capturing the periodic variability but
caused overfitting in the time-series model and needed more
clear-sky observations to initialize the coefficients ak,i and
bk,i . After balancing the advantages and disadvantages of the
higher-order harmonic terms, we finally set n to be 3, as sug-
gested by other studies (Xian et al., 2022; Xie et al., 2022).

Then, as the CCD is a multivariate change-detection al-
gorithm for capturing the changes in various land-cover
types Zhu (2017), five Landsat spectral bands (excluding the
blue band for minimizing the effects of the atmosphere and
clouds) and three spectral indexes (NDVI (normalized differ-
ence vegetation index), NDWI (normalized difference water
index), and NBR (normalized burn ratio), as given in Eq. 2)
were combined to detect many kinds of changes in the Land-
sat time series.

NDVI=
ρnir− ρr

ρnir+ ρr
, NDWI=

ρgreen− ρswir1

ρgreen+ ρswir1
,

NBR=
ρnir− ρswir1

ρnir+ ρswir1
, (2)

where ρgreen, ρr, ρnir, and ρswir1 are the surface reflectance
of green, red, NIR (near infrared) and SWIR1 (short-wave
infrared 1) spectral bands in the Landsat imagery, respec-
tively. Next, to determine the fitted coefficients of the kth-
order harmonic term in Eq. (1), the least absolute shrinkage
and selection operator (LASSO) regression algorithm was
applied, which demonstrated better performance than the tra-
ditional ordinary least squares method in reducing the over-
fitting problem and dealing with unevenly distributed and
sparse Landsat observations (Zhu and Woodcock (2014b).

Next, the CCD model is a multiparameter change
detection model and has been demonstrated to be
sensitive to the parameter settings (Xiao et al.,
2023; Zhu and Woodcock, 2014b). The CCDC al-
gorithm on the Google Earth Engine platform
(ee.Algorithms.TemporalSegmentation.Ccdc)
contains three key adjustable parameters: minObservations,
chiSquareProbability, and minNumOfYearScaler. Zhu et
al. (2019) analyzed the relationships of the omission error
and commission error of land-cover changes with the vari-
abilities of three parameters in the United States, and they
found that the values of the three parameters affected the
change detection accuracy. In this study, we also investigated
the sensitivity of the change detection accuracy to the
parameter settings in Fig. S1 (in the Supplement) using
the time-series points from the LCMAP_Val and LUCAS
datasets after partly sampling. Notably, the sensitivity
analysis was implemented in two large areas to ensure the
feasibility of using the optimized parameters for other areas
in land-cover change detection. The results also showed that
CCD is a parameter-sensitive algorithm and that the optimal
parameter values were 5, 0.95, and 2 years for minObser-
vations, chiSquareProbability, and minNumOfYearScaler,
respectively.

After modeling the time-series observations using the
CCD algorithm, we analyzed the land-cover changes based
on the differences between the actual observations and the
predicted values from the time-series fitting models. Figure 3
shows three typical scenarios in which the land-cover dynam-
ics were modeled by the CCD algorithm. Specifically, Fig. 3a
illustrates that there was no abrupt break during the whole pe-
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Figure 2. The flowchart of the proposed method combining the continuous change-detection (CCD) algorithm and a local adaptive updating
algorithm.

riod, and thus only a single time-series model was built and
the pixel was usually labeled as temporally stable. Figure 3b
indicates that the pixel underwent an abrupt change and the
time-series observations were split into two segments. The
time point of the abrupt change occurred around 1996. Fig-
ure 3c gives a complicated time-series disturbance example
in which multiple abrupt changes were detected and the time-
series observations were split into four segments. The time-
series models for segments 1, 2, and 4 showed obvious trend
changes.

3.3 Updating changed areas using local adaptive
classifications

Using the CCD algorithm and continuous Landsat imagery,
we identified the temporally stable pixels and the time points
of abrupt changes for the land-cover change pixels. Ac-
curately determining the land-cover labels of the changed
pixels (or understanding the “from–to” change process) is
another key procedure for land-cover time-series monitor-
ing. To achieve this goal, we derived spatiotemporally sta-
ble training samples (see Sect. 3.3.1), updated the changed
pixels using multitemporal classifications, and finally mini-
mized the cumulative error caused by independent classifica-
tions.

3.3.1 Deriving spatiotemporally stable training samples

Numerous studies have demonstrated that the accuracy of the
training samples plays a critical role in accurate mapping
(Foody and Arora, 2010; Zhang et al., 2020). Visual inter-
pretation can ensure high-confidence samples, but it requires

a lot of manual participation, so it is not suitable for col-
lecting large-area training samples. An alternative option in-
volves generating training samples by refining existing land-
cover products through a series of improvement measures
(X. Zhang et al., 2021b; Zhang et al., 2023). Inspired by
the latter option, we combined the GLC_FCS30-2020 prior
dataset and the change-detection mask (derived using the
CCD algorithm described in Sect. 3.2) to obtain the spa-
tiotemporally stable training samples. Specifically, tempo-
rally stable areas are known to have higher mapping accu-
racy (Yang and Huang, 2021; Zhang and Roy, 2017; Zhang et
al., 2023); thus, we first used the aforementioned CCD mask
to retain the areas that were temporally stable during 1985–
2022, and then we overlapped them with the GLC_FCS30-
2020 maps to determine their land-cover labels. Next, be-
cause Radoux et al. (2014) emphasized that land-cover tran-
sition areas are usually subject to more serious misclassifica-
tion problems and that pixels with homogeneous land cover
have a higher probability of achieving acceptable accuracy,
we used a morphological erosion filter of 3 pixels× 3 pixels
to refine these temporally stable areas into spatiotemporally
homogeneous areas.

The spatiotemporally stable areas identified using the
check for temporal stability during 1985–2022, spatial ho-
mogeneity analysis, and the GLC_FCS30-2020 product
(which have an overall accuracy of 82.5 %) were retained to
generate the training samples. It should be noted that these
spatiotemporally stable areas are not guaranteed to be com-
pletely accurate; that is, a small number of the derived train-
ing samples may have been mislabeled. Fortunately, previ-
ous studies of large-area land-cover mapping demonstrated
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Table 1. The details of the fine classification system used in the GLC_FCS30D land-cover dynamics dataset.

Basic classification system Level-1 validation system Fine classification system ID

Cropland CRP Rainfed cropland RCP Rainfed cropland 10
Herbaceous cover cropland 11
Tree or shrub cover cropland 12

Irrigated cropland ICP Irrigated cropland 20

Forest FST Evergreen broadleaved forest EBF Closed evergreen broadleaved forest 51
Open evergreen broadleaved forest 52

Deciduous broadleaved forest BDF Closed deciduous broadleaved forest 61
Open deciduous broadleaved forest 62

Evergreen needleleaved forest ENF Closed evergreen needleleaved forest 71
Open evergreen needleleaved forest 72

Deciduous needleleaved forest DNF Closed deciduous needleleaved forest 81
Open deciduous needleleaved forest 82

Mixed-leaf forest MFT Closed mixed-leaf forest 91
Open mixed-leaf forest 92

Shrubland SHR Shrubland SHR Shrubland 120
Evergreen shrubland 121
Deciduous shrubland 122

Grassland GRS Grassland GRS Grassland 130

Tundra TUD Lichens and mosses LMS Lichens and mosses 140

Wetland WET Inland wetland IWL Swamp 181
Marsh 182
Flooded flat 183
Saline 184

Coastal wetland CWL Mangrove 185
Salt marsh 186
Tidal flat 187

Impervious surface IMP Impervious surface IMP Impervious surface 190

Bare areas BAL Sparse vegetation SVG Sparse vegetation 150
Sparse shrubland 152
Sparse herbaceous cover 153

Bare areas BAL Bare areas 200
Consolidated bare areas 201
Unconsolidated bare areas 202

Water body WTR Water body WTR Water body 210

Permanent snow and ice PSI Permanent snow and ice PSI Permanent snow and ice 220

that the random forest classification model (adopted in this
study; see Sect. 3.3.2) is highly robust to erroneous training
samples (Gong et al., 2019b; Mellor et al., 2015; X. Zhang et
al., 2021b). For example, Gong et al. (2019b) found that the
overall accuracy remained relatively stable provided the pro-
portion of erroneous training samples was within 20 %. This
provides support for the use of the spatiotemporally stable ar-
eas to derive confident training samples and further ensures
the quality of land-cover dynamics monitoring.

Numerous studies have highlighted the importance of the
training sample balance and distribution, as they significantly
influence the mapping performance (Foody, 2009; Jin et al.,
2014; Millard and Richardson, 2015). First, there are two op-
tions for the training sample distribution: areal-proportional
or equal allocation. The former was shown to achieve higher
accuracy than the latter option in land-cover mapping, espe-
cially in complicated land-cover conditions (Jin et al., 2014).
However, when using the areal-proportional sampling strat-
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Figure 3. Three typical land-cover changes identified using the continuous change-detection (CCD) algorithm and continuous Landsat
observations. The times series show (a) a stable land-cover condition, (b) a single abrupt change, and (c) multiple abrupt changes.

egy, the rare land-cover types usually had small sample sizes
and were sacrificed because the aim of land-cover mapping
was to achieve a global optimum rather than a local optimum.
Thus, the study of Zhu et al. (2016) suggested maximum
and minimum sample sizes for abundant and rare land-cover
types of 8000 and 600, respectively, to avoid the use of ex-
tremely large or small sample sizes. Thus, the GLC_FCS30-
2020 product was then split into 961 5°× 5° geographical
tiles, and we used the areal-proportional sampling strategy
and two sample balancing thresholds to allocate the train-
ing samples from the spatiotemporally stable areas in each
5°× 5° geographical tile. Lastly, the impervious surface and
wetland samples were excluded because both were indepen-
dently developed as thematic datasets in Sects. 2.3 and 2.4.

3.3.2 Updating changed areas using local adaptive
classifications

Before building the local adaptive classification models,
we had to extract useful spectral features from the Land-
sat time-series observations. In this study, we used multi-
temporal phenological, texture, and topographical features.
Specifically, the multitemporal phenological features were
extracted by using the percentile-compositing method, which
has fewer constraints than other compositing algorithms
(such as the season-based compositing method) but achieves
similar mapping accuracy (Azzari and Lobell, 2017). The
spectral bands for the Landsat time series (five optical bands
after excluding the atmospherically sensitive blue band) and
the corresponding spectral indexes (NDVI, NDWI, and NBR
in Eq. 2) were composited into five percentiles (10th, 25th,
50th, 75th, and 90th). Next, our previous study explained
that the texture features made a positive contribution to
land-cover mapping (X. Zhang et al., 2021b), so the gray-
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level co-occurrence matrix method was used for the 50th-
percentile-composited NIR band to extract the homogene-
ity, entropy, dissimilarity, variance, contrast, and correlation.
Lastly, since the land-cover distribution is usually related to
the topographical environment (for example, croplands and
water bodies are mainly distributed in flat areas), three topo-
graphical variables (elevation, slope, and aspect) calculated
from a global 30 m DEM dataset named ASTER_GDEM
(Tachikawa et al., 2011) were also imported. In addition,
due to the limited storage capacity and satellite–ground data-
transmission capacity of early satellites, the density of Land-
sat imagery is sparse before 2000 (only a single satellite,
Landsat 5, acquired data) (Roy et al., 2014b). Thus, we chose
a coarse temporal cycle of 5 years to ensure the mapping ac-
curacy before 2000; that is, the satellite observations from
2 years before and after were used for the nominal cen-
ter year. For example, we updated the land-cover maps in
1995 using all available imagery from 1993 to 1997. In total,
there were 49 multisource features, including 40 phenolog-
ical spectra features, 6 texture features, and 3 topographical
variables.

There are two options for global land-cover mapping and
updating: global modeling and local adaptive modeling, and
our previous studies have found that local adaptive modeling
yields superior results compared to global modeling. This
is primarily due to the former’s capability to take regional
characteristics into account more effectively, leading to in-
creased sensitivity in training samples and higher accuracy
in land-cover classification (X. Zhang et al., 2021b, 2023,
2022). Thus, we first inherited the regional gridding style
used in the GLC_FCS30 (X. Zhang et al., 2021b); namely,
the global land was divided into 961 5°× 5° geographical
tiles. Afterward, the local classification models were inde-
pendently built to update the land cover in each tile using the
corresponding training samples in the neighboring eight sur-
rounding tiles in a 3× 3 window. The adjacent training sam-
ples were imported to increase the continuity of the adjacent
land-cover maps.

Lastly, in relation to the selection of the most suit-
able classification algorithm, the random forest (RF) clas-
sifier has significant advantages, including its capacity
to accommodate high-dimensional training features and
its better ability to deal with the overfitting problem
and higher classification accuracy than other widely used
classifiers (Belgiu and Drãguþ, 2016; Gislason et al.,
2006). The RF algorithm was also integrated into the
internal function library of the GEE cloud platform as
ee.Classifier.smileRandomForest(). Thus, the
RF algorithm was used to combine the training samples and
multisourced features to update the changed pixels. The RF
algorithm allows for the adjustment of two key parameters
(the number of decision trees (Ntree) and the number of pre-
dicted variables (Mtry), and previous studies have quantita-
tively analyzed the relationships between classification accu-
racy and the values of these two parameters. Both theoret-

ical and experimental results indicated that the selection of
Mtry and Ntree had little influence on the classification accu-
racy (Belgiu and Drãguþ, 2016; Du et al., 2015). Thus, based
on previous studies (Belgiu and Drãguþ, 2016; Zhang et al.,
2019), the default recommended values of 500 for Ntree and
the square of the total number of input features for Mtry were
used.

3.3.3 Temporal-consistency optimization

To ensure the rationality and consistency of land-cover
changes for long time series, the CCD algorithm was applied
to capture the time points of land-cover changes, and then the
changed pixels were updated using the local adaptive classi-
fications. In this study, despite our best efforts, it was diffi-
cult to completely eliminate classification errors, particularly
when dealing with changes over time. To address this issue
and enhance accuracy in areas with temporal variations, we
employed the temporal consistency optimization method de-
scribed in Eq. (3). This approach incorporates both temporal
and spatial neighboring information to assess homogeneity,
thereby reducing potential misclassifications of changed ar-
eas in the time series.

Px,y,t =
1
N

[∑x′=x+1
x′=x−1

∑y′=y+1
y′=y−1

∑t ′=t+1
t ′=t−1

·I
(
Lx′,y′,t ′ = Lx,y,t

)]
(3)

Here, Px,y,t is the homogeneity probability of the pixel at
spatial location (xy) and time point t ; usually, the higher
the value of Px,y,t , the weaker the classification error ef-
fect. Lx,y,t and Lx′,y′,t ′ are, respectively, the land-cover la-
bels of the central pixel and the corresponding spatiotempo-
rally neighboring pixels in a local window of 3× 3× 3, and
I () denotes the indicator function for the equation of the sta-
tus between two pixels. Namely, if Lx′,y′,t ′ is equal to Lx,y,t ,
then the value of the indicator function is 1; otherwise, it
is equal to 0 (Kenny, 2003). In this study, the homogene-
ity probability was calculated for each changed pixel, and a
threshold of 0.5 (as suggested by and used in the studies of
Li et al., 2015 and Zhang et al., 2022) was used to judge the
rationality of land-cover changes; namely, when Px,y,t was
less than the threshold, Lx,y,t was modified according to the
spatiotemporal pixels.

3.4 Accuracy assessment

The validation process for the GLC_FCS30D dataset fol-
lowed the recommended guidelines proposed by Pontus
Olofsson (2014). These guidelines encompass two key com-
ponents: area estimation (non-site-specific accuracy) and ac-
curacy assessment (site-specific accuracy). The site-specific
accuracy assessment mainly focuses on estimating the con-
fusion matrix and calculating some accuracy metrics, includ-
ing overall accuracy (O.A.), producer’s accuracy (P.A.), and
user’s accuracy (U.A.); and a poststratified estimator is used
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to calculate the corresponding standard errors (Pontus Olof-
sson, 2014).

P.A.k =
pkk∑
pk.

U.A.k =
pkk∑
p.k

O.A.=
∑m

k=1
pkk (4)

Here, pkk is the proportion of the area mapped as class k that
had a reference class of k;

∑
pk. and

∑
p.k are the propor-

tion of the area mapped as class k and the proportion of the
reference area mapped as class k, respectively; andm denotes
the number of land-cover types. Afterwards, because there
is currently no global long-time-series validation dataset, we
used 84 526 global validation points to assess the accuracy
metrics of the GLC_FCS30D dataset in 2020 and used two
third-party datasets to analyze the variation across the accu-
racy time series. GLC_FCS30D adopts a fine classification
system containing 35 subcategories, for which we applied
an analysis protocol to the basic classification system and
the LCCS level-1 validation system, whose details are ex-
plained in the Table 1 and contained 10 major land-cover
types and 17 fine land-cover types. Lastly, to quantify the
performance of land-cover changed pixels, we followed the
proposal of Stehman et al. (2021) for assessing the LCMAP
annual land-cover products for 1985–2017; that is, the vali-
dation pixels were grouped into “changed” and “unchanged”
categories and the corresponding confusion matrix was cal-
culated. Meanwhile, to minimize the imbalance in sample
size between the “change” and “no-change” samples, the F1
metric score was calculated as

F1=
P.A.×U.A.
P.A.+U.A.

× 2× 100%. (5)

4 Results and discussion

4.1 Overview of the GLC_FCS30D maps and their
changes

Figure 4 provides an overview of the GLC_FCS30D dataset
for 2022 (an overview of GLC_FCS30D for 1985 is given
in Fig. S3); overall, it aligns with the real-world land-cover
patterns on a global scale. Forest, cropland, barren land,
and grassland are the dominant land-cover types, and each
of them is distributed in the corresponding ecology subre-
gions. For example, needle-leaved forest is mainly concen-
trated in the high-latitude cold regions, while broad-leaved
forests are mainly distributed in tropical regions; perma-
nent ice and snow are mainly located in Greenland and
high-altitude mountains. GLC_FCS30D has significant ad-
vantages over other global land-cover datasets in terms of
land-cover type diversity: it contains 35 discrete land-cover
types, among which forests and wetlands are subdivided into
10 and 7 land-cover subcategories, respectively.

Figure 5a illustrates the spatial distribution of land-cover
change intensity (measuring the proportions of changed pix-
els in the 0.05° grid) in GLC_FCS30D from 1985 to 2022
after upscaling to a resolution of 0.05°. Obviously, global
land cover has experienced significant changes over the past
37 years, mainly in three areas: (1) areas on the periphery
of tropical rainforests in South America and Southeast Asia,
with deforestation the dominant cause; (2) areas where wet-
lands and water bodies intermingle (i.e., water bodies and
wetlands transform into one another due to different annual
water levels; note that the water body land-cover type in
GLC_FCS30D represents permanent water during the year
of interest, although the same area may be a wetland in
other years), such as those in North America and northern
Asia; and (3) semi-arid areas in Australia, Central Asia, and
western Africa, where land cover (such as sparse vegetation
or bare land) is directly affected by precipitation and tem-
perature (for example, if there is sufficient precipitation in
the year, the sparsely vegetated land and some of the bare
land would be covered by grass in semi-arid areas; simi-
larly, the work of Winkler et al., 2021 revealed that these
semi-arid areas experienced serious and frequent land-cover
changes). Figure 5b quantifies the changed area for 10 ma-
jor land-cover types from 1985 to 2022. Forest and crop-
land variations dominated the global land-cover change. The
net loss of forests over the past 37 years reached approxi-
mately 2.5 million km2, and the decline has been steady over
time. Conversely, cropland showed a stable increase, and the
net gain in cropland area is approximately 1.3 million km2.
Shrubland, wetland, and impervious surface increased in area
by 0.45 million, 0.40 million, and 0.37 million km2, respec-
tively. The increased shrubland resulted from the recovery of
deforested land, and the wetland gains are due to increases in
seasonal water bodies. The work of Pekel et al. (2016) em-
phasized that global seasonal water bodies (labeled “inland
wetlands” in GLC_FCS30D) showed an overall increase.

Figure 6 further analyzes the net area variations of 10 ma-
jor land-cover types on six continents. The six continents
exhibit various land-cover change characteristics; for exam-
ple, steady forest loss and cropland gain dominate land-
cover change in South America, while the net area varia-
tions of most land-cover types fluctuate in Australia. North
America has experienced obvious deforestation, and the area
of forest loss reaches approximately 4.5× 105 km2. In con-
trast, the shrubland, grassland, and impervious surface land-
cover types show increasing trends overall, with increases of
1.4× 105 km2, 0.8× 105 km2, and 0.72× 105 km2, respec-
tively. Similarly, Xian et al. (2022) reported that forest losses
and shrubland, grassland, and impervious surface gains were
the dominant characteristics of the CONUS from 1985 to
2017. In Europe, the forest area continuously decreased, and
the cropland area first decreased and then increased because
of the collapse of the Soviet Union in 1990s. Abandoned
croplands were transformed into pasture (which also belongs
to the cropland land-cover type in GLC_FCS30D). Among
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Figure 4. Overview of GLC_FCS30D for 2022; the color-coded legend is derived from the European Space Agency (ESA) Climate Change
Initiative land-cover dataset (Defourny et al., 2018).

the six continents, the increase in impervious surface is the
most significant in Asia, with a net increase of 1.9×105 km2;
wetland also shows a large increase of 1.1× 105 km2. The
increased wetland coverage comes from the increase in sea-
sonal water bodies. South America and Africa have experi-
enced similar land-cover change characteristics: they show
the most intense deforestation rates and the most significant
increases in cropland. According to our statistics, the for-
est loss on these two continents amounts to 16.9× 105 km2,
and the corresponding increase in cropland is approximately
11.1× 105 km2. Lastly, Oceania is more sensitive to climate
change, especially in terms of precipitation, so fluctuations
in shrubland, grassland, and bare land are evident there be-
cause the conversion relationship between the three land-
cover types is related to annual precipitation.

Figure 7 displays the land-cover transformation relation-
ships from 1985 to 2022 in the GLC_FCS30D dataset using
Sankey diagrams. Global cropland and forest show obvious
area changes, with area proportions changing from 12.08 %
and 38.26 %, respectively, in 1985 to 12.86 % and 36.48 %,
respectively, in 2022. Shrubland changed from 8.70 % in
1985 to 9.03 % in 2022. We mainly focus on forest, cropland,

shrubland, and impervious surface changes, which domi-
nate the land-cover changes in Fig. 5. There are three main
causes of forest loss over the past 37 years: (1) 37.58 % of
the deforested land was converted to cropland (this trans-
formation was more significant in tropical rainforest areas;
Fig. 8a); (2) 26.92 % of the lost forest was regrown as
shrubland, which is more common in mountainous areas af-
fected by wildfires; and (3) 13.49 % of the deforested land
was converted to grassland. Cropland is converted to for-
est, grassland, and impervious surfaces. A total of 26.29 %
of the lost cropland is converted to grassland due to aban-
donment, 25.88 % of the lost cropland is covered by forests,
and 21.01 % of the lost cropland resulted from urbanization.
Lastly, regarding impervious surfaces, our primary focus was
on identifying the sources contributing to their expansion.
Our findings indicate that approximately 36.24 % of the im-
pervious surface increase can be attributed to the conversion
of cropland, while 13.49 % of the increase is a result of de-
forestation.

To visually understand the land-cover change process cap-
tured by the GLC_FCS30D dataset over the past 37 years,
Fig. 8 displays three typical enlargements (the spatial loca-
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Figure 5. (a) The spatial distribution of global land-cover-change intensity from 1985 to 2022 after aggregation to a resolution of 0.05°.
(b) The net changed area of 10 major land-cover types in GLC_FCS30D from 1985 to 2022.

tions of the enlarged areas are illustrated as two black rectan-
gles in Fig. 5a) of the Amazon rainforest (which experienced
significant deforestation) and China’s Yangtze River Delta
(which underwent rapid urbanization) and Yellow River delta
(which showed evident land-cover changes over coastal re-
gions). These three typical areas experienced drastic land-
cover changes, and GLC_FCS30D accurately captures those
spatiotemporal changes. Specifically, the deforestation in
South America is widely recognized, and GLC_FCS30D
clearly reflects this trend. Namely, the early deforesta-
tion showed a grid distribution, and then each grid gradu-
ally extended outward and finally connected into patches.

GLC_FCS30D also shows that deforestation has not stopped
in the region in terms of the rate of forest loss, and these find-
ings are in line with the results of earlier research (Harris et
al., 2021; Potapov et al., 2022). In the Yangtze River Delta,
GLC_FCS30D depicts that the dominant land-cover change
over the enlargement is urbanization, and a large quantity of
irrigated cropland has been converted to impervious surfaces.
Meanwhile, urban expansion was significantly faster before
2010 than after 2010 according to GLC_FCS30D. Lastly, the
Yellow River delta, a typical coastal region, was selected to
assess the ability of GLC_FCS30D to capture these coastal
land-cover changes. Obviously, the land-cover changes in
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Figure 6. The net area variations of 10 major land-cover types on six continents from 1985 to 2022.

Figure 7. Sankey diagrams of the global land-cover changes during 1985–2022 in the GLC_FCS30D dataset.

GLC_FCS30D can be summarized as three aspects: (1) a
large number of flooded flats and tidal flats were reclaimed
as aquaculture ponds, especially after 2000; (2) the mouth
of the Yellow River changed from a southerly orientation
to a northerly one (black rectangle), i.e., there were large
land-cover changes between tidal/flooded flats, water bod-
ies, and salt marshes; and (3) a lot of impervious surfaces
encroached on the coastal water bodies and flats. In short,
by combining real remote-sensing observation time series
data, GLC_FCS30D effectively captures the spatiotemporal
changes of the land surface.

4.2 Accuracy assessment of GLC_FCS30D for 2020

Table 2 provides the error matrix and accuracy metrics for the
GLC_FCS30D dataset in the basic classification system con-

taining 10 major land-cover types. The novel GLC_FCS30D
dataset attained an O.A. of 80.88 % (±0.27 %). Cropland,
forest, impervious surface, water body, and permanent snow
and ice perform better in terms of the P.A. and U.A. than
the remaining land-cover types, with the corresponding ac-
curacies exceeding 85 %. The impervious surface and wet-
land datasets are independently generated and then over-
laid on GLC_FCS30D, helping these complicated land-cover
types to achieve high accuracy metrics. Conversely, grass-
land, shrubland, and tundra have lower accuracies; for exam-
ple, grassland had the lowest P.A. of 54.41 % and shrubland
had the lowest U.A. of 57.63 %. The two reasons that they
performed poorly were as follows: (1) these land-cover types
usually reflected heterogeneous and varied spectral and spa-
tial characteristics, e.g., the grassland showed similar spectra
to cropland and sparse shrubland in the growing season but
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Figure 8. Three typical enlargements showing the land-cover changes according to GLC_FCS30D from 1985 to 2022 in (a) the Amazon
rainforest, (b) the Yangtze River Delta in China, and (c) the Yellow River delta in China. The color coding is the same as that used for the
global map in Fig. 4. In each case, the natural-color imagery from 1985 to 2022 are composites taken from Landsat imagery.

mimicked bare-land features in harvest season, and (2) all of
them were distributed in climate-transition areas with com-
plicated climate variations and landscapes.

Table 3 provides the error matrix of GLC_FCS30D for
2020 in the LCCS level-1 validation system with 17 land-
cover types. The GLC_FCS30D-2020 dataset achieves an
O.A. of 73.04 % (±0.30 %), which is lower than that
achieved with the basic classification system because these
similar land-cover subcategories suffer more easily from
misclassification. For example, forest has a P.A. of 92.83 %
(±0.31 %), but the P.A. rapidly decreases to the range of

58.29 % (±1.53 %) to 82.39 % (±0.98 %) when forest is
split into five fine subcategories. Cropland, forest, and bare
land, which are further divided into multiple subcategories,
show obvious decreases in accuracy for their subcategories
in terms of P.A. and U.A. Taking cropland and forest as ex-
amples, approximately 31.7 % of the irrigated cropland (ICP)
is misclassified as rainfed cropland (RCP), and so the U.A. of
ICP is only 59.92 %. More than 53.8 % of the mixed-leaf
forests (MFT) are wrongly labeled as the other four forest
subcategories, and so the ‘mixed-leaf forests have the lowest
U.A. of 39.34 % (±1.38 %). Meanwhile, sparse vegetation
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Figure 9. Time series of the overall accuracy of the GLC_FCS30D
dataset using the LCMAP_Val annual reference dataset across the
contiguous United States (CONUS) from 1985 to 2018. The error
bars on the graph show the uncertainty of the data points.

has the second lowest U.A. of 50.63 % (±1.47 %) because
of the confusion between sparse vegetation, grassland, and
bare land. In the basic classification system (Table 1), sparse
vegetation is grouped with bare land. A previous study in the
European Union proposed grouping it with grassland (Gao
et al., 2020). Wetland is further divided into coastal wetland
(CWL) and inland wetland (IWL) in Table 3, and CWL has
a higher U.A. than that of wetland in Table 2, which is pri-
marily attributable to the significantly more accurate classi-
fication of wetland in the CWL subcategory (Zhang et al.,
2023).

4.3 Accuracy assessment based on two third-party
regional validation datasets

4.3.1 Time series of accuracy metrics of GLC_FCS30D
from the LCMAP_Val dataset

Figure 9 displays a time series of the overall accuracy of
the GLC_FCS30D dataset using the LCMAP_Val annual
validation dataset from 1985 to 2018 over the CONUS.
GLC_FCS30D achieves a mean O.A. of 79.50 % (±0.50 %)
and the O.A. varies from a high value of 80.04 % (±0.49 %)
in 2015 to a low value of 78.91 % (±0.51 %) in 2000. The
overall accuracy of GLC_FCS30D is slightly lower at the
early stage, which might be related to the density of Land-
sat observations. The early Landsat missions had weaker
satellite-to-ground transmission and onboard recording ca-
pabilities (Roy et al., 2014a), so the phenological variability
and land-cover changes were more difficult to capture at the
early stage.

Figure 10 shows time series of the P.A. and U.A. for the
GLC_FCS30D dataset in the CONUS. Visually, the P.A. and
U.A. values of the 10 major land-cover types range from
45 % to 100 % and from 35 % to 100 %, respectively, and
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the time-series variations are stable. Among them, the wa-
ter body land-cover type has the highest accuracy metrics,
achieving mean P.A. and U.A. values of 95.31 % (±1.14 %)
and 98.53 % (±0.66 %), respectively, which benefit from the
unique spectral characteristics of this land-cover type. Crop-
land follows, with mean P.A. and U.A. values of 93.37 %
(±0.74 %) and 87.70 % (±0.94 %), respectively. Forest ranks
third, with a high P.A. of 97.75 % (±0.35 %) but a relatively
low U.A. of 82.42 % (±0.82 %); the unbalanced metrics oc-
cur because GLC_FCS30D and LCMAP_Val have different
definitions for forest. GLC_FCS30D defines a forest as hav-
ing a tree cover greater than 15 %, while the threshold set-
ting of LCMAP_Val is 10 %, so many of the shrublands in
GLC_FCS30D are labeled as forests in LCMAP_Val. Wet-
land has a U.A. value of 90.47 % (±2.05 %) but a P.A. value
of 57.07 % (±2.75 %), which is also caused by a discrep-
ancy in the definition of wetland. GLC_FCS30D identi-
fies seasonal water bodies as wetlands while LCMAP_Val
classifies them as water bodies. Impervious surface has a
P.A. lower than 60 %, mainly because the GLC_FCS30D
and LCMAP_Val datasets have different definitions of im-
pervious surface. LCMAP_Val defines buildings and the sur-
rounding green areas as developed, while GLC_FCS30D
only includes the artificial buildings (houses, roads, squares,
and so on). Bare land and shrubland have the lowest U.A. val-
ues of 35.58 % (±4.39 %) and 47.29 % (±1.56 %), respec-
tively, mainly because both of them are easily confused with
grassland due to their complicated spectral characteristics
and because they coexist in climate-sensitive semi-arid re-
gions (e.g., the Midwestern United States). Xian et al. (2022)
emphasized that long-term monitoring of shrubs and grass-
lands presents significant challenges in the CONUS. Per-
manent snow and ice, which is sparsely distributed in high-
elevation mountainous areas of the United States, has unique
and specific spectral characteristics, so it achieves a P.A. of
100 % in GLC_FCS30D. The large fluctuations in U.A. for
ice and snow are attributed to (1) the small sample size for
ice and snow in the LCMAP_Val dataset and (2) a few mis-
classified grass/bare land pixels that are correctly identified
as snow and ice during 2005–2014.

Figure 11 shows the area-bias percentages of eight land-
cover types estimated by GLC_FCS30D and LCMAP_Val
across the CONUS. Intuitively, GLC_FCS30D and
LCMAP_Val share similar total areas for estimations
of cropland, bare land, and water bodies but evident area de-
viations for estimations of forest, shrubland, and grassland.
The deviations in shrubland and grassland occur mainly be-
cause these land-cover types coexist in the semi-arid regions
of the central United States and share similar spectral char-
acteristics and temporal variability; thus, some grasslands in
LCMAP_Val are considered shrublands in GLC_FCS30D.
Xian et al. (2022) also failed to distinguish grassland from
shrubland and combined them into a group when generating
LCMAP annual maps. LCMAP_Val has a broader definition
of impervious surface, which results in negative bias, so the

impervious surface area estimated in LCMAP_Val is larger
than the assessment in the GLC_FCS30D dataset.

Table 4 analyzes the confusion matrix of changed and
unchanged land-cover pixels in GLC_FCS30D using the
LCMAP_Val dataset. It should be noted that the changed
land-cover samples in LCMAP_Val were still sparse; that
is, the size of the changed samples cannot support the anal-
ysis of specific land-cover changes. Similarly, Stehman et
al. (2021) grouped the land-cover types into “no change”
and “change” types for analyzing the land-cover changes. In
this study, when using the “changed” and “unchanged” val-
idation points in LCMAP_Val, the O.A. of GLC_FCS30D
reached 90.49± 0.45 %. In particular, the unchanged land-
cover pixels played a dominant role and reached a high
P.A. of 92.84 % and a high U.A. of 96.28 %. In contrast,
the P.A. and U.A. of the changed land-cover pixels were
72.26± 2.04 % and 56.62± 2.00 %, and the F1 score was
63.49 %.

4.3.2 Time series of accuracy metrics of GLC_FCS30D
from the LUCAS dataset

Table 5 lists the time series of accuracy metrics of the
GLC_FCS30D dataset across the European Union (EU) from
2006 to 2018 using the LUCAS dataset. The GLC_FCS30D
dataset has a mean O.A. of 81.91 % (±0.09 %) and an O.A.
range of 81.64 % (0.09 %) to 82.11 % (0.09 %) in the EU.
The two dominant land-cover types (cropland and forest),
which cover almost 70 % of the entire EU area (Gao et
al., 2020), have higher P.A. and U.A. values than the other
land-cover types. The P.A. and U.A. of cropland exceed
85 % and 93 %, respectively. Forest has unbalanced P.A. (ap-
proximately 95 %) and U.A. (approximately 76 %) values
because the LUCAS dataset defines forest more broadly
than the GLC_FCS30D dataset does. In particular, sparse
vegetation associated with forest is grouped with forest
in LUCAS but with bare land in GLC_FCS30D. Gao et
al. (2020) explained the discrepancy in the definition of for-
est between LUCAS and GLC_FCS30. Shrubland, grass-
land, and bare land showed inferior performance in terms
of both P.A. and U.A. because of their complicated spec-
tral variability and spatial heterogeneity. Gao et al. (2020)
also found that three global 30 m land-cover products (Glo-
beLand30, FROM_GLC, and GLC_FCS30) exhibited poor
performance for these three land-cover types. Urban green
space and discontinuous urban fabric, which are excluded
from GLC_FCS30D, are grouped with impervious surface
in LUCAS. Thus, impervious surface also has a low P.A. of
approximately 59 %. Lastly, upon investigating the temporal
variability of P.A. and U.A. we find that permanent ice and
snow and wetland show greater variability and that both are
closely related to annual temperature and precipitation; i.e.,
their spatial distributions are affected by the natural environ-
ment.
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Figure 10. Time series of the producer’s accuracy and user’s accuracy of GLC_FCS30D based on the LCMAP_Val dataset from 1985 to
2018 in the contiguous United States (CONUS). The error bands represent ±1 standard error.

Figure 11. The area-bias percentages of eight land-cover types in the GLC_FCS30D and LCMAP_Val datasets from 1985 to 2017 in the
contiguous United States (CONUS).

Table 6 shows the area proportions of 10 major land-
cover types from both the GLC_FCS30D dataset (“Map”)
and the LUCAS validation dataset (“Ref”). The area bias
(“AB”) measures the area deviations between the two
different datasets for the same land-cover type. Overall,
GLC_FCS30D overestimates the total area assessments of
forest, bare land, and ice and snow and underestimates the re-

maining land-cover types in comparison to the LUCAS esti-
mations. In particular, according to its AB of +7.356 %, for-
est shows the most significant overestimation, while cropland
shows the most underestimation (AB of −4.086 %). Crop-
land and forest cover together account for approximately
70 % of the total EU area (Gao et al., 2020)); as a result,
the area bias (AB) values for these two land-cover types are
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Table 4. The confusion matrix of changed and unchanged pixels in GLC_FCS30D when using the LCMAP_Val datasets.

Unchanged Changed Total P.A. (SE) F1

Unchanged 82.21 6.34 88.55 92.84 (0.42) 94.53
Changed 3.18 8.27 11.45 72.26 (2.04) 63.49
Total 85.39 14.61

U.A. (SE) 96.28 (0.32) 56.62 (2.00)
O.A. (SE) 90.49 (0.45)

Table 5. Time series of accuracy metrics of the GLC_FCS30D dataset using the LUCAS validation dataset across the European Union.

2006 2009 2012 2015 2018

P.A. (SE) U.A. (SE) P.A. (SE) U.A. (SE) P.A. (SE) U.A. (SE) P.A. (SE) U.A. (SE) P.A. (SE) U.A. (SE)

CRP 85.49 (0.11) 93.37 (0.08) 85.40 (0.11) 93.31 (0.08) 85.50 (0.11) 93.17 (0.08) 85.47 (0.11) 93.05 (0.08) 85.52 (0.11) 92.82 (0.08)
FST 95.22 (0.08) 76.71 (0.15) 94.97 (0.08) 76.71 (0.15) 94.79 (0.09) 76.82 (0.15) 94.36 (0.09) 76.82 (0.15) 93.71 (0.09) 76.85 (0.15)
GRS 6.13 (0.26) 21.31 (0.83) 6.10 (0.26) 21.13 (0.83) 6.05 (0.26) 20.98 (0.83) 6.08 (0.26) 20.71 (0.82) 5.99 (0.26) 20.74 (0.82)
SHR 8.13 (0.42) 8.93 (0.46) 8.25 (0.43) 8.92 (0.46) 8.02 (0.42) 8.77 (0.46) 7.84 (0.42) 8.60 (0.45) 8.35 (0.43) 8.96 (0.46)
WET 63.10 (0.81) 66.55 (0.81) 61.40 (0.81) 65.55 (0.82) 61.86 (0.81) 66.21 (0.82) 62.64 (0.81) 66.60 (0.81) 62.94 (0.81) 65.34 (0.81)
WTR 89.73 (0.40) 92.44 (0.36) 90.09 (0.40) 92.53 (0.35) 90.28 (0.39) 92.36 (0.36) 90.83 (0.38) 91.63 (0.37) 90.10 (0.40) 91.56 (0.37)
IMP 58.55 (0.56) 72.69 (0.56) 59.21 (0.55) 72.06 (0.56) 59.06 (0.55) 71.72 (0.56) 58.65 (0.55) 70.85 (0.56) 59.01 (0.55) 70.29 (0.56)
BAL 52.77 (1.12) 39.62 (0.95) 52.90 (1.12) 38.44 (0.93) 52.19 (1.13) 37.70 (0.93) 52.07 (1.13) 36.16 (0.90) 52.33 (1.13) 34.69 (0.87)
PSI 86.02 (5.00) 35.01 (4.38) 91.40 (4.04) 36.56 (4.38) 89.25 (4.46) 31.86 (4.00) 96.24 (2.74) 31.40 (3.81) 96.24 (2.74) 31.35 (3.81)

O.A. (SE) 82.11 (0.09) 81.99 (0.09) 81.97 (0.09) 81.82 (0.09) 81.64 (0.09)

more noticeable or pronounced compared to the AB values
of the other land-cover types.

Table 7 presents the confusion matrix of changed and
unchanged pixels obtained using the LUCAS validation
datasets. The O.A. of GLC_FCS30D reached 90.36±0.38 %;
the P.A. and U.A. of the changed pixels were 52.86±1.93 %
and 73.31± 1.74 %, respectively; and the corresponding F1
score was 61.43 %. In contrast, the unchanged land-cover
pixels reached high P.A. and U.A. values, with both metrics
exceeding 90 %. Thus, the changed land-cover pixels were
more difficult to capture compared with these unchanged
pixels. Similarly, Stehman et al. (2021) also found that the
accuracy metrics of the changed pixels were far lower than
those of the unchanged pixels: the producer’s accuracy of the
changed pixels and unchanged pixels was 16 % and 99 %,
respectively.

4.4 Comparisons with other global land-cover dynamics
products

Figure 12 gives qualitative comparisons between our
GLC_FCS30D and two widely used land-cover dynamics
datasets (CCI_LC and MCD12Q1) for 2001–2020 in the
Indo-China Peninsula, which experienced evident land-cover
changes in terms of forest deforestation and urban expan-
sion during that period. In terms of urban expansion, the
three datasets revealed rapid urbanization in the megacity
of Bangkok, while CCI_LC underestimated the impervious
surface area in 2001 compared with the other two datasets.
Meanwhile, GLC_FCS30D also captured more spatial detail

(such as rural buildings and road networks) than CCI_LC and
MCD12Q1 because of its high spatial resolution of 30 m.

In terms of the most significant deforestation, CCI_LC
showed the worst performance because (1) it underestimated
the forest cover in 2001 (rectangular region 1: R1), i.e., some
forests were wrongly labeled croplands; (2) some deforested
areas were not captured during the period 2001–2020 in
rectangular region 2 (R2), so its deforested forest area was
less than in GLC_FCS30D and MCD12Q1; and (3) there
was an obvious problem with the misclassification of forest
as wetland in 2001 (rectangular region 3: R3). MCD12Q1
also suffered from a forest omission error in R1; namely,
the captured forest area in 2001 was lower than the actual
forest area based on natural-color imagery. As for the evi-
dent deforestation in R2, we find that almost all forest pixels
changed to the other land-cover types (savanna and grass-
land) in MCD12Q1, which obviously deviated from the ac-
tual situation; thus, MCD12Q1 overestimated the forest de-
forestation. Meanwhile, the MCD12Q1 time series showed
various land-cover distributions in R3, which indicated that
MCD12Q1 has lower mapping accuracy and temporal sta-
bility for these wetland areas. In comparison, GLC_FCS30D
achieved the best performance in capturing the spatial dis-
tribution of forest in 2001, deforestation during 2001–2020,
and wetland stability.

Figure 13 shows another comparison example for these
three datasets, focusing instead on Paraguay, South Amer-
ica. The most evident land-cover changes were deforesta-
tion and increased cropland according to the time seri-
ies of Landsat natural-color imagery. In terms of the spa-
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Table 6. The area proportions and area bias (AB) values of 10 major land-cover types from the GLC_FCS30D dataset (Map) and the LUCAS
validation dataset (Ref).

2006 2009 2012 2015 2018

Map Ref AB Map Ref AB Map Ref AB Map Ref AB Map Ref AB

CRP 46.48 50.62 −4.14 46.46 50.64 −4.18 46.59 50.67 −4.08 46.63 50.69 −4.06 46.77 50.74 −3.97
FST 41.39 33.76 7.63 41.28 33.75 7.53 41.14 33.73 7.41 40.96 33.73 7.23 40.66 33.68 6.98
GRS 1.21 4.15 −2.94 1.21 4.15 −2.94 1.21 4.15 −2.94 1.23 4.15 −2.92 1.21 4.15 −2.94
SHR 1.91 2.08 −0.17 1.94 2.08 −0.14 1.92 2.08 −0.16 1.91 2.07 −0.16 1.95 2.06 −0.11
WET 1.70 1.75 −0.05 1.68 1.74 −0.06 1.68 1.73 −0.05 1.69 1.71 −0.02 1.73 1.72 0.01
WTR 2.75 2.85 −0.1 2.76 2.85 −0.09 2.77 2.85 −0.08 2.81 2.85 −0.04 2.79 2.86 −0.07
IMP 3.18 3.82 −0.64 3.25 3.83 −0.58 3.25 3.82 −0.57 3.27 3.82 −0.55 3.32 3.82 −0.5
BAL 1.32 0.95 0.37 1.36 0.95 0.41 1.37 0.95 0.42 1.42 0.95 0.47 1.49 0.95 0.54
PSI 0.06 0.02 0.04 0.06 0.02 0.04 0.07 0.02 0.05 0.07 0.02 0.05 0.07 0.02 0.05

Table 7. The confusion matrix of changed and unchanged pixels in GLC_FCS30D when using LUCAS time-series datasets across the
Europe Union.

Unchanged Changed Total P.A. (SE) F1

Unchanged 82.69 2.79 85.48 96.73 94.49
Changed 6.84 7.68 14.52 52.86 61.43
Total 89.53 10.47

U.A. (SE) 92.36(0.36) 73.31(1.74)

O.A. (SE) 90.36(0.38)

tial distribution, the consistency between GLC_FCS30D and
CCI_LC was higher, while MCD12Q1 was obviously differ-
ent from the other two datasets. A large number of deciduous
broadleaved forests were labeled as savanna and woody sa-
vanna, and most croplands were identified as grasslands in
MCD12Q1, mainly because of the difference in classifica-
tion system. In terms of the changed-land-cover areas, the
GLC_FCS30D showed the highest accuracy and captured
richer spatial detail. For example, the deforestation intensity
during 2010–2020 was significantly greater than that during
2001–2010, and GLC_FCS30D also revealed the regular de-
forestation caused by human factors. In contrast, CCI_LC
and MCD12Q1 captured neither the deforestation during
2010–2020 nor the small and fragmented changes (caused
by human activities).

4.5 Limitations of and perspectives on the
GLC_FCS30D dataset

To achieve the goal of accurate and robust monitoring of
global land-cover change, four steps are adopted: (1) the
advantages of the CCD model and the full time series of
Landsat observations are combined to capture the land-cover
change time points for any changed pixels; (2) the temporally
stable areas are used as prior knowledge to ensure the quality
of training samples and local adaptive modeling is adopted
to update the land-cover transitions of these changed pixels;
(3) global thematic products for two complicated land-cover

types (impervious surface and wetland) are independently
developed to improve the reliability of GLC_FCS30D; and
(4) the “spatiotemporal consistency checking” optimization
in Sect. 3.3.3 is applied to further guarantee the stability and
accuracy of GLC_FCS30D. The accuracy assessments per-
formed using the developed global validation dataset and two
third-party datasets demonstrate that GLC_FCS30D fulfills
the accuracy requirements for a baseline year and for time-
series variability at a global or national scale. Comparisons
with other land-cover products also highlight the superiority
of GLC_FCS30D in terms of classification system diversity
and the monitoring accuracy of these changed areas. How-
ever, monitoring global land-cover change across a long time
series is an extremely complex and difficult task (Hansen and
Loveland, 2012; Song et al., 2018; Winkler et al., 2021; Xian
et al., 2022). Although this study uses a series of measure-
ments and methods to achieve global 30 m land-cover change
monitoring for the past 37 years, there are still some uncer-
tainties and limitations that need to be resolved in further
work.

The CCD algorithm makes full use of dense satellite ob-
servations to capture land-cover changes robustly and accu-
rately (Zhu and Woodcock, 2014b; Zhu et al., 2012). How-
ever, previous studies have demonstrated that their reliability
is highly correlated to the density of valid satellite observa-
tions (Bullock et al., 2022; Ye et al., 2021; Zhu et al., 2019).
Cloudy and snowy areas lead to greater uncertainty when
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Figure 12. Comparisons of GLC_FCS30D with the CCI_LC and MCD12Q1 land-cover dynamics products for the Indo-China Peninsula
during 2001–2020. The natural-color imagery were composited from the time-series Landsat imagery.

capturing the time points of land-cover change (DeVries et
al., 2015; Xian et al., 2022). Additionally, due to the lim-
ited storage capacity and satellite–ground data-transmission
capacity of early satellites, the density of Landsat imagery
is sparse before 2000 (only a single satellite, Landsat 5, ac-
quired data) (Roy et al., 2014b). In this study, we combine the
satellite observations from 2 years before and after the nom-
inal center year from 1985 to 1995; for example, we update
the land-cover maps in 1995 using all available imagery from
1993 to 1997. However, a previous study found that north-
eastern Asia did not have any valid Landsat observations be-

fore 2000 (Zhang et al., 2022), which means that some land-
cover changes could not be captured in these areas before
2000 in GLC_FCS30D. To solve the problem of missing and
sparse observations, a useful solution is to fuse multisourced
remote-sensing imagery. For example, Y. Zhang et al. (2021)
combined Landsat and Sentinel-2 imagery to track tropical
forest disturbances with an overall accuracy of more than
87 %. Therefore, further work will investigate the feasibil-
ity of integrating Sentinel-1/2, SPOT, MODIS, and AVHRR
imagery as auxiliary datasets to achieve annual land-cover
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Figure 13. Comparisons of GLC_FCS30D with two land-cover-dynamics time-series datasets for Paraguay, South America, during 2001–
2020. The natural-color imagery were composited from the time-series Landsat imagery.

monitoring before 2000 and further ensure land-cover moni-
toring quality.

To ensure the stability of GLC_FCS30D, a spatiotempo-
ral consistency optimization algorithm that has been widely
used in impervious surface change optimizations (Li et al.,
2015; Zhang et al., 2022) was applied. This makes full use
of spatiotemporally neighboring pixels to calculate the land-
cover homogeneity and then remove the “salt and pepper”
noise caused by the pixel-based classifications. Qualitative
comparisons for deforested areas of the Amazon and ar-
eas of China that have undergone urban expansion (Fig. S2

in the Supplement) also showed that the spatiotemporal
consistency optimization can improve the data quality of
GLC_FCS30D by suppressing salt and pepper noise and
optimizing the temporal consistency. Similarly, Yang and
Huang (2021) used this algorithm to optimize China’s annual
land-cover products during 1990–2019, and found that it im-
proved the mapping accuracy of the land-cover time-series
dataset.

GLC_FCS30D reveals a large number of land-cover
changes in the semi-arid regions illustrated in Fig. 5a; these
land-cover changes are more influenced by climate factors.

https://doi.org/10.5194/essd-16-1353-2024 Earth Syst. Sci. Data, 16, 1353–1381, 2024



1376 X. Zhang et al.: GLC_FCS30D

For example, the central region of Australia is a typical semi-
arid region, and the dominant land-cover types are grass-
land, sparse vegetation, shrubland, and bare land. In gen-
eral, if there is sufficient annual precipitation, the distribu-
tions of shrubland and grassland in the area will be more ex-
tensive; otherwise, the area will be dominated by bare land
and sparse vegetation (Dong et al., 2020; Ge et al., 2022).
Recently, some studies suggested suppressing these changes;
for example, Bastos et al. (2022) chose to suppress these
land-cover changes by fusing these four land-cover types
into a single grassland land-cover type for Australia, and
Xian et al. (2022) combined grassland and shrubland in the
CONUS. Whether these frequent and climate-sensitive land-
cover changes should be suppressed will be considered in our
further work.

Although we used a global validation dataset to assess
the capability of GLC_FCS30D in the baseline year of
2020 and two third-party regional datasets to assess its vari-
ability of the accuracy across the time series in the Eu-
ropean Union and the CONUS, the accuracy assessment
work should be strengthened. In particular, the classifica-
tion system differences between GLC_FCS30D, LUCAS,
and LCMAP_Val cannot be ignored. For example, the imper-
vious surface land-cover type in LUCAS and LCMAP_Val
contains artificial surfaces and their surroundings (such as
city greenery) (Stehman et al., 2021; Xian et al., 2022), while
GLC_FCS30D only includes artificial structures (Zhang et
al., 2022), so the impervious surface in GLC_FCS30D had
low P.A. when validated with the LUCAS and LCMAP_Val
datasets in Sect. 4.3. The time-series accuracy variability was
only analyzed in two regions, so its performance in more
complex areas (such as Africa and Asia) needs to be fur-
ther investigated. Thus, our future work will focus on cre-
ating long-term time-series datasets used for validation for
more regions and on building a long-time-series global vali-
dation dataset based on the existing works in Sect. 2.5.1, after
which the accuracy metrics of the pixels with changed land
cover and their intra-annual variability will be analyzed for
all land-cover types.

5 Data availability

The developed GLC_FCS30D dataset can be freely ac-
cessed via https://doi.org/10.5281/zenodo.8239305 (Liu et
al., 2023). To help users to navigate this dataset, it
is saved as 961 5°× 5° independent tiles. Each tile
is named “GLC_FCS30D_yyyyYYYY_E/W**N/S**.tif”,
where “E/W**N/S**” represents the longitude and latitude
coordinates of the top-left corner and yyyy and YYYY are
the start and end years of the land-cover change monitoring.
GLC_FCS30D contains 26 maps for time steps from 1985
to 2022, updated every 5 years before 2000 and annually
from 2000 to 2022. It should be noted that GLC_FCS30D
adopted a 5-year cycle before 2000 because of the sparse

availability of Landsat 5 imagery at this early stage; thus, we
increased the temporal cycle length to guarantee land-cover
mapping accuracy. The first three time steps are saved to-
gether and the following 23 time steps are saved separately.
For example, GLC_FCS30D_ 19851995_E115N15.tif and
GLC_FCS30D_20002022_E115N15.tif are, respectively,
the data for the first three time steps and the data for the fol-
lowing 23 annual time steps from 1985 to 2022 for the region
corresponding to 115–120° E, 10–15° N.

6 Conclusion

Land-cover change is the main cause or driving force of
global climate change and has attracted increasing attention
in recent decades. Long-time-series global land-cover dy-
namics monitoring is still a challenging task. In this study,
the first global 30 m land-cover dynamics dataset that has a
fine classification system (GLC_FCS30D) containing 35 fine
land-cover subcategories and which covers the period from
1985 to 2022 in 26 time steps was generated on the GEE plat-
form. Specifically, we took advantage of the full time series
of Landsat observations and the CCD algorithm to capture
the time points of changed areas, and then we updated and
optimized the changed-land-cover areas based on the local
adaptive modeling strategy and a temporal-consistency algo-
rithm. The accuracy assessments indicate that the proposed
method can achieve accurate and spatiotemporally consis-
tent land-cover change monitoring and that GLC_FCS30D
achieved an overall accuracy for 2020 of 80.88 % (±0.27 %)
for the basic classification system’s 10 major land-cover
types and 73.04 % (±0.30 %) for the LCCS level-1 validation
system’s 17 land-cover types. Therefore, GLC_FCS30D is
the first global land-cover dynamics monitoring product with
a 37-year time span, and it has the most diverse classifica-
tion system. It will be essential for sustainable development,
environmental protection, and informed decision-making to
address the challenges of a rapidly changing world.
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