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Abstract. Diagnostic terrestrial biosphere models (TBMs) forced by remote sensing observations have been
a principal tool for providing benchmarks on global gross primary productivity (GPP) and evapotranspiration
(ET). However, these models often estimate GPP and ET at coarse daily or monthly steps, hindering analysis
of ecosystem dynamics at the diurnal (hourly) scales, and prescribe some essential parameters (i.e., the Ball–
Berry slope (m) and the maximum carboxylation rate at 25 °C (V 25

cmax)) as constant, inducing uncertainties in
the estimates of GPP and ET. In this study, we present hourly estimations of global GPP and ET datasets at a
0.25° resolution from 2001 to 2020 simulated with a widely used diagnostic TBM – the Biosphere–atmosphere
Exchange Process Simulator (BEPS). We employed eddy covariance observations and machine learning ap-
proaches to derive and upscale the seasonally varied m and V 25

cmax for carbon and water fluxes. The estimated
hourly GPP and ET are validated against flux observations, remote sensing, and machine learning-based esti-
mates across multiple spatial and temporal scales. The correlation coefficients (R2) and slopes between hourly
tower-measured and modeled fluxes are R2

= 0.83, regression slope = 0.92 for GPP, and R2
= 0.72, regression

slope= 1.04 for ET. At the global scale, we estimated a global mean GPP of 137.78±3.22 Pg C yr−1 (mean± 1
SD) with a positive trend of 0.53 Pg C yr−2 (p < 0.001), and an ET of 89.03±0.82×103 km3 yr−1 with a slight
positive trend of 0.10×103 km3 yr−2 (p < 0.001) from 2001 to 2020. The spatial pattern of our estimates agrees
well with other products, with R2

= 0.77–0.85 and R2
= 0.74–0.90 for GPP and ET, respectively. Overall, this

new global hourly dataset serves as a “handshake” among process-based models, remote sensing, and the eddy
covariance flux network, providing a reliable long-term estimate of global GPP and ET with diurnal patterns and
facilitating studies related to ecosystem functional properties, global carbon, and water cycles. The hourly GPP
and ET estimates are available at https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng et al., 2023a) and the
accumulated daily datasets are available at https://doi.org/10.57760/sciencedb.ecodb.00165 (Leng et al., 2023b).
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1 Introduction

Terrestrial photosynthesis (gross primary productivity, GPP)
and evapotranspiration (ET) play pivotal roles in the intricate
dynamics of the global carbon and hydrological cycles (Piao
et al., 2020; Liu et al., 2003; Jasechko et al., 2013). Enhanc-
ing our understanding of the exchanges of carbon and wa-
ter between terrestrial ecosystems and the atmosphere holds
paramount importance for understanding and monitoring the
Earth system (Ryu et al., 2019; Chen et al., 2019; Jung et al.,
2010). However, large discrepancies exist in the estimation
of global GPP and ET fluxes by various models varied from
92.7 to 168.7 Pg C yr−1 (Zheng et al., 2020) and from 63.3
to 105.4× 103 km3 yr−1 (Li et al., 2023; Yu et al., 2022),
respectively. The present uncertainties predominantly arise
from multiple constraining factors, encompassing, although
not exclusively, oversimplified model structure (Yuan et al.,
2010; Liang et al., 2013; Wang et al., 2020; Tagesson et al.,
2021; Moreno et al., 2012; Luo et al., 2018), inadequate rep-
resentation of plant functional traits (Chen et al., 2013, 2022;
Bonan et al., 2011; Wilson et al., 2000; Wang et al., 2007;
Franks et al., 2018), coarse resolution of climate forcing, and
also inconsistency of global land cover maps (Bonan, 2019;
Gamon et al., 2004; Bonan et al., 2002). As a consequence,
the precise quantification of global carbon and water fluxes
remains an enduring challenge.

State-of-the-art terrestrial biosphere process-based mod-
els (TBMs), coupling the biogeochemical and biogeophys-
ical processes in the soil–vegetation–atmosphere continuum,
have been developed to estimate global carbon and water
fluxes (Cao and Woodward, 1998; Sitch et al., 2003). Differ-
ing from the prognostic TBMs (i.e., TRENDY), diagnostic
TBMs offer a heightened level of reliability as benchmarks
for GPP and ET, because of their alignment with remote
sensing-derived appraisals of plant structural conditions (Liu
et al., 1997, 2003; Chen et al., 1999, 2012; Luo et al., 2018).
The diagnostic TBMs often adopt the scheme by integrat-
ing an enzyme-kinetic biochemical photosynthesis model by
Farquhar et al. (1980) with the Ball–Woodrow–Berry (BWB)
stomatal conductance model (Ball et al., 1987). The max-
imum carboxylation rate (Vcmax) quantifies the leaf photo-
synthetic capacity, and its normalized form at 25 °C (V 25

cmax)
is an essential parameter used to estimate carbon fluxes in
TBMs. Besides, the Ball–Berry slope, m, serves as the pa-
rameter that balances the rate of carbon gain and water loss
of plants by controlling the modeled stomatal conductance in
simulating the photosynthetic process. In regional and global
ecosystem modeling, current TBMs tend to assign V 25

cmax as
a fixed parameter varied by plant functional types (PFTs),
which were typically estimated from a measurement-based
database (Kattge et al., 2009), and to assign m as a constant.
However, in recent studies, V 25

cmax and m have been found
to vary across PFTs (Chen et al., 2022; Smith et al., 2019;
Lin et al., 2015; Bauerle et al., 2014; Miner et al., 2017) and
seasonally (Miner and Bauerle, 2017; Misson et al., 2004;

Wolz et al., 2017; Luo et al., 2021; Croft et al., 2017; Liu et
al., 2023; Leng et al., 2024a). Therefore, incorporating pre-
scribed constant V 25

cmax and m in TBMs may induce uncer-
tainties in modeling global GPP and ET (Ryu et al., 2019;
Miner and Bauerle, 2017).

Process-based models necessitate the inclusion of parame-
ters, yet several of those parameters are challenging to deter-
mine through empirical data alone. Machine learning tech-
niques can be employed to acquire parameterizations that ef-
fectively depict the observed ground truth. This results in a
model that combines the benefits of physical modeling, lever-
aging its theoretical foundations, with the adaptive capabil-
ities of machine learning techniques. These data-driven ad-
justments and optimizations enhance the modeling of spa-
tiotemporal patterns in carbon and water cycles (Reichstein
et al., 2019). Recent studies have utilized models with data-
driven parameterizations to estimate global GPP and ET
(Zhao et al., 2019; Koppa et al., 2022; Hu et al., 2021; Ma et
al., 2022). Employing data-driven parameterization not only
improves the estimation of carbon and water fluxes, but also
enables a deeper understanding of the dynamics and mecha-
nisms governing ecosystem functions.

Refining GPP and ET estimations from daily to hourly
scales provides valuable insights into the diurnal patterns of
plant–atmosphere interactions, particularly in relation to ex-
treme climate events (Hashimoto et al., 2020; Bodesheim et
al., 2018; Duarte Rocha et al., 2022). Air temperature and va-
por pressure deficit are higher in the morning than in the af-
ternoon (Goulden et al., 2004; Lin et al., 2019), and leaf wa-
ter potential decreases from morning to afternoon due to the
water loss from transpiration (Neumann and Cardon, 2012;
Lee et al., 2005). These processes can lead to different re-
sponses of photosynthesis and transpiration to the environ-
ment, which only the datasets with diurnal variations can
track (Zhang et al., 2023b). Besides, on the diurnal scale, the
temporal patterns of GPP and ET are influenced mostly by
radiation and the structural characteristics of plant canopies,
specifically by the variable contributions of sunlit and shaded
leaves (Chen et al., 1999; Ryu et al., 2011; Nelson et al.,
2020; Luo et al., 2018). Sunlit leaves simultaneously ab-
sorb both direct and diffuse radiation, making their photo-
synthesis primarily limited by RuBisCO. By contrast, shaded
leaves solely absorb diffuse radiation, making their photo-
synthesis constrained by incoming solar energy (Ju et al.,
2006; Wang and Leuning, 1998; Urban et al., 2007; Luo et
al., 2018). Therefore, differentiating hourly water and carbon
fluxes into sunlit and shaded proportions would further un-
tangle the complex interactions between plant physiological
and canopy structural components and the ambient environ-
ment.

Here we provide the first dataset of global hourly car-
bon and water fluxes using a two-leaf satellite-based TBM
with dynamic parameterizations. We developed the model by
(1) inversing seasonally variable m and V 25

cmax from measured
eddy covariance data, (2) upscaling derived m and V 25

cmax to
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modeling grids with machine learning algorithms, and (3) es-
timating hourly carbon and water fluxes in a two-leaf hourly
process-based model with seasonally and spatially variable
m and V 25

cmax. We evaluated the effectiveness of the dataset
in capturing the spatial, temporal, and interannual patterns in
GPP and ET from the eddy covariance sites. We also inter-
compared the dataset with other global GPP and ET datasets
to assess their spatial and interannual variations.

2 Data and methodology

2.1 Data from the eddy covariance towers

The FLUXNET2015 (http://www.fluxdata.org, last access:
1 October 2020) dataset includes the measured and postpro-
cessed carbon fluxes, energy fluxes, and meteorological vari-
ables over more than 200 sites around the globe in a standard
format (Pastorello et al., 2020). In this study, we selected
136 sites (809 site-years) (Table S1 in the Supplement) based
on the availability and quality of the measured fluxes and
meteorological conditions (the quality control flag for fluxes
smaller than 2 and data gaps less than 20 % for a site-year).
For the independent validation, we randomly selected 20 %
of the total sites to evaluate the accuracy and applicability of
the process model with dynamic parameterizations.

Half-hourly meteorological records in the FLUXNET2015
dataset were aggregated into hourly records and used to
drive the Biosphere-atmosphere Exchange Process Sim-
ulator (BEPS). Gap-filled incoming shortwave radiation
(SW_IN_F), air temperature (TA_F), vapor pressure deficit
(VPD_F), precipitation (P_F), and wind speed (WS_F) were
selected as the forcing meteorological variables to derive
monthly variable m and V 25

cmax at each site. We chose to use
GPP partitioned from the net ecosystem exchange (NEE)
based on a nighttime method with a variable friction velocity
(u∗) threshold (GPP_NT_VUT) and the gap-filled latent heat
flux (LE_F_MDS) for each site-year as the targeted fluxes
for m and V 25

cmax estimation. In the validation, we only chose
to use GPP and latent heat flux with quality control flags
smaller than 2 to compare with the modeled GPP and ET
at the hourly, daily, and annual scales.

2.2 Gridded data for the globe

The global datasets used in this study are shown in Ta-
ble 1. The meteorological variables were collected from the
fifth-generation European Center for Medium-range Weather
Forecasts (ECMWF) reanalysis (ERA-5) with hourly records
and a spatial resolution of 0.25°. In this study, we obtained
the hourly incoming shortwave radiation (SW, W m−2), air
temperature at 2 m (Ta, °C), dew point temperature (Td, °C),
precipitation (mm h−1), 10 m u- and v-components of wind
(u10 and v10, m s−1), soil water content (SWC, m3 m−3), and
snow depth (SWD, m). The relative humidity (RH) was cal-

culated from air temperature and dew point temperature as

RH= e
17.269Td
Td+237.2−

17.269Ta
Ta+237.2 × 100%. (1)

The wind speed (WS) was calculated as the root-square of
(u) and the vertical (v) component of wind measured at a
height of 10 m as

WS=
√

u2
10+ v2

10. (2)

The 8 d GLOBMAP leaf area index (LAI) dataset at 8 km res-
olution was used to drive the BEPS model. The LAI dataset
was produced by quantitative fusion of Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) and historical Ad-
vanced Very High Resolution Radiometer (AVHRR) data
(Liu et al., 2012). In this study, we smoothed and interpo-
lated the 8 d LAI data into continuous daily LAI series us-
ing the locally adjusted cubic-spline capping (LACC) algo-
rithm (Chen et al., 2006). To account for the nonrandomness
of the leaf distribution within a canopy (Chen et al., 1997),
we collected the global clumping index map retrieved from
the MODIS Bidirectional Reflectance Distribution Function
(BRDF) products (He et al., 2012) at a spatial resolution of
500 m.

We also used a leaf chlorophyll content (LCC) dataset to
represent the leaf physiological status from 2001 to 2020. It
was derived based on MODIS data by coupling a leaf opti-
cal properties model and a canopy bidirectional reflectance
model (Xu et al., 2022). We also used the LACC algorithm
to interpolate the 8 d LCC into the daily LCC series.

In addition, we obtained the yearly global land cover map
with the IGBP classification scheme from the MCD12C1
product (Friedl and Sulla-Menashe, 2015). We collected the
soil texture, fraction of clay, soil, and sand from the Harmo-
nized World Soil Database (HWSD) v1.2 to parameterize the
soil properties in BEPS. We also acquired the monthly CO2
concentration measurements from the NOAA Earth System
Research Laboratory (ESRL). We resampled the LAI, CI,
LCC, soil properties, and land cover maps into a spatial res-
olution of 0.25°.

2.3 The process-based model with dynamic
parameterizations

2.3.1 Parameter optimization for BEPS

The schematic overview of the methodology and data sources
is shown in Fig. 1. The TBM used in this study is the
Biosphere-atmosphere Exchange Process Simulator (BEPS),
renamed from the Boreal Ecosystem Productivity Simula-
tor. BEPS is a two-leaf diagnostic enzyme-kinetic model and
has been intensively adopted for quantifying carbon and wa-
ter fluxes over various biomes and over the globe (Luo et
al., 2019; Liu et al., 2003; Chen et al., 1999, 2019, 2012).
The newly revised BEPS v4.10 adopts hourly meteorologi-
cal variables (i.e., incoming shortwave radiation, air temper-
ature, vapor pressure deficit, precipitation, and wind speed)
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Table 1. Global datasets used in the BEPS model with dynamic parameterizations.

Variable Dataset/source

Incoming shortwave radiation ERA-5
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023)

Air temperature ERA-5

Dew point temperature ERA-5

Precipitation ERA-5

Wind speed ERA-5

Soil water content ERA-5

Snow depth ERA-5

Leaf area index GLOBMAP (Liu et al., 2012)

Clumping index He et al. (2012)

Leaf chlorophyll content Xu et al. (2022)

Land cover map MCD12C1
https://lpdaac.usgs.gov/products/mcd12c1v006/ (last access: 1 December 2022)

Soil texture map Harmonized World Soil Database v1.2
https://www.fao.org/land-water/databases-and-software/hwsd/en/ (last access: 1 December 2022)

CO2 concentration NOAA’s Earth System Research Laboratories
https://gml.noaa.gov/ccgg/trends/ (last access: 1 December 2022)

to model hourly carbon and water fluxes. The shortwave radi-
ation and leaf temperature are calculated separately for sun-
lit and shaded leaf groups (Chen et al., 1999). The leaf-level
photosynthetic rate and stomatal conductance are obtained
through the coupling of the Farquhar scheme (Farquhar et
al., 1980) and Ball–Woodrow–Berry stomatal conductance
model (Ball et al., 1987) using a cubic analytical solution
(Baldocchi, 1994). The leaf-level transpiration is then ob-
tained based on the Penman–Monteith equation. The canopy-
level GPP and ET are calculated as

GPP= GPPsunlit×LAIsunlit+GPPshaded×LAIshaded (3)
ET= E+ Tsunlit×LAIsunlit+ Tshaded×LAIshaded, (4)

where LAIsunlit and LAIshaded are the LAI for sunlit and
shaded leaf groups, respectively. A detailed description of
the main modules in BEPS is provided in the Supplement.

We recently developed a new parameter optimization al-
gorithm (Leng et al., 2024a) for BEPS, using measured
GPP and ET fluxes to constrain the simulations from BEPS
by optimizing key photosynthesis and stomatal conductance
model parameters (i.e., V 25

cmax and m). The Bayesian param-
eter optimization with the carbon–water coupling cost func-
tion (Eq. S14 in the Supplement) has been validated to effi-
ciently and accurately estimate m and V 25

cmax and to improve
the modeling of carbon and water fluxes. We updated m and
V 25

cmax in each iteration to allow BEPS to model carbon and
water fluxes as close as possible to the measured fluxes. A de-

tailed description of the algorithm is provided in the Supple-
ment. In this study, we adopted the parameter optimization
algorithm to estimate monthly m and V 25

cmax for each site-year
of flux sites.

2.3.2 Dynamic parameterizations for BEPS using
machine learning

Two separate random forest regressors were trained using the
combinations of the plant properties (functional types, LAI,
LCC) and environmental conditions (meteorological vari-
ables, soil types, soil water content) with the optimized m and
V 25

cmax, respectively. The plant functional types and soil types
were encoded with the one-hot encoder. The meteorological
variables and soil water content were collected according to
the time and location of each m and V 25

cmax retrieval. Overall,
80 % of the data were randomly selected to train the random
forest regressors with a 5-fold cross-validation to determine
the hyperparameters, and 20 % of the data were used to eval-
uate the performance of the trained regressors in each round
of calibration. All sites were used in the training process for
upscaling m and V 25

cmax for the site level to gridded maps. The
global monthly m and V 25

cmax time series were generated sep-
arately for 2001–2020 using the gridded feature data in the
random forest regressors. Then, BEPS adopted the monthly
m and V 25

cmax trained from machine learning models based
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on the FLUXNET2015 dataset, hereafter referred to as the
“BEPS with dynamic parameterizations” (BEPS-DP).

BEPS-DP used the meteorological variables from ERA-
5 as climate forcing and the LAI from GLOBMAP to model
the GPP and ET for sunlit and shaded leaf groups at an hourly
step. The simulations of photosynthetic rate and ET were it-
erated 10 times for each hour to obtain the final hourly esti-
mate. Then the hourly estimates of GPP were aggregated to
daily and annual time steps for model validations and evalu-
ations.

2.4 Model validation and evaluation

We validated the efficacy, accuracy, and applicability of the
BEPS-DP using the fluxes of 136 sites (809 site-years), as
shown in Fig. 2. Three metrics, the coefficient of determina-
tion (R2), the root mean square error (RMSE), and the slope
between the observations and simulations, were adopted to
evaluate the performance of BEPS-DP. In the model-training
process, a 5-fold cross-validation method was adopted to
tune the hyperparameters in the random forest regressors. Af-
ter the training, the features in the independent validation set
were used as input in the random forest regressors to gen-
erate monthly m and V 25

cmax. The BEPS model was run with
the predicted m and V 25

cmax and other driving force data at the
site level to simulate hourly GPP and ET in each site-year in
the independent validation set. Then the simulated GPP and
ET were compared with the GPP and ET estimated from the
eddy covariance at hourly, daily, and annual scales.

In addition, at the global level, we compared the mod-
eled carbon and water fluxes from BEPS-DP with five other
gridded flux products (one using machine learning methods,
two from process-based models, one from light use efficiency
(LUE) models, and one from remote sensing data), from the
perspectives of global total values, gridded values, and mean
annual sum patterns. The FLUXCOM ensemble datasets are
widely used as the reference data in global long-term car-
bon and water cycle studies (Ryu et al., 2019; Tagesson et
al., 2021). FLUXCOM datasets include the ensemble GPP
and ET fluxes derived from three machine learning methods,
at 0.5° spatial resolution and daily temporal resolution since
1979 (RS+METEO setup, i.e., remote sensing and meteo-
rological data driven) and at 0.0833° spatial resolution and
8 d temporal resolution since 2001 (RS setup, i.e., remote
sensing driven only) (Jung et al., 2019, 2020). We used the
RS+METEO product to intercompare the global long-term
GPP and ET estimates. Process-based global GPP estimates
were obtained from the Breathing Earth System Simulator
(BESS) v2.0, which generates global carbon and water fluxes
at 0.05° resolution at a daily time step (Ryu et al., 2011;
Li et al., 2023). Process-based global ET estimates were
adopted from BESS and the Global Land Evaporation Am-
sterdam Model (GLEAM) (Martens et al., 2017; Miralles et
al., 2011). LUE-based GPP and ET estimates were collected
from the Global LAnd Surface Satellite (GLASS) datasets

(Liang et al., 2021). We also used the GOSIF GPP derived
from remote-sensing solar-induced fluorescence (SIF) to in-
tercompare the long-term GPP trends (Li and Xiao, 2019).
All comparisons were conducted at an annual time step and
0.25° resolution for the overlapped years during 2001–2020
of each flux product in this study.

3 Results

3.1 Evaluation of the BEPS model with dynamic
parameterizations

In general, BEPS-DP could effectively reproduce the tempo-
ral variations (hourly, daily, and annual) as well as the spa-
tial differences in the tower-based GPP and ET across the
majority of sites in the independent validation set (Figs. 3
and 4). BEPS-DP demonstrated efficacy in explaining ap-
proximately 83 % and 72 % of the spatiotemporal variations
in GPP and ET across all validation sites and site-years
(Fig. 3). For all the site-years, the regression slopes are 0.92
and 1.04 and the RMSE values are 368.212 g C m−2 yr−1

and 209.095 mm yr−1 for annual-scale GPP and ET com-
parisons, respectively. For all PFTs in the independent val-
idation set, BEPS-DP also showed a good performance in
simulating the GPP and ET at most sites (Fig. 3). BEPS-DP
can explain 87 % of the average annual summed GPP and
ET per biome, with the RMSE of 314.125 g C m−2 yr−1 and
146.18 mm yr−1 for GPP and ET, respectively. Although the
average annual summed ET was slightly overestimated for
the evergreen broadleaf forests (EBF) and the average annual
summed GPP was overestimated for the wetland ecosystems
in the comparisons, the regression slopes are 0.99 and 0.11
between simulated GPP and ET and the GPP and ET esti-
mated from eddy covariance measurements.

At the hourly scale, the coefficients of determination (R2)
of GPP varied from 0.57 to 0.96 with 82.9 % of them over
0.80 and all of them being statistically significant (P <

0.001). The regression slopes between simulated GPP and
GPP estimated from eddy covariance ranged from 0.43 to
1.58. The highest regression slopes were found in croplands
(CRO) and grasslands (GRA). The R2 of ET varied from 0.45
to 0.95 with 70.4 % of them over 0.80. The regression slope
between simulated ET and measured ET ranged from 0.44 to
1.08. At the daily scale, the R2 of GPP and ET were slightly
lower than the R2 of hourly GPP and ET in the compari-
son but still with R2 over 0.75 for both GPP and ET in most
of the site-years. However, smaller slopes were found in the
comparisons of daily fluxes due to the larger intercepts in
the regression. We also compared the distribution of R2 and
the regression slope of GPP and ET across all PFTs. At the
hourly scale, the R2 and regression slopes of GPP and ET
were close to 1.0 in the forest ecosystems (ENF, evergreen
needleleaf forest; EBF, evergreen broadleaf forest; DBF, de-
ciduous broadleaf forests; and MF, mixed forests). But the
regression slopes were low in CRO, savannas (SAV), and

https://doi.org/10.5194/essd-16-1283-2024 Earth Syst. Sci. Data, 16, 1283–1300, 2024
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Figure 1. Schematic overview of the methodology and data products of the BEPS model with dynamic parameterizations (BEPS-DP). The
flow diagrams show the methodological steps (left) and the details (right) for the BEPS-DP datasets of global hourly two-leaf carbon and
water fluxes. SW, shortwave radiation (W m−2); TA, air temperature (°C); RH, relative humidity (%); P , precipitation (mm h−1); WS, wind
speed (m s−1); GPP, gross primary productivity (g C m−2 h−1); LE, latent heat (W m−2).

Figure 2. Flowchart for the validation of the BEPS model with dynamic parameterizations at the site level.

woody savannas (WSA), although the R2 in such biomes ex-
hibited the range of 0.6–0.8. At the daily scale, the regres-
sion slopes were much smaller than the regression slopes of
hourly fluxes because the regression intercepts were close to
0 in the hourly fluxes but high in the comparisons of daily
fluxes. Overall, the R2 of both hourly and daily fluxes ex-
hibited exponential distributions with a peak close to 1.0
(Fig. 4a, c, i, and k) while the regression slopes of fluxes
exhibited normal distributions (Fig. 4b, d, j, and l).

3.2 Retrieval of the global key ecosystem parameters

The global distributions of retrieved m and Vcmax are shown
in Fig. 5a and c and PFT-dependent patterns are presented in
Fig. 5b and d, courtesy of Leng et al. (2024b). The monthly
spatial patterns of global m and Vcmax during 2001–2020, and
the validation of retrieved global m and Vcmax, can be found
in Sect. S3 in the Supplement. Strong seasonal variations in
m and Vcmax were observed in boreal regions, while m and
Vcmax in subtropical and tropical regions are fairly constant
within a year (Figs. S1 and S2 in the Supplement). The re-
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Figure 3. Comparisons between fluxes measured at eddy covariance towers and simulated from the BEPS model with dynamic parameter-
izations in the independent validation set (site-year, n= 152): annual summed (a) GPP and (c) ET in all the site-years; the average annual
summed (b) GPP and (d) ET for each biome. The red lines are the regression lines and the gray dotted lines are the 1 : 1 lines. The equations
at the bottom right of each panel are the regression equations derived from all the site-years and from all the biomes, respectively.

Figure 4. Evaluation of modeled hourly and daily fluxes against the eddy covariance data in the independent validation set: site-year
percentage of R2 in (a) hourly GPP; (c) hourly ET; (i) daily GPP; (k) daily ET; site-year percentage of regression slopes in (b) hourly GPP;
(d) hourly ET; (j) daily GPP; (l) daily ET; the mean and standard deviation (SD) of R2 in each PFT in (e) hourly GPP; (g) hourly ET;
(m) daily GPP; (o) daily ET; the mean and standard deviation of regression slopes in each PFT in (f) hourly GPP; (h) hourly ET; (n) daily
GPP; (p) daily ET. The gray lines indicate 1.0 in R2 and regression slopes as a reference of good fitting. The dashed gray lines in (e–h) and
(m–p) indicate the mean of R2 and regression slopes for all PFTs in GPP and ET.
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1290 J. Leng et al.: Global datasets of hourly carbon and water fluxes

Figure 5. The spatial patterns of retrieved global key ecosystem parameters during 2001–2020: (a) gridded m; (b) averaged m in each PFT;
(c) gridded Vcmax; (d) averaged Vcmax in each PFT. Courtesy of Leng et al. (2024b).

trieved global m and Vcmax showed good agreement with the
field measurements (Fig. S3 in the Supplement).

3.3 Spatial and temporal patterns of global carbon and
water fluxes

A global hourly GPP and ET dataset at a spatial resolution
of 0.25° was generated from 2001 to 2020 using BEPS-
DP with gridded driving forces (Fig. 6). The 20-year av-
eraged global GPP across the vegetated area was 137.78±
3.22 Pg C yr−1 (Fig. 6a), in which the global GPP of sunlit
leaves was 73.44± 1.46 Pg C yr−1 (Fig. 6b) and the global
GPP of shaded leaves was 64.34± 1.79 Pg C yr−1 (Fig. 6c).
The 20-year averaged global ET across the vegetated area
was 89.03± 0.82× 103 km3 yr−1 (Fig. 6d), in which the
global T of sunlit leaves was 27.72± 0.23× 103 km3 yr−1

(Fig. 6e) and the global T of shaded leaves was 19.00±
0.57× 103 km3 yr−1 (Fig. 6f). At the global scale, the spa-
tial distributions of 20-year GPP and ET coupled well. Both
GPP and ET were high over the tropical and subtropical ar-
eas, such as the Amazon, Central Africa, and Southeast Asia,
where the water and temperature conditions allow for in-
tensive photosynthesis and transpiration. Moderate levels of
GPP and ET were observed in temperate and subhumid re-
gions, while the lowest GPP and ET values were typically
found in arid or cold regions with limited precipitation or
low temperatures. In addition, the global hourly GPP and ET
dataset can also track the diurnal changes from dawn to dusk
at UTC time (Fig. 7). At 06:00 UTC, high GPP and ET were
observed in Southeast Asian areas while at 18:00 UTC, high
GPP and ET were found in American regions.

The long-term trends of GPP and ET from 2001 to 2020
were determined with a linear regression analysis per pixel
(Fig. 8). Both coupling and decoupling spatial patterns be-
tween GPP and ET were observed at the global scale. Ap-
proximately 83.3 % of the vegetated area showed increased
GPP trends, in which 46.8 % of the vegetated area showed
increased GPP trends with more than 5 g C m−2 yr−2 from
2001 to 2020. Approximately 70.1 % of the vegetated area
showed increased ET trends, and 7.8 % of the vegetated area
showed increased ET trends with more than 5 mm yr−2. The
decreased GPP trend was found in the tropical areas, specifi-
cally in the Amazon area. The decreased ET trend was found
in the Amazon Forest, coupled with the trend of GPP, but
also found in South Africa, Southwest Asia, and north Aus-
tralia, showing opposite trends to GPP. More decreased pat-
terns were observed in GPP and T of sunlit leaves (Fig. 8a
and d) than in shaded leaves (Fig. 8c and f), contributing
the decreased trends of total GPP and ET. By incorporat-
ing measured fluxes in model parameterizations, BEPS-DP
combines the benefits of ground measurements and the so-
phisticated structure of process-based models. We believe
that the integration in this study makes it possible to com-
bine the strengths of both approaches, resulting in improved
accuracy in estimating carbon and water fluxes at the global
scale and finer temporal resolution based on point-to-point
comparisons (Figs. 3 and 4).

3.4 Comparisons with other global GPP and ET
products

Despite significant advancements in remote sensing tech-
nology, ground observations, and the theoretical modeling
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Figure 6. Spatial patterns of global GPP and ET by the BEPS model with dynamic parameterizations during 2001–2020: (a) annual mean
total GPP; (b) annual mean GPP of sunlit leaves; (c) annual mean GPP of shaded leaves; (d) annual mean total ET; (e) annual mean T of
sunlit leaves; (f) annual mean T of shaded leaves.

Figure 7. Spatial diurnal patterns of global GPP and ET by the BEPS model with dynamic parameterizations during 2001–2020: (a–
h) averaged hourly GPP at UTC time with 3 h intervals; (i–p) averaged hourly ET at UTC time with 3 h intervals.

of carbon and water fluxes, a considerable level of uncer-
tainty persists in global and regional estimates of GPP and
ET (Zheng et al., 2020; Ryu et al., 2019; Li et al., 2023).
To investigate the spatial correlations between BEPS-DP and
other models, we compared the pixel-to-pixel averaged an-
nual GPP and ET of all available years of each dataset
(Fig. 9). The spatial pattern of GPP estimated from BEPS-DP
correlates well with all other GPP datasets, with R2 rang-
ing from 0.77 to 0.85. The spatial distribution of ET ob-
tained from BEPS-DP also exhibits strong correlations with
all other ET datasets, with R2 ranging from 0.74 to 0.90. The
high spatial correlations observed between GPP and ET de-
rived from the BEPS-DP and other existing datasets under-

score the consistency of this new hourly dataset with respect
to spatial patterns observed in other datasets. Differing from
the close magnitudes of GPP estimates between BEPS-DP
and other GPP datasets (slope ranging from 0.88 to 1.01),
it shows big discrepancies in the magnitudes of ET esti-
mates between BEPS-DP and other ET datasets (slope rang-
ing from 0.99 to 1.45). BEPS-DP overall produced larger ET
than other ET products. Nevertheless, our confidence is sub-
stantiated not only by the spatial pattern but also by the abso-
lute magnitude of ET derived from BEPS-DP. This assurance
stems from the training of key parameters using ground flux
measurements, and the modeled summed ET values align
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Figure 8. Spatial patterns of global GPP and ET trends by the BEPS model with dynamic parameterizations during 2001–2020: (a) trend of
annual total GPP; (b) trend of annual GPP of sunlit leaves; (c) trend of annual GPP of shaded leaves; (d) trend of annual total ET; (e) trend
of annual T of sunlit leaves; (f) trend of annual T of shaded leaves.

Figure 9. Comparisons of pixel-to-pixel long-term (2001–2020) averaged annual GPP and ET between the BEPS model with dynamic
parameterizations (BEPS-DP) and other models: (a–d) GPP comparisons between BEPS-DP and BESS (Li et al., 2023), FLUXCOM (Jung
et al., 2020), GLASS (Liang et al., 2021), and GOSIF (Li and Xiao, 2019) GPP products, respectively; (e–f) ET comparisons between
BEPS-DP and BESS, FLUXCOM, GLASS, and GLEAM (Martens et al., 2017) ET products.

closely with flux data, exhibiting a disparity of less than
9.6 % (Fig. 3).

There is a substantial discrepancy in the interannual vari-
ability and trend of GPP among different datasets, while con-
sistent trends of ET with varying magnitudes were observed
in different datasets (Fig. 10). The interannual variability
(standard deviation) of GPP ranges from 0.39 (FLUXCOM),
1.32 (GLASS), 2.81 (GOSIF), 3.13 (BESS), to 3.14 (BEPS-
DP) Pg C yr−1, with trends varying from −0.005 (FLUX-
COM), −0.17 (GLASS), 0.47 (GOSIF), 0.53 (BEPS-DP),
to 0.53 (BESS) Pg C yr−2. The GPP estimated from machine
learning methods, FLUXCOM and GLASS, exhibits no dis-
cernible trend during 2001–2020, which can have resulted
from a lack of consideration of the CO2 fertilization effect.

BEPS-DP exhibits average annual summed GPP that closely
aligns with the GOSIF dataset but demonstrates the highest
degree of similarity in terms of interannual variability and
trends when compared with BESS. SIF, as the proxy of pho-
tosynthetic activity, has been used to quantify GPP at the
global scale (Frankenberg et al., 2011; Mohammed et al.,
2019) from the plant physiological perspective. BEPS-DP
not only provides GPP estimates close to the GPP inferred
from SIF but also possesses the capability to elucidate the
underlying mechanisms involved in the carbon cycles as a
process-based model.

The interannual variability (standard deviation) of ET
ranges from 0.35 (FLUXCOM), 0.54 (BESS), 0.80 (BEPS-
DP), 0.98 (GLEAM), to 1.30 (GLASS) ×103 km3 yr−1,
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Figure 10. Comparisons of annual global GPP and ET estimates during 2001–2020: (a) annual summed GPP between the BEPS model
with dynamic parameterizations (BEPS-DP) and BESS, FLUXCOM, GLASS, and GOSIF GPP products; (b) annual summed ET between
BEPS-DP and BESS, FLUXCOM, GLASS, and GLEAM ET products.

with trends varying from −0.12 (GLASS), −0.05 (FLUX-
COM), −0.05 (BESS), 0.10 (BEPS-DP), to 0.10 (GLEAM)
×103 km3 yr−2. BEPS-DP demonstrates a close correspon-
dence in terms of not only the average annual summed ET but
also the interannual variability and trends with the GLEAM
dataset, although a discrepancy in the magnitude of ET ex-
ists between the two datasets. GLEAM estimates global ET
by employing data assimilation techniques that integrate re-
mote sensing data with ground measurements (Martens et
al., 2017; Miralles et al., 2011), while BEPS-DP incorporates
plant physiological processes on the basis of remote sensing
and measured fluxes. Incorporating ground measured data
contributes to comparable interannual variability and trends
in ET estimates between GLEAM and BEPS-DP. However,
accounting for the photosynthesis process can lead to im-
proved quantification of transpiration within the ET esti-
mates (Chen and Liu, 2020), which results in the different
magnitudes of ET estimates from GLEAM and BEPS-DP.

We also compared the long-term averaged annual GPP
and ET between BEPS-DP and other datasets across PFTs
(Fig. 11). The magnitude of GPP estimated from BEPS-DP
is generally close to that from other products in forest ecosys-
tems, while small discrepancies are exhibited in savannas and
grasslands (Fig. 11a). The potential overestimates of GPP
in savannas may stem from the scarcity of measured fluxes
available for those particular ecosystems. Therefore, BEPS-
DP has limited access to the necessary information for ac-
curate parameterization, thus contributing to the challenge of
achieving precise estimates in this context. The underestima-
tion of GPP in grassland ecosystems may be attributed to the
lack of adequate accounting for the C4 plants in BEPS-DP.
BEPS-DP generates ET estimates close to the GLASS ET
dataset in terms of magnitude but tends to yield higher ET
values compared to the FLUXCOM, BESS, and GLEAM
datasets. The disparity arises because BEPS-DP optimized
the key parameters using the measured fluxes but the FLUX-
COM, BESS, and GLEAM datasets tend to underestimate
the ET when compared with ground measured water fluxes.

4 Discussion

4.1 Advantages of this new dataset

The convergence of unparalleled data sources, enhanced
computational capabilities, and recent advancements in sta-
tistical modeling and machine learning presents promis-
ing prospects for expanding our understanding of terrestrial
ecosystems through data-driven approaches (Reichstein et
al., 2019). This confluence of factors offers exciting opportu-
nities to unlock new insights and uncover hidden patterns in
terrestrial ecosystem processes. In this study, we proposed a
novel model that integrates diagnostic process-based mod-
els with dynamic parameterizations using machine learn-
ing based on measured carbon and water fluxes, which may
be regarded as a “handshake” among remote sensing data,
a TBM, and the eddy covariance flux network (Baldocchi,
2020). By combining the advantages, we aimed to enhance
the accuracy and reliability of BEPS-DP in capturing the
long-term complex dynamics of global carbon and water
fluxes.

The diurnal cycling of plant carbon uptake and water use,
as well as their responses to water and heat stresses, offers
valuable insights for evaluating ecosystem productivity, agri-
cultural production and management practices, carbon and
water cycles, and their interactions with the climate system
(Xiao et al., 2021). The hourly timescale of estimated carbon
and water fluxes from the diagnostic model with dynamic
parameterizations in this study can promote further research
on the comprehension and monitoring of extreme climate
events, such as the occurrence of flash droughts (Christian
et al., 2021) and heat waves (Bastos et al., 2020), and can
facilitate deep insights into the diurnal ecosystem function-
ality, such as the diurnal hysteresis between carbon and wa-
ter fluxes (Lin et al., 2019) and the impact of physiological
drought stress on ecosystems (Zhang et al., 2023a). With the
emergence of geostationary satellites and other satellites with
high temporal resolutions, this hourly dataset can help eluci-
date how terrestrial ecosystems respond to diurnal environ-
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Figure 11. Comparisons of long-term (2001–2020) averaged annual GPP and ET between the BEPS model with dynamic parameteriza-
tions (BEPS-DP) and other models across plant functional types (PFTs): (a) GPP comparison between BEPS-DP and BESS, FLUXCOM,
GLASS, and GOSIF GPP products; (b) ET comparison between BEPS-DP and BESS, FLUXCOM, GLASS, and GLEAM ET products.
ENF, evergreen needleleaf forests; EBF, evergreen broadleaf forests; DBF, deciduous broadleaf forests; MF, mixed forests; SH, shrublands;
WSA, woody savannas; SAV, savannas; GRA, grasslands; CRO, croplands; DNF, deciduous needleleaf forests; WET, wetlands.

ment conditions in the context of climate change (Xiao et al.,
2021; Yamamoto et al., 2023; Jeong et al., 2023).

To make full advances of the two-leaf BEPS model, the
hourly GPP and ET dataset produced in this study also in-
cludes hourly GPP and ET from sunlit and shaded leaves
separately. These GPP and ET components would also be
useful for investigating their distinct responses to meteoro-
logical conditions and the coupling between carbon and wa-
ter fluxes over the diurnal cycle, among many possible uses
of this unprecedentedly detailed dataset.

4.2 Uncertainties and limitations

Although BEPS-DP can effectively simulate the hourly car-
bon and water fluxes for most areas of the globe, it may be
subject to uncertainties resulting from the lack of represen-
tation of eddy covariance fluxes for savannas and tropical
forest ecosystems. The allocation of sites is uneven between
the Northern Hemisphere and Southern Hemisphere, char-
acterized by a larger number of sites situated in the North-
ern Hemisphere (Baldocchi et al., 2001; Baldocchi, 2020),
which may also induce some uncertainties in BEPS-DP. The
key parameters in stomatal conductance and photosynthesis
models, m and V 25

cmax, were optimized from eddy covariance
fluxes in BEPS-DP. Then the optimized m and V 25

cmax in the
∼ 1 km footprint (Chu et al., 2021) were upscaled to the pixel
level during 2001–2020. However, it should be noted that
in areas with a limited number of sites, the pixel-level val-
ues of m and V 25

cmax may not sufficiently capture the veg-
etation physiological status. For example, only one decid-
uous needleleaf forest site was included in this study. This
limitation arises from the fact that the machine learning al-
gorithm did not incorporate knowledge specifically for such

situations. Further work should focus on the enhancement of
the machine learning algorithm to improve the reliability of
optimized m and V 25

cmax particularly in regions with scarce
training data. Furthermore, limited training data for the C4
plants in BEPS-DP may result in uncertainties in quantifying
GPP and ET in savannas, woody savannas, and crop ecosys-
tems. Efforts will also be made to improve the scheme for
simulating the carbon and water fluxes in the C4 plants in
BEPS-DP.

Additionally, although the dataset in this study captures
the spatial distributions of global GPP and ET at an hourly
scale, this dataset only has a spatial resolution of 0.25°×
0.25° due to the climate forcing data resolution and compu-
tational capacity. Due to surface heterogeneity and the non-
linear algorithm in BEPS-DP, the estimated GPP and ET
fluxes in 0.25°× 0.25° pixels would be biased to some ex-
tent even if the simulated values at the site level are unbiased
(Chen, 1999; Chen et al., 2013). With the advancement and
evolution of computational capacity and techniques, such as
cloud computing and supercomputing, future research can
refine the spatial resolution of the hourly dataset from the
current 0.25° degree to higher resolutions, in order to elim-
inate the scale mismatch between the flux tower footprints
and the hourly datasets and thoroughly comprehend the in-
trinsic processes in global carbon and water cycles (Li et al.,
2008; Kong et al., 2022).

5 Data availability

The 0.25°× 0.25° global hourly two-leaf GPP
and ET datasets for 2001–2020 are available at
https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng

Earth Syst. Sci. Data, 16, 1283–1300, 2024 https://doi.org/10.5194/essd-16-1283-2024

https://doi.org/10.57760/sciencedb.ecodb.00163


J. Leng et al.: Global datasets of hourly carbon and water fluxes 1295

et al., 2023a). The datasets are provided in NetCDF4 format.
The GPP datasets include two components, the hourly GPP
of sunlit and shaded leaves. The ET datasets include three
components, the hourly ET and the transpiration of sunlit and
shaded leaves. Each hourly NetCDF4 file represents the GP-
P/ET in a year at an hourly scale (g C m−2 h−1/mm h−1). The
accumulated daily GPP and ET datasets for 2001–2020 are
available at https://doi.org/10.57760/sciencedb.ecodb.00165
(Leng et al., 2023b). Each daily NetCDF4 file represents the
GPP/ET in a year at a daily scale (g C m−2 d−1/mm d−1).

6 Code availability

The code for single-pixel hourly Biosphere-atmosphere Ex-
change Process Simulator (BEPS) v4.10 can be found
at https://doi.org/10.5281/zenodo.10804468 (Leng et al.,
2024c). The detailed descriptions of each module and the
user guide for using the hourly BEPS are also included.

For any questions on the dataset and the BEPS model,
please contact Jing M. Chen, jing.chen@utoronto.ca.

7 Conclusions

In this study, we produced a long-term global two-leaf GPP
and ET dataset at the hourly time step by integrating a di-
agnostic TBM (i.e., BEPS) with dynamic parameterizations.
We optimized the key photosynthetic parameters using the
flux observations and upscaled the optimized parameters to
the global scale for large-scale simulation. The BEPS model
with dynamic parameterizations is able to simulate the di-
urnal, seasonal, and interannual variations of the GPP and
ET fluxes at 0.25° resolution. The new hourly datasets of
GPP and ET were comprehensively evaluated against flux
observations and other remote sensing and machine learning-
based estimates over the various temporal and spatial scales.
The new dataset provides us with a unique opportunity to
study carbon and water fluxes at sub-daily time scales and
to advance our understanding of ecosystem functions in re-
sponse to transient environmental changes.
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