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Abstract. Accurate accounting of emissions and removals of CO2 is critical for the planning and verification of
emission reduction targets in support of the Paris Agreement. Here, we present a pilot dataset of country-specific
net carbon exchange (NCE; fossil plus terrestrial ecosystem fluxes) and terrestrial carbon stock changes aimed
at informing countries’ carbon budgets. These estimates are based on “top-down” NCE outputs from the v10 Or-
biting Carbon Observatory (OCO-2) modeling intercomparison project (MIP), wherein an ensemble of inverse
modeling groups conducted standardized experiments assimilating OCO-2 column-averaged dry-air mole frac-
tion (XCO2 ) retrievals (ACOS v10), in situ CO2 measurements or combinations of these data. The v10 OCO-2
MIP NCE estimates are combined with “bottom-up” estimates of fossil fuel emissions and lateral carbon fluxes
to estimate changes in terrestrial carbon stocks, which are impacted by anthropogenic and natural drivers. These
flux and stock change estimates are reported annually (2015–2020) as both a global 1◦× 1◦ gridded dataset
and a country-level dataset and are available for download from the Committee on Earth Observation Satel-
lites’ (CEOS) website: https://doi.org/10.48588/npf6-sw92 (Byrne et al., 2022). Across the v10 OCO-2 MIP
experiments, we obtain increases in the ensemble median terrestrial carbon stocks of 3.29–4.58 PgCO2 yr−1

(0.90–1.25 PgCyr−1). This is a result of broad increases in terrestrial carbon stocks across the northern extra-
tropics, while the tropics generally have stock losses but with considerable regional variability and differences
between v10 OCO-2 MIP experiments. We discuss the state of the science for tracking emissions and removals
using top-down methods, including current limitations and future developments towards top-down monitoring
and verification systems.
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1 Introduction

To reduce the risks and impacts of climate change, the Paris
Agreement aims to limit the global average temperature in-
crease to well below 2 ◦C above pre-industrial levels and to
pursue efforts to limit these increases to less than 1.5 ◦C.
To this end, each Party to the Paris Agreement agreed to
prepare and communicate successive nationally determined
contributions (NDCs) of greenhouse gas (GHG) emission re-
ductions. Collective progress toward this goal of the Paris
Agreement is evaluated in global stocktakes (GSTs), which
are conducted at 5-year intervals; the first GST is scheduled
in 2023. The outcome of each GST is then used as input, or
as a “ratchet mechanism”, for new NDCs that are meant to
encourage greater ambition.

In support of the first GST, Parties to the Paris Agreement
are compiling national GHG inventories (NGHGIs) of emis-
sions and removals, which are submitted to the United Na-
tions Framework Convention of Climate Change (UNFCCC)
and inform their progress toward the emission-reduction tar-
gets in their individual NDCs. For these inventories, emis-
sions and removals are generally estimated using “bottom-
up” approaches, wherein CO2 emission estimates are based
on activity data and emission factors, while CO2 removals by
sinks are based on inventories of carbon stock changes and
models, following the methods specified in the 2006 Inter-
governmental Panel on Climate Change (IPCC) Guidelines
for National GHG Inventories (IPCC, 2006). This approach
allows for explicit characterization of CO2 emissions and re-
movals into five categories: energy; industrial processes and
product use (IPPU); agriculture; land use, land-use change
and forestry (LULUCF); and waste. Bottom-up methods can
provide precise and accurate country-level emission esti-
mates when the activity data and emission factors are well
quantified and understood (Petrescu et al., 2021), such as for
the fossil fuel combustion category of the energy sector in
many countries. However, these estimates can have consid-
erable uncertainty when the emission processes are challeng-
ing to quantify (such as for agriculture, LULUCF and waste)
or if the activity data are inaccurate or missing. For exam-
ple, Grassi et al. (2022) and McGlynn et al. (2022) estimate
the uncertainty on the net LULUCF CO2 flux to be roughly
35 % for Annex I countries and 50 % for non-Annex I coun-
tries. In addition, these estimates do not capture carbon emis-
sions and removals from unmanaged systems, which are not
directly considered in the Paris Agreement, but impact the
global carbon budget and growth rate of atmospheric CO2.

As a complement to these accounting-based inventory ef-
forts, an independent “top-down” assessment of net surface–
atmosphere CO2 fluxes may be obtained from ground-
based, airborne and space-based observations of atmospheric

CO2 mole fractions. These top-down methods have un-
dergone rapid improvements in recent years, as recog-
nized in the 2019 Refinement to the 2006 IPCC Guide-
lines for National GHG Inventories (IPCC, 2019). And, al-
though these methods were not deemed to be a standard
tool for verification of conventional inventories, a number
of countries (UK, Switzerland, USA and New Zealand)
have adopted atmospheric inverse modeling as a verification
system in national inventory reports. Initially, these coun-
tries have focused on non-CO2 gasses (e.g., EPA, 2022),
but top-down assessments of the CO2 budget are now un-
der development in New Zealand (https://niwa.co.nz/climate/
research-projects/carbon-watch-nz, last access: 6 Febru-
ary 2023). Furthermore, significant investments towards
building anthropogenic CO2 emissions monitoring and ver-
ification support capacity are ongoing within the European
Commission’s Copernicus Program (see Sect. 9.2.1).

In top-down CO2 flux estimation, the net surface–
atmosphere CO2 fluxes are inferred from atmospheric CO2
observations using state-of-the-art atmospheric CO2 inver-
sion systems (e.g., Peiro et al., 2022). This approach pro-
vides spatially and temporally resolved estimates of surface–
atmosphere fluxes for land and ocean regions from which
country-level annual land–atmosphere CO2 fluxes can be
estimated. The impact of fossil fuel (and usually fire CO2
emissions) on the observations is accounted for in the in-
versions by prescribing maps of those emissions and assum-
ing that they are perfectly known. Thus, fossil fuel and fire
CO2 emissions are not diagnosed yet by these inversions
but net surface–atmosphere CO2 fluxes from the terrestrial
biosphere and oceans are. Terrestrial carbon stock changes
can then be calculated by combining net surface–atmosphere
CO2 fluxes with estimates of fossil fuel emissions and hor-
izontal (“lateral”) fluxes occurring within the terrestrial bio-
sphere or between the land and ocean (Kondo et al., 2020).
One example of a lateral flux is harvested agricultural prod-
ucts, where carbon is sequestered from the atmosphere by
photosynthesis in one region, but then this carbon is har-
vested and exported to another region as agricultural prod-
ucts. Similarly, carbon sequestered by photosynthesis in a
forest can be leached away by streams and rivers and then
exported to the ocean. These lateral carbon fluxes are not di-
rectly identifiable in atmospheric CO2 measurements, but ac-
counting for their impact is required in order to convert net
land fluxes into stock changes. These estimated terrestrial
carbon stock changes reflect the combined impact of direct
anthropogenic activities and changes to both managed and
unmanaged ecosystems in response to rising CO2, climate
change and disturbance events (such as fires).

The top-down budgets presented here extend several pre-
vious studies that have developed approaches to compare in-
version results to NGHGIs. Ciais et al. (2021) proposed a
protocol for reporting bottom-up and top-down fluxes so that
they can be compared consistently. Petrescu et al. (2021)
compared top-down fluxes with inventory estimates for the
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European Union and UK, including for an ensemble of re-
gional inversions over Europe (Monteil et al., 2020). Cheval-
lier (2021) noted that inversion results for terrestrial CO2
fluxes should be restricted to managed lands and applied a
managed land mask to the gridded fluxes of the Copernicus
Atmosphere Monitoring Service (CAMS) CO2 inversions for
the comparison to UNFCCC values in 10 large countries or
groups of countries. Deng et al. (2022) compared CO2, CH4
and N2O fluxes from inversion ensembles available from the
Global Carbon Project. For CO2, they used six CO2 flux es-
timates from inverse models that assimilated measurements
from the global air-sample network, filtered their results over
managed lands and corrected them for CO2 fluxes induced
by lateral processes to compare with carbon stock changes
reported to the UNFCCC by a set of 12 countries. We expand
upon these previous studies by providing top-down CO2 bud-
gets from the v10 Orbiting Carbon Observatory Model Inter-
comparison Project (v10 OCO-2 MIP), wherein an ensemble
of inverse modeling groups conducted standardized exper-
iments assimilating OCO-2 column-averaged dry-air mole
fraction (XCO2 ) retrievals (retrieved with version 10 of the
Atmospheric CO2 Observations from Space (ACOS) full-
physics retrieval algorithm), in situ CO2 measurements or
combinations of these data. This allows us to quantify the
sensitivity of top-down carbon budget estimates to the inver-
sion modeling system and the atmospheric CO2 dataset used
to constrain flux estimates.

This paper is outlined as follows. The remainder of Sect. 1
describes the objectives of this work (Sect. 1.1) and pro-
vides background information on both the global carbon cy-
cle (Sect. 1.2) and top-down atmospheric CO2 inversions
(Sect. 1.3). Section 2 defines the carbon cycle fluxes of in-
terest. Section 3 describes the flux datasets and their uncer-
tainties, including fossil fuel emissions, the v10 OCO-2 MIP,
riverine fluxes, wood fluxes, crop fluxes and the net terrestrial
carbon stock loss. Section 4 provides an evaluation of the v10
OCO-2 MIP flux estimates. Section 5 presents two metrics
for interpreting the top-down constraints on the CO2 budget.
Section 6 gives a description of the dataset, Sect. 7 shows
the characteristics of the dataset, Sect. 8 demonstrates how
these data can be compared with national inventories, and
Sect. 9 discusses current limitations and future directions.
Section 10 describes the data availability. Finally, Sect. 11
gives the conclusions of this study.

1.1 Objectives

This is a pilot project designed to start a dialogue between
the top-down research community, inventory compilers and
the GHG assessment community to identify ways that top-
down CO2 flux estimates can help inform country-level car-
bon budgets (see Worden et al., 2022, for a similar pilot
methane dataset). To meet this objective, the primary goal of
this work is to provide two products: (1) annual net surface–
atmosphere CO2 fluxes and (2) annual changes in terrestrial

carbon stocks. These products are provided annually over the
6-year period 2015–2020 both on a 1◦× 1◦ global grid and
as country-level totals with error characterization.

These products are intended to be used to help inform in-
ventory development and identify areas for future research in
both top-down and bottom-up approaches, including inform-
ing strategies for operational top-down carbon cycle products
that can be used for tracking combined changes in managed
and unmanaged carbon stocks and that can help quantify the
impact of emission reduction activities.

1.2 Overview of the carbon cycle

The burning of fossil fuels and cement production release
geologic carbon to the atmosphere (40.0± 3.3 PgCO2 yr−1

or 10.9± 0.9 PgCyr−1 over 2010–2019; Canadell et al.,
2021). These emissions, along with land-use activities, im-
pact carbon cycling between atmospheric, oceanic and bio-
spheric reservoirs that make up a near-closed system on an-
nual timescales. As a result, roughly half of the emitted CO2
from anthropogenic sources is absorbed by terrestrial ecosys-
tems and oceans (Friedlingstein et al., 2022), reducing the
rate of atmospheric CO2 increase (18.7±0.08 PgCO2 yr−1 or
5.1±0.02 PgCyr−1 over 2010–2019; Canadell et al., 2021).
Here we briefly review the movement of carbon between the
reservoirs and how these processes are modulated by human
activities.

Fluxes of carbon between the atmosphere and ocean are
driven by the difference in partial pressures of CO2 be-
tween seawater and air, resulting in roughly balancing fluxes
from the ocean-to-atmosphere and atmosphere-to-ocean of
∼ 293 PgCO2 yr−1 (∼ 80 PgCyr−1) each way (Ciais et al.,
2013), with a residual net atmosphere-to-ocean flux due to
increasing atmospheric CO2 (9.2±2.2 PgCO2 yr−1 or 2.5±
0.6 PgCyr−1 over 2010–2019; Canadell et al., 2021). Re-
gional variations in the solubility and saturation of CO2 in
ocean waters drive net fluxes, with net fluxes to the atmo-
sphere in upwelling regions, such as the eastern boundary
of basins and in equatorial zones (McKinley et al., 2017).
Meanwhile, there are net removals by the ocean in western
boundary currents and at extratropical latitudes (McKinley
et al., 2017). Within the oceans, circulation patterns, mixing
and biologic activity act to redistribute carbon.

On land, terrestrial ecosystems remove atmospheric car-
bon through photosynthesis, referred to as gross primary pro-
duction (GPP) (Fig. 1). GPP draws roughly 440 PgCO2 yr−1

(120 PgCyr−1) from the atmosphere (Anav et al., 2015).
Roughly half of this carbon is emitted back to the atmo-
sphere by plants through autotrophic respiration, while the
remaining carbon is used to generate plant biomass and is
referred to as net primary production (NPP). On an annual
basis, the carbon sequestered through NPP is roughly bal-
anced by carbon loss through a number of processes. The
largest of these processes is heterotrophic respiration, which
is the respiratory emission of CO2 (from the dead organic
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matter and soil carbon pools) by heterotrophic organisms,
and accounts for 82 %–95 % of NPP (Randerson et al., 2002).
The combination of heterotrophic and autotrophic respiration
is called ecosystem respiration (Reco). The remaining pro-
cesses have smaller magnitudes but are still critical for deter-
mining the carbon balance of ecosystems. Biomass burning,
the emission of carbon to the atmosphere through combus-
tion, releases roughly 7.3 Pg CO2 yr−1 (2 Pg C yr−1) to the
atmosphere on an annual basis but with considerable interan-
nual variability (van der Werf et al., 2017). Carbon can also
be emitted from the terrestrial biosphere to the atmosphere
in the form of carbon monoxide (CO), methane (CH4) and
other biologic volatile organic compounds (BVOCs), which
are oxidized to CO2 in the atmosphere. Rivers move carbon
in the form of dissolved inorganic carbon (DIC), dissolved
organic carbon (DOC) and particulate organic carbon (POC).
This carbon of terrestrial origin is partly transported to the
open ocean, partly released to the atmosphere from inland
waters and estuaries, and partly buried in aquatic or marine
sediments. Finally, anthropogenic activities such as harvest-
ing of crop and wood products result in lateral transport of
carbon such that the removal of atmospheric CO2 through
NPP and emission of atmospheric CO2 through respiration
(e.g., decomposition in a landfill) or combustion (e.g., burn-
ing of biofuels) occur in different regions. See Fig. 1 for an
illustration of these fluxes.

Globally, there is a long-term net uptake of atmo-
spheric CO2 by the land (approximately −6.6 PgCO2 yr−1

or −1.8 PgCyr−1 over 2010–2019; Canadell et al., 2021),
which is the residual of an emission due to net land-
use change (5.9± 2.6 PgCO2 yr−1 or 1.6± 0.7 PgCyr−1

over 2010–2019; Canadell et al., 2021) and removal by
other terrestrial ecosystems (12.6±3.3 PgCO2 yr−1 or 3.4±
0.9 PgCyr−1 over 2010–2019; Canadell et al., 2021). This
removal is partially driven by direct feedbacks between in-
creasing CO2 and the biosphere, such as CO2 fertilization of
photosynthesis and increased water use efficiency. Carbon–
climate feedbacks also lead to both increases and decreases
in terrestrial carbon stocks: for example, warming at high lat-
itudes leads to a more productive biosphere, but it also leads
to increased plant and soil respiration (Kaushik et al., 2020;
Walker et al., 2021; Canadell et al., 2021; Crisp et al., 2022).
In addition, the release of nitrogen through anthropogenic
energy and fertilizer use may drive increased carbon seques-
tration by the terrestrial biosphere (Schulte-Uebbing et al.,
2022; Y. Liu et al., 2022; Lu et al., 2021). Regrowth of forests
in previously cleared areas, especially in the extratropics, is
also thought to be an important uptake term (Kondo et al.,
2018; Cook-Patton et al., 2020). Currently, the relative im-
pact of each of these contributions to long-term terrestrial
carbon sequestration is poorly known and likely varies be-
tween biomes and climates.

While the existence of a long-term global land sink is sup-
ported through a number of lines of evidence (Ballantyne
et al., 2012; Keeling and Graven, 2021), regional-scale emis-

sions and removals are less well quantified. Regional-scale
carbon sequestration can differ substantially from the global
mean and can be impacted by the regional climate, distur-
bance events (Frank et al., 2015; Wang et al., 2021) and an-
thropogenic activities (Caspersen et al., 2000; Harris et al.,
2012). The need to better quantify regional-scale emissions
and removals of carbon has motivated much of the recent
expansion of in situ CO2 observing networks, the launch of
space-based CO2 observing systems and the development of
CO2 inversion systems.

1.3 Background on atmospheric CO2 inversions

Atmospheric CO2 inversions estimate the underlying net
surface–atmosphere CO2 fluxes from atmospheric CO2 ob-
servations, and this is what is meant by the top-down ap-
proach (Bolin and Keeling, 1963; Tans et al., 1990; Enting
et al., 1995; Gurney et al., 2002; Peiro et al., 2022). In this
approach, an atmospheric chemical transport model (CTM)
is employed to relate surface–atmosphere CO2 fluxes to ob-
served atmospheric CO2 mole fractions. As an inverse prob-
lem, the upwind CO2 fluxes are estimated from the down-
wind observed CO2 mole fractions. The surface CO2 fluxes
are adjusted so that forward-simulated CO2 mole fractions
better match the CO2 measurements while considering the
uncertainty statistics on the observations, transport and prior
surface fluxes.

The atmospheric CO2 inversion problem is generally ill-
posed such that the solution is underdetermined by the ob-
servational constraints. In this case, additional information
is required to produce a unique solution and prevent over-
fitting of the data (Lawson and Hanson, 1995; Tarantola,
2005). Typically, this is performed using Bayesian inference,
where prior mean fluxes and their uncertainties provide addi-
tional information required to estimate fluxes (Rayner et al.,
2019). Prior mean fluxes of net ecosystem exchange are
usually obtained from terrestrial biosphere models (such as
CASA, ORCHIDEE and CARDAMOM), while prior mean
air–sea fluxes are derived from surface water partial pressure
of CO2 (pCO2) datasets or from ocean models (e.g., Peiro
et al., 2022). The resulting posterior flux estimates combine
the constraints on surface fluxes from atmospheric CO2 data
with the prior knowledge of the fluxes. If there is a high
density of assimilated CO2 observations, then the posterior
fluxes will be more strongly impacted by the assimilated
data, whereas, in regions with sparse observational coverage,
the posterior fluxes will generally remain similar to the prior
fluxes (assuming similar prior flux uncertainties across re-
gions).

Measurements of atmospheric CO2 best inform diffuse
biosphere–atmosphere fluxes on large spatial scales. This is
because CO2 has a long atmospheric lifetime such that the
perturbation to atmospheric CO2 due to emissions and re-
movals from individual processes and locations gets mixed
in the atmosphere (Gloor et al., 2001; Liu et al., 2015). For
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Figure 1. CO2 is removed from the atmosphere through photosynthesis (GPP) and then emitted back to the atmosphere through a number
of processes. Three processes move carbon laterally on Earth’s surface such that emissions of CO2 occur in a different region than removals.
(1) Agriculture: harvested crops are transported to urban areas and to livestock, which are themselves exported to urban areas. CO2 is respired
to the atmosphere in livestock or urban areas. (2) Forestry: logged carbon is transported to urban and industrial areas, then emitted through
decomposition in a landfill or combustion as a biofuel. (3) Water cycle: carbon is leached from soils into water bodies, such as lakes. The
carbon is then either deposited, released to the atmosphere or transported to the ocean (Regnier et al., 2022). Arrows show carbon fluxes, and
colors indicate whether the flux is associated with (grey) fossil fuel emissions, (dark green) ecosystem metabolism, (red) biomass burning,
(light green) forestry, (yellow) agriculture or (blue) the water cycle. Semi-transparent arrows show fluxes that move between the surface and
atmosphere, while solid arrows show fluxes that move between land regions. Dashed arrows show surface–atmosphere fluxes of reduced
carbon species that are oxidized to CO2 in the atmosphere. For simplicity, a cement carbonation sink, volcano emissions and a weathering
sink are not included in this figure.

example, the measurements of CO2 at Mauna Loa, Hawaii,
provide a good estimate of the global-scale changes of CO2
surface fluxes. Inferring smaller-scale flux signals requires
a high density of CO2 observations (to capture gradients
in atmospheric CO2) and accurate modeling of atmospheric
transport (to relate the measurements with surface fluxes).
The accuracy of flux estimates depends on a number of
factors, particularly the accuracy and precision of the data,
transport model and prior constraints. Stringent requirements
on the accuracy of space-based column-averaged dry-air
mole fraction (XCO2 ) retrievals are required to infer surface
fluxes (Chevallier et al., 2005a; Miller et al., 2007). Biases
in XCO2 retrievals from the Orbiting Carbon Observatory
(OCO-2) related to spectroscopic errors, solar zenith angle,
surface properties, and atmospheric scattering by clouds and
aerosols have been identified (Wunch et al., 2017b). How-
ever, intensive research has reduced retrieval errors over time
(O’Dell et al., 2018; Kiel et al., 2019). As will be shown
in Sect. 4.1, biases in OCO-2 XCO2 retrievals over land are
thought to be relatively small, although regionally structured

biases may be present. However, OCO-2XCO2 retrievals over
oceans may contain more large-scale spatially coherent re-
trieval errors that can adversely impact flux estimates.

Accurate atmospheric transport is critical for correctly
relating surface–atmosphere fluxes to observations. Due to
computational constraints, CTMs are typically run offline
with coarsened meteorological fields relative to the parent
numerical weather prediction model, which has been shown
to introduce systematic transport errors in some configura-
tions (Yu et al., 2018; Stanevich et al., 2020). In addition,
these offline CTMs have been shown to have large-scale sys-
tematic differences in transport associated with the imple-
mentation of transport algorithms (Schuh et al., 2019, 2022).
These errors appear to be of the same order as the retrieval
biases, although the patterns in time and space are differ-
ent. Systematic errors related to model transport (and er-
rors in prior information) can partially be accounted for by
performing multiple inversions that differ in CTM and prior
constraints employed. This motivates inversion model inter-
comparison projects (MIPs), such as the OCO-2 MIP project
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(see Sect. 3.2; Crowell et al., 2019; Peiro et al., 2022). From
these ensembles of inversions, estimates of both systematic
errors (accuracy) and random errors (precision) can be ob-
tained from the model spread.

2 Definitions

In this work, we focus on the carbon budget of Earth’s land
area, including aquatic systems such as rivers and lakes. In
particular, we consider fluxes of carbon between the land and
the atmosphere and lateral carbon transport processes on land
and between the land and ocean (Fig. 1). We define the fol-
lowing annual net carbon fluxes (see Fig. 2 for a schematic
representation of these fluxes):

– Fossil fuel and cement emissions (FF). The burning of
fossil fuels and release of carbon due to cement produc-
tion, representing a flux of carbon from the land surface
(geologic reservoir) to the atmosphere.

– Net biosphere exchange (NBE). Net flux of carbon
from the terrestrial biosphere to the atmosphere due to
biomass burning (BB) and Reco minus gross primary
production (GPP) (i.e., NBE= BB+Reco−GPP). It in-
cludes both anthropogenic processes (e.g., deforesta-
tion, reforestation, farming) and natural processes (e.g.,
climate-variability-induced carbon fluxes, disturbances,
recovery from disturbances).

– Terrestrial net carbon exchange (NCE). Net flux of car-
bon from the surface to the atmosphere. For land, NCE
can be defined as

NCE= NBE+FF. (1)

– Lateral crop flux (Fcrop trade). The lateral flux of carbon
in (positive) or out (negative) of a region due to agricul-
ture.

– Lateral wood flux (Fwood trade). The lateral flux of car-
bon in (positive) or out (negative) of a region due to
wood product harvesting and usage.

– Lateral river flux (Frivers export). The lateral flux of car-
bon in (positive) or out (negative) of a region trans-
ported by the water cycle.

– Net terrestrial carbon stock loss (1Closs). Positive val-
ues indicate a loss (decrease) of terrestrial carbon stocks
(organic matter stored on land), including above- and
below-ground biomass in ecosystems and biomass con-
tained in anthropogenic products (lumber, cattle, etc.).
This is calculated as

1Closs = NBE−Fcrop trade−Fwood trade

−Frivers export. (2)

– Net terrestrial carbon stock gain (1Cgain). Positive
values indicate a gain (increase) of terrestrial carbon
stocks, and this is the negative of 1Closs:

1Cgain =−1Closs. (3)

Country and regional aggregation

To aggregate gridded 1◦× 1◦ flux estimates to country to-
tals we use a country mask (Center for International Earth
Science Information Network – CIESIN – Columbia Uni-
versity, 2018). We also provide NCE and 1Closs estimates
for several country groupings. A number of regional inter-
governmental organizations are included: the Association of
Southeast Asian Nations (ASEAN), the African Union (AU)
and each of its sub-regions (North, South, West, East and
Central), the Community of Latin American and Caribbean
States plus Brazil (CELAC+Brazil), the Economic Coopera-
tion Organization (ECO), the European Union (EU or EU27),
and the South Asian Association for Regional Cooperation
(SAARC). We also include some geographic regions, specif-
ically North America, the Middle East and Europe. Coun-
tries included in these groupings are listed in the Supplement
(Text S1).

3 Flux datasets

Here, we describe the methodologies and datasets for esti-
mating FF (Sect. 3.1), NCE (Sect. 3.2) and lateral carbon
fluxes (Sect. 3.3), as well as how these data are used to esti-
mate 1Closs (Sect. 3.4).

3.1 Fossil fuel and cement emissions

Gridded 1◦× 1◦ fossil CO2 emissions, including those from
cement production, are calculated as follows. Monthly grid-
ded emissions up to 2019 are taken from the 2020 version
of the Open-source Data Inventory for Anthropogenic CO2
(ODIAC2020, 2000–2019) emission data product (Oda and
Maksyutov, 2011; Oda et al., 2018). The 2020 emissions
were not part of ODIAC but were projected using the Carbon
Monitor (CM) emission data product (https://carbonmonitor.
org/, last access: 19 May 2021). For each month in 2020
and later, the ratio between that month’s emissions and the
emissions from the same month in 2019 was calculated from
the CM emission data. Since CM provides daily emissions
per sector for a handful of major emitting countries and the
globe, CM emissions are summed over sectors and days in
each month to create monthly total emissions per named
country and the rest of the world (RoW). The ratio of each
(post-2019) month’s emission to the same month in 2019 is
then calculated per named country and RoW, then distributed
over a 1◦× 1◦ grid assuming homogeneity of the ratio over
each named country and RoW. The 2019 ODIAC emissions
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Figure 2. Carbon fluxes for a given land region, such as a country. Boxes with solid backgrounds show reservoirs of carbon. Arrows
with hatched shading show fluxes between reservoirs. NCE is underlined to emphasize that this quantity is estimated from the atmo-
spheric CO2 measurements using top-down methods. Italicized quantities are obtained from bottom-up datasets (FF, Fcrop trade, Fwood trade,
Frivers export). Bold quantities are derived in this study from the top-down and bottom-up datasets (NBE, 1Cgain, 1Closs).

for that month are then multiplied by the ratio to generate
1◦× 1◦ monthly emissions after 2019. While this method
loses the information of day-to-day variability provided by
CM, this is a conscious choice to be consistent over the entire
inversion period. Finally, we impose day-of-week and hour-
of-day variations on these fluxes following the Temporal Im-
provements for Modeling Emissions by Scaling (TIMES)
diurnal and day-of-week scaling (Nassar et al., 2013). The
1◦× 1◦ uncertainty map is based on the combination of the
global level FF uncertainty (1σ of 4.2 %, Andres et al., 2014)
and the grid level emission differences due to the different
disaggregation methods (Oda et al., 2015). Note that these
FF uncertainties are not considered in the inversions used for
this product development.

Country-level fossil fuel emission estimates are obtained
by aggregating the 1◦× 1◦ estimates using the country mask.
Uncertainties on country-level estimates are calculated using
the fractional uncertainties of Andres et al. (2014).

3.2 Net carbon exchange (NCE) and net biosphere
exchange (NBE)

We employ results from the v10 OCO-2 MIP, which is an in-
ternational collaboration of atmospheric CO2 inversion mod-

elers that produces ensembles of CO2 surface–atmosphere
flux estimates by assimilating space-based OCO-2 retrievals
of XCO2 and in situ CO2 measurements. The v10 OCO-2
MIP is updated from the v9 OCO-2 MIP described in Peiro
et al. (2022). Updates to the v10 OCO-2 MIP are presented
here with additional details available at https://gml.noaa.gov/
ccgg/OCO2_v10mip/ (last access: 6 February 2023).

The v10 OCO-2 MIP consists of a number of inversion
systems that perform a set of experiments following a stan-
dard protocol. Here, we include fluxes from 11 of the 14
MIP models (Table 1; CMS-Flux and JHU were excluded
due to time constraints, and LoFI was excluded because it
employs a non-traditional inversion approach that does not
follow the MIP protocol). There are five v10 OCO-2 MIP ex-
periments that each ensemble member performs, which dif-
fer by the data that are assimilated (CO2 datasets described
in Sect. 3.2.1):

Earth Syst. Sci. Data, 15, 963–1004, 2023 https://doi.org/10.5194/essd-15-963-2023
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– IS assimilates in situ CO2 mole fraction measurements
from an international observational network.

– LNLG assimilates ACOS v10 land nadir and land glint
total column dry-air mole fractions (XCO2 ) from OCO-
2.

– LNLGIS assimilates both in situ and ACOS v10 OCO-2
land nadir and glint XCO2 retrievals together.

– OG assimilates ACOS v10 OCO-2 ocean glintXCO2 re-
trievals

– LNLGOGIS assimilates all the above datasets together.

For each experiment, each inversion group imposes a com-
mon fossil fuel emission dataset identical to the one de-
scribed in Sect. 3.1. All other prior flux estimates were cho-
sen independently by each modeling group and are listed
in Table 1. The inversions assimilate the standardized v10
OCO-2 and in situ data from 6 September 2014 through
31 March 2021 (see Sect 3.2.1), with the length of spin-
up period and in situ data assimilated during that period
being left up to the discretion of each group in the MIP.
Each modeling group submitted net air–sea fluxes and NBE
across 2015–2020, interpolated from the native resolution to
a 1◦× 1◦ spatial grid at monthly resolution, which are pub-
licly available for download from https://gml.noaa.gov/ccgg/
OCO2_v10mip/ (last access: 6 February 2023).

The performance of each atmospheric CO2 inversion was
evaluated through comparisons of the posterior CO2 mole-
fraction field (i.e., CO2 fields simulated forward with the pos-
terior fluxes) against independent in situ CO2 measurements
and OCO-2 XCO2 retrievals that were withheld from the as-
similation for validation, as well as XCO2 retrievals from the
Total Column Carbon Observing Network (TCCON; Wunch
et al., 2011). The evaluation of the experiments is presented
in Sect. 4, with additional analysis available from the v10
OCO-2 MIP website.

For this study, the best estimate of NCE is taken to
be the ensemble median for each experiment (denoted
NCEexperiment ). The uncertainty in NCE is calculated as an
estimate (denoted σNCE) of the distribution’s standard devi-
ation using the interquartile range (IQR) of the v10 OCO-
2 MIP ensemble. It is a robust estimate that requires only
the middle 50 % of the ensemble to be normally distributed
(Hoaglin et al., 1985). Hence from the normal tables, to two
decimal places,

σNCE =
IQR(NCE)

1.35
. (4)

For country-level fluxes, the NCE estimates are first aggre-
gated to country totals for each ensemble member before
calculating the median and standard deviation. This is done
because there are spatial covariances between 1◦× 1◦ grid

cells. Thus, first aggregating regions for each ensemble mem-
ber accurately propagates the aggregate differences between
regions across the ensemble members.

The NBE estimate is calculated by subtracting the ODIAC
fossil fuel emissions from NCE. The variance in NBE is then
taken to be the sum of the variances of NCE and FF:

σ 2
NBE = σ

2
NCE+ σ

2
FF. (5)

3.2.1 Atmospheric CO2 data included in v10 OCO-2
MIP

In situ CO2 measurements (Fig. 3a and d) are drawn from five
data collections made available in ObsPack format (Masarie
et al., 2014). Those source ObsPacks and their references
are listed in Table 2. These data include measurements from
55 international laboratories at 460 sites around the world.
The majority of data are from the openly available GLOB-
ALVIEW+ program but with some additional provisional
data for 2020–2021 and data from other programs not partic-
ipating in the GLOBALVIEW+ project. CO2 measurements
are broadly divided into two categories: those measurements
we identify as suitable for assimilation and other measure-
ments not suitable for assimilation.

In CO2 inverse analyses, uncertainties ascribed to in situ
measurements are a combination of the uncertainty in the
measurement and a representativeness error from the inabil-
ity of the forward model to accurately simulate the measure-
ment (due to aspects like a coarse model grid). To character-
ize the representativeness error, we used an empirical scheme
based on simulations from the v7 OCO-2 MIP (Crowell et al.,
2019). In situ CO2 measurements are simulated in a for-
ward simulation, and then the model–data mismatch statistics
are calculated to characterize the representativeness errors at
each measurement location and for each season. Although
this was the standard method for characterizing uncertain-
ties for modeled in situ measurements, each v10 OCO-2 MIP
group was free to choose how to set the uncertainties in their
specific setups.

Of the in situ measurements designated as being appro-
priate for assimilation, about 5 % were withheld for cross-
validation purposes. These data were chosen to be as inde-
pendent as possible from the measurements that were as-
similated. For quasi-continuous measurements, such as those
taken every 15 min at NOAA tall towers, measurements were
withheld for entire days: we chose 5 % of the days in the
dataset, and we withheld every assimilable measurement on
that day. This is also how CO2 measurements on National In-
stitute for Environmental Studies (NIES) ships were treated.
Entire aircraft profiles in the NOAA light-aircraft profiling
network are assumed to consist of vertically correlated mea-
surements, so entire profiles were withheld: we chose 5 % of
aircraft profiles to withhold. Most flask sites have measure-
ment sampling protocols intended to ensure independence;
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Figure 3. Assimilated observations for IS, LNLG and OG v10 MIP experiments. Number of monthly (a) in situ CO2 measurements and
(b) ACOS v10 OCO-2 land nadir and land glint XCO2 retrievals binned into 10 s averages and (c) ACOS v10 OCO-2 ocean glint XCO2
retrievals binned into 10 s averages. Spatial distribution of (d) in situ (e) ACOS v10 OCO-2 land XCO2 retrievals and (f) ACOS v10 OCO-2
ocean XCO2 retrievals over 2015–2020. Shipboard and aircraft in situ CO2 measurements are aggregated to a 2◦× 2◦ spatial grid, surface
site measurements are shown as scattered points and ACOS v10 OCO-2 XCO2 retrievals are shown aggregated to a 2◦× 2◦ spatial grid.

Table 2. In situ CO2 measurement collections used in the v10 OCO-2 MIP, with the total number of measurements between 6 Septem-
ber 2014 and 1 January 2021 and the numbers of measurements assimilated and withheld for cross-validation in the same period. More
than 95 % of the in situ measurements come from the GLOBALVIEW+ and CO2 NRT ObsPacks, both of which are publicly available at
https://gml.noaa.gov/ccgg/obspack/data.php.

ObsPack name Total no. Assimilated Withheld Reference
measurements

obspack_CO2_1_GLOBALVIEWplus_v6.1_2021-03-01 9 611 095 766 179 38 483 Schuldt et al. (2021b)
obspack_CO2_1_NRT_v6.1.1_2021-05-17 755 477 62 011 2996 Schuldt et al. (2021a)
obspack_CO2_1_NIES_Shipboard_v3.0_2020-11-10 418 496 216 963 12 766 Tohjima et al. (2005);

Nara et al. (2017)
obspack_CO2_1_AirCore_v4.0_2020-12-28 55 620 Baier et al. (2021)
obspack_multi-species_1_manaus_profiles_v1.0_2021-05-20 3194 Miller et al. (2021)

Total 10 843 882 1 045 153 54 245

they are often taken at weekly or biweekly intervals dur-
ing meteorological conditions meant to allow regional back-
ground air masses to be sampled. Thus, we chose to withhold
5 % of assimilable flask measurements. We also verified that
datasets at the same site were withheld on the same days; air-
craft profiles over tower sites were, for instance, withheld on
the same days that tower data were withheld.

OCO-2 land (Fig. 3b and e) and ocean (Fig. 3c and f)XCO2

retrievals are performed using version 10 of NASA’s ACOS
full-physics retrieval algorithm (O’Dell et al., 2018). A com-
mon set of OCO-2 retrieval “super-obs” data were derived
from these retrievals and were assimilated by each model-
ing group. These super-obs are obtained by aggregating re-
trievals into 10 s averages (which better match the coarse
transport models’ grid cells used in the inversions) follow-
ing the same procedure as the v9 OCO-2 MIP (Peiro et al.,
2022). Specifically, individual scenes within the 10 s span
are weighted according to the inverse of the square of the
XCO2 uncertainty (standard deviations) produced by the re-
trieval, and correlations of+0.3 for land scenes and+0.6 for

ocean scenes are assumed when calculating the uncertainty
on the 10 s averages (see Sect. 3.2.1 of Baker et al., 2022);
transport model errors are also considered (based on Schuh
et al., 2019). Only 10 s spans with 10 or more good quality
retrievals were used (sparser data being thought to be more
prone to cloud-related biases). In the same vein as was done
for the in situ data, XCO2 data from 5 % of the orbits (entire
orbits were withheld), chosen at random, were withheld for
evaluation purposes.

3.3 Lateral carbon fluxes

Lateral carbon flux datasets (Table 3) include country-
level Frivers export (Sect. 3.3.1), country-level Fcrop trade and
country-level Fwood trade (Sect. 3.3.2). Gridded lateral fluxes
are estimated using a somewhat different approach and are
described in Sect. 3.3.3.
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Table 3. Data sources for lateral flux estimates.

Resolution Flux Model/data source Section

National Frivers export Dynamic Land Ecosystem Model (DLEM) and Global NEWS with COSCATs data Sect. 3.3.1
National Fwood trade UN FAO Sect. 3.3.2
National Fcrop trade UN FAO Sect. 3.3.2
1◦× 1◦ Frivers export Global NEWS with COSCATs data Sect. 3.3.3
1◦× 1◦ Fwood trade UN FAO with downscaling Sect. 3.3.3
1◦× 1◦ Fcrop trade UN FAO with downscaling Sect. 3.3.3

3.3.1 Country-level Frivers export

Rivers transport carbon laterally across land regions (e.g., to
a lake) and from the land to the ocean. This lateral transport
must be accounted for to quantify the total change in terres-
trial carbon in a given region. However, there is considerable
uncertainty in lateral carbon flux by rivers. To account for
this, we use two independent estimates of country-level to-
tals: one from the Dynamic Land Ecosystem Model (DLEM;
Tian et al., 2010, 2015a) and the other based on Deng et al.
(2022), who use the Global NEWS model (Mayorga et al.,
2010) and observations across COastal Segmentation and re-
lated CATchments (COSCATs; Meybeck et al., 2006) that
include dissolved inorganic carbon (DIC) of atmospheric ori-
gin, dissolved organic carbon (DOC) and particulate organic
carbon (POC). These datasets cover 2015–2019. For 2020,
we impose the 2015–2019 mean.

The DLEM is a process-based terrestrial ecosystem model
that couples biophysical, soil biogeochemical, plant phys-
iological and riverine processes with vegetation and land-
use dynamics to simulate and predict the vertical fluxes, lat-
eral fluxes, and storage of water, carbon, GHGs, and nutri-
ent dynamics in terrestrial ecosystems and their interfaces
with the atmosphere and land–ocean continuum (Tian et al.,
2010, 2015a). There are three major processes involved in
simulating the export of water, carbon and nutrients from
land surface to the coastal ocean: (1) the generation of runoff
and leachates; (2) the leaching of water, carbon, and nutri-
ents from land to river networks in the form of overland flow
and base flow; and (3) transport of riverine materials along
river channels from upstream areas to coastal regions. The
key processes and parameterization in the DLEM have been
described in previous publications regarding the water dis-
charge (Liu et al., 2013; Tao et al., 2014), riverine carbon
fluxes (Ren et al., 2015, 2016; Tian et al., 2015b; Yao et al.,
2021) and riverine nitrogen fluxes (Yang et al., 2015; Tian
et al., 2020) from the terrestrial ecosystem to coastal oceans.
The newly improved DLEM aquatic module better addresses
processes within global small streams, which were recog-
nized as hotspots of GHG emissions (Yao et al., 2020, 2021).
DLEM produces estimates of the land loadings of carbon
species (DIC, DOC and POC), CO2 degassing and carbon
burial during transporting, and the exports of carbon (DIC,
DOC and POC) to the ocean for 105 basin-level segmenta-

tions (modified from COSCATs) (Meybeck et al., 2006). To
estimate country totals, we map the basin carbon loss across
land by assuming that the net carbon flux occurs uniformly
across each basin. We then use the country mask to estimate
the country totals for each region.

Deng et al. (2022) estimate the lateral carbon export by
rivers to the coast minus the imports from rivers entering
in each country (for relevant cases), including DOC, POC
and DIC of atmospheric origin. Estimates of DOC, POC and
DIC are obtained from the Global NEWS model (Mayorga
et al., 2010), with a correction based on Resplandy et al.
(2018) so that the global total exported to the coastal ocean
is 2.86 PgCO2 yr−1 (0.78 PgCyr−1). Deng et al. (2022) per-
form a correction to the Global NEWS estimates to remove
the contribution of lithogenic carbon, using the methodology
of Ciais et al. (2021).

For the analysis that follows, we estimate country-level to-
tals of riverine lateral carbon fluxes by combining the esti-
mates of DLEM with those of Deng et al. (2022). We take
the mean of the two estimates to be the best estimate and take
the magnitude of the difference between the estimates to be
the 1σ uncertainty. Figure S1 shows the 2015–2019 mean an-
nual net riverine lateral carbon fluxes. Fluxes are uniformly
negative, implying a net flux of carbon from the land to the
ocean and reduction in stored carbon for all countries. Fluxes
are most negative in tropical rain forest and tropical monsoon
climates, and they are smallest in more arid regions.

3.3.2 Country-level Fwood trade and Fcrop trade

Wood and crop products are traded between nations. We esti-
mate the annual lateral fluxes of carbon due to this trade fol-
lowing the approaches of Deng et al. (2022) and Ciais et al.
(2021). This approach utilizes crop and wood trade data com-
piled by the Food and Agriculture Organization of the United
Nations (FAO; http://www.fao.org/faostat/en/#data, last ac-
cess: 6 February 2023). The crop flux was estimated from
the annual trade balance of 171 crop commodities calculated
for each country. For wood products, we use the bookkeeping
model of Mason Earles et al. (2012) to calculate the fraction
of imported carbon in wood products that is oxidized in each
of 270 countries during subsequent years. The 1σ uncertain-
ties in country-level fluxes are assumed to be 30 % of the
mean value. This dataset covers 2015–2019. For 2020, we
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assume fluxes equal to the 2015–2019 mean. The net crop
and wood lateral fluxes and their uncertainties are shown in
Fig. S2.

3.3.3 1◦×1◦ lateral flux estimates

Lateral fluxes at a higher resolution (1◦× 1◦) follow
similar principles to national values but were estimated
separately with different implementation choices. High-
resolution proxy data (satellite-derived NPP, population or
livestock maps, etc.) enabled sub-national disaggregation.
This was done using national totals based on FAO statis-
tics for Fwood trade and Fcrop trade. For Frivers export these es-
timates were generated from Global NEWS and COSCATs
data (DLEM was only used for national totals). For each
1◦× 1◦ grid cell, we assume the standard deviation of the
mean flux to be 30 % for Fwood trade and Fcrop trade and 60 %
for Frivers export. These uncertainty estimates are based on ex-
pert opinion, as a rigorous error budget has not yet been de-
veloped for the 1◦× 1◦ lateral flux estimates.

3.4 Estimate of carbon stock loss (∆Closs)

Finally, we calculate 1Closs using Eq. (2) with the datasets
described above. Assuming that the components contribut-
ing to 1Closs are independent, we calculate the uncertainty
on 1Closs by combining the uncertainties (1 standard devia-
tions) from the component fluxes in quadrature:

σ 2
1Closs

= σ 2
NBE+ σ

2
Fcrop trade

+ σ 2
Fwood trade

+ σ 2
Frivers export

. (6)

4 Evaluation of v10 OCO-2 MIP experiments

The performance of top-down CO2 flux estimates can be im-
pacted by a number of factors, including biases in the as-
similated data, model transport, prior constraints and inver-
sion architectures. Therefore, evaluating the performance of
v10 OCO-2 MIP fluxes against independent observational
datasets is critical for assuring high-quality flux estimates.
Here, we evaluate the v10 OCO-2 MIP experiments in two
ways. First, we compare the posterior CO2 fields against in-
dependent CO2 measurements (Sect. 4.1). Second, we com-
pare the inferred air–sea CO2 flux against estimates based
on surface ocean CO2 partial pressure (pCO2) measurements
(Sect. 4.2).

4.1 Evaluation of posterior CO2 fields

We consider four atmospheric CO2 datasets:

1. Withheld in situ CO2 measurements. These are measure-
ments contained in the ObsPack collection described
in Sect. 3.2.1 but intentionally withheld for evaluation
purposes. Independence from the assimilated data is en-
sured following the steps described in Sect. 3.2.1.

2. XCO2 retrievals from the TCCON. These data are ac-
quired from a network of ground-based Fourier trans-
form spectrometers measuring direct solar spectra from
which XCO2 is retrieved (Wunch et al., 2011). For this
analysis, we include 30 TCCON sites listed in Table A1.
These data are filtered and aggregated following the
method outlined in Appendix C of Crowell et al. (2019).

3. Withheld OCO-2 land glint and land nadir XCO2 re-
trievals. These data could have been assimilated, but
they are intentionally withheld for evaluation purposes
(Sect. 3.2.1).

4. Withheld OCO-2 ocean glint XCO2 retrievals. These
data could have been assimilated, but they are intention-
ally withheld for evaluation purposes (Sect. 3.2.1).

We first perform a simple check on the inversion results by
comparing the atmospheric CO2 growth rate estimated from
the v10 OCO-2 MIP experiments to that derived directly
from NOAA CO2 measurements (Fig. 4). The growth rate is
estimated from CO2 measurements and model co-samples at
“marine boundary layer” sites, which predominantly observe
well-mixed marine boundary layer air representative of a
large volume of the atmosphere. A smooth curve is then fit to
these data to estimate the global growth rate (Thoning et al.,
1989). This is the same method employed by NOAA to report
the CO2 growth rate (http://www.gml.noaa.gov/ccgg/trends/,
last access: 6 February 2023). We estimate the uncertainty in
the measurement-based growth rate from the difference be-
tween the growth rate estimated here and that reported on the
NOAA website. Differences between these estimates are pri-
marily driven by differences in measurement sampling used
for the website relative to that used here (as we are limited
to withheld co-samples here). We calculate the uncertainty
as the standard error of the mean for the differences between
the growth rates estimated here and by NOAA across 2015–
2019. This gives an uncertainty on the 5-year growth rate of
±0.053 ppm yr−1. Note that NOAA reports the growth rate
using the X2019 scale, whereas our estimates here are from
the X2007 scale, which may contribute to the differences. We
find that the IS, LNLG and LNLGIS experiments show good
agreement with the NOAA estimate over this period. How-
ever, both the OG and LNLGOGIS experiments are found to
have a high bias. This suggests that there may be a spurious
trend in the v10 OCO-2 ocean glint XCO2 retrievals of 0.04–
0.13 ppm yr−1 (OG experiment bias) that impacts flux esti-
mates in both experiments that assimilate ocean glint data.

Second, we estimate the overall observation–model agree-
ment as the root mean square error (RMSE) for the with-
held in situ CO2, TCCONXCO2 , withheld OCO-2 landXCO2

and withheld OCO-2 ocean XCO2 (Fig. 5). For the in situ
and OCO-2 data, the normalized RMSE is shown, mean-
ing that the observation–model difference is divided by the
observational uncertainty (1σ ). Overall, we find reasonably
good agreement between the evaluation datasets and poste-
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Figure 4. 2015–2019 global mean CO2 growth rate estimated from
NOAA site measurements and for the v10 OCO-2 MIP experiments.
The estimates of the CO2 growth rate for each experiment are com-
puted by sampling the model CO2 fields at the same times and lo-
cations as those used to derive the NOAA measurement-based es-
timate. Each v10 OCO-2 MIP experiment is shown as a box plot,
with the error bars showing the full range, the shaded region show-
ing the interquartile range and the solid line showing the median
ensemble member of the ensemble.

rior fields for all experiments. The OG experiment gives the
largest RMSEs against the withheld in situ CO2, TCCON
XCO2 and OCO-2 land XCO2 . This provides further evidence
that the ocean glint data may have some residual biases that
adversely impact the flux estimates.

Finally, we examine the mean bias over 2015–2020 for
30◦ latitude bins (Fig. 6). Similar to previous comparisons,
we find that the OG experiment stands out as being more
biased against the independent observations relative to the
other experiments. In particular, the observation–model dif-
ference for the OG experiment tends to be lower (higher
modeled CO2) than the evaluation datasets. This is partic-
ularly evident in the northern extratropics. Over 30–60◦ N,
where independent observations are densest, we find that the
OG ensemble median is biased by −0.69 ppm against TC-
CON, −0.74 ppm against withheld in situ and −0.48 ppm
against withheld OCO-2 LNLG, suggesting a possible merid-
ional bias (higher retrieved XCO2 than independent observa-
tions) in the OCO-2 ocean XCO2 retrievals. The IS, LNLG
and LNLGIS experiments tend to show similar observation–
model differences, suggesting limited ability to distinguish
between the performance of these inversions in large-scale
features.

All experiments show some biases against TCCON sites.
In particular, low biases (high modeled CO2) are found for
0–30◦ S and 60–90◦ N. The underlying cause for these dif-
ferences is unknown. Figure S3 shows the monthly mean
observation–model differences for each TCCON site and
each experiment. The differences can be quite variable be-
tween sites but are generally similar between experiments
(for IS, LNLG and LNLGIS). Some of these differences may
be related due to representativeness errors, particularly for
urban sites. For example, Caltech and JPL are within Los
Angeles County and show a large positive bias, while nearby
Edwards is less impacted by urban emissions and shows a

Figure 5. 2015–2020 root mean square error (RMSE) between the
v10 OCO-2 MIP experiments and (a) TCCON XCO2 retrievals,
(b) withheld in situ CO2 measurements, (c) withheld OCO-2 land
XCO2 retrievals, and (d) withheld OCO-2 ocean XCO2 retrievals.
For the comparisons with withheld in situ and OCO-2 observations,
the normalized RMSE estimate is plotted (that is, the observation–
model mismatch is divided by the observational uncertainty). Note
that NIES IS and CSU co-samples are not available and not included
in this plot.

much smaller bias (Schuh et al., 2021). However, other dif-
ferences are harder to explain, such as a negative trend in the
observation–model bias for Park Falls and positive at Dar-
win during the 2015–2020 period. Site-to-site biases among
TCCON sites may also contribute to these differences.

Overall, this analysis finds that the OG experiment shows
the poorest agreement against the evaluation datasets (ex-
cluding the withheld ocean glint data). The LNLGOGIS ex-
periment shows the second worst performance against eval-
uation datasets, while the remaining experiments (IS, LNLG
and LNLGIS) all show good agreement against the evalua-
tion data. These results suggest that there may be residual bi-
ases in the OCO-2 ocean glint dataset that adversely impact
the OG and LNLGOGIS experiments.
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Figure 6. Median bias (data minus model) over 30◦ latitude bins averaged over 2015–2020 for (a) TCCON XCO2 retrievals, (b) withheld in
situ CO2 measurements, (c) withheld OCO-2 land XCO2 retrievals and (d) withheld OCO-2 ocean XCO2 retrievals. Note that NIES IS and
CSU co-samples are not available and not included in this plot.

4.2 Comparison of air–sea fluxes with pCO2-based
estimates

The exchange of CO2 between the atmosphere and the ocean
(air–sea flux) can be estimated from measurements of the sur-
face ocean partial pressure of CO2 (pCO2). These pCO2 data
are extrapolated to global maps and combined with gas trans-
fer velocity parameterizations to infer global maps of the air–
sea CO2 fluxes (Fay et al., 2021). Although significant un-
certainties remain, particularly in accurately representing the
gas transfer velocity (Fay et al., 2021), comparisons between
the pCO2-based air–sea fluxes and v10 OCO-2 MIP experi-
ments can inform possible biases between estimates and in-
form potential areas for future research.

Here, we compare v10 OCO-2 MIP air–sea fluxes to
an ensemble of air–sea flux estimates from SeaFlux (Fay
et al., 2021; Gregor and Fay, 2021a). SeaFlux developed a
standardized approach to harmonize and extend six air–sea
CO2 flux products from as many surface pCO2 products:
JENA-MLS (Rödenbeck et al., 2013), MPI-SOMFFN (Land-
schützer et al., 2014, 2020), CMEMS-FFN (Denvil-Sommer
et al., 2019; Chau et al., 2022), CSIR-ML6 (Gregor et al.,
2019), JMA-MLR (Iida et al., 2021) and NIES-FNN (Zeng
et al., 2014). For each pCO2 product, we examine the mean
of three air–sea fluxes obtained using different wind reanal-
ysis datasets to estimate the gas transfer parameterization
(ERA5, JRA-55 and CCMP2). The spread among these six
estimates provides a measure of uncertainty in the extrapo-
lation of pCO2 data to a global grid but does not account
for errors in the gas transfer velocity formulation nor the un-
certainties in the reanalysis winds used as input (Fay et al.,

2021). Note that the prior estimates of air–sea CO2 fluxes in
v10 OCO-2 MIP experiments are generally pCO2-based flux
estimates and therefore not independent from the SeaFlux
datasets.

Figure 7 shows the 2015–2019 mean air–sea fluxes for
each of the six SeaFlux products and for the v10 OCO-
2 MIP experiments across 30◦ latitude bands and large
ocean regions. Over the global ocean, the pCO2-based
air–sea fluxes tend to give stronger removals (median=
−10.0 PgCO2 yr−1 or −2.7 PgCyr−1, range=−9.2 to
−12.9 PgCO2 yr−1 or −3.5 to −2.5 PgCyr−1) than the
v10 OCO-2 MIP, which range from −7.9± 1.9 PgCO2 yr−1

(−2.1± 0.5 PgCyr−1) for the IS experiment to −10.2±
1.28 PgCO2 yr−1 (−2.8± 0.4 PgCyr−1) for the OG exper-
iment. On regional scales, the v10 OCO-2 MIP experiments
overlap with the pCO2-based estimates except for the north-
ern high latitudes (60–90◦ N), where pCO2-based estimates
suggest systematically larger removals. Similarly, the pCO2-
based estimates tend to give greater removals over the south-
ern midlatitudes (20–50◦ S).

The different v10 OCO-2 MIP experiments tend to give
similar air–sea fluxes, except for the OG experiment in the
tropics. Although not systematic, the OG experiment sug-
gests weaker emissions in the tropics of 0.2±1.3 PgCO2 yr−1

(0.05± 0.34 PgCyr−1) relative to the median pCO2-based
estimate of 1.6 PgCO2 yr−1 (0.43 PgCyr−1) with a range of
0.4 to 1.8 PgCO2 yr−1 (0.10 to 0.50 PgCyr−1). Thus, similar
to the evaluation of posterior CO2 fields, the OG experiment
is an outlier among the v10 OCO-2 MIP experiments, fur-
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Figure 7. (a) Zonal mean air–sea CO2 flux (positive values represent flux towards atmosphere) for 30◦ increments of latitude based on
1◦× 1◦ estimates averaged over 2015–2019. (b) Air–sea CO2 flux for six large ocean regions. Colored bars show the MIP experiment results
(median ± 1 standard deviation), and the symbols show the pCO2-based air–sea fluxes from the six SeaFlux products.

ther supporting the possibility that residual biases may exist
in the ocean glint XCO2 retrievals.

5 Metrics for interpreting country flux estimates

To aid users in interpreting top-down country-level flux esti-
mates, we provide two metrics. The first metric is called the
Z statistic and quantifies the statistical agreement between
the IS and LNLG NCE estimates and thus gives an indication
of how robust flux estimates are across the v10 OCO-2 MIP
experiments (Sect. 5.1). The second metric is called the frac-
tional uncertainty reduction (FUR) and informs the impact of
the assimilated CO2 data on the estimated fluxes (Sect. 5.2).

5.1 Z statistic

The Z statistic is defined as

Z statistic=
NCELNLG−NCEIS

SD(NCELNLG−NCEIS)
, (7)

where the denominator represents the standard deviation of
NCELNLG−NCEIS across the ensemble members. Differ-
ences in NCE and 1Closs between v10 OCO-2 MIP exper-
iments can be considerable. As an example, Fig. 8a shows
that differences between NCELNLG and NCEIS are notable
for South America and Africa. The LNLG experiment gives
more positive 1Closs (carbon loss from land) over north-
ern sub-Saharan Africa and northeast South America but

more negative1Closs over southern tropical Africa, southern
and eastern South America, and southeast Asia. We exam-
ine the Z statistic (Fig. 8b) to quantify the statistical signifi-
cance of these differences (magnitude greater than 1.96 indi-
cates statistically significant differences at level α = 0.05).
Most countries do not have statistically significant differ-
ences, indicating relatively good agreement between the IS
and LNLG ensembles. Significant differences primarily oc-
cur in small to mid-sized tropical countries. Canada also
shows a systematic difference driven by small uncertainties
in the IS and LNLG estimates.

5.2 Fractional uncertainty reduction (FUR)

Byrne et al. (2022) report the uncertainty in NCE as the stan-
dard deviation across v10 OCO-2 MIP ensemble members
(estimated using Eq. 4). This metric incorporates uncertain-
ties related to model transport and aspects of the inversion
configuration, such as optimization technique and a priori
flux estimates. However, this metric is different to the un-
certainty metric usually computed in a Bayesian framework,
that is, the Bayesian posterior uncertainty. That uncertainty
quantifies the impact of errors in the observations and prior
constraints on the posterior flux estimates. The Bayesian pos-
terior uncertainty is not reported for practical reasons, as the
majority of contributing models do not calculate this quan-
tity, so it is not possible to calculate this quantity across the
ensemble.
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Figure 8. Difference between LNLG and IS experiments. (a) NCELNLG minus NCEIS and (b) theZ statistic (Eq. 7) indicating the difference
between LNLG and IS experiments.

In this section, we examine the posterior uncertainty esti-
mates from two contributing inversion systems (CAMS and
TM5-4DVar) and compare these estimates to the ensemble-
based uncertainty estimate provided with the dataset. Then,
we define the FUR metric between the posterior and prior
NCE estimates based on the TM5-4DVar model (as CAMS
does not estimate uncertainties for the LNLGIS and LNL-
GOGIS experiments), which can be used to understand the
relative impact of assimilated atmospheric CO2 data on esti-
mates of country-level NCE and 1Closs.

Both CAMS and TM5-4DVar estimate CO2 fluxes using
four-dimensional variational assimilation (4D-Var) and es-
timate posterior uncertainty estimates using a Monte Carlo
method derived by Chevallier et al. (2007). The realism
of the prior and posterior CAMS uncertainty estimates has
already been the topic of several studies (see Chevallier,
2021, and references therein). Figure 9 shows the ensemble-
based uncertainty, prior/posterior uncertainty from CAMS
(prior, IS and LNLG only) and prior/posterior uncertainty
from TM5-4DVar for four countries. Notably, the magni-
tudes of the prior/posterior uncertainties from CAMS and
TM5-4DVar are quite different, with CAMS uncertainties
being 2–8 times larger. Differences in prior/posterior uncer-
tainties of this magnitude are not unusual among inversion
systems and highlight the sensitivity of Bayesian uncertainty
estimates to choices about prior uncertainties. Both CAMS
and TM5-4DVar posterior uncertainties are smaller relative
to their prior by similar fractions, driven by the assimilated
CO2 data. The magnitude of the ensemble-based uncertainty
tends to fall in between the CAMS and TM5-4DVar esti-
mates. However, the CAMS and TM5-4DVar posterior un-
certainty estimates decrease as more data are assimilated (as
expected), while the ensemble spread does not. In fact, the
ensemble spread increases with data density in some cases
(e.g., Australia LNLGIS). Thus, overall, we find that the
ensemble-based uncertainty estimate is of similar magnitude
to the prior/posterior estimate but that the magnitude of pos-

terior uncertainty is quite dependent on the assumed prior
uncertainty.

We now calculate the FUR metric in NCE from the TM5-
4DVar Bayesian uncertainties (note that we use TM5-4DVar
only because CAMS does not report LNLGIS or LNLGOGIS
uncertainties). FUR is calculated from the prior flux stan-
dard deviation (σprior) and posterior flux standard deviation
(σposterior) as

FUR= 1−
σposterior

σprior
. (8)

This quantity ranges between 0 and 1, with larger values in-
dicating that the Bayesian uncertainties have decreased more
(relative to the prior) due to the observational constraints
from assimilated data. This metric is useful for understand-
ing how the assimilation of data influences the NCE and
1Closs estimates, which may not be captured by the ensem-
ble spread. For example, Saudi Arabia has a small NCE un-
certainty estimate, but this is largely driven by prior knowl-
edge that biosphere CO2 fluxes, while the atmospheric CO2
data have little impact on the NCE estimate.

Figure 10 shows FUR for the IS, LNLG, LNLGIS and
LNLGOGIS experiments. FUR is larger in regions with
denser observational coverage. For example, the IS FUR is
close to 1 in the USA and parts of Europe, reflecting dense
CO2 measurements, but it remains small for many tropical
countries, where sampling is sparse. Meanwhile, the LNLG
experiment generally has larger FUR values than the IS ex-
periment in the tropics, reflecting denser sampling, but has
lower values for some small high-latitude countries, such as
in Scandinavia.

6 Dataset description

The dataset described in this paper, Byrne et al. (2022),
provides annual totals of country-level and 1◦× 1◦ grid-
ded 1Closs, NBE, NCE, Frivers export and the combined
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Figure 9. (a–d) NCE and (e–h) σNCE for four countries in 2018. The v10 OCO-2 MIP ensemble-spread-based error estimate is shown in
black, the TM5-4DVar Bayesian uncertainty estimate is shown in red and the CAMS Bayesian uncertainty estimate is shown in green (only
for Prior, IS and LNLG).

Figure 10. Estimate of the fractional uncertainty reduction (FUR) on the v10 OCO-2 MIP estimates for each experiment based on Bayesian
uncertainty estimates from the TM5-4DVar inversion.

Fcrop trade+Fwood trade fluxes, as well as their uncertainties
over 2015–2020. In addition, the country-level Z statistic
(Eq. 7) and FUR (Eq. 8) metrics are provided to help inter-
pret the flux and stock change estimates. These data are pro-
vided for the v10 OCO-2 MIP IS, LNLG, LNLGIS and LNL-
GOGIS experiments. The OG experiment is excluded due
to poor evaluation against independent CO2 measurements
and pCO2-based air–sea fluxes, likely due to residual XCO2

biases in the OCO-2 ocean glint XCO2 retrievals (Sect. 4).
We note that biases in ocean glint XCO2 retrievals will also

adversely impact flux estimates from the LNLGOGIS and
caution against using these data when they show differences
from the IS, LNLG and LNLGIS experiments. Future im-
provements to the OCO-2 XCO2 retrievals are expected to re-
duce residual XCO2 biases, and thus the quality of the LNL-
GOGIS experiment is expected to improve in future OCO-2
MIP experiments.

For the 1◦× 1◦ gridded dataset, we emphasize that cau-
tion is needed in interpreting these data. As discussed in
Sect. 1.3, atmospheric CO2 inversion analyses provide the
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best constraints on the largest spatial scales (e.g., continental-
to-global). The confidence in these top-down estimates de-
creases at smaller spatial scales. The minimum spatial resolu-
tion for robust flux estimates is dependent on the density and
precision of the measurements and is challenging to quan-
tify. However, scales smaller than France or Germany in ge-
ographic extent are unlikely to be meaningfully constrained.
Thus, we recommend only using 1◦× 1◦ CO2 fluxes aggre-
gated to larger spatial scales. In aggregating, we recommend
propagating uncertainties by assuming first 100 % correla-
tion (sum of the 1◦× 1◦ uncertainties) and then 0 % corre-
lation (square root of the sum of the squared uncertainties)
between grid cells. We strongly encourage contacting the au-
thors before using the gridded 1◦× 1◦ dataset.

These data are available for download from the Com-
mittee on Earth Observation Satellites’ (CEOS) website:
https://doi.org/10.48588/npf6-sw92 (Byrne et al., 2022). The
country-level data are available for download as comma-
separated values (CSV), Network Common Data Form
(NetCDF) and Microsoft Excel worksheet files. The 1◦× 1◦

gridded dataset is available as a NetCDF file.

7 Characteristics of the dataset

Globally, over 2015–2020, we report FF emissions
of 35.79± 1.50 PgCO2 yr−1 (9.76± 0.41 PgCyr−1),
Frivers export of −3.35± 0.59 PgCO2 yr−1 (−0.91±
0.16 PgCyr−1), and globally balanced Fcrop trade and
Fwood trade. Table 4 gives the global annual mean changes
in the atmospheric burden of CO2, 1Cgain and ocean
sequestration. Across the experiments, the median fraction
of fossil fuel emissions remaining in the atmosphere is
55 %–56 %, while 32 %–36 % is sequestered by the ocean
and 9 %–13 % is sequestered by terrestrial ecosystems.
Note that this omits land-use change (LUC) emissions of
∼ 3.85 PgCO2 yr−1 (∼ 1.05 PgCyr−1, Friedlingstein et al.,
2022), which are compensated for by additional carbon
uptake by land. Of the combined FF+LUC emissions,
50 % remains in the atmosphere, 29 %–33 % is sequestered
by the ocean and 18 %–21 % is sequestered by terrestrial
ecosystems. Relative to the Global Carbon Budget 2021
(GCB 2021; Friedlingstein et al., 2022) we find 2.24–
3.53 PgCO2 yr−1 (0.61–0.96 PgCyr−1) less removal by land
(mean/median difference) but greater removal by the ocean
of 0.87–2.24 PgCO2 yr−1 (0.24–0.61 PgCyr−1); however,
these differences are consistent within 1 standard deviation
of the mean/median values. Interestingly, we report greater
removals by the ocean than GCB 2021 but reduced air–sea
flux relative to SeaFlux. This can be explained by the fact
that pCO2-based air–sea flux estimates generally give larger
mean ocean carbon uptake than model estimates (Fay and
McKinley, 2021) and that we estimate a larger Frivers export
than GCB 2021.

Meridionally, NCE is largest in the northern extratropics,
coinciding with the largest FF emissions (Fig. 11). However,
the northern extratropics also show negative 1Closs, imply-
ing increasing terrestrial carbon stocks, particularly between
30–60◦ N. NCE is less positive in the tropics, primarily due
to lower FF emissions. However, this region tends to show
neutral-to-positive 1Closs, suggesting that terrestrial carbon
stocks may be decreasing. The LNLG and IS results also dif-
fer most in the tropics, with LNLG suggesting greater terres-
trial carbon stock loss over 0–30◦ N but less over 0–30◦S.
The differences in CO2 fluxes between these experiments
are not well understood, and both experiments evaluate well
against independent observations (Sect. 4).

The spatial distribution of NCE over 2015–2020 at 1◦× 1◦

and aggregated to country scale for the LNLGIS experiment
is shown in Fig. 12. At 1◦× 1◦ (Fig. 12a and b), local-
ized fossil fuel emissions are visible, generally correspond-
ing to urban areas and industrialized regions. These emis-
sions are interspersed over broad source and sink structures
that are driven by biosphere removals or emissions. Land
biosphere removal is most evident across the northern mid-
high latitudes. In contrast, tropical removals and emissions
are more regional. When NCE is aggregated to the country
scale (Fig. 12c and d), most countries are net sources driven
by fossil fuel emissions, particularly in the northern extra-
tropics. Figure 12e–f show the 2015–2020 mean country-
level 1Closs for the LNLGIS experiment. Increasing terres-
trial carbon stocks (negative 1Closs) are found for most ex-
tratropical countries, while tropical countries can have gains
or losses. Notably, the uncertainty in 1Closs is larger in the
tropics, particularly for mid-sized countries. Overall, small
to mid-sized countries generally have uncertainties compara-
ble to the magnitude of 1Closs, reflecting the fact that atmo-
spheric CO2 measurements best constrain fluxes over large
scales. Spatial maps of NCE and 1Closs for each experiment
are shown in the Supplement (Figs. S4–S7).

Differences in NCE and 1Closs between the v10 OCO-2
MIP experiments can be considerable (the statistical signifi-
cance of these differences is quantified by the Z statistic; see
Sect. 5.1). The underlying cause of the differences between
the v10 OCO-2 MIP experiments is not well understood, but
the differences are likely impacted by the different spatial
and temporal distribution of LNLG and IS measurements
(see Sect. 5.2), model transport errors (Stephens et al., 2007;
Schuh et al., 2019, 2022), and residual retrieval biases in the
OCO-2 XCO2 retrievals (Peiro et al., 2022). Unfortunately,
the regions showing the largest differences in fluxes gener-
ally have few independent atmospheric CO2 measurements
for validation, limiting our ability to distinguish between dif-
ferent causes. Thus, we believe that NCE and 1Closs esti-
mates are most reliable when agreement is found across the
v10 OCO-2 MIP experiments.

We will now show examples of carbon budgets for four
countries from this dataset. Figure 13 shows the 2015–2020
mean FF, Frivers export, Fcrop trade, Fwood trade, 1Closs and
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Table 4. 2015–2020 global mean atmospheric increase, terrestrial carbon gain (1Cgain) and ocean carbon gain from the IS, LNLG, LNLGIS
and LNLGOGIS experiments (mean/median± 1 standard deviation). Positive values of 1Cgain and ocean carbon gain indicate increases in
carbon stocks. GCB 2021 were obtained from the Global Carbon Budget 2021 (Friedlingstein et al., 2022) with 1Cgain calculated as the
difference between the land sink and land-use change emissions with errors propagated in quadrature.

Experiment Atmosphere 1Cgain Ocean carbon gain

IS 19.73±
0.19 PgCO2 yr−1

(5.38± 0.05 PgCyr−1)

4.58±
2.44 PgCO2 yr−1

(1.25± 0.66 PgCyr−1)

11.35±
2.01 PgCO2 yr−1

(3.10± 0.55 PgCyr−1)

LNLG 19.64±
0.09 PgCO2 yr−1

(5.36± 0.02 PgCyr−1)

3.29±
2.93 PgCO2 yr−1

(0.90± 0.80 PgCyr−1)

12.91±
2.63 PgCO2 yr−1

(3.52± 0.72 PgCyr−1)

LNLGIS 19.64±
0.06 PgCO2 yr−1

(5.36± 0.02 PgCyr−1)

4.19±
2.77 PgCO2 yr−1

(1.14± 0.75 PgCyr−1)

11.98±
2.32 PgCO2 yr−1

(3.27± 0.64 PgCyr−1)

LNLGOGIS 19.97±
0.18 PgCO2 yr−1

(5.45± 0.05 PgCyr−1)

4.03±
2.36 PgCO2 yr−1

(1.10± 0.64 PgCyr−1)

11.54±
1.79 PgCO2 yr−1

(3.15± 0.49 PgCyr−1)

GCB 2021 19.8±
0.73 PgCO2 yr−1

(5.39± 0.2 PgCyr−1)

6.82±
3.15 PgCO2 yr−1

(1.86± 0.86 PgCyr−1)

10.67±
1.83 PgCO2 yr−1

(2.91± 0.5 PgCyr−1)

Figure 11. Zonal mean (a) NCE, (b) FF+ lateral fluxes and (c) 1Closs for 30◦ increments of latitude based on 1◦× 1◦ estimates averaged
over 2015–2020. IS, LNLG, LNLGIS and LNLGOGIS median estimates are shown by solid lines, and 1σ uncertainties are shown by the
shaded region.

NCE fluxes for the USA, India, Indonesia and Australia.
All of the CO2 fluxes on the left of the dashed line com-
bine to give the NCE flux constrained by the v10 OCO-2
MIP experiments. We find that FF is the strongest contrib-
utor to NCE for all countries but that 1Closs also plays a
strong modulating role. For example, negative 1Closs (in-
creasing terrestrial carbon stocks) for the USA reduces NCE
to be less than would be expected given the FF emissions.
Conversely, Indonesia has positive 1Closs (decreasing ter-
restrial carbon stocks), resulting in increased NCE relative
to FF. Some countries also show differences in 1Closs be-

tween v10 OCO-2 MIP experiments. For example, the LNLG
and LNLGIS experiments suggest negative 1Closs for India,
while the IS suggests 1Closs is roughly neutral. Figures of
carbon budgets for 28 additional countries (Fig. S8) and 14
regions (Fig. S9) are shown in the Supplement.

The carbon budgets can also be examined for individual
years (Fig. 14). Both Indonesia and Australia show con-
siderable variations in 1Closs that drive variations in NCE
over this period. Indonesia has a large positive 1Closs in
2015, driven by warm, dry weather and fires during the 2015
El Niño (Yin et al., 2016). Australia showed strong neg-
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Figure 12. Median (NCE) and 1 standard deviation (σNCE) of NCE on a (a, b) 1◦× 1◦ grid and (c, d) aggregated to country scale for the
v10 OCO-2 MIP LNLGIS experiment averaged over 2015–2020. (e, f) Median and 1 standard deviation of country-scale 1Closs averaged
over 2015–2020 derived from the LNLGIS v10 OCO-2 MIP experiment.

ative 1Closs (except for IS) during 2016, which was the
15th wettest year on record (precipitation 17 % above aver-
age; Bureau Of Meteorology, 2017). Australia also showed
anomalous positive 1Closs during 2019, which was the
warmest and driest year on record, with considerable terres-
trial carbon loss related to biomass burning in the southeast
(Byrne et al., 2021). Variations in NCE are also found to be
related to FF emissions. In particular, a reduction in NCE is
found for 2019 and 2020 in the USA that is primarily linked
to a reduction in FF emissions rather than1Closs. Time series

of NCE and 1Closs for 28 additional countries (Figs. S10,
S11) and 14 regions (Figs. S12, S13) are shown in the Sup-
plement.

8 Comparison with national inventories

We demonstrate how the dataset presented here can be com-
pared with NGHGIs reported under the UNFCCC, which
were downloaded from https://di.unfccc.int/flex_annex1 (last
access: 6 February 2023). We also refer the reader to

https://doi.org/10.5194/essd-15-963-2023 Earth Syst. Sci. Data, 15, 963–1004, 2023

https://di.unfccc.int/flex_annex1


984 B. Byrne et al.: Top-down CO2 budgets

Figure 13. CO2 budget for the USA, India, Indonesia and Australia averaged over 2015–2020. Bars show the median± 1 standard deviation
of FF, Frivers export (R), Fcrop trade+Fwood trade (CW), 1Closs and NCE (note that these quantities are related through Eq. 2).

Figure 14. Time series of the carbon budget for the USA, India, Indonesia and Australia. Solid lines show the median estimates, and shaded
areas show ± 1 standard deviation.

Chap. 6.10.2 in vol. 1 of IPCC (2019) for additional discus-
sion of comparing top-down estimates with NGHGIs. The
fossil fuel emissions in Byrne et al. (2022) can be compared
with the combined emissions from the energy and IPPU (En-
ergy+IPPU) categories. In both cases, these estimates ac-
count for anthropogenic CO2 emissions from the burning of
fossil fuels and production of cement and other materials.
We expect these estimates to generally be in good agreement,
as they are similarly based on bottom-up accounting for na-
tional totals. However, the estimates may diverge when there

are missing activity data, particularly in non-Annex 1 coun-
tries and more recent years (Andrew, 2020).
1Closs can be compared to the combined emissions

and removals from the agriculture, LULUCF and waste
(Agr+LULUCF+Waste) categories. These quantities are not
identical, with the most important difference being that
NGHGIs are only for managed land, while 1Closs includes
both managed and unmanaged lands. Therefore, caution is
needed for parties with large unmanaged land areas (e.g.,
Canada or the Russian Federation). Another difference from
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NGHGIs is that 1Closs implicitly includes deposition of car-
bon in water body sediments within a country (such as lakes).
However, this is expected to be a small contribution. Sim-
ilarly, volcanic CO2 emissions are implicitly included in
1Closs but are also believed to be small contributions (global
subaerial volcanic CO2 emissions are ∼ 0.05 PgCO2 yr−1,
Fischer et al., 2019). It is worth noting that NGHGIs require
estimates of turnover times for wood products in producing
countries, as these can have lifetimes of decades to centuries
(see Appendix 3a.1 of Penman et al., 2003). No such esti-
mate is needed for the top-down methods, as emissions from
decaying wood products will be implicitly incorporated in
NCE. Therefore, top-down methods only need to account
for the lateral movement of wood products from the region
where the carbon is sequestered to the region where the wood
products are used and decompose.

For this analysis, we compare NGHGIs and our dataset
for three entities: the USA, European Union plus the United
Kingdom (EU27+UK) and Australia. These were chosen for
two reasons. First, NCE is better constrained by atmospheric
CO2 data over these relatively large regions. This is reflected
in the FUR metric, which gives values of 0.76–0.91 for the
USA (meaning a 76 %–91 % uncertainty reduction), 0.38–
0.51 for EU27 and 0.45–0.78 for Australia. Second, each of
these entities has small unmanaged land areas, making this
more of an apples-to-apples comparison. An area of 95 % of
the USA is managed, with most unmanaged land being in the
state of Alaska (Ogle et al., 2018). Similarly, all land in the
EU27+UK is considered managed except for 5 % of France’s
territory (Petrescu et al., 2021).

Figure 15 shows time series of emissions and removals
from NGHGIs and Byrne et al. (2022) over 2015–2020.
We focus our analysis on the 2015–2020 mean estimates,
as top-down methods are expected to be more sensitive to
IAV in the carbon cycle than NGHGI methods for individual
years. Strong agreement is found between the NGHGI En-
ergy+IPPU emissions and the fossil fuel emissions in Byrne
et al. (2022), while larger differences are found between
Agr+LULUCF+Waste and 1Closs. Averaged over the 2015–
2020 period, we obtain statistically significant differences
between Agr+LULUCF+Waste and 1Closs for the USA and
EU27+UK for each experiment (based on Student’s t test at
0.05 significance level). In each case the top-down estimates
suggest greater carbon sequestration by land, with mean dif-
ferences of 0.59–0.91 PgCO2 yr−1 for the USA and 0.99–
1.79 PgCO2 yr−1 for the EU27+UK. The reasons for these
differences are unclear but are not expected to be explained
by removals in unmanaged lands. It is possible that NGHGI
methods miss or underestimate sink processes and/or that
there are biases affecting the top-down estimates (see Sect. 9
for remaining challenges in top-down estimates). We encour-
age further research and comparison between the NGHGI
and top-down research communities to better understand the
sources of these differences.

9 Discussion

Here we discuss the current limitations of top-down country-
level CO2 budgets and activities that can improve these esti-
mates. Section 9.1 discusses current CO2 observing systems
and possible future expansions. Section 9.2 discusses cur-
rent atmospheric CO2 inversion systems, planned develop-
ments and opportunities for improvement. Finally, Sect. 9.3
discusses remaining challenges in estimating carbon stock
changes from atmospheric CO2 inversions.

9.1 Observations

In the context of global inversion analyses, annual mean
biosphere–atmosphere CO2 fluxes are best informed by mea-
surements of atmospheric CO2 on large spatial scales (e.g.,
continental-to-global) due to rapid mixing in the atmosphere
and gaps in current measurement coverage. The confidence
in these top-down estimates decreases as we move to smaller
spatial scales, with the minimum spatial scale being depen-
dent on the density, precision and sensitivity of the mea-
surements. Future refinements in top-down CO2 budgets will
depend on increasing observational density (Sect. 9.1.1),
improved validation (Sect. 9.1.2) and data harmonization
(Sect. 9.1.3).

9.1.1 Expanding observations

An expanding network of CO2 observing systems provides
an opportunity to reduce uncertainties in top-down estimates
of NCE. Across much of the globe, country-level estimates
of NCE have been limited by the observational coverage of in
situ CO2 measurements and XCO2 retrievals. However, there
are a number of planned expansions in observing systems
that will help fill data gaps.

The first generation of space-based CO2 systems cur-
rently in operation (GOSAT, GOSAT-2, OCO-2, OCO-3,
TanSat) were designed primarily as proof-of-concept mis-
sions to demonstrate that space-based measurements could
yield XCO2 retrievals with the precision and accuracy re-
quired to quantify emissions and removals of CO2. Planned
future missions will expand and improve upon current ob-
serving systems. MicroCarb, a France–UK mission, is ex-
pected to start operations in 2023 with an additional spec-
tral band to better characterize the light path for the esti-
mation of XCO2 (Bertaux et al., 2020). Japan’s GOSAT-GW
mission (https://gosat-gw.nies.go.jp/en/, last access: 6 Febru-
ary 2023), which will be launched in early 2025, will also in-
corporate improved capabilities for CO2 and CH4. In 2025,
the European Copernicus program will begin to deploy the
first operational CO2 and CH4 monitoring constellation,
CO2M (Pinty et al., 2017; Janssens-Maenhout et al., 2020).
The CO2M constellation will eventually include up to three
satellites, flying in formation to collect measurements at 2 by
2 km resolution over the entire globe at weekly intervals. In
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Figure 15. Emissions and removals of CO2 from the (a–c) energy and IPPU categories and (d–f) agriculture, LULUCF and waste categories
reported in NGHGIs and 1Closs for four OCO-2 MIP experiments (IS, LNLG, LNLGIS, LNLGOGIS). Values are provided for individual
years and the 2015–2020 mean.

addition, a follow-on to the Chinese TanSat mission is cur-
rently under development (Yang et al., 2018).

Most current and planned space-based CO2 observing sys-
tems are passive, in that they rely on reflected sunlight to re-
trieve XCO2 . Active satellite missions, which use lidars for
their light source, could provide coverage when reflected
sunlight is not available or of insufficient intensity, such as
at night and at high latitudes in the winter hemisphere when
solar zenith angles are large. These systems also have the po-
tential to better characterize systematic errors in current pas-
sive instruments by using pulse timing information to get a
better estimate of path length and to filter out scattered light
from clouds and aerosols (Abshire et al., 2010).

As space-based CO2 observing systems expand, sub-
orbital discrete air sampling (i.e., flask) and continuous CO2
observing systems will remain critical for developing top-
down CO2 budgets. These in situ observations are the global
standard for GHG measurements, because they can undergo
direct calibration relative to the World Meteorological Orga-
nization (WMO) CO2-in-air mole fraction scale, which is In-
ternational System of Units (SI)-traceable (Hall et al., 2021).
In contrast, open-path remote sensing measurements (both
TCCON and satellite) can not be calibrated using standard
gasses; they can only be compared to in situ vertical profile
observations made relative to the WMO scale, with the dif-
ferences used to adjust the remote sensing observations (e.g.,
Wunch et al., 2011). As such, in situ data are critical for link-
ing remote sensing observations of CO2 to the accepted trace
gas scales. In situ data also provide complementary obser-

vational coverage to space-based observing systems (Byrne
et al., 2017). Space-based measurements have broad spatial
coverage but with seasonal variations driven by sunlight and
have data gaps in persistently cloudy regions. In contrast,
flask and in situ data can be deployed year-round and re-
gardless of cloud cover. Additionally, in situ observations
most typically represent the planetary boundary layer where
flux signals in atmospheric CO2 are larger than the signal
as expressed in the column mean (Feng et al., 2019). Thus,
these data play a critical role in improving carbon cycle con-
straints, especially in high-latitude and persistently cloudy
regions (such as the tropics), and we encourage an expan-
sion of these systems in these undersampled regions. Regu-
lar measurements of CO2 using light aircraft above several
sites in Amazonia exist (e.g., Gatti et al., 2021; Miller et al.,
2021), but these measurement records, as well as a nascent
aircraft program in Uganda, have so far been funded using
short-term grants.

Measurements of stable isotope (13C/12C) and radioiso-
tope (14C/C) ratios of carbon in CO2 provide powerful tools
for source attribution. Radiocarbon is absent from fossil fu-
els, making it ideal for distinguishing fossil versus biologic
carbon fluxes, and inversions using measurements of CO2
and 14C/C have been used to provide top-down constraints
on national-scale fossil CO2 emissions (Basu et al., 2020).
Atmospheric 13C/12C ratios provide insight into ecosystem
stress and its relation to climate via constraint of ecosystem
water use efficiency (photosynthesis relative to water loss by
transpiration) and have been used in box models (Keeling
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et al., 2017) and inversions (Peters et al., 2018). Atmospheric
13C/12C ratio data are generally available where discrete air
samples are collected by various networks, but 14C/C ratio
data are more limited as they tend to require larger samples
and measurement costs are greater. Other tracers closely re-
lated to CO2, such as O2/N2 (Keeling and Graven, 2021)
and carbonyl sulfide (e.g., Hu et al., 2021; Remaud et al.,
2022) are also limited yet provide valuable information on
global ocean/NBE and regional-scale photosynthesis/respi-
ration partitioning, respectively. Increasing the temporal and
spatial density of these data, particularly across poorly sam-
pled regions, will allow for more diagnostic power of carbon
cycle processes than is possible with CO2 alone.

9.1.2 Data validation

Validation of XCO2 retrievals is critical for ensuring that re-
trieval biases do not strongly impact flux estimates. Current
gaps in coverage of ground-based and airborne measure-
ments have limited our confidence in flux inferences from
space-based data. For example, large CO2 emissions over
northern sub-Saharan Africa are a robust feature of the inver-
sions that assimilate satellite XCO2 retrievals (Palmer et al.,
2019), but there are few independent CO2 measurements to
confirm whether this inference is a real signal or an artifact
of regional retrieval biases. Increased validation of space-
based observations will also provide critical support for im-
proved space-based inferences. Space-based measurements
rely on validation against ground-basedXCO2 retrievals from
the TCCON (Wunch et al., 2011) and the COllaborative Car-
bon Column Observing Network (COCCON; Frey et al.,
2019). In turn, these sites rely on in situ CO2 measurements
from aircraft profiles and AirCore (Karion et al., 2010) to tie
their measurements to the WMO scale (Wunch et al., 2010;
Messerschmidt et al., 2011). These data have been critical
for validating and improving XCO2 retrievals (Wunch et al.,
2017b; O’Dell et al., 2018; Kiel et al., 2019). Continued
funding of these activities will be crucial for improving top-
down CO2 flux estimates, and expansion of these observing
systems into undersampled regions, such as the tropics and
high latitudes, will also be important for identifying and ad-
dressing residual XCO2 retrieval biases. In addition, efforts
to cross-calibrate TCCON and COCCON sites will be help-
ful for minimizing site-to-site biases and identifying spuri-
ous drifts in XCO2 . We encourage future campaigns aimed at
site-to-site comparisons similar to the FRM4GHG campaign
that deployed total column GHG traveling standard instru-
ments at several TCCON sites as part of ESA’s FRM4GHG-2
project (Sha et al., 2020).

9.1.3 Data harmonization

Further advancements in top-down flux estimates will be
possible through combining the observational constraints
from the constellation of space-based sensors and ground-

based instruments. Assimilating these data concurrently
within inversion systems will increase our ability to re-
cover net fluxes over smaller regions. However, these instru-
ments must be cross-calibrated against common standards to
use these data together, as small intercalibration differences
could potentially strongly impact flux estimates. We encour-
age support of these critical cross-calibration activities, as are
outlined in Crisp et al. (2018).

9.2 Atmospheric CO2 inversions

Atmospheric CO2 inversion analyses are a critical tool for
estimating surface fluxes from observations of atmospheric
CO2. Expanding observational coverage provides both op-
portunities and challenges for inversion systems. By address-
ing the current limitations of our inversion systems, we will
be able to take full advantage of increasing observations
to improve country-level top-down estimates of NCE and
1Closs. Here we discuss ongoing and planned developments
(Sect. 9.2.1), improving model transport (Sect. 9.2.2), miss-
ing processes and required assumptions (Sect. 9.2.3), and un-
certainty quantification (Sect. 9.2.4).

9.2.1 Ongoing and planned developments

To date, there are four operational or quasi-operational at-
mospheric CO2 inversion systems: CarbonTracker (Jacobson
et al., 2020), CAMS (Chevallier et al., 2005b), Jena Car-
boScope (Rödenbeck et al., 2018) and CMS-Flux (J. Liu
et al., 2021) that are regularly updated on annual or quarterly
timescales. These systems produce NBE and air–sea flux
estimates from either in situ CO2 measurements (Carbon-
Tracker, Jena CarboScope), OCO-2 XCO2 retrievals (CMS-
Flux) or both (CAMS). Similarly, there are seven inversion
models (including the aforementioned models) that update
CO2 flux estimates annually for the Global Carbon Bud-
get (Friedlingstein et al., 2022), including CAMS (Chevallier
et al., 2005b), CarbonTracker Europe (CTE; Van der Laan-
Luijkx et al., 2017), Jena CarboScope (Rödenbeck et al.,
2018), UoE in situ (Feng et al., 2016), NISMON-CO2 (Niwa
et al., 2017), MIROC4-ACTM (Saeki and Patra, 2017; Chan-
dra et al., 2022) and CMS-Flux (J. Liu et al., 2021).

The OCO-2 MIP activities have semiregularly performed
ensemble inversion experiments (Crowell et al., 2019; Peiro
et al., 2022). To date, OCO-2 MIP experiments have been
linked to new versions of the ACOS retrieval algorithm, with
major improvements to the quality of XCO2 retrievals occur-
ring during each update. However, as the quality of retrievals
have improved (particularly for ACOS v10 onwards), up-
dates to the ACOS retrieval algorithm are becoming less of a
driver for new OCO-2 MIP experiments. In the future, OCO-
2 MIP activities could become more regular with annual up-
dates.

The first top-down CO2 system for use in inventory
development is CarbonWatch-NZ, under development in
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New Zealand (https://niwa.co.nz/climate/research-projects/
carbon-watch-nz, last access: 6 February 2023). This pro-
gram includes expanded CO2 measurement sites and the de-
velopment of a regional atmospheric CO2 inverse system to
quantify the carbon budgets of New Zealand’s forest, grass-
land and urban environments. Initial results suggest stronger
uptake by intact forests than estimated through bottom-up es-
timates (Steinkamp et al., 2017). This system may serve as
an example for other nations through the Integrated Global
GHG Information System (IG3IS) framework.

Beyond existing activities, there are a number of planned
projects. The European Commission’s Copernicus program
(https://www.copernicus.eu, last access: 6 February 2023)
has a number of developments ongoing and planned, par-
ticularly in building anthropogenic CO2 emission monitor-
ing and verification support capacity (CO2MVS; Janssens-
Maenhout et al., 2020), which is directly linked to the de-
velopment and launch of the new CO2M mission and is ex-
pected to be operational from 2026 onwards. Further, there
are a number of recently completed, ongoing and planned
projects to develop and improve inversion systems to de-
velop operational capacity. Examples include the recently
completed CO2 Human Emissions (CHE) project (https://
www.che-project.eu/, last access: 6 February 2023) and the
follow-up CoCO2 project (https://coco2-project.eu/, last ac-
cess: 6 February 2023) that is ongoing, as well as the VER-
IFY project (https://verify.lsce.ipsl.fr/, last access: 6 Febru-
ary 2023). These projects are developing and refining in-
version systems to estimate anthropogenic fossil fuel emis-
sions, as well as emissions and removals from the agricul-
ture, LULUCF and waste categories. Future planned projects
include developing approaches to utilize co-emitted species
and auxiliary observations (14C, solar-induced fluorescence,
carbonyl sulfide and others) in order to isolate some of the
CO2 budget components and improve our understanding of
the carbon cycle. For example, multiple data streams could
be used together to optimize the dynamic global vegetation
model parameters (e.g., Peylin et al., 2016).

In contrast to recent European efforts, there is no man-
date for an operational top-down carbon-flux-attribution sys-
tem in the USA. Nevertheless, efforts at NOAA centered
around CarbonTracker (Jacobson et al., 2020) have been
able to produce NBE estimates with relatively low la-
tency, harnessing the agency’s substantial flask and in situ
CO2 network. In addition, NOAA has developed a higher-
spatial-resolution North American regional inverse sys-
tem, CarbonTracker-Lagrange (https://gml.noaa.gov/ccgg/
carbontracker-lagrange/, last access: 6 February 2023; Hu
et al., 2019). In anticipation of the launch of OCO in 2009,
NASA started supporting research and development efforts
needed to prototype an operational flux estimation system.
In particular, the Carbon Monitoring System program (https:
//carbon.nasa.gov/, last access: 6 February 2023) has led to
the development of both low-latency (2 months) atmospheric
CO2 reanalysis (Weir et al., 2021a) and approaches to com-

bine top-down NCE estimates with other trace gas mea-
surements (e.g., CO) and non-atmospheric carbon data (e.g.,
above-ground biomass) to provide improved understanding
of carbon cycle processes (Liu et al., 2017; Byrne et al.,
2020, 2021; Bloom et al., 2020). There is substantial techni-
cal capacity to build an operational system, but this requires
a coordinated effort between federal agencies, academia and
private interests.

In Canada, a prototype operational regional inverse mod-
eling system, the Environment and Climate Change Canada
(ECCC) National Carbon Flux Inversion System (ENCIS),
is being developed to provide quantitative information on
CO2 (and CH4) flux estimates over Canada from national to
provincial scales, as well as to understand the carbon cycle in
Canada such as CO2 flux in boreal managed and unmanaged
forests, wetland emissions of CH4, and GHG emissions over
a potentially thawing permafrost in response to the climate
change. ENCIS is a regional inverse modeling system based
on a Lagrangian approach and driven by metrology from
the Global Environmental Multiscale (GEM) model (Girard
et al., 2014) and is expected to have 1◦× 1◦ spatial resolu-
tion.

Finally, there are ongoing internationally orga-
nized activities. Phase 2 of the Regional Carbon
Cycle Assessment and Processes project (RECCAP-
2), coordinated by the Global Carbon Project
(https://www.globalcarbonproject.org/reccap/, last ac-
cess: 6 February 2023), has aimed to characterize
regional carbon budgets. This included investigating
how different data sources – including atmospheric
inversion analyses – can contribute to this goal (Bas-
tos et al., 2022; Deng et al., 2022). In addition, the
WMO has hosted workshops and symposiums with the
GHG monitoring community to develop a framework
for sustained, internationally coordinated global GHG
monitoring (e.g., https://community.wmo.int/meetings/
wmo-international-greenhouse-gas-monitoring-symposium,
last access: 6 February 2023).

9.2.2 Improving CTM transport

Errors in the representation of atmospheric transport by
CTMs have long been recognized as a major source of er-
ror in atmosphere CO2 inversion analyses (Law et al., 1996;
Law and Simmonds, 1996; Denning et al., 1995, 1999a, b;
D. Baker et al., 2006; Stephens et al., 2007). Improvements to
model transport will provide critical improvements to NCE
and 1Closs estimates. Systematic errors in model transport
limit our ability to relate surface fluxes and CO2 observa-
tions and can lead to incorrect inferences of surface fluxes
(Yu et al., 2018; Schuh et al., 2019; Stanevich et al., 2020).
Improving model transport will require work in two areas:
(1) improving model parameterizations of unresolved trans-
port, particularly in coarse offline CTMs (like GEOS-Chem
run at 4◦× 5◦ in this ensemble) where the spatial and tem-
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poral coarsening of meteorological fields can “average out”
vertical transport that is resolved in the parent model (Yu
et al., 2018; Stanevich et al., 2020); and (2) increasing spa-
tial and temporal resolution in model simulations, which
can better resolve atmospheric transport processes (Agustí-
Panareda et al., 2019; Schuh et al., 2019). However, it should
be noted that there are limitations to the improvements that
can come from increased model resolution in the global in-
version context due to underlying meteorological uncertain-
ties (Liu et al., 2011; Polavarapu et al., 2016, 2018; McNor-
ton et al., 2020). Computational cost is also a significant chal-
lenge in inversion systems, because transport models usually
scale poorly on supercomputers, for example because of the
volume of meteorological data required as input.

As transport models are refined, it will be critical to peri-
odically test their ability to represent large-scale atmospheric
dynamics. This can be tested using long-lived trace gas
species, including sulfur hexafluoride (Schuh et al., 2019),
idealized age of air tracer (Krol et al., 2018) and beryllium-7
(Stanevich et al., 2020). Simulations of these trace species
are critical in the context of inversion MIPs to gauge in-
termodel variability and average model bias (Schuh et al.,
2019). Similarly, 222Rn is a useful short-lived gas species
that enables modelers to evaluate the vertical mixing within
the column (Remaud et al., 2018). In addition, model inter-
comparison studies have proven useful for diagnosing trans-
port errors (e.g., Gaubert et al., 2019; Zhang et al., 2022),
and we recommend further activities, such as within the At-
mospheric Tracer Transport Model Intercomparison Project
(TRANSCOM) framework.

9.2.3 Missing processes and required assumptions

The flux estimates provided here do not explicitly account
for the atmospheric chemical production of atmospheric
CO2, which occurs from the oxidation of reduced carbon
gasses. Instead, these fluxes are either prescribed as surface–
atmosphere fluxes (e.g., for FF CO emissions) or neglected
from the prior fluxes. This can cause inverse modeling sys-
tems to implicitly incorporate the atmospheric CO2 source
in optimized surface–atmosphere emissions and removals
(i.e., air–sea fluxes and NBE), which can be far from the ac-
tual source of the reduced gas. For example, FF CO emis-
sions are largely emitted in the northern extratropics but
largely oxidized to CO2 in the tropical troposphere. These
incorrectly located emissions of CO2 are large enough to
impact top-down inversions (Enting and Mansbridge, 1991;
Suntharalingam et al., 2005; Nassar et al., 2010; Wang et al.,
2020). Future studies that aim to incorporate an atmospheric
source of CO2 would help correct for this current spatial bias
(Ciais et al., 2022).

A critical assumption in the top-down CO2 budgets esti-
mated here has been that FF emissions are known and unbi-
ased. Uncertainties in inventory-based FF emission estimates
at global and country levels (e.g., Andres et al., 2014) are

smaller than top-down NCE estimates; however, inventory-
based emission estimates are prone to systematic biases due
to the nature of the estimation approach (Guan et al., 2012;
Oda et al., 2019), and FF uncertainties could bias the par-
titioning of NCE between FF and NBE (and propagate into
1Closs) over countries with large emissions and lower reli-
ability of statistical data collection systems, such as China.
For example, Saeki and Patra (2017) show that an inferred
increase in removals of CO2 by the biosphere over China
during 2001–2010 is likely to be an artifact imposed by an
error in the trend of anthropogenic CO2 emissions.

9.2.4 Uncertainty quantification

The uncertainty in NCE reported here is an estimate of the
standard deviation of the v10 OCO-2 MIP ensemble mem-
bers. This is meant to characterize uncertainties originat-
ing from the inversion configuration (such as the transport
model, inversion method and prior constraints). However,
there are also limitations to this method. First, there is only
a small ensemble of 11 MIP ensemble members included
in this analysis and an over-representation of inversions us-
ing two transport models: TM5 (3) and GEOS-Chem (5),
which makes uncertainty quantification challenging. Future
approaches that employ “borrowing strength” (Mearns and et
al., 2007; Cressie and Kang, 2016) could be employed to bet-
ter characterize ensemble uncertainty. Second, the ensemble-
based estimate does not capture some sources of uncertainty.
In particular, Bayesian posterior uncertainties are not con-
sidered here (see Sect. 5.2), due to the fact that many of the
inversion systems participating in the v10 OCO-2 MIP do not
calculate this uncertainty. In addition, we find that the ensem-
ble members that produce Bayesian uncertainties show large
differences in magnitude. Thus, this is an area of future im-
provement for MIP activities, and we recommend more work
into characterizing this error component in ensemble inver-
sion experiments. We also note that using an analytic frame-
work, posterior uncertainties and their sensitivities to prior
information could be further examined, as has been done for
methane (Worden et al., 2022).

9.3 Stock change estimates

Agriculture and LULUCF emissions and removals are gen-
erally quantified as terrestrial carbon stock changes in man-
aged lands. A number of challenges remain in estimating
this quantity from top-down methods. Firstly, lateral fluxes
of carbon remain quite uncertain (and associated uncertainty
estimates are themselves quite uncertain). The best con-
strained lateral fluxes are annual country-level Fwood trade
and Fwood trade, which are reported to the UN Food and Agri-
culture Organization. These fluxes are more uncertain on
sub-national scales and sub-annual timescales. Meanwhile,
Frivers export is best quantified on basin scales, where stream
gauge measurements inform carbon fluxes. Improving sub-
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national and sub-annual estimates of lateral fluxes would
have several benefits: first, this would allow for better sub-
national attribution, where regional fluxes could be better
quantified. Second, this would allow for incorporating the at-
mospheric imprint of these carbon fluxes as prior information
within atmospheric CO2 inversion analyses, which may im-
prove flux estimates on sub-national scales.

The GST and Paris Agreement do not consider emis-
sions and removals from unmanaged lands. Separating man-
aged lands from unmanaged lands remains a major chal-
lenge, given the smoothed large-scale CO2 flux constraints
provided by these top-down methods and the fact that both
managed and unmanaged lands can experience considerable
stock changes driven by interannual climate variations (e.g.,
El Niño) and in response to rising CO2 and climate change.
In addition, separating managed and unmanaged lands is fur-
ther complicated by the fact that there is considerable am-
biguity in the definitions of managed lands, which can also
vary by country (Grassi et al., 2018; Chevallier, 2021). We
recommend that each party provide a mask to unambigu-
ously define the plots considered managed from year to year
(Chevallier, 2021).

10 Data availability

Top-down CO2 budgets are available from the Com-
mittee on Earth Observation Satellites’ (CEOS) web-
site: https://doi.org/10.48588/npf6-sw92 (Byrne et al.,
2022). Gridded NBE and air–sea fluxes from the OCO-
2 MIP are available at https://gml.noaa.gov/ccgg/OCO2_
v10mip/ (Baker et al., 2023). Fossil fuel emissions
prescribed in the inversions can be downloaded from
https://doi.org/10.5281/zenodo.4776925 (Basu and Nassar,
2021). The ODIAC2020 emission data product can be down-
loaded from the Global Environmental Database hosted by
the Center for Global Environmental Research at NIES
(https://doi.org/10.17595/20170411.001, Oda and Maksyu-
tov, 2015). SeaFlux pCO2-based air–sea fluxes were down-
loaded from https://doi.org/10.5281/zenodo.5482547, (Gre-
gor and Fay, 2021b).

11 Conclusions

We introduced a pilot top-down CO2 budget dataset (Byrne
et al., 2022) intended to start a dialogue between research
communities and to identify ways that top-down flux esti-
mates can inform country-level carbon budgets. This dataset
provides annual country-level and 1◦× 1◦ gridded top-down
NCE and 1Closs over 2015–2020, in addition to bottom-up
FF and lateral fluxes. These data are provided for four exper-
iments from the v10 OCO-2 MIP that differ in the data used
in the assimilation: IS, LNLG, LNLGIS and LNLGOGIS.
In addition, we provide two metrics for interpreting country-
level estimates: (1) the Z statistic (Sect. 5.1), which quan-

tifies the agreement between IS and LNLG NCE estimates,
and (2) the FUR (Sect. 5.2), which quantifies the impact of
atmospheric CO2 data in reducing flux uncertainties.

Country-level flux estimates generally show robust signals
for large extratropical countries (e.g., USA, Russia, China).
Agreement between the experiments generally decreases for
mid-sized countries (e.g., Turkey), particularly in regions
with sparse observational coverage for the in situ network
(such as the tropics). Large divergences between the IS and
LNLG experiments occur in some regions, particularly in
northern sub-Saharan Africa, and could be related to the spar-
sity of in situ CO2 measurements or biases in OCO-2 re-
trievals. However, the sparsity of independent CO2 measure-
ments in these regions precludes definitive conclusions. We
urge caution in interpreting the 1◦× 1◦ gridded results and
suggest collaborating with experts in atmospheric CO2 in-
version systems when using those data.

The accuracy of top-down NCE estimates was character-
ized through comparisons against independent atmospheric
CO2 datasets and through comparisons against pCO2-based
air–sea CO2 fluxes. Overall, the IS, LNLG and LNLGIS were
found to show the best agreement against independent CO2
measurements, and we recommend using these experiments
for analysis. Poorer agreement was found for experiments
assimilating OCO-2 ocean glint XCO2 retrievals, suggest-
ing that residual retrieval biases adversely impact the LNL-
GOGIS experiment, and we urge caution in interpreting these
data.

For future GSTs, top-down NCE estimates will be refined
as new space-based XCO2 observing systems expand and re-
trieval algorithms are improved. Complementary expansions
of ground-based and aircraft-based CO2 measurements in
undersampled regions will similarly fill critical observational
gaps in regions with large uncertainties and susceptibility to
retrieval biases. Improvements to atmospheric CO2 inversion
systems, including reductions to systematic transport errors
and improved error characterization, will be critical for re-
fining top-down CO2 budgets. And improved estimates of
lateral carbon fluxes and managed land maps will refine es-
timates of agriculture, LULUCF, and waste emissions and
removals.
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Appendix A: TCCON sites

Table A1. TCCON sites used for evaluation of posterior CO2 fields of the v10 OCO-2 MIP experiments.

TCCON site Country Latitude Longitude Reference

Eureka Canada 80.05◦ N 86.42◦W Strong et al. (2019)
Ny-Ålesund Norway 78.9◦ N 11.9◦ E Notholt et al. (2019b)
Sodankylä Finland 67.4◦ N 26.6◦ E Kivi et al. (2014)

East Trout Lake Canada 54.4◦ N 105.0◦W Wunch et al. (2017a)
Bremen Germany 53.10◦ N 8.85◦ E Notholt et al. (2019a)
Karlsruhe Germany 49.1◦ N 8.4◦ E Hase et al. (2014)
Paris France 48.8◦ N 2.4◦ E Te et al. (2014)
Orléans France 47.9◦ N 2.1◦ E Warneke et al. (2019)
Garmisch Germany 47.5◦ N 11.1◦ E Sussmann and Rettinger (2018a)
Zugspitze Germany 47.3◦ N 11.0◦ E Sussmann and Rettinger (2018b)
Park Falls USA 45.9◦ N 90.3◦W Wennberg et al. (2017)
Rikubetsu Japan 43.5◦ N 143.8◦ E Morino et al. (2014)
Lamont USA 36.6◦ N 97.5◦W Wennberg et al. (2016b)
Anmeyondo Korea 36.5◦ N 126.3◦ E Goo et al. (2014)
Tsukuba Japan 36.1◦ N 140.1◦ E Morino et al. (2018a)
Nicosia Cyprus 35.1◦ N 33.4◦ E Petri et al. (2020)
Edwards USA 34.2◦ N 118.2◦W Iraci et al. (2016)
JPL USA 34.2◦ N 118.2◦W Wennberg et al. (2016a)
Caltech USA 34.1◦ N 118.1◦W Wennberg et al. (2014)
Saga Japan 33.2◦ N 130.3◦ E Kawakami et al. (2014)
Hefei China 31.9◦ N 117.2◦ E Liu et al. (2018)

Izaña Spain 28.3◦ N 16.5◦W Blumenstock et al. (2017)
Burgos Philippines 18.5◦ N 120.7◦ E Morino et al. (2018b)
Manaus Brazil 3.2◦ N 60.6◦W Dubey et al. (2014)

Ascension Island UK 7.9◦ S 14.3◦W Feist et al. (2014)
Darwin Australia 12.4◦ S 130.9◦ E Griffith et al. (2014a)
Réunion Island France 20.9◦ S 55.5◦W De Mazière et al. (2017)

Wollongong Australia 34.4◦ S 150.9◦ E Griffith et al. (2014b)
Lauder 125HR New Zealand 45.0◦ S 169.7◦ E Sherlock et al. (2014)

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-963-2023-supplement.
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M.-J., Denier van der Gon, H. A. C., Solazzo, E., Qiu, C., Pilli,
R., Konovalov, I. B., Houghton, R. A., Günther, D., Perugini, L.,
Crippa, M., Ganzenmüller, R., Luijkx, I. T., Smith, P., Munassar,
S., Thompson, R. L., Conchedda, G., Monteil, G., Scholze, M.,
Karstens, U., Brockmann, P., and Dolman, A. J.: The consoli-
dated European synthesis of CO2 emissions and removals for the
European Union and United Kingdom: 1990–2018, Earth Syst.
Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-
2021, 2021.

Petri, C., Vrekoussis, M., Rousogenous, C., Warneke, T., Sciare,
J., and Notholt, J.: TCCON data from Nicosia, Cyprus (CY),
Release GGG2014.R0, TCCON data archive, CaltechDATA
[data set], https://doi.org/10.14291/tccon.ggg2014.nicosia01.R0,
2020.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kup-
pel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P.,
and Prunet, P.: A new stepwise carbon cycle data assimilation
system using multiple data streams to constrain the simulated
land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346,
https://doi.org/10.5194/gmd-9-3321-2016, 2016.

Philip, S., Johnson, M. S., Potter, C., Genovesse, V., Baker, D. F.,
Haynes, K. D., Henze, D. K., Liu, J., and Poulter, B.: Prior bio-
sphere model impact on global terrestrial CO2 fluxes estimated
from OCO-2 retrievals, Atmos. Chem. Phys., 19, 13267–13287,
https://doi.org/10.5194/acp-19-13267-2019, 2019.

Philip, S., Johnson, M. S., Baker, D. F., Basu, S., Tiwari, Y. K.,
Indira, N. K., Ramonet, M., and Poulter, B.: OCO-2 Satellite-
Imposed Constraints on Terrestrial Biospheric CO2 Fluxes Over
South Asia, J. Geophys. Res.-Atmos., 127, e2021JD035035,
https://doi.org/10.1029/2021JD035035, 2022.

Pinty, B., Janssens-Maenhout, G., Dowell, M., Zunker, H., Brunhes,
T., Ciais, P., Dee, D., van der Gon, H. D., Dolman, H., Drinkwa-
ter, M., Engelen, R., Heimann, M., Holmlund, K., Husband, R.,
Kentarchos, A., Meijer, Y., Palmer, P., and Scholze, M.: An op-
erational anthropogenic CO2 emissions monitoring and verifica-
tion support capacity. Baseline requirements, model components
and functional architecture, Tech. rep., European Commission
Joint Research Centre, Brussels, http://resolver.tudelft.nl/uuid:
832e87d0-0ed8-44b2-8867-8714cebde4cb (last access: 6 Febru-
ary 2023), 2017.

Polavarapu, S. M., Neish, M., Tanguay, M., Girard, C., de Grandpré,
J., Semeniuk, K., Gravel, S., Ren, S., Roche, S., Chan, D., and
Strong, K.: Greenhouse gas simulations with a coupled meteo-
rological and transport model: the predictability of CO2, Atmos.
Chem. Phys., 16, 12005–12038, https://doi.org/10.5194/acp-16-
12005-2016, 2016.

Polavarapu, S. M., Deng, F., Byrne, B., Jones, D. B. A.,
and Neish, M.: A comparison of posterior atmospheric
CO2 adjustments obtained from in situ and GOSAT con-
strained flux inversions, Atmos. Chem. Phys., 18, 12011–12044,
https://doi.org/10.5194/acp-18-12011-2018, 2018.

Earth Syst. Sci. Data, 15, 963–1004, 2023 https://doi.org/10.5194/essd-15-963-2023

https://doi.org/10.17595/20170411.001
https://doi.org/10.5194/essd-10-87-2018
https://doi.org/10.5194/essd-10-87-2018
https://doi.org/10.1007/s11027-019-09877-2
https://doi.org/10.1007/s11027-019-09877-2
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.5194/amt-11-6539-2018
https://doi.org/10.1038/s41467-019-11097-w
https://doi.org/10.5194/acp-22-1097-2022
https://doi.org/10.1038/s41561-018-0212-7
https://doi.org/10.5194/essd-13-2363-2021
https://doi.org/10.5194/essd-13-2363-2021
https://doi.org/10.14291/tccon.ggg2014.nicosia01.R0
https://doi.org/10.5194/gmd-9-3321-2016
https://doi.org/10.5194/acp-19-13267-2019
https://doi.org/10.1029/2021JD035035
http://resolver.tudelft.nl/uuid:832e87d0-0ed8-44b2-8867-8714cebde4cb
http://resolver.tudelft.nl/uuid:832e87d0-0ed8-44b2-8867-8714cebde4cb
https://doi.org/10.5194/acp-16-12005-2016
https://doi.org/10.5194/acp-16-12005-2016
https://doi.org/10.5194/acp-18-12011-2018


B. Byrne et al.: Top-down CO2 budgets 1001

Randerson, J., Chapin, F., Harden, J., Neff, J., and Har-
mon, M.: Net ecosystem production: a comprehensive
measure of net carbon accumulation by ecosystems,
Ecol. Appl., 12, 937–947, https://doi.org/10.1890/1051-
0761(2002)012[0937:NEPACM]2.0.CO;2, 2002.

Rayner, P. J., Michalak, A. M., and Chevallier, F.: Fundamentals
of data assimilation applied to biogeochemistry, Atmos. Chem.
Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-
2019, 2019.

Regnier, P., Resplandy, L., Najjar, R. G., and Ciais, P.: The land-to-
ocean loops of the global carbon cycle, Nature, 603, 401–410,
https://doi.org/10.1038/s41586-021-04339-9, 2022.

Remaud, M., Chevallier, F., Cozic, A., Lin, X., and Bous-
quet, P.: On the impact of recent developments of the
LMDz atmospheric general circulation model on the simula-
tion of CO2 transport, Geosci. Model Dev., 11, 4489–4513,
https://doi.org/10.5194/gmd-11-4489-2018, 2018.

Remaud, M., Chevallier, F., Maignan, F., Belviso, S., Berchet,
A., Parouffe, A., Abadie, C., Bacour, C., Lennartz, S., and
Peylin, P.: Plant gross primary production, plant respiration and
carbonyl sulfide emissions over the globe inferred by atmo-
spheric inverse modelling, Atmos. Chem. Phys., 22, 2525–2552,
https://doi.org/10.5194/acp-22-2525-2022, 2022.

Ren, W., Tian, H., Tao, B., Yang, J., Pan, S., Cai, W.-J., Lohrenz,
S. E., He, R., and Hopkinson, C. S.: Large increase in dis-
solved inorganic carbon flux from the Mississippi River to
Gulf of Mexico due to climatic and anthropogenic changes
over the 21st century, J. Geophys. Res.-Biogeo., 120, 724–736,
https://doi.org/10.1002/2014JG002761, 2015.

Ren, W., Tian, H., Cai, W.-J., Lohrenz, S. E., Hopkinson, C. S.,
Huang, W.-J., Yang, J., Tao, B., Pan, S., and He, R.: Century-
long increasing trend and variability of dissolved organic carbon
export from the Mississippi River basin driven by natural and
anthropogenic forcing, Global Biogeochem. Cycles, 30, 1288–
1299, https://doi.org/10.1002/2016GB005395, 2016.

Resplandy, L., Keeling, R., Rödenbeck, C., Stephens, B., Khati-
wala, S., Rodgers, K., Long, M., Bopp, L., and Tans, P.: Re-
vision of global carbon fluxes based on a reassessment of
oceanic and riverine carbon transport, Nat. Geosci., 11, 504–509,
https://doi.org/10.1038/s41561-018-0151-3, 2018.

Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N.,
Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean
pCO2 and sea–air CO2 flux variability from an observation-
driven ocean mixed-layer scheme, Ocean Sci., 9, 193–216,
https://doi.org/10.5194/os-9-193-2013, 2013.

Rödenbeck, C., Zaehle, S., Keeling, R., and Heimann, M.:
How does the terrestrial carbon exchange respond to inter-
annual climatic variations? A quantification based on
atmospheric CO2 data, Biogeosciences, 15, 2481–2498,
https://doi.org/10.5194/bg-15-2481-2018, 2018.

Saeki, T. and Patra, P. K.: Implications of overestimated anthro-
pogenic CO2 emissions on East Asian and global land CO2 flux
inversion, Geosci. Lett., 4, 1–10, https://doi.org/10.1186/s40562-
017-0074-7, 2017.

Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bow-
man, K., Chevallier, F., Crowell, S., Davis, K. J., Deng, F. , Den-
ning, S., Feng, L., Jones, D. B. A., Liu, J., and Palmer, P. I.: Quan-
tifying the impact of atmospheric transport uncertainty on CO2

surface flux estimates, Global Biogeochem. Cycles, 33, 484–500,
https://doi.org/10.1029/2018GB006086, 2019.

Schuh, A. E., Otte, M., Lauvaux, T., and Oda, T.: Far-
field biogenic and anthropogenic emissions as a dominant
source of variability in local urban carbon budgets: A
global high-resolution model study with implications for satel-
lite remote sensing, Remote Sens. Environ., 262, 112473,
https://doi.org/10.1016/j.rse.2021.112473, 2021.

Schuh, A. E., Byrne, B., Jacobson, A. R., Crowell, S. M. R.,
Deng, F., Baker, D. F., Johnson, M. S., Philip, S., and Weir, B.:
On the role of atmospheric model transport uncertainty in es-
timating the Chinese land carbon sink, Nature, 603, E13–E14,
https://doi.org/10.1038/s41586-021-04258-9, 2022.

Schuldt, K. N., Jacobson, A. R., Aalto, T., Andrews, A., Bakwin, P.,
Bergamaschi, P., Biermann, T., Biraud, S. C., Chen, H., Colomb,
A., Conil, S., Cristofanelli, P., De Mazière, M., De Wekker, S.,
Delmotte, M., Dlugokencky, E., Emmenegger, L., Fischer, M. L.,
Hatakka, J., Heliasz, M., Hermanssen, O., Holst, J., Jaffe, D.,
Karion, A., Kazan, V., Keronen, P., Kominkova, K., Kubistin,
D., Laurent, O., Laurila, T., Lee, J., Lehner, I., Leuenberger, M.,
Lindauer, M., Lopez, M., Mammarella, I., Manca, G., Marek,
M. V., McKain, K., Miller, J. B., Miller, C. E., Myhre, C. L.,
Mölder, M., Müller-Williams, J., Piacentino, S., Pichon, J. M.,
Plass-Duelmer, C., Ramonet, M., Scheeren, B., Schumacher, M.,
Sha, M. K., Sloop, C. D., Smith, P., Steinbacher, M., Sweeney,
C., Tans, P., Thoning, K., Trisolino, P., Tørseth, K., Viner, B.,
Vitkova, G., and di Sarra, A. G.: Multi-laboratory compilation
of atmospheric carbon dioxide data for the years 2020–2021;
obspack_co2_1_NRT_v6.1.1_2021-05-17, NOAA Earth System
Research Laboratory, Global Monitoring Laboratory [data set],
https://doi.org/10.25925/20210517, 2021a.

Schuldt, K. N., Mund, J., Luijkx, I. T., Aalto, T., Abshire, J. B.,
Aikin, K., Andrews, A., Aoki, S., Apadula, F., Baier, B., Bak-
win, P., Bartyzel, J., Bentz, G., Bergamaschi, P., Beyersdorf, A.,
Biermann, T., Biraud, S. C., Boenisch, H., Bowling, D., Brails-
ford, G., Chen, G., Chen, H., Chmura, L., Clark, S., Clima-
dat, S., Colomb, A., Commane, R., Conil, S., Cox, A., Cristo-
fanelli, P., Cuevas, E., Curcoll, R., Daube, B., Davis, K., Maz-
ière, M. D., De Wekker, S., Della Coletta, J., Delmotte, M., Di-
Gangi, J. P., Dlugokencky, E., Elkins, J. W., Emmenegger, L.,
Fang, S., Fischer, M. L., Forster, G., Frumau, A., Galkowski,
M., Gatti, L. V., Gehrlein, T., Gerbig, C., Gheusi, F., Gloor,
E., Gomez-Trueba, V., Goto, D., Griffis, T., Hammer, S., Han-
son, C., Haszpra, L., Hatakka, J., Heimann, M., Heliasz, M.,
Hensen, A., Hermanssen, O., Hintsa, E., Holst, J., Jaffe, D.,
Joubert, W., Karion, A., Kawa, S. R., Kazan, V., Keeling, R.,
Keronen, P., Kolari, P., Kominkova, K., Kort, E., Kozlova, E.,
Krummel, P., Kubistin, D., Labuschagne, C., Lam, D. H., Lan-
genfelds, R., Laurent, O., Laurila, T., Lauvaux, T., Law, B.,
Lee, O. S., Lee, J., Lehner, I., Leppert, R., Leuenberger, M.,
Levin, I., Levula, J., Lin, J., Lindauer, M., Loh, Z., Lopez, M.,
Machida, T., Mammarella, I., Manca, G., Manning, A., Man-
ning, A., Marek, M. V., Martin, M. Y., Matsueda, H., McKain,
K., Meijer, H., Meinhardt, F., Merchant, L., Mihalopoulos, N.,
Miles, N., Miller, C. E., Miller, J. B., Mitchell, L., Montzka, S.,
Moore, F., Morgan, E., Morgui, J.-A., Morimoto, S., Munger,
B., Myhre, C. L., Mölder, M., Obersteiner, F., M uller-Williams,
J., Necki, J., Newman, S., Nichol, S., Niwa, Y., O’Doherty, S.,
Paplawsky, B., Peischl, J., Peltola, O., Pichon, J. M., Piper, S.,

https://doi.org/10.5194/essd-15-963-2023 Earth Syst. Sci. Data, 15, 963–1004, 2023

https://doi.org/10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2
https://doi.org/10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2
https://doi.org/10.5194/acp-19-13911-2019
https://doi.org/10.5194/acp-19-13911-2019
https://doi.org/10.1038/s41586-021-04339-9
https://doi.org/10.5194/gmd-11-4489-2018
https://doi.org/10.5194/acp-22-2525-2022
https://doi.org/10.1002/2014JG002761
https://doi.org/10.1002/2016GB005395
https://doi.org/10.1038/s41561-018-0151-3
https://doi.org/10.5194/os-9-193-2013
https://doi.org/10.5194/bg-15-2481-2018
https://doi.org/10.1186/s40562-017-0074-7
https://doi.org/10.1186/s40562-017-0074-7
https://doi.org/10.1029/2018GB006086
https://doi.org/10.1016/j.rse.2021.112473
https://doi.org/10.1038/s41586-021-04258-9
https://doi.org/10.25925/20210517


1002 B. Byrne et al.: Top-down CO2 budgets

Plass-Duelmer, C., Ramonet, M., Ramos, R., Reyes-Sanchez,
E., Richardson, S., Riris, H., Rivas, P. P., Ryerson, T., Saito,
K., Sargent, M., Sasakawa, M., Sawa, Y., Say, D., Scheeren,
B., Schuck, T., Schumacher, M., Seifert, T., Sha, M. K., Shep-
son, P., Shook, M., Sloop, C. D., Smith, P., Steinbacher, M.,
Stephens, B., Sweeney, C., Tans, P., Thoning, K., Timas, H.,
Torn, M., Trisolino, P., Turnbull, J., Tørseth, K., Vermeulen,
A., Viner, B., Vitkova, G., Walker, S., Watson, A., Wofsy, S.,
Worsey, J., Worthy, D., Young, D., Zahn, A., Zimnoch, M., van
Dinther, D., and van den Bulk, P.: Multi-laboratory compilation
of atmospheric carbon dioxide data for the period 1957–2019;
obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01, NOAA
Earth System Research Laboratory, Global Monitoring Labora-
tory [data set], https://doi.org/10.25925/20201204, 2021b.

Schulte-Uebbing, L. F., Ros, G. H., and de Vries, W.: Experimen-
tal evidence shows minor contribution of nitrogen deposition
to global forest carbon sequestration, Global Change Biol., 28,
899–917, https://doi.org/10.1111/gcb.15959, 2022.

Sha, M. K., De Mazière, M., Notholt, J., Blumenstock, T., Chen, H.,
Dehn, A., Griffith, D. W. T., Hase, F., Heikkinen, P., Hermans, C.,
Hoffmann, A., Huebner, M., Jones, N., Kivi, R., Langerock, B.,
Petri, C., Scolas, F., Tu, Q., and Weidmann, D.: Intercomparison
of low- and high-resolution infrared spectrometers for ground-
based solar remote sensing measurements of total column con-
centrations of CO2, CH4, and CO, Atmos. Meas. Tech., 13,
4791–4839, https://doi.org/10.5194/amt-13-4791-2020, 2020.

Sherlock, V., Connor, B. J., Robinson, J., Shiona, H., Smale, D., and
Pollard, D.: TCCON data from Lauder (NZ), 120HR, Release
GGG2014R0, TCCON data archive, CaltechDATA [data set],
https://doi.org/10.14291/tccon.ggg2014.lauder01.R0/1149293,
2014.

Stanevich, I., Jones, D. B. A., Strong, K., Parker, R. J., Boesch,
H., Wunch, D., Notholt, J., Petri, C., Warneke, T., Sussmann,
R., Schneider, M., Hase, F., Kivi, R., Deutscher, N. M., Ve-
lazco, V. A., Walker, K. A., and Deng, F.: Characterizing
model errors in chemical transport modeling of methane: im-
pact of model resolution in versions v9-02 of GEOS-Chem and
v35j of its adjoint model, Geosci. Model Dev., 13, 3839–3862,
https://doi.org/10.5194/gmd-13-3839-2020, 2020.

Steinkamp, K., Mikaloff Fletcher, S. E., Brailsford, G., Smale,
D., Moore, S., Keller, E. D., Baisden, W. T., Mukai, H., and
Stephens, B. B.: Atmospheric CO2 observations and models
suggest strong carbon uptake by forests in New Zealand, At-
mos. Chem. Phys., 17, 47–76, https://doi.org/10.5194/acp-17-47-
2017, 2017.

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Pe-
ters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P.,
Nakazawa, T., Aoki, S., Machida, T., Inoue, G., Vinnichenko,
N., Lloyd, J., Jordan, A., Heimann, M., Shibistova, O., Lan-
genfelds, R. L., Steele, L. P., Francey, R. J., and Denning, A.
S.: Weak northern and strong tropical land carbon uptake from
vertical profiles of atmospheric CO2, Science, 316, 1732–1735,
https://doi.org/10.1126/science.1137004, 2007.

Strong, K., Roche, S., Franklin, J., Mendonca, J.,
Lutsch, E., Weaver, D., Fogal, P., Drummond, J.,
Batchelor, R., and Lindenmaier, R.: TCCON data
from Eureka (CA), Release GGG2014.R3 (Version
R3), TCCON data archive, hosted by CaltechDATA,

https://doi.org/10.14291/TCCON.GGG2014.EUREKA01.R3,
2019.

Suntharalingam, P., Randerson, J. T., Krakauer, N., Logan, J. A.,
and Jacob, D. J.: Influence of reduced carbon emissions and
oxidation on the distribution of atmospheric CO2: Implications
for inversion analyses, Global Biogeochem. Cy., 19, GB4003,
https://doi.org/10.1029/2005GB002466, 2005.

Sussmann, R. and Rettinger, M.: TCCON data from Garmisch
(DE), Release GGG2014.R2, Caltech Data [data set],
https://doi.org/10.14291/TCCON.GGG2014.GARMISCH01.R2,
2018a.

Sussmann, R. and Rettinger, M.: TCCON data
from Zugspitze (DE), Release GGG2014R1, TC-
CON data archive, CaltechDATA [data set],
https://doi.org/10.14291/tccon.ggg2014.zugspitze01.R1, 2018b.

Tans, P. P., Fung, I. Y., and Takahashi, T.: Observational contrains on
the global atmospheric CO2 budget, Science, 247, 1431–1438,
https://doi.org/10.1126/science.247.4949.1431, 1990.

Tao, B., Tian, H., Ren, W., Yang, J., Yang, Q., He, R., Cai, W.,
and Lohrenz, S.: Increasing Mississippi river discharge through-
out the 21st century influenced by changes in climate, land
use, and atmospheric CO2, Geophys. Res. Lett., 41, 4978–4986,
https://doi.org/10.1002/2014GL060361, 2014.

Tarantola, A.: Inverse problem theory and meth-
ods for model parameter estimation, SIAM,
https://doi.org/10.1137/1.9780898717921, 2005.

Te, Y., Jeseck, P., and Janssen, C.: TCCON data
from Paris (FR), Release GGG2014R0, TC-
CON data archive, CaltechDATA [data set],
https://doi.org/10.14291/tccon.ggg2014.paris01.R0/1149279,
2014.

Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric
carbon dioxide at Mauna Loa Observatory: 2. Analysis of the
NOAA GMCC data, 1974–1985, J. Geophys. Res.-Atmos., 94,
8549–8565, 1989.

Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., and Lu,
C.: Spatial and temporal patterns of CH4 and N2O fluxes in ter-
restrial ecosystems of North America during 1979–2008: appli-
cation of a global biogeochemistry model, Biogeosciences, 7,
2673–2694, https://doi.org/10.5194/bg-7-2673-2010, 2010.

Tian, H., Ren, W., Yang, J., Tao, B., Cai,W.-J., Lohrenz, S. E., Hop-
kinson, C. S., Liu, M., Yang, Q., Lu, C., Zhang, B., Banger, K.,
Pan, S., He, R., and Xue, Z.: Climate extremes dominating sea-
sonal and interannual variations in carbon export from the Mis-
sissippi River Basin, Global Biogeochem. Cy., 29, 1333–1347,
2015a.

Tian, H., Yang, Q., Najjar, R. G., Ren, W., Friedrichs, M. A., Hop-
kinson, C. S., and Pan, S.: Anthropogenic and climatic influ-
ences on carbon fluxes from eastern North America to the At-
lantic Ocean: A process-based modeling study, J. Geophys. Res.-
Biogeo., 120, 757–772, 2015b.

Tian, H., Xu, R., Pan, S., Yao, Y., Bian, Z., Cai, W.-J., Hopkinson,
C. S., Justic, D., Lohrenz, S., Lu, C., Ren, W., and Yang, J.: Long-
term trajectory of nitrogen loading and delivery from Mississippi
River Basin to the Gulf of Mexico, Global Biogeochem. Cy.,
34, e2019GB006475, https://doi.org/10.1029/2019GB006475,
2020.

Tohjima, Y., Mukai, H., Machida, T., Nojiri, Y., and Gloor, M.:
First measurements of the latitudinal atmospheric O2 and CO2

Earth Syst. Sci. Data, 15, 963–1004, 2023 https://doi.org/10.5194/essd-15-963-2023

https://doi.org/10.25925/20201204
https://doi.org/10.1111/gcb.15959
https://doi.org/10.5194/amt-13-4791-2020
https://doi.org/10.14291/tccon.ggg2014.lauder01.R0/1149293
https://doi.org/10.5194/gmd-13-3839-2020
https://doi.org/10.5194/acp-17-47-2017
https://doi.org/10.5194/acp-17-47-2017
https://doi.org/10.1126/science.1137004
https://doi.org/10.14291/TCCON.GGG2014.EUREKA01.R3
https://doi.org/10.1029/2005GB002466
https://doi.org/10.14291/TCCON.GGG2014.GARMISCH01.R2
https://doi.org/10.14291/tccon.ggg2014.zugspitze01.R1
https://doi.org/10.1126/science.247.4949.1431
https://doi.org/10.1002/2014GL060361
https://doi.org/10.1137/1.9780898717921
https://doi.org/10.14291/tccon.ggg2014.paris01.R0/1149279
https://doi.org/10.5194/bg-7-2673-2010
https://doi.org/10.1029/2019GB006475


B. Byrne et al.: Top-down CO2 budgets 1003

distributions across the western Pacific, Geophys. Res. Lett., 32,
L17805, https://doi.org/10.1029/2005GL023311, 2005.

Van der Laan-Luijkx, I. T., van der Velde, I. R., van der
Veen, E., Tsuruta, A., Stanislawska, K., Babenhauserheide, A.,
Zhang, H. F., Liu, Y., He, W., Chen, H., Masarie, K. A.,
Krol, M. C., and Peters, W.: The CarbonTracker Data Assim-
ilation Shell (CTDAS) v1.0: implementation and global car-
bon balance 2001–2015, Geosci. Model Dev., 10, 2785–2800,
https://doi.org/10.5194/gmd-10-2785-2017, 2017.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.
T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,
D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global
fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,
9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Geor-
giou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore,
D. J., Norby, R. J., Zaehle, S, Anderson-Teixeira, K. J., Bat-
tipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M.,
Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth,
D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C.,
Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hun-
gate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F.,
Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y.,
MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz,
J., Powell, A. S., Riutta, T., Sabot, M. N. B., Schleucher, J., Sitch,
S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S.,
Treseder, K. K., Trugman, A. T., Trumbore, S. E., van Mantgem,
P. J., Voelker, S. L., Whelan, M. E., and Zuidema, P. A.: Integrat-
ing the evidence for a terrestrial carbon sink caused by increasing
atmospheric CO2, New Phytol., 229, 2413–2445, 2021.

Wang, J. A., Baccini, A., Farina, M., Randerson, J. T., and Friedl,
M. A.: Disturbance suppresses the aboveground carbon sink in
North American boreal forests, Nat. Clim. Change, 11, 435–441,
2021.

Wang, J. S., Oda, T., Kawa, S. R., Strode, S. A., Baker, D. F., Ott,
L. E., and Pawson, S.: The impacts of fossil fuel emission uncer-
tainties and accounting for 3-D chemical CO2 production on in-
verse natural carbon flux estimates from satellite and in situ data,
Environ. Res. Lett., 15, 085002, https://doi.org/10.1088/1748-
9326/ab9795, 2020.

Warneke, T., Messerschmidt, J., Notholt, J., Weinzierl, C.,
Deutscher, N. M., Petri, C., and Grupe, P.: TCCON data from
Orléans (FR), Release GGG2014.R1, CaltechData [data set],
https://doi.org/10.14291/TCCON.GGG2014.ORLEANS01.R1,
2019.

Weir, B., Crisp, D., O’Dell, C. W., Basu, S., Chatterjee, A., Kolassa,
J., Oda, T., Pawson, S., Poulter, B., Zhang, Z., Ciais, P., Davis, S.
J., Liu, Z., and Ott, L.: Regional impacts of COVID-19 on carbon
dioxide detected worldwide from space, Sci. Adv., 7, eabf9415,
https://doi.org/10.1126/sciadv.abf9415, 2021a.

Weir, B., Ott, L. E., Collatz, G. J., Kawa, S. R., Poulter, B., Chatter-
jee, A., Oda, T., and Pawson, S.: Bias-correcting carbon fluxes
derived from land-surface satellite data for retrospective and
near-real-time assimilation systems, Atmos. Chem. Phys., 21,
9609–9628, https://doi.org/10.5194/acp-21-9609-2021, 2021b.

Wennberg, P. O., Wunch, D., Roehl, C., Blavier, J.-F., Toon,
G. C., and Allen, N.: TCCON data from Caltech (US), Release
GGG2014R1, TCCON data archive, CaltechDATA [data set],

https://doi.org/10.14291/tccon.ggg2014.pasadena01.R1/1182415,
2014.

Wennberg, P. O., Roehl, C., Blavier, J.-F., Wunch, D., Lan-
deros, J., and Allen, N.: TCCON data from Jet Propul-
sion Laboratory (US), 2011, Release GGG2014R1,
TCCON data archive, CaltechDATA [data set],
https://doi.org/10.14291/tccon.ggg2014.jpl02.R1/1330096,
2016a.

Wennberg, P. O., Wunch, D., Roehl, C., Blavier, J.-F., Toon,
G. C., Allen, N., Dowell, P., Teske, K., Martin, C., and
Martin, J.: TCCON data from Lamont (US), Release
GGG2014R1, TCCON data archive, CaltechDATA [data set],
https://doi.org/10.14291/tccon.ggg2014.lamont01.R1/1255070,
2016b.

Wennberg, P. O., Roehl, C. M., Wunch, D., Toon, G. C.,
Blavier, J.-F., Washenfelder, R., Keppel-Aleks, G., Allen,
N. T., and Ayers, J.: TCCON data from Park Falls
(US), Release GGG2014.R1, CaltechData [data set],
https://doi.org/10.14291/TCCON.GGG2014.PARKFALLS01.R1,
2017.

Worden, J. R., Cusworth, D. H., Qu, Z., Yin, Y., Zhang, Y., Bloom,
A. A., Ma, S., Byrne, B. K., Scarpelli, T., Maasakkers, J. D.,
Crisp, D., Duren, R., and Jacob, D. J.: The 2019 methane bud-
get and uncertainties at 1◦ resolution and each country through
Bayesian integration Of GOSAT total column methane data and a
priori inventory estimates, Atmos. Chem. Phys., 22, 6811–6841,
https://doi.org/10.5194/acp-22-6811-2022, 2022.

Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens,
B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P.,
Biraud, S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P., Brow-
ell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher,
N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Grif-
fith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort,
E. A., Macatangay, R., Machida, T., Matsueda, H., Moore, F.,
Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sher-
lock, V., Sweeney, C., Tanaka, T., and Zondlo, M. A.: Cali-
bration of the Total Carbon Column Observing Network us-
ing aircraft profile data, Atmos. Meas. Tech., 3, 1351–1362,
https://doi.org/10.5194/amt-3-1351-2010, 2010.

Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A.,
Notholt, J., Connor, B. J., Griffith, D. W., Sherlock, V.,
and Wennberg, P. O.: The Total Carbon Column Observ-
ing Network, Philos. T. Roy. Soc. A, 369, 2087–2112,
https://doi.org/10.1098/rsta.2010.0240, 2011.

Wunch, D., Mendonca, J., Colebatch, O., Allen, N.,
Blavier, J.-F. L., Roche, S., Hedelius, J. K., Neufeld, G.,
Springett, S., Worthy, D. E. J., Kessler, R., and Strong,
K.: TCCON data from East Trout Lake (CA), Release
GGG2014R1, TCCON data archive, CaltechDATA [data set],
https://doi.org/10.14291/tccon.ggg2014.easttroutlake01.R1,
2017a.

Wunch, D., Wennberg, P. O., Osterman, G., Fisher, B., Naylor, B.,
Roehl, C. M., O’Dell, C., Mandrake, L., Viatte, C., Kiel, M.,
Griffith, D. W. T., Deutscher, N. M., Velazco, V. A., Notholt, J.,
Warneke, T., Petri, C., De Maziere, M., Sha, M. K., Sussmann,
R., Rettinger, M., Pollard, D., Robinson, J., Morino, I., Uchino,
O., Hase, F., Blumenstock, T., Feist, D. G., Arnold, S. G., Strong,
K., Mendonca, J., Kivi, R., Heikkinen, P., Iraci, L., Podolske,
J., Hillyard, P. W., Kawakami, S., Dubey, M. K., Parker, H. A.,

https://doi.org/10.5194/essd-15-963-2023 Earth Syst. Sci. Data, 15, 963–1004, 2023

https://doi.org/10.1029/2005GL023311
https://doi.org/10.5194/gmd-10-2785-2017
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.1088/1748-9326/ab9795
https://doi.org/10.1088/1748-9326/ab9795
https://doi.org/10.14291/TCCON.GGG2014.ORLEANS01.R1
https://doi.org/10.1126/sciadv.abf9415
https://doi.org/10.5194/acp-21-9609-2021
https://doi.org/10.14291/tccon.ggg2014.pasadena01.R1/1182415
https://doi.org/10.14291/tccon.ggg2014.jpl02.R1/1330096
https://doi.org/10.14291/tccon.ggg2014.lamont01.R1/1255070
https://doi.org/10.14291/TCCON.GGG2014.PARKFALLS01.R1
https://doi.org/10.5194/acp-22-6811-2022
https://doi.org/10.5194/amt-3-1351-2010
https://doi.org/10.1098/rsta.2010.0240
https://doi.org/10.14291/tccon.ggg2014.easttroutlake01.R1


1004 B. Byrne et al.: Top-down CO2 budgets

Sepulveda, E., García, O. E., Te, Y., Jeseck, P., Gunson, M. R.,
Crisp, D., and Eldering, A.: Comparisons of the Orbiting Carbon
Observatory-2 (OCO-2)XCO2 measurements with TCCON, At-
mos. Meas. Tech., 10, 2209–2238, https://doi.org/10.5194/amt-
10-2209-2017, 2017b.

Yang, D., Liu, Y., Cai, Z., Wang, M., Qiu, L., Yin, Z., Tian, L.,
and TanSat-2 team: The next generation of Chinese greenhouse
gas monitoring satellite mission, 14th International Workshop on
Greenhouse Gas Measurements from Space (IWGGMS-14), 8–
10 May 2018, Toronto, Canada, 2018.

Yang, Q., Tian, H., Friedrichs, M. A., Hopkinson, C. S., Lu, C.,
and Najjar, R. G.: Increased nitrogen export from eastern North
America to the Atlantic Ocean due to climatic and anthro-
pogenic changes during 1901–2008, J. Geophys. Res.-Biogeo.,
120, 1046–1068, 2015.

Yao, Y., Tian, H., Shi, H., Pan, S., Xu, R., Pan, N., and Canadell,
J. G.: Increased global nitrous oxide emissions from streams and
rivers in the Anthropocene, Nat. Clim. Change, 10, 138–142,
2020.

Yao, Y., Tian, H., Pan, S., Najjar, R. G., Friedrichs, M. A.,
Bian, Z., Li, H.-Y., and Hofmann, E. E.: Riverine carbon cy-
cling over the past century in the Mid-Atlantic region of the
United States, J. Geophys. Res.-Biogeo., 126, e2020JG005968,
https://doi.org/10.1029/2020JG005968, 2021.

Yin, Y., Ciais, P., Chevallier, F., Van der Werf, G. R., Fanin, T.,
Broquet, G., Boesch, H., Cozic, A., Hauglustaine, D., Szopa, S.,
and Wang, Y.: Variability of fire carbon emissions in equatorial
Asia and its nonlinear sensitivity to El Niño, Geophys. Res. Lett.,
43, 10–472, 2016.

Yu, K., Keller, C. A., Jacob, D. J., Molod, A. M., Eastham, S. D.,
and Long, M. S.: Errors and improvements in the use of archived
meteorological data for chemical transport modeling: an analy-
sis using GEOS-Chem v11-01 driven by GEOS-5 meteorology,
Geosci. Model Dev., 11, 305–319, https://doi.org/10.5194/gmd-
11-305-2018, 2018.

Zammit-Mangion, A., Bertolacci, M., Fisher, J., Stavert, A., Rigby,
M., Cao, Y., and Cressie, N.: WOMBAT v1.0: a fully Bayesian
global flux-inversion framework, Geosci. Model Dev., 15, 45–73,
https://doi.org/10.5194/gmd-15-45-2022, 2022.

Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., and Nakaoka,
S.-I.: A global surface ocean fCO2 climatology based on a feed-
forward neural network, J. Atmos. Ocean. Tech., 31, 1838–1849,
2014.

Zhang, L., Davis, K. J., Schuh, A. E., Jacobson, A. R., Pal, S.,
Cui, Y. Y., Baker, D., Crowell, S., Chevallier, F., Remaud, M.,
Liu, J., Weir, B., Philip, S., Johnson, M. S., Deng, F., and
Basu, S.: Multi-Season Evaluation of CO2 Weather in OCO-2
MIP Models, J. Geophys. Res.-Atmos., 127, e2021JD035457,
https://doi.org/10.1029/2021JD035457, 2022.

Earth Syst. Sci. Data, 15, 963–1004, 2023 https://doi.org/10.5194/essd-15-963-2023

https://doi.org/10.5194/amt-10-2209-2017
https://doi.org/10.5194/amt-10-2209-2017
https://doi.org/10.1029/2020JG005968
https://doi.org/10.5194/gmd-11-305-2018
https://doi.org/10.5194/gmd-11-305-2018
https://doi.org/10.5194/gmd-15-45-2022
https://doi.org/10.1029/2021JD035457

	Abstract
	Copyright statement
	Introduction
	Objectives
	Overview of the carbon cycle
	Background on atmospheric CO2 inversions

	Definitions
	Flux datasets
	Fossil fuel and cement emissions
	Net carbon exchange (NCE) and net biosphere exchange (NBE)
	Atmospheric CO2 data included in v10 OCO-2 MIP

	Lateral carbon fluxes
	Country-level Frivers export
	Country-level Fwood trade and Fcrop trade
	11 lateral flux estimates

	Estimate of carbon stock loss (Closs)

	Evaluation of v10 OCO-2 MIP experiments
	Evaluation of posterior CO2 fields
	Comparison of air–sea fluxes with pCO2-based estimates

	Metrics for interpreting country flux estimates
	Z statistic
	Fractional uncertainty reduction (FUR)

	Dataset description
	Characteristics of the dataset
	Comparison with national inventories
	Discussion
	Observations
	Expanding observations
	Data validation
	Data harmonization

	Atmospheric CO2 inversions
	Ongoing and planned developments
	Improving CTM transport
	Missing processes and required assumptions
	Uncertainty quantification

	Stock change estimates

	Data availability
	Conclusions
	Appendix A: TCCON sites
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

