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Abstract. Multifaceted regime shifts of Earth’s surface are ongoing dramatically and – in turn – consider-
ably alter the global carbon budget, energy balance and biogeochemical cycles. Sustainably managing terrestrial
ecosystems necessitates a deeper comprehension of the diverse and dynamic nature of multicomponent infor-
mation within these environments. However, comprehensive records of global-scale fractional vegetation and
soil information that encompass these structural and functional complexities remain limited. Here, we provide
a globally comprehensive record of monthly vegetation and soil fractions during the period 2001–2022 using a
spatiotemporally adaptive spectral mixture analysis framework. This product is designed to continuously repre-
sent Earth’s terrestrial surface as a percentage of five physically meaningful vegetation and soil endmembers,
including photosynthetic vegetation (PV), nonphotosynthetic vegetation (NPV), bare soil (BS), ice or snow (IS)
and dark surface (DA), with high accuracy and low uncertainty compared to the previous vegetation index and
vegetation continuous-field product as well as traditional fully constrained linear spectral mixture models. We
also adopt nonparametric seasonal Mann–Kendall tested fractional dynamics to identify shifts based on interac-
tive changes in these fractions. Our results – superior to previous portrayals of the greening planet – not only
report a +9.35× 105 km2 change in photosynthetic vegetation, but also explore decreases in nonphotosynthetic
vegetation (−2.19× 105 km2), bare soil (−5.14× 105 km2) and dark surfaces (−2.27× 105 km2). In addition,
interactive changes in these fractions yield multifaceted regime shifts with important implications, such as a
simultaneous increase in PV and NPV in central and southwestern China during afforestation activities, an in-
crease in PV in cropland of China and India due to intensive agricultural development, a decrease in PV and
an increase in BS in tropical zones resulting from deforestation. These advantages emphasize that our dataset
provides locally relevant information on multifaceted regime shifts at the required scale, enabling scalable mod-
eling and effective governance of future terrestrial ecosystems. The data about five fractional surface vegetation
and soil components are available in the Science Data Bank (https://doi.org/10.57760/sciencedb.13287, Sun and
Sun, 2023).
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1 Introduction

Global terrestrial ecosystems are experiencing rapid and un-
certain climate changes and anthropogenic impacts in the
21st century (Alkama and Cescatti, 2016; IPCC, 2013; Song
et al., 2018), which have profound impacts on shifts in
Earth’s surface, such as greening of the planet (Chen et al.,
2019; Piao et al., 2006; Zhu et al., 2016), afforestation (Chen
et al., 2019; Tong et al., 2018), deforestation (Qin et al., 2019;
Zhen et al., 2018), agricultural expansion (Chen et al., 2019;
Zhen et al., 2018; Yu et al., 2021), glacier melting (Hugonnet
et al., 2021; Zemp et al., 2019; Soheb et al., 2022) and ur-
ban sprawl (Kuang et al., 2020; X. Liu et al., 2020; Zhang
et al., 2022). These land surface shifts inversely play a fun-
damental role in affecting climate change by considerably
altering Earth’s carbon budget, energy balance and biogeo-
chemical cycles (Lawrence and Vandecar, 2015; Qin et al.,
2021). Increased understanding of these land cover changes
is an urgent requirement (Réjou-Méchain et al., 2021; H. Liu
et al., 2020) for supporting the scientific, legislative and land
management communities who strive to understand locally
relevant knowledge and to further protect, restore and pro-
mote the sustainable use of terrestrial ecosystems under sus-
tainable development goals.

However, land surface interpretation is obstructed by ex-
tensive existence of mixed pixels in satellite imagery, es-
pecially in heterogeneous landscapes (Roberts et al., 1993).
Continuous vegetation indexes (e.g., normalized difference
vegetation index, NDVI, or enhanced vegetation index, EVI)
provide limited information on surface composition, which
hinders our ability to understand an ecosystem’s structurally
and functionally multifaceted shifts (Smith et al., 2019; Sun,
2015; Zeng et al., 2023). In recent years, there have been sig-
nificant advancements in fractional vegetation cover within
the fields of remote sensing and environmental science. This
progress has led to the development of various products at
multiple resolutions, such as the long-term Global LAnd Sur-
face Satellite (GLASS), GEOV FCover and the Multi-source
data SYnergized Quantitative remote sensing production sys-
tem (MuSyQ) fractional vegetation cover (Baret et al., 2013;
Jia et al., 2015; Mu et al., 2017; Zhao et al., 2023). These
products primarily integrate and utilize data from different
spectral bands and sensors, employing methods including
machine learning, radiative transfer models and dimidiate
pixel models (Baret et al., 2013; Yan et al., 2021; Zhao et al.,
2023). However, these data primarily focus on green vegeta-
tion, posing significant limitations in capturing information
regarding nonphotosynthetic vegetation and bare soil. In eco-
logical studies and remote sensing, nonphotosynthetic vege-
tation including stems, branches and other plant structures
primarily serves functions other than photosynthesis, such
as support and storage. Therefore, understanding the distri-
bution and characteristics of nonphotosynthetic vegetation is

important for a comprehensive analysis of ecosystems and
land cover, especially in drylands (Guerschman et al., 2009).
Some initiatives and products focused on multi-element frac-
tions, such as MOD44B and the Global Vegetation Frac-
tional Cover Product (DiMiceli et al., 2015; Guerschman
et al., 2015). For instance, the Global Vegetation Fractional
Cover Product primarily targets arid regions, particularly
Australia, focusing on photosynthetic vegetation, nonpho-
tosynthetic vegetation and bare soil. Meanwhile, MOD44B
achieves global-scale acquisition of trees, non-trees and non-
vegetative cover. There is a lack of unified classification sys-
tems among these products across the global scale.

Previous advances in the spectral mixture analysis method
have facilitated the investigation of estimating physically
fractional vegetation and soil information in the mixed pix-
els with relatively few field points (Roberts et al., 1993;
Small, 2004; Smith et al., 1990). These unmixed endmember
fractions provide multicomponent time series of information
on surface heterogeneous composition and interactive evo-
lution rather than individual vegetation indexes (Elmore et
al., 2000; Franke et al., 2009; Small and Milesi, 2013; Sun,
2015) and have been adopted to reveal the temporally dy-
namical systems under the influence of a changing environ-
ment and human activity (Lewińska et al., 2020; Suess et al.,
2018; Sun et al., 2021). Recent studies have proven that the
spectral mixture analysis model has the advantage of pro-
viding a more accurate and physically based representation
of a fraction vegetation–soil continuous field at the subpixel
level without training samples (Daldegan et al., 2019; Smith
et al., 2007). This measurement offers a continuous, quanti-
tative portrayal of land surface properties instead of discrete
land cover classes that is superior to many of the spectral in-
dexes (e.g., the vegetation index) (Rogan et al., 2002; Sun
et al., 2019, 2020). Despite extensive validation and appli-
cation of this method at the regional scale, there remains a
lack of global records of unmixed fractional vegetation and
soil information, which may have resulted from the tempo-
ral and spatial variability of global intra-class and inter-class
endmember spectra (Wang et al., 2021).

A recent advance in endmember variability verified that
multiple endmember spectral mixture analysis (MESMA)
was recommended for use in most applications consider-
ing its robustness in mitigating the endmember variability
(Zhang et al., 2019). Such an approach is well suited for het-
erogeneous landscapes because it allows an optimized model
with varying numbers and types of endmembers within each
pixel (Roberts et al., 1998; Franke et al., 2009). However,
considering worldwide landscapes with enormous hetero-
geneity under the climate fluctuations and human activities,
the paradox of fine-grained spatial representation and chal-
lenged data processing for large-scale and long time series
characterization of land surfaces has not been fully solved
yet.
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Here, we create a unified monthly fractional vegetation–
soil nexus product for the period 2001 to 2021, with a spa-
tiotemporally adaptive MESMA method on the powerful
Google Earth Engine (GEE) platform that provides powerful
computational processing to realize planetary-scale analysis
of geospatial data at the same scale as monthly composites
of MOD43A4 images (500× 500 m spatial resolution). This
product is designed to continuously represent Earth’s terres-
trial surface as a percentage of surface endmembers with
standard endmember spectra globally, providing a gradation
of five surface vegetation and soil components: photosyn-
thetic vegetation (PV), nonphotosynthetic vegetation (NPV),
bare soil (BS), ice or snow (IS) and dark surface (DA). We
use a nonparametric seasonal Mann–Kendall test to quan-
tify global trends and their interactive shifts in fractional
vegetation–soil nexuses over the full period.

2 Materials and methods

2.1 Dataset

The MCD43A4 Version 6 Nadir Bidirectional Reflectance
Distribution Function Adjusted Reflectance (NBAR) prod-
uct is selected in this study (Schaaf and Wang, 2015). Since
the view angle effects have been removed from the direc-
tional reflectance, this dataset is provided as more stable and
consistent daily surface reflectance images (bands 1–7) us-
ing the best representative pixel of the 16 d retrieval period
of the Terra and Aqua spacecraft at 500 m sinusoidal projec-
tion. The MCD43A4 dataset was then temporally aggregated
to produce a monthly composited dataset by taking the me-
dian of all the valid reflectances in the GEE platform during
2001–2022.

The Köppen–Geiger climate classification is a reasonable
approach to aggregate complex climate gradients into a sim-
ple but ecologically meaningful classification scheme (Beck
et al., 2018). This dataset presents their widespread accep-
tance and usage within the scientific community. This clas-
sification scheme includes five main classes and 30 sub-
types (Beck et al., 2018). We thus selected recently devel-
oped global Köppen–Geiger climate classification maps at a
1 km resolution for the present day (1980–2016). We initially
used the 30-subtype classification for the selection of typ-
ical regions for the endmember collection. Meanwhile, we
aggregated 30 subtypes to five main classes (i.e., tropical,
arid, temperate, cold and polar) according to the classifica-
tion scheme criteria to represent a static climate condition in
this study.

The land cover datasets are provided by the collection 6
MODIS land cover products (MCD12Q1) with 500 m spa-
tial resolution in 2001 and 2022 (Friedl and Sulla-Menashe,
2015). MCD12Q1 utilizes multiple datasets and robust al-
gorithms and provides detailed and reliable land cover in-
formation. It has proven advantageous in representing the
global land cover structure, patterns and dynamics, aligning

well with the requirements of our study for endmember se-
lection. We aggregate the International Geosphere-Biosphere
Programme (IGBP) classification types of these datasets into
three regions – the ecological zone, agricultural zone and ur-
banized zone. We define the ecological zone as a combina-
tion of evergreen needleleaf forest, evergreen broadleaf for-
est, deciduous needleleaf forest, deciduous broadleaf forest
and mixed forest, closed shrublands, open shrublands, woody
savannahs, savannahs, grasslands, permanent wetlands, per-
manent snow and ice as well as barren; define the agricultural
zone as an aggregation of cropland or natural vegetation mo-
saics; and represent the urbanized zone with urban and built-
up lands.

2.2 Spatiotemporally adaptive spectral mixture analysis

Recent advances in spectral mixture analysis methods have
facilitated investigation of estimating fractional endmember
abundances in the mixed pixels (Meyer and Okin, 2015;
Okin, 2007; Roberts et al., 1993). This method assumes that
the reflectance of a target mixing pixel is a linear combina-
tion of the weighting coefficients (proportional endmembers)
and associated pure spectra:

Ri =

m∑
j=1

FjEi,j + εi, (1)

where Ri is the actual reflectance for band i, Ei,j is the re-
flectance of a given endmember j (1≤ j ≤m) for a specific
band i, m is the number of endmembers, Fj is the fractional
abundance of this endmember j and εi is the residual er-
ror for a specific band i. The fully constrained least-squares
spectral mixture analysis model, including the abundance
sum-to-one constraint and the abundance non-negativity con-
straint, is commonly applied for estimation of fractional end-
members to guarantee physically meaningful results (Heinz
and Chang, 2002). The spectral mixture analysis model is as-
sessed by the model residual error (εi) reported as the root-
mean-square error (RMSEsma), which can be expressed as
Eq. (2):

RMSEsma =

√√√√√ n∑
i=1

ε2
i

n
. (2)

The spectral mixture analysis model includes three pro-
cesses: endmember selection, fraction estimation and eval-
uation.

2.2.1 Nested endmember selection considering
spatiotemporal variability

The quality of spectral mixture analysis is significantly de-
pendent on the representativeness of the endmembers se-
lected. Endmember spectra used in spectral mixture analy-
sis, in general, can be derived from either a measured field
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Figure 1. A framework for endmember selection considering spatial and temporal variability.

spectral library or images (Franke et al., 2009; Sonnentag et
al., 2007). The image-based endmember selection method is
a more practical way because the advantage of image end-
members is that they can be collected at the same scale as the
image and are relatively easy to associate with image features
(Rashed et al., 2003). Given that such endmember selection
would be hampered by the temporal and spatial variability
of global intra-class and inter-class endmember spectra, we
develop a nested framework for endmember selection con-
sidering spatial and temporal variability (Fig. 1).

1. Recent studies have proposed various compositional
endmember frameworks in different application con-
texts. For example, a framework including substrate,
vegetation, dark and ice or snow was proposed and
verified globally for both Landsat and MODIS to al-
low estimated fractions. This framework ensures con-
sistent comparison of estimated fractions across di-
verse climate patterns and land cover types (Small and
Milesi, 2013; Sousa and Small, 2019). Another frame-
work includes photosynthetic vegetation, nonphotosyn-
thetic vegetation, soil and shade (Roberts et al., 1993).
This framework was widely adopted for a presenta-
tion surface structure worldwide, particularly in tropical
rainforest and dryland ecosystems (Guerschman et al.,
2015). These elements can characterize the fundamen-
tal composition of Earth’s surface. Thus, we use five
endmembers to represent surface units, and these five
endmembers include PV, NPV, BS, DA and IS. Con-
cretely, PV refers to green photosynthetic foliage char-
acterized by chlorophyll absorptions in the visible and

high reflectance in the near-infrared bands; NPV rep-
resents non-tilled cropland or grassland and tree litters;
and BS contains soil, rock and sediment. DA represents
a fundamental ambiguity; thus, it may be either an ab-
sorptive (e.g., black lava), transmissive (e.g., deep clear
water) or non-illuminated (shadow) surface. IS repre-
sents permanent glaciers and snow that are widespread
in the polar regions and high mountains.

2. Considering both climate patterns and land cover types,
the typical sites employed for standardized endmember
selection were chosen based on the global MODIS si-
nusoidal grid (10°× 10° intervals). The Köppen–Geiger
climate classification zones are adopted as the dominant
criterion for undertaking full coverage of climate types
(Beck et al., 2018). Meanwhile, we also examine the
land cover diversity, characterized by Simpson’s diver-
sity index (D) of the recent MCD12Q1 Version 6 prod-
uct in 2020 in each MODIS grid.

D = 1−
m∑

i=1
(Pi)2 (3)

Pi is the percentage of type i land use and cover in the
grid, and m is the number of the land use and cover
in the grid. Finally, we selected the top 10 grids (i.e.,
h08v05, h12v12, h13v09, h16v01, h21v03, h22v02,
h22v08, h24v06, h26v05, h27v06 and h29v12) in terms
of D among all the MODIS grids (Fig. S1a, b in the Sup-
plement) and containing all the Köppen–Geiger climate
types (Fig. S1c). These were selected for generation of
the standardized endmember spectrum.
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3. The representativeness of endmembers always shifts
with the time variation. A multitemporal endmember
selection scheme has been validated for various time
series images (Sun and Liu, 2015; Sun et al., 2018).
This process of utilization of both spatially and tem-
porally mixed image collections for endmember selec-
tion can consider both spatial and temporal variability.
Therefore, the multitemporal standardized endmember
selection scheme is adopted in 10 typical zones that
consider both climate and land cover diversity. Princi-
pal component (PC) transformation-derived eigenvec-
tors and the associated PC images were utilized as crite-
ria for determination of endmember types. Specifically,
the eigenvector of the PC, displaying remarkable differ-
ences between shortwave infrared bands with other vis-
ible and near-infrared bands, is obviously able to high-
light characteristics of IS. The PC eigenvector with a
relatively high contrast between the near-infrared band
and other bands primarily captures information related
to PV, particularly during vegetation growing seasons.
The BS and NPV will be boosted with the PC when
the corresponding eigenvector emerges in the same di-
rection. Even though there is no obvious regular pat-
tern of the eigenvector for DA determination, the PC
images can provide adequate information coupled with
high-resolution images from Google Earth. After the
determination of the endmember types and their PCs
in each grid, we ranked these PCs by descending or-
der of the variance contribution and selected PC im-
ages of the first three timings for endmember selection.
We have listed the endmember types and their high-
lighted timings for each selected grid in Table S1 in the
Supplement. The image endmembers can be acquired
from the vertex’s pixels (200–400 pixels) of the scat-
ter plot formed by the PC images at their corresponding
timings in each grid. We then exported these acquired
pure pixels as regions of interest to compute the orig-
inal MODIS reflectance as endmember spectra. These
selected pure pixels for each endmember are validated
by the high-spatial-resolution remote sensing imagery
of Google Earth (Fig. S2).

4. In addition, we collect the MODIS-derived endmem-
ber spectra used in the previous study to complement
and enrich the diversity of the spectral library (Okin et
al., 2013; Daldegan et al., 2019; Meyer and Okin, 2015;
Sousa and Small, 2019). We gather seven PV, five NPV,
five BS and one DA endmember spectra through such a
literature search method. Finally, we establish a library
of endmember spectra considering spatiotemporal vari-
ability: this library includes 35 PV spectra, 40 BS spec-
tra, 25 NPV spectra, 16 DA spectra and 15 IS spectra.

5. To ensure the feasibility of pixel-by-pixel operations
in GEE, we also consider the similarity between the
spectral curves. The hierarchical clustering method is

selected to aggregate these spectra of each endmem-
ber as subgroups, and we input all spectral curves per
endmember, grouping similar curves to compute their
mean – a representative typical spectral curve for each
cluster. Such hierarchical clustering boasts strong in-
terpretability and adaptability for clustering at diverse
scales within data analysis. Finally, we obtain four PV
spectra, four BS spectra, three NPV spectra, two DA
spectra and two IS spectra to estimate vegetation and
soil fractions at the global scale from 2001 to 2020
(Fig. 2).

2.2.2 Multiple endmember spectral mixture analysis

MESMA has been used to estimate fractional vegetation–
soil nexuses based on selected endmember spectra. Accord-
ing to the convex geometry concepts, the number of end-
members (n+ 1) in the model should be equal to the intrin-
sic dimensionality of the spectral space (n) plus 1 (Board-
man, 1993). We found that the cumulative contribution of
the top three PCs has exceeded 99 % (Fig. S3): this three-
dimensional PC space allows four-endmember models. We
initially generate multiple endmember combinations based
on selected endmember spectra and achieve 692 combina-
tion models, including a two-endmember model (88), three-
endmember model (252) and four-endmember model (352)
(Table S2). The fully constrained least-squares spectral mix-
ture analysis model is selected to estimate the fractions and
count RMSEsma for each endmember combination on the
GEE platform. We finally search a specific endmember com-
bination with the smallest RMSEsma and achieve the esti-
mated endmember fractions of this combination as the final
fractions.

2.3 Direct validation of the dataset

The smallest RMSEsma of 692 combination models is
adopted as a criterion to assess the suitability and uncertainty
of the model. The model suggests a generally good fit when
the mean RMSEsma over the image is less than 0.02 (Wu
and Murray, 2003). Moreover, due to challenges in conduct-
ing fraction estimation validation through field surveys, we
employ reference data obtained from high-spatial-resolution
images as the validation set. We thus select for two sets of
reference data where their land cover classification systems
are closely related to our five endmembers. The Global Land
Cover Validation Reference Dataset (GLCVRD) is provided
with a 2 m reference dataset from very high-resolution com-
mercial remote sensing data within 5× 5 km blocks from
2003 to 2012 (Olofsson et al., 2012; Pengra et al., 2015;
Stehman et al., 2012). These datasets support global esti-
mates of the classification accuracy for the major land cover
classes: tree, water, barren, other vegetation, cloud, shadow,
ice and snow. Various recent studies have selected this dataset
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Figure 2. Endmember spectra. (a–e) Hierarchical clusters of the endmember spectra of PV, NPV, BS, DA and IS. (f) The averaged final
endmember spectra, including four PV spectra, four BS spectra, three NPV spectra, two DA spectra and two IS spectra. B1–B7 represent
MODIS spectral bands, including 459–479, 545–565, 620–670, 841–876, 1230–1250, 1628–1652 and 2105–2155 nm.

to evaluate the continuous fields of land cover types (Bau-
mann et al., 2018; Qin et al., 2019; Song et al., 2018). We
use all the GLCVRD reference datasets (Fig. 3a) to assess
the accuracy of globally fractional vegetation and soil esti-
mates from MESMA. Firstly, we filter the estimated fractions
based on the corresponding year and month obtained from
the reference data. Simultaneously, aligning the interpreta-
tions of land cover types with our endmembers, we pair them
accordingly; i.e., tree and other vegetation represent PV and
NPV, barren stands for BS, water and shadow correspond to
DA, and ice and snow denote IS. Subsequently, we reclassify
these paired land cover types and calculate their percentage
within 5× 5 km blocks, in which we exclude cloud cover-
age (named “no data”). Additionally, utilizing these cloud-
free pixels in each block, we compute the mean of the frac-
tional values for each endmember and then compare these
estimated fractions with the measured percentage of paired
reclassified land cover types to validate the reliability of our
product (Fig. S4). Based on the paired measured fractions
and our estimated fractions within blocks, we adopt four ac-
curacy metrics, i.e., mean error (ME), mean absolute error
(MAE), root-mean-square error (RMSE) and R2 for accuracy
assessment. ME measures the average of all the errors in the
dataset where errors are the differences between predicted
and actual values, MAE calculates the average of the abso-
lute differences between predicted and actual values, RMSE
provides a measure of the prediction error, and R2 offers in-

sight into the amount of variability in the dependent variable
that the model explains. These metrics provide a more com-
prehensive assessment of the model’s accuracy, helping to
understand different facets of its performance, such as bias,
variability and overall predictive power (James et al., 2013).

ME=

n∑
i=1

(pi − ri)

n
(4)

MAE=

n∑
i=1
|pi − ri |

n
(5)

RMSE=

√√√√√ n∑
i=1

(pi − ri)2

n
(6)

R2
= 1−

n∑
i=1

(pi − ri)2

n∑
i=1

(pi − r̄)2
(7)

pi and ri are the estimated endmember fractions and refer-
ence endmember fractions at the ith block, n is the sample
size (n= 474), and r̄ is the mean of the reference endmem-
ber fractions of all the blocks.

In addition, we also authenticate our product by incorpo-
rating comprehensive global land cover and land use refer-
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ence data (Fritz et al., 2017), which were obtained from the
Geo-Wiki crowdsourcing platform across four campaigns:
human impact, wilderness, reference and disagreement. Over
150 000 samples of land cover and land use were acquired
in these reference data. To effectively validate our product,
we need to filter the reference data, considering aspects such
as data acquisition time, measurement methods and credi-
bility. We select the first three campaigns, which have a good
match with MODIS pixels (size 1× 1 km) and were observed
from 2001 to 2022. High-feasibility reference data are then
selected through the confidence information of land cover es-
timates and the status of use of high-spatial-resolution im-
agery provided by the metadata. Similarly to the procedural
description used for fractional vegetation and soil compared
with GLCVRD, we reclassify 10 classes of this dataset into
our four groups of endmembers, i.e., (1) tree cover, shrub
cover, herbaceous vegetation and grassland, cultivated and
managed as well as the mosaic of cultivated and managed or
natural vegetation to PV and NPV; (2) flooded land and wet-
land and open water to DA; (3) urban and barren to BS; and
(4) snow and ice to IS. This involves comparing the measured
percent of land cover with the mean of endmember fractions
within the corresponding 1× 1 km pixels.

2.4 Comparisons and uncertainty analysis

To verify the consistency and merits of our dataset against ex-
isting ones, we conducted comparisons with four distinct pre-
existing datasets: the NDVI, the leaf area index (LAI), the
MOD44B vegetation continuous-field product, the GLASS
fractional vegetation cover dataset and the GEOV FCover
dataset. The NDVI is derived from monthly synthesized
MCD43A4 images. The LAI is derived from a 8 d compos-
ite MOD15A2H V6 dataset at 500 m resolution. Both mean
values of the NDVI and LAI and our estimated fractional
PV across all the years are considered for comparison. The
MOD44B vegetation continuous-field product provides an-
nual information about the percent tree cover, percent non-
tree cover and percent non-vegetated within each 250 m pixel
globally (DiMiceli et al., 2015). Consequently, we compare
vegetation cover proportions – the sum of the percent tree
cover and the percent non-tree cover – with the sum of the
fractional PV and NPV. To align the spatial and temporal res-
olutions, we aggregated the sum of the percent tree cover and
percent non-tree cover to a 500 m scale. Simultaneously, we
computed the monthly fractional PV and NPV as annual av-
erages. The GLASS fractional vegetation cover dataset, of-
fering an 8 d temporal frequency and dual spatial resolutions
of 0.05° and 500 m, was generated using a machine learn-
ing approach correlating MODIS reflectance with fractional
vegetation cover (Jia et al., 2015). In our study, the 500 m
GLASS data were utilized to validate our estimated frac-
tions. We computed annual averages from all the GLASS
fractional vegetation cover data within a year and compared
them with the annual averages of the fractional PV and NPV.

GEOV FCover is a 10 d product estimated through the neural
network using the visible, near-infrared and shortwave in-
frared at 1 km resolution (Baret et al., 2013). We aggregate
our product to a 1 km spatial resolution and compare their
annual averages with the annual averages of GEOV FCover.

Moreover, we also carry out a comparison with traditional
linear spectral mixture analysis to demonstrate the advan-
tages of our spatiotemporally adaptive spectral mixture anal-
ysis. Such a comparison is performed using the average of
the monthly RMSEsma of the fully constrained framework
based on two fixed endmember spectral curves: (1) the aver-
age of all the spectral spectra for each endmember and (2) the
existing spectral spectra from Small and Sousa (2019).

Furthermore, to validate the uncertainties of the hierarchi-
cal clustering, we select a spectral spectrum from selected
endmember spectra that exhibit the largest mean squared er-
ror from the mean of the cluster for each cluster. These se-
lected spectral spectra were then used to reconstruct an ex-
treme library of endmember spectra and were used to esti-
mate the fractional vegetation and soil using MESMA.

2.5 Change in vegetation and soil fractions

A Mann–Kendall test is commonly referred to as a nonpara-
metric test method, which is a procedure that detects mono-
tonic trends of sequences over time (Kendall, 1975; Mann,
1945; Bradley, 1968). When seasonal environmental data of
interest are available as time series for which the time inter-
vals between adjacent observations are less than 1 year (i.e.,
daily, weekly and monthly sequences), a multivariate exten-
sion of the Mann–Kendall test has been advanced to han-
dle seasonal sequences. In addition, the seasonal Sen slopes
(change per unit of time) are commonly chosen to express
this magnitude (Hirsch et al., 1982; Sen, 1968). Therefore,
we impose the seasonal Mann–Kendall test and seasonal Sen
method to define the trend and slope (annual change) of
endmember fractions at the pixel level. The detailed infor-
mation about the seasonal Mann–Kendall test and the sea-
sonal Sen method can be found in the Supplement. If the
Mann–Kendall test is not statistically significant (p ≥ 0.05),
we define the net change as 0. If the trend test is significant
(p < 0.05), we apply the seasonal Sen method to estimate
the per-pixel net change between 2001 and 2022 (i.e., slope
times of 22 years). In addition, we aggregate the per-pixel
net change in endmember fractions to spatial scales (such
as country, biome or climate zone) to obtain the total area
change estimates at these aggregated scales from 2001–2022
as

Net area change=
n∑

i=1
TiAiN, (8)

where Ti is Sen’s slope of the endmember fraction for a sta-
tistically significant pixel i, Ai represents the area of pixel i,
n is the total number of such pixels in the region, and N is
the length of the study period (N = 22).
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3 Results

3.1 Evaluation of monthly estimates of vegetation and
soil fractions

We utilize standard endmember spectra globally to estimate
fractional vegetation–soil nexuses via MESMA. The simu-
lated results elucidate that the MESMA model performs well
with an ideal model RMSEsma over the globe (0.018± 0.022,
Fig. 3a–c). We find that the regions with RMSEsma above
0.02 account for less than one-fifth of the global area and
are mainly distributed in barren areas such as the Sahara
and polar regions. This exceptional performance demon-
strates the superiority and low uncertainty of the model. This
performance is also evidenced by evaluation results from
GLCVRD (Fig. 3e–h, Table S3). Specifically, the perfor-
mance of PV+NPV, BS and IS endmember estimates have
an MAE of less than 0.118, an RMSE of less than 0.149 and
an R2 of greater than 0.592. Although the MAE (0.050) and
RMSE (0.065) perform well, the R2 of the estimated DA
against the measured DA represents only 0.156, largely at-
tributed to the absence of estimations for shadows cast by
smaller vegetation within the validation dataset. In blocks
with a DA greater than 0.2, the estimated DA and measured
DA present better consistency, in which the shadows of hills
are well measured by GLCVRD. Moreover, we simultane-
ously select another set of land cover reference data as vali-
dation samples (Fig. S5). The validation results demonstrate
the superiority of our estimation products, with the MAEs for
PV, NPV, DA, BS and IS abundances all less than 0.099, the
RMSEs all less than 0.129, and the R2 values all greater than
0.57. However, this set of validation data is also not ideal
as it fails to accurately estimate small-scale vegetation shad-
ows and bare soil in highly vegetated areas, resulting in a
slight overestimation of our DA and BS estimates near zero,
accompanied by an underestimation of PV and NPV in high-
value areas.

3.2 Comparison with other datasets and the traditional
spectral mixture analysis model

We compare our estimated vegetation and soil fraction
dataset with the NDVI, fractional PV and NPV against frac-
tional tree and non-tree vegetation of the MOD44B vegeta-
tion continuous-field product and other fractional vegetation
cover products. We detected a strong positive relationship
between the PV fraction and the NDVI. However, this cor-
relation becomes less pronounced when PV exceeds 50 %,
suggesting an evident saturation effect within the NDVI
(Fig. 4a). This linear relationship also exists in the relation-
ship between PV and the LAI, but a nonlinear turning point
occurs when PV exceeds 70 % (Fig. 4c). Furthermore, the
PV and NPV fraction displays a significant positive asso-
ciation with the remaining three fractional vegetation cover
products (Fig. 4b, d, e). Specifically, the MOD44B vegetation

continuous-field product reveals an R2 of 0.75 with a p value
below 0.01, the GLASS product displays an R2 of 0.69 with a
p value below 0.01, and the GEOV FCover product exhibits
an R2 of 0.65, also with a p value below 0.01. Neverthe-
less, within regions with lower vegetation cover, especially
drylands that present a higher presence of nonphotosyn-
thetic materials, the current products (particularly GLASS
and GEOV FCover) have not adequately evaluated vegetation
coverage, resulting in some degree of underestimation in the
outcomes (Figs. 4c, d, S6a). Furthermore, we notice overesti-
mation in the MOD44B vegetation continuous-field product
in areas where vegetation cover is less than 50 %, mainly due
to insufficient estimation of dark components (i.e., shadow
of vegetation and mountains, water) (Figs. 4b, S6c). In ar-
eas with denser vegetation cover, we found good alignment
among these products, especially with the MOD44B vege-
tation continuous-field product. However, the GLASS and
GEOV FCover products tend to underestimate certain areas,
primarily focusing more on green vegetation and overlook-
ing nonphotosynthetic components (Figs. 4c, d, S6b). More-
over, both of the two fully constrained linear spectral mixture
models are inferior to our framework since we consider the
variability of the spectra in both time and space (Fig. 4e, f).

3.3 Uncertainties of estimates of global vegetation and
soil fractions

It can be found that 90 % of the RMSEsma’s differences are
concentrated within 1 % (Fig. 5a), indicating the relative sta-
bility of the unmixed results from the two libraries as well
as the effectiveness of the clustering. These are also corrob-
orated by the differences between the unmixed endmember
fractions (Fig. 5b–e), as indicated by more than 90 % of the
global pixels having a difference of 10 % or less as well as
more than 70 % of the global pixels presenting a difference
of up to 1 %, except for the two endmembers with higher
spatial variability (NPV, 61.59 %; DA, 62.59 %).

3.4 Spatial distribution of global vegetation and soil
fractions

Globally averaged monthly gradations of five surface vege-
tation and soil components are illustrated in Fig. 6. Our esti-
mates show that PV cover presents the largest area for both
30–60° N and 0–30° S, which together account for more than
half of the total global terrestrial vegetation area. We find
that the average PV fraction in the Northern Hemisphere is
significantly less than that in the Southern Hemisphere, espe-
cially in the Amazon, although the area of PV at 30–60° N is
slightly greater than that of 0–30° S. Dominated by foliage-
free desert vegetation and agricultural straw, NPV is mainly
found in the semi-arid regions (e.g., USA, western China and
Australia) and croplands. BS is also located in the drylands
of the Sahara, western Asia and western–central Australia in
terms of both fraction and total area. DA and IS, on the one
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Figure 3. Evaluation of global fractional endmember estimates. (a) The spatial pattern of the average of the monthly RMSEsma from 2001
to 2022; the overlaid red dots are the spatial distribution of the 5× 5 km validation blocks of the GLCVRD reference dataset (n= 500).
(b) The boxplot and violin plot for the average of the monthly RMSEsma (a), which indicate that the mean RMSEsma over the image is less
than 0.02. (c) The monthly averaged RMSEsma from 2001 to 2022 with error bars. (d) The schematic of the detailed land cover classes of
the GLCVRD reference dataset. (e–h) Scatter plots of the PV+NPV, BS, DA and IS fractions against the GLCVRD reference dataset (tree
+ other vegetation, barren, water + shadow, ice and snow). Endmember fractions were derived from the corresponding year and month of
each 5× 5 km block achieved.

hand, are mainly concentrated in terrestrial water bodies and
mountains, Greenland and global high mountains of the Hi-
malayas and Andes, respectively.

3.5 Globally and regionally fractional endmember
dynamics

The total area of PV increased by 9.35× 105 km2 from
2001 to 2022, which represents a +1.88 % change rela-

tive to the 2001 green vegetation (Fig. 7; Table S4). This
increased trend results from a higher magnitude of gain
(1.57× 106 km2) nearly 2.5 times the loss area. Our PV area
gain estimate basically agrees in magnitude with the global
vegetation continuous-field product’s estimate of net vegeta-
tion area change (1.36× 106 km2) despite differences in the
time period covered (1982–2016) and definition (tree and
other vegetation) (Song et al., 2018). Temperate, arid and
cold regions together contribute more than 90 % of the green-
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Figure 4. Comparisons with other datasets and traditional spectral mixture analysis models. (a–e) The bi-dimensional histogram of fractional
endmembers and other datasets with a bin size of 2 %, including the fractional PV against NDVI (a), the fractional PV and NPV against
the fractional tree and non-tree vegetation of the MOD44B vegetation continuous-field product (b), the fractional PV against the LAI (c),
the fractional PV and NPV against the GLASS fractional vegetation cover product (d) and the fractional PV and NPV against the fractional
vegetation cover of the GEOV FCover product (e). (f, g) The boxplot and violin plot for the average of the monthly RMSEsma for two fixed
endmember spectral curves using fully constrained linear spectral mixture models, including (e) the average of all the spectral spectra for
each endmember and (f) existing spectral spectra from Sousa and Small (2019).

Figure 5. Difference in unmixed results between the mean endmember library and the extreme endmember library in the hierarchical cluster.
Panels (a)–(f) represent the histogram of RMSEsma, PV, NPV, BS, DA and IS.
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Figure 6. Global average of monthly fractional endmembers from 2001 to 2022. (a) Spatialized RGB composition of three averages of
monthly fractional endmembers (RGB: BS–PV–DA). (b–f) Average of the PV, NPV, BS, DA and IS fractions. Shadowed subplots are the
average of the fractional endmembers (%, orange, lower) and the area of endmembers (fraction× pixel area, ×106 km2, blue, upper) at the
respective latitudes, taking each degree as the statistical standard.

ing area (Fig. 8; Table S4). In these areas, China and India are
two major contributors (Fig. S7) through land use manage-
ment like ecological afforestation and agricultural expansion
(Chen et al., 2019). Within the Brazilian Amazon, we find a
large area of PV loss (Fig. S7), which is also supported by
estimates of forest cover and loss (Qin et al., 2019).

A decreasing trend is observed in NPV globally
(2.19× 105 km2), representing a −1.45 % change relative to
the 2001 NPV area (Fig. 7; Table S4). Tropical and temperate
regions together contribute more than 80 % of the loss area
of NPV, which may result from global-warming-induced tree
greening. Although the arid area is a major source of NPV
(2.75× 106 km2 in 2001, 18.2 % of the global NPV area),
the change area of NPV is only less than 10 000 km2 (Fig. 8;
Table S4).

In the context of the greening of the vegetation, the de-
gree of BS is reduced by 5.14× 105 km2 during the study
period, indicating a−1.09 % change relative to the initial BS
of 2001. The decreased global BS trend occurs in temperate,
arid and cold regions, accounting for over 90 % of the net BS
change area. In contrast, the tropical region appears to have
an increasing trend (+1.22× 105 km2) and thus offsets the
decline in BS in the rest of the regions (Fig. 8; Table S4).
This outcome results from the forest-loss-induced soil expo-
sure in the Brazilian Amazon and Southeast Asia (Fig. S7).
Meanwhile, the total area of DA also represents a net change

of −2.27× 105 km2 from 2001 to 2022, which represents a
−0.69 % change relative to the 2001 DA area. The largest
negative contributions to the decreased global DA appear in
cold (46.26 %) and arid (32.87 %) regions (Fig. 6; Table S4).
We observed an increase of 2.46× 104 km2 in IS globally,
which represents a +0.11 % change relative to the 2001 IS.
Such a positive trend mainly benefits from the increase in
snow and ice in the cold regions, in which the net increase
area is 1.5 times greater than the global net IS change (Fig. 8;
Table S4). This is caused by the increase in snowfall. How-
ever, global warming is causing substantial melting of snow
and ice, resulting in the arid, tropical, temperate and polar
regions showing a decreasing trend in IS cover.

4 Discussions

4.1 Advances and limitations of estimates of global
vegetation and soil fractions

This paper implements global monthly estimates of frac-
tional vegetation–soil nexuses in 2001–2022 via the high-
accuracy and time-consuming MESMA algorithm at the sub-
pixel scale (Roberts et al., 1998), benefitting from the GEE
platform that can provide powerful computational process-
ing to realize planetary-scale analysis of geospatial data. We
can more conveniently target the most optimal model from

https://doi.org/10.5194/essd-16-1333-2024 Earth Syst. Sci. Data, 16, 1333–1351, 2024



1344 Q. Sun et al.: A global estimate of monthly vegetation and soil fractions

Figure 7. Globally fractional endmember dynamics at the pixel level. (a) Composited RGB image with 1BS, 1PV and 1DA. (b–f) The
change magnitude (%) in each pixel for the estimated endmembers, i.e., 1PV, 1NVP, 1BS, 1DA and 1IS. Pixels showing a statistically
significant trend (seasonal Mann–Kendall test, P < 0.05) for either endmember are depicted on the change map.

692 combination models for each MODIS pixel (500 m), thus
helping to understand the specific vegetation–soil composi-
tional structures in each pixel or region. Such a scheme can
improve ecologists’ and managers’ understanding of mul-
tifaceted terrestrial ecosystems for differentiated measures.
Moreover, these fractional endmembers have proven their
potential for application in land use cover classification (Sun
et al., 2020), time series evolutionary pathways (Sun et al.,
2021; Daldegan et al., 2019) and biophysical process model-
ing (Sun et al., 2022; Sousa and Small, 2018). This globally
comprehensive record of monthly vegetation and soil frac-
tions during the period 2001–2022 may provide basic data
for quantification and modeling of global change and provide
an important foundation for measuring sustainable develop-
ment goals such as land degradation neutrality (Chasek et al.,
2018; Sun et al., 2019).

Our product can overcome the problem of saturation of
the NDVI in the regions embodying high-coverage vegeta-
tion. Such an advance can be supported by previous regional
comparison research (Rogan et al., 2002; Sun et al., 2019,
2020). Additionally, the diversity of information stands as

one of the strengths of this dataset, encompassing the five
primary components of Earth’s land surface globally. More-
over, it can be extended to encompass more types through
different levels of clustering. For instance, the DA compo-
nent has not been emphasized in many datasets, yet current
scientific research underscores the need for increased atten-
tion to vegetation shadows (Zeng et al., 2023). Although our
DA component represents various types across different land
regions, such as water bodies, shadows or bare rocks, this
dataset may effectively enhance our precise understanding
of complex vegetation structures. The NPV component is a
vital element in arid ecosystems and represents a crucial part
of vegetation biomass. Our dataset, by finely characterizing
NPV, not only aids in understanding the evolving features of
vegetation structure under photosynthetic and nonphotosyn-
thetic interactions (Guerschman et al., 2015) but also con-
tributes to a more accurate quantification of global biomass
in arid land systems (Smith et al., 2019).

Moreover, our product demonstrates good scalability in
terms of time and endmember types. These monthly esti-
mates of fractional vegetation–soil nexuses can be upgraded

Earth Syst. Sci. Data, 16, 1333–1351, 2024 https://doi.org/10.5194/essd-16-1333-2024



Q. Sun et al.: A global estimate of monthly vegetation and soil fractions 1345

Figure 8. Global and regional fractional endmember dynamics. The middle subgraph is aggregated into five Köppen–Geiger climate classes.
(a–f) The gain area, loss area and net change area for the five land surface endmembers in the globe (a) and the five climate zones, i.e.,
tropical (b), arid (c), temperate (d), cold (e) and polar (f).

to multi-timescale (daily, yearly) products to serve differ-
ent needs and thus provide time series of multicomponent
information on surface heterogeneous composition and in-
teractive evolution. In addition, considering the meaning-
ful physical interpretations of endmember fraction values,
these endmembers can be conveniently integrated across dif-
ferent temporal and spatial scales using spatiotemporal fu-
sion methods (Zhang et al., 2018). The temporal and spa-
tial variability of endmembers has always been a significant
constraint in obtaining global-scale vegetation and soil frac-
tions from imagery (Wang et al., 2021). The spatiotempo-
rally adaptive framework employed helps to increase the rep-
resentativeness of endmember selection, and MESMA also
considers the suitability of each combination of these end-
members within each pixel. However, considering the limi-
tations of the computational resources, our solution on hier-
archical clusters of the endmember spectra can considerably
improve cost-effective unmixing of long time series satellite
records over the globe under the tradeoffs of certain accu-
racy requirements (Fig. 3). With the assumption of increased
computational power in the future, we believe that utiliza-
tion of combination models from selected endmember spec-
tra (35 GV spectra, 40 BS spectra, 25 NPV spectra, 16 DA

spectra and 15 IS spectra) or expanded endmember spectra
may further improve the accuracy and stability of estimates
of gradations of five surface vegetation and soil components
at the global scale.

However, due to the absence of corresponding reference
data for validation, we solely rely on two high-quality land
cover reference datasets for validation. Unfortunately, these
datasets do not intricately characterize small-scale shadows
and bare soil within complex vegetation structures. Conse-
quently, this leads to a misconception in the validation, where
our DA and BS are overestimated in low-value areas and
vegetation is underestimated in high-value areas (Figs. 3,
S5). Therefore, in the future, there is a need to further de-
velop high-quality relevant reference data. Considering that
the MOD44B vegetation continuous-field product provides
a gradation of three surface cover components, i.e., percent
tree cover, percent non-tree cover and percent bare, the dark
components (i.e., shadow of vegetation and mountain, water)
are not quantified. Therefore, the fractional PV and NPV are
overall biased high, especially in areas with PV and NPV less
than 0.50 (Figs. 4b, S6b). In addition, we also observed a cer-
tain degree of underestimation in these three datasets in re-
gions with lower vegetation cover compared to our data. This
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is mainly because these datasets focus solely on green veg-
etation, especially GLASS and GEOV FCover (Baret et al.,
2013; Jia et al., 2015), and do not accurately estimate non-
photosynthetic vegetation in arid regions. The above com-
parisons demonstrate our precision advantage in fine extrac-
tion of multiple endmembers. Given the importance of NPV
in ecological research, undertaking separate validation and
comparisons between PV and NPV represents a critical foun-
dational effort. While detailed maps of a representative re-
gion illustrate the reliability and advantages of our NPV es-
timation over other products (Fig. S6), the current lack of
equivalent products highlights the need for ongoing devel-
opment. Enhancing quantitative comparison efforts will be
essential for bolstering the feasibility, accuracy and validity
of our NPV product in future studies. We observed higher
RMSEsma values in seemingly homogeneous areas like the
Sahara and Arctic. However, within these regions, there of-
ten exist extremely diverse land cover types, such as high-
and low-reflectance sands and ice. When selecting endmem-
bers and hierarchical clustering models, we might not have
adequately considered these extreme spectral curves. As a
result, these extreme areas exhibit a higher uncertainty.

4.2 Implications of global and regional shifts from pairs
of two endmembers

We find greening of Earth characterized by increased pho-
tosynthetic vegetation and reduced bare soil exposure, ob-
served in temperate and cold countries such as Russia
(Figs. 9, S3). This finding is in agreement with the finding of
a climate-driven greening trend in the Northern Hemisphere
(Piao et al., 2006). The biomass decreases, exhibited as de-
creased PV and increased BS (Fig. 9), presented only half of
the global climate-driven greening. These findings imply a
global trend towards greening in the context of global warm-
ing, as supported by a large number of published studies on
global vegetation change (Chen et al., 2019; Piao et al., 2006;
Song et al., 2018). Moreover, the polar zone is a hotspot of
ice melting and shows the accepted fact of accelerated re-
treat of glaciers and ice under global warming (Hugonnet et
al., 2021; Zemp et al., 2019).

In addition, the overexploitation of resources is one of the
environmental problems of interest and an important factor in
causing the above climate change and disasters. Global over-
exploitation has led to problems such as vegetation degrada-
tion and intensive utilization of agricultural land. The human
overexploitation of forest- and grassland-induced biomass
decrease presents a decrease in PV and an increase in BS
(Figs. 9, S7), especially over the tropical rainforest of the
Brazilian Amazon and South Asia. This finding agrees with
the deforestation and agriculturalization in these regions pro-
vided by previous studies (Qin et al., 2019; Zhen et al.,
2018). Within the agricultural area, the agricultural intensi-
fication is a human-driven greening process characterized by
increased photosynthetic vegetation and reduced bare soil.

This shift mainly occurs in India and the North and North-
east China Plain (Figs. 9, S7) (Chen et al., 2019). We also
found an urbanization-driven biomass decrease in the global
terrestrial ecosystems, especially in China and North Amer-
ica (Figs. 9, S7), resulting from occupation of agricultural
and ecological lands during urban sprawl (Kuang et al., 2020,
2021; Zhao et al., 2022).

Eco-restoration depicts a process that currently needs ur-
gent attention in our understanding and utilization of re-
sources and the environment. Differently from climate-
driven greening that presents trends of increasing PV and
decreasing BS, the human-driven afforestation shows posi-
tive trends of both PV and NPV, mainly attributed to recent
implementation of policies on ecological restoration through
a large number of planted protective forests (Figs. 9, S7).
These afforested regions are primarily found over China,
Europe and North America, supported by a previous study
on the greening world (Chen et al., 2019). Moreover, green
space construction in urbanized regions has been carried out,
integrated with road construction and city renovation, and
generates an increasing footprint of urban greening, espe-
cially in China (Figs. 9, S7).

This dataset can serve as a baseline for enhancing our com-
prehension of heterogeneous surface dynamics and modeling
Earth’s biophysical processes through a multi-endmember
coupling perspective and may significantly advance future
research by serving as a foundational reference for delving
deeper into complex land systems. Anticipating its potential
applications across diverse domains such as ecology, climate
studies and urban planning, this dataset emerges as a piv-
otal resource. Its multifaceted utility is expected to play a
pivotal role in informing environmental management deci-
sions, advancing studies on ecological shifts, predicting cli-
mate trends and facilitating strategic landscape planning.

5 Data availability

The data about the fractional five surface vegetation and
soil components can be exported from the GEE platform
via the provided codes or are available in the Science
Data Bank (https://doi.org/10.57760/sciencedb.13287, Sun
and Sun, 2023). The first dataset includes five fractions from
2001 to 2011, and another includes five fractions from 2012
to 2022. The file contains compressed month-by-month Geo-
TIFF data for each year according to the grid of longi-
tude 60° and latitude 50°. The dataset for each year in-
cludes 216 files, named “SMA_year_(month-1)_gridid.tif”,
like “SMA_2001_0_0.tif”. The public datasets have been
listed in the Methods section.

6 Code availability

The GEE codes for MESMA and the seasonal Mann–
Kendall test are available at GitHub (https://github.com/
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Figure 9. Characteristics of each pair of two endmembers. The bottom-left corner shows global maps of co-location of two paired endmem-
bers. Pixels showing a statistically significant trend (seasonal Mann–Kendall test, P < 0.05) in both endmembers are depicted on the map.
The color of each pixel was displayed in quadrants of 1X and 1Y , where 1X and 1Y are horizontal and vertical endmembers, respectively.
The top-right corner shows a two-dimensional histogram of the change magnitude (%) of the two paired endmembers. The x axes and y axes
are represented by 1X and 1Y , respectively. These two-dimensional histogram plots were created with a bin size of 1 % for both axes. The
color bar was normalized by the number of pixels in each bin on a log scale.

qiangsunpingzh/GEE_mesma, last access: 11 March 2024)
and Zenodo (https://doi.org/10.5281/zenodo.10796386, Sun,
2024). Common code for generating figures is available
at https://doi.org/10.5281/zenodo.10669804 (Caswell et al.,
2024).

7 Conclusions

In this paper, to provide locally detailed socio-ecological
knowledge about globally multifaceted changes in fractional
vegetation–soil nexuses under climate change and anthro-
pogenic impacts, we estimated monthly vegetation and soil
fractions in 2001–2022 that provide multicomponent infor-
mation on surface heterogeneous composition based on a
spatiotemporally adaptive spectral mixture analysis frame-
work. This product of monthly vegetation and soil fractions
from 692 combination models can provide an accurate esti-
mate of surface heterogeneous composition, better than the
previous vegetation index and vegetation continuous-field
product, as well as traditional fully constrained linear spec-
tral mixture models. This solution can both improve con-
siderably cost-effective unmixing of long time series satel-
lite records over the globe and meet accuracy requirements.
Based on these estimates of vegetation and soil fractions, we
find a greening trend of Earth, as indicated by a increase in

the total area of PV, which represents a+1.88 % change rela-
tive to the 2001 green vegetation. This greening trend can be
found in all climatic zones other than the tropics. In addition
to the trends in greening reported by other studies, we found
that the increase in PV was accompanied by a decreasing
trend in BS, DA and NPV in most regions. There is a trend of
simultaneous increase in PV and NPV in central and south-
western China during afforestation activities. Therefore, a
combination between interactive changes in vegetation and
soil fractions can be adopted as a valuable measurement of
climate change and anthropogenic impacts.

Supplement. The supplement related to this article is available
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