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Abstract. In recent years, large datasets of in situ marine carbonate system parameters (partial pressure of CO2
(pCO2), total alkalinity, dissolved inorganic carbon and pH) have been collated, quality-controlled and made
publicly available. These carbonate system datasets have highly variable data density in both space and time, es-
pecially in the case of pCO2, which is routinely measured at high frequency using underway measuring systems.
This variation in data density can create biases when the data are used, for example, for algorithm assessment,
favouring datasets or regions with high data density. A common way to overcome data density issues is to bin
the data into cells of equal latitude and longitude extent. This leads to bins with spatial areas that are latitude-
and projection-dependent (e.g. become smaller and more elongated as the poles are approached). Additionally,
as bin boundaries are defined without reference to the spatial distribution of the data or to geographical features,
data clusters may be divided sub-optimally (e.g. a bin covering a region with a strong gradient). To overcome
these problems and to provide a tool for matching surface in situ data with satellite, model and climatological
data, which often have very different spatiotemporal scales both from the in situ data and from each other, a
methodology has been created to group in situ data into “regions of interest”: spatiotemporal cylinders consist-
ing of circles on the Earth’s surface extending over a period of time. These regions of interest are optimally
adjusted to contain as many in situ measurements as possible. All surface in situ measurements of the same
parameter contained in a region of interest are collated, including estimated uncertainties and regional summary
statistics. The same grouping is applied to each of the non-in situ datasets in turn, producing a dataset of coin-
cident matchups that are consistent in space and time. About 35 million in situ data points were matched with
data from five satellite sources and five model and reanalysis datasets to produce a global matchup dataset of
carbonate system data, consisting of ∼ 286000 regions of interest spanning 54 years from 1957 to 2020. Each
region of interest is 100 km in diameter and 10 d in duration. An example application, the reparameterisation of
a global total alkalinity algorithm, is presented. This matchup dataset can be updated as and when in situ and
other datasets are updated, and similar datasets at finer spatiotemporal scale can be constructed, for example,
to enable regional studies. The matchup dataset provides users with a large multi-parameter carbonate system
dataset containing data from different sources, in one consistent, collated and standardised format suitable for
model–data intercomparisons and model evaluations. The OceanSODA-MDB data can be downloaded from
https://doi.org/10.12770/0dc16d62-05f6-4bbe-9dc4-6d47825a5931 (Land and Piollé, 2022).
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1 Introduction

The ocean absorbs carbon dioxide (CO2) from the atmo-
sphere, which reacts with water to form a weak acid, carbonic
acid. Through the marine carbonate system, carbonic acid
then rapidly dissociates to form bicarbonate and hydrogen
ions. The marine carbonate system acts to buffer increases
in hydrogen ions, in particular by combining with carbonate
ions to form more bicarbonate ions. Over glacial timescales,
weathering of carbonate rocks has maintained relatively sta-
ble ocean pH levels, but since the industrial revolution, the
rate of uptake of anthropogenically released CO2 has been
too rapid for the natural system to keep pace, resulting in
the phenomenon of ocean acidification (OA) (Doney et al.,
2020). OA shifts the balance of marine chemistry such that
there is increasing CO2, decreasing pH and decreasing car-
bonate ions. These shifts have been shown to significantly
alter many biological processes (Kroeker et al., 2013), with
implications for food webs, ecosystem processes and ulti-
mately ecosystem services on which humans rely (Gattuso
et al., 2015; Doney et al., 2020).

Whilst there has been a rapid increase in the number of
observations of the marine carbonate system over the past
decade (e.g. SOCCOM, Rödenbeck et al., 2015; Williams et
al., 2017), focusing especially on CO2 uptake and OA, there
remain large gaps both in space and time, especially in more
remote locations such as the Arctic (AMAP, 2018), where we
also know there is significant variability and enhanced acid-
ification in several parts of the Arctic (e.g. Polukhin, 2019).
The longest in situ time-series stations for seawater pCO2
(partial pressure of CO2) and other OA-relevant parameters
cover a temporal period of about 40 years (Bates et al., 2014),
and around the globe there are only a handful of such time-
series stations. Although more have since been established,
these time-series stations highlight how different locations
experience different drivers and differing levels of variabil-
ity (Bates et al., 2014). More recently, research communities
have joined to form networks that increase data sharing, re-
sulting in large collated datasets such as the Surface Ocean
CO2 Atlas (SOCAT; ∼ 28 million surface observations in
version 2020, Lauvset et al., 2018; Bakker et al., 2016), the
Global Ocean Data Analysis Project (GLODAP; ∼ 79000
surface observations in version 2.2020, Lauvset et al., 2021),
and most recently the Coastal Ocean Data Analysis Product
in North America (CODAP-NA; Jiang et al., 2021).

Several efforts have been made to develop interpolation
products that can be used to make global assessments of how
the marine carbonate chemistry is changing in both space and
time (e.g. Rödenbeck et al., 2015). These include neural net-
work (Landschützer et al., 2016; Denvil-Sommer et al., 2019;
Sasse et al., 2013), linear (e.g. Takahashi et al., 2014) and
non-linear regression (e.g. Watson et al., 2020) approaches.
Similarly, model and interpolated observation-based data are

routinely assessed against global in situ datasets (e.g. a re-
quirement for inclusion within the observational ocean car-
bon data presented in the Global Carbon Budget; Friedling-
stein et al., 2022). Not only can in situ data and climatolo-
gies be used for assessing the marine carbonate system, but
models, reanalyses and satellite Earth observations (EOs)
are now frequently utilised either for their direct outputs
or as inputs to algorithms. The ESA OceanSODA (Satel-
lite Oceanographic Datasets for Acidification) project (https:
//esa-oceansoda.org, last access: 20 February 2023) utilises
a range of data sources, including EO, to input into empir-
ical and machine learning algorithms, generating synoptic-
scale outputs of OA-relevant parameters. For example, the
OceanSODA-ETHZ product (Gregor and Gruber, 2021) re-
produces the global surface carbonate system from 1985 to
2020. At present there is no one dataset that matches up these
various data in time, treating all data in a consistent manner
to minimise biases caused by differences in space and time
sampling of each dataset. Here we present a new matchup
dataset that addresses this need, with a particular focus on
the surface (less than 10 m) carbonate system.

When attempting to collate large coincident datasets, data
are often combined from diverse sources with different data
densities, for example, combining daily station data from a
cruise with high-frequency measurements from an underway
system, or with daily satellite sea surface temperature (SST)
at 1 km resolution. The differences in data density between
the collated datasets can create biases when the data are used,
favouring datasets or regions with high data density. This
problem is often overcome by binning the data in a map pro-
jection, most simply into cells of equal latitude and longitude
extent, but this can also cause biases because, in the example
of equal latitude–longitude bins, the bins become smaller and
more elongated as the poles are approached. The bin bound-
aries are also generally unrelated to the data, which may re-
sult in the data being divided sub-optimally; for example, a
bin boundary may pass through a large cluster of data, inap-
propriately dividing it.

To overcome these problems and to provide a tool for
matching in situ data with other datasets such as satellite,
model or climatological data, which often have very differ-
ent spatiotemporal scales both from the in situ data and from
each other, a methodology has been developed to group in
situ data into “regions of interest” (ROIs), spatiotemporal
cylinders consisting of circles on the Earth’s surface extend-
ing over a period of time. These cylinders are positioned such
that each contains as many in situ measurements as possi-
ble, with as little overlap between cylinders as possible. In
this way, every in situ measurement is uniquely associated
with one region of interest. All in situ measurements of the
same parameter contained in a region are collated, including
their estimated uncertainties, and regional summary statistics
are calculated. After the ROIs have been defined using the in
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situ data, the other datasets are treated in the same way, col-
lating measurements that lie within each in situ ROI, with
their estimated uncertainties, and generating summary statis-
tics. OceanSODA-MDB, a global matchup database (MDB),
is presented here, consisting of ROIs with a maximum diam-
eter of 100 km and duration of 10 d. An example application
is shown, reparameterising the global total alkalinity (AT)
algorithm of Takahashi et al. (2014) to give a new AT algo-
rithm specific to the top 10 m. The MDB can be updated as
and when in situ and other datasets are updated, and similar
datasets at different spatiotemporal scales can be constructed,
for example, for regional studies.

This document describes the datasets that are present
within the MDB, including some brief information about
data collection and analysis, followed by a description of
the methods used to create the MDB itself. We then pro-
vide some summary statistics for the in situ and other data
held within the MDB and a discussion of the benefits of
this method. Finally, we present the reparameterisation of the
global AT algorithm of Takahashi et al. (2014) as an example
application of the MDB.

2 Input datasets

In situ carbonate system variables included in the MDB (with
which all other datasets are matched) are pH, total dissolved
inorganic carbon (CT), total alkalinity (AT) and partial pres-
sure of CO2 in water (pCO2w, converted from fugacity and
corrected for temperature differences if necessary). At least
one of these four key variables must be measured for a sam-
pling event to be included in the MDB. Measurement un-
certainties and quality control (QC) flags, where available
in the original datasets, are also included. The MDB only
includes surface measurements, defined as depth less than
10 m. Other in situ measurements which are included if they
are coincident with a measurement of one or more of the four
primary variables (pH, CT, AT and pCO2w) include temper-
ature (T ), salinity (S), sea–air difference in partial pressure
of CO2, and other in situ measurements such as nutrients and
chlorophyll a concentration (Chl a). In addition, the follow-
ing values not directly associated with the sampling event
are included: water depth, distance from the nearest coast
and monthly climatological temperature, salinity, dissolved
oxygen, nitrate, phosphate, and silicate, all interpolated from
global gridded climatologies to each data point. Where coin-
cident CT and AT are available, pCO2w, pH and the satura-
tion states of aragonite (�A) and calcite (�C) are calculated
from CT, AT, T , S and depth. All measurements of each of
these variables in a ROI are collated and summary statistics
generated. Other datasets not associated with individual data
points (satellite, model and reanalysis data; see Table 1) are
collated for each ROI and their summary statistics are added
to the MDB.

Standard measurement uncertainties are either taken from
the source literature or given default values based on GLO-
DAP and SOCAT default uncertainties. Default uncertainties
for CT and AT are 4 µmolkg−1 (Lauvset et al., 2021). For
pCO2w, the default uncertainty is 5 µatm unless SOCAT data
have been assigned a QC flag of A or B, in which case it
is 2 µatm (Lauvset et al., 2018). The default uncertainty for
pH is 0.005 (Sulpis et al., 2020). The standard deviation of
the measurements used to calculate the climatological data is
given as a proxy to uncertainty, and the assigned CT and AT
measurement uncertainties are propagated through the cal-
culations to produce uncertainty estimates for the calculated
pCO2w, pH, �A and �C.

The input data for the MDB primarily come from pub-
licly available online datasets, with exceptions noted below.
Details for these input data are provided in Table 1. Below
we briefly summarise the main methods for sample collec-
tion, analysis and quality control for each of the datasets,
with the exception of data input from the World Ocean Atlas
(WOA18; Locarnini et al., 2018; Zweng et al., 2019; Garcia
et al., 2019a, b; Boyer et al., 2018); the Ocean Carbon and
Acidification Data System (OCADS; Jiang et al., 2021); the
Global Surface pCO2 Database (LDEO v2018; Takahashi et
al., 2020); the Global Ocean Data Analysis Project (GLO-
DAPv2.2020; Olsen et al., 2020, 2016; Key et al., 2015); and
the Surface Ocean CO2 Atlas (SOCATv2020; Lauvset et al.,
2018; Bakker et al., 2016), as these have significant detail
about data collection and quality control already described in
the associated project publications. Full details for all meth-
ods can be found in the associated references within this text
and Table 1.

Biogeochemical-ARGO (Bio-ARGO; Argo, 2021, Ta-
ble 1, dataset no. 4) uses profiling floats and measures pH us-
ing the Deep-Sea DuraFET, a sensor comprising a Honeywell
Ion Sensitive Field Effect Transistor (ISFET) and a chloride-
ion-selective electrode as the reference electrode, directly ex-
posed to seawater (Claustre et al., 2020). We used individual
profiles, delayed mode data where available, otherwise real-
time mode, averaging data from the top 10 m, and used the
estimated pH uncertainty given in the original data files.

Data from Plymouth Marine Laboratory (Table 1, datasets
no. 6 and 7) were produced using an Apollo SciTech AS-C3
DIC analyser for CT and using an Apollo SciTech AS-ALK2
analyser for AT, following the methods described in Dick-
son et al. (2007). CT and AT measurements were calibrated
using certified reference materials (CRMs) provided by An-
drew G. Dickson from the Scripps Institute of Oceanography.
The precision and accuracy of replicate CRM analyses were
better than ±2 µmolkg−1. pH was determined spectropho-
tometrically on board the ship using m-cresol-purple dye
(Clayton and Byrne, 1993) and again following best practice
(Dickson et al., 2007). The precision of triplicate pH samples
was ±0.001 units or better.

Data from Woods Hole Oceanographic Institute (Table 1,
dataset no. 8) were produced using a single-operator multi-
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Table 1. Input data sources for various parameters (SST: sea surface temperature, SSS: sea surface salinity, Chl a: chlorophyll a, DO:
dissolved oxygen, N: nitrate, P: phosphate, Si: silicate, AT: total alkalinity, CT: total dissolved inorganic carbon). Lines 1 to 17 are in situ
datasets which are used to create the regions of interest; hence they do not have unique dataset names. Lines 18 to 28 are generated using
felyx, so each has a unique dataset name.

No. Parameters Type Dataset source/name
(version)

Time period Region (resolu-
tion)

References

1 pCO2w, SSS,
SST

In situ data SOCAT (2020) 1957–2020 Global Bakker et al. (2016)

2 pCO2w, SSS,
SST

In situ data LDEO (2019) 1957–2019 Global Takahashi et al. (2020)

3 AT, CT, pH,
SSS, SST, N, P,
Si, DO

In situ data GLODAP (2.2020) 1972–2019 Global Olsen et al. (2020, 2016)

4 pH, SSS, SST In situ data ARGO (downloaded
7 January 2021)

2012–present Global Claustre et al. (2020)

5 AT, CT, SSS,
SST

In situ data OCADS 2003–2018 Atlantic/Pacific Jiang et al. (2021)

6 AT, CT, pH,
pCO2w, SSS,
SST, N, P, Si

In situ data AMT 1995–2019 Atlantic Kitidis et al. (2017)

7 AT, CT, SSS,
SST

In situ data Arctic coastal data 2012–2014 Arctic Helen Findlay, personal communication

8 AT, CT, Chl a,
SSS, SST, DO,
N

In situ data Beaufort Gyre explo-
ration project (Woods
Hole Oceanographic
Institution)

2003–2019 Arctic Zhang et al. (2020)

9 AT, CT, SSS,
SST

In situ data Mackenzie Shelf 2014 Arctic Mol et al. (2018)

10 AT, CT, SSS,
SST

In situ data CHO_OC∼ 1 2010–2014 Arctic Wisdom (2014)

11 AT, CT, SSS,
SST

In situ data EXPOCODE
33HQ20170826

2017 Arctic Cross et al. (2020)

12 AT, CT, SSS,
SST

In situ data HLY1103 2011 Arctic Mathis et al. (2016a)

13 AT, CT, SSS,
SST

In situ data 316n20090614 2009 Arctic Cross et al. (2019)

14 AT, CT, SSS,
SST

In situ data 33HQ20080703 2008 Arctic Mathis et al. (2016c)

15 AT, CT, SSS,
SST

In situ data 33HQ20080329 2008 Arctic Mathis et al. (2016b)

16 AT, CT, SSS,
SST

In situ data Kara Sea dataset 1993–2004 Arctic Wallhead et al. (2017), Polukhin (2019)

17 AT, pH, SSS,
SST

In situ data Eurasian Arctic Ocean 2006–2009 Arctic Pipko et al. (2017)

18 SST Satellite cci_sst (2.1) 1981–2020 Global (0.05◦

daily)
Good et al. (2019), Merchant et al. (2019)

19 SSS Satellite cci_sss (2.31) 2010–2019 Global (25 km
7 d)

Boutin et al. (2021, 2020)

20 SSS Satellite arctic_sss (3.1) 2011–2019 Arctic (25 km
9 d)

Martínez et al. (2020a, b)

21 SSS Satellite remss_smap_sss (4.0) 2015–2021 Global (25 km
8 d)

Remote Sensing Systems (2019), Meissner and
Wentz (2019)

22 Chl a Satellite cci_oc_chloro-a (5.0) 1997–2020 Global (1/24◦

daily)
Sathyendranath et al. (2019, 2021)
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Table 1. Continued.

No. Parameters Type Dataset source/name
(version)

Time period Region (resolu-
tion)

References

23 SST Satellite and in
situ reanalysis

noaa_sst (2.1) 1981–2021 Global (0.25◦

daily)
Huang et al. (2021)

24 SST, SSS In situ reanaly-
sis

cora_temperature,
cora_salinity (5.2)

1950–2020 Global (0.5◦

monthly)
Szekely et al. (2019)

25 SST, SSS In situ reanaly-
sis

isas15_temperature,
isas15_salinity (15)

2002–2015 Global (0.5◦

monthly)
Kolodziejczyk et al. (2021), Gaillard et
al. (2016)

26 AT, CT,
pCO2w, pH,
SST, SSS

Calculated ethz_ta, ethz_dic,
ethz_pco2, ethz_ph,
ethz_temperature,
ethz_salinity (2020b)

1985–2020 Global (1◦

monthly)
Gregor and Gruber (2020, 2021)

27 pCO2w, pH Calculated cmems_pco2,
cmems_ph (015_008)

1985–2019 Global (1◦

monthly)
Chau et al. (2020)

28 SST, SSS, DO,
N, P, Si

Climatology woa18_temperature,
woa18_salinity,
woa18_ oxygen_o,
woa18_ nitrate_n,
woa18_phosphate_p,
woa18_silicate_i

1955–2017 Global (1◦

monthly)
Locarnini et al. (2018), Zweng et al. (2019),
Garcia et al. (2019a, b), Boyer et al. (2018)

metabolic analyser coulometer system for CT and using an
open cell titration method with 0.1 N HCl for AT (Dickson
et al., 2007), both calibrated to Dickson CRMs (Scripps In-
stitute of Oceanography). Pooled standard deviations for CT
and AT were < 3.04 and < 3.87 µmolkg−1, respectively.

Data from Dalhousie University (Table 1, dataset no. 9)
were produced using a Marianda Versatile INstrument for the
Determination of Total inorganic carbon and titration Alka-
linity (VINDTA) 3C coupled with a coulometer (UIC, Inc.)
for AT and CT following standard methods (Dickson et al.,
2007). The instrument was calibrated against Dickson CRMs
(Scripps Institute of Oceanography), and the reproducibility
of the CT and AT measurements was < 2 and < 3 µmolkg−1,
respectively.

Data from the Ocean Acidification Research Center at the
University of Alaska Fairbanks (Table 1, datasets no. 10–
15) were produced using a VINDTA 3C coupled with a
coulometer (UIC, Inc.). Samples were standardised using
Dickson CRMs (Scripps Institute of Oceanography). Un-
certainty for cruises ranged from 1 to 4 µmolkg−1 for AT
and 4 µmolkg−1 for CT. These data are now included in
the Coastal Ocean Data Analysis Product in North America
(CODAP-NA) and hence have been subjected to additional
quality control (Jiang et al., 2021). CODAP-NA will be used
in future versions of the MDB.

Data from the Shirshov Institute of Oceanology (Table 1,
dataset no. 16) were produced from samples collected in
plastic 0.5 L bottles without preservation and analysed for
pH and AT. The pH value was determined on the ionomer
“Ekoniks Expert 001” with a glass composite pH elec-
trode by CJSC “Akvilon” (Moscow, Russia), calibrated using
buffer solutions ISO 8.135-74 (techniques as per Dickson et

al., 2007). Analysis of AT was conducted by direct titration
(Bruevich, 1944) with a visual determination of the titration
end point. This method, developed in the 1930s, shows very
good correlation (Pavlova et al., 2008) with other methods
of AT determination (Dickson et al., 2003; Edmond, 1970;
Dickson and Goyet, 1994). In 2000, the WG13 (founded in
1998 under the PICES North Pacific Marine Science Orga-
nization) carried out an experiment on the intercalibration of
the total alkalinity measurements in seawater with the first
participation of Russian specialists, who presented the pro-
cedure by Bruevich. Within the experiment, 12 laboratories
were involved: six from Japan; three from the USA; and one
each from Canada, South Korea and Russia. For the inter-
calibration, the following methods were presented: potentio-
metric titration in a closed and open cell, the single addi-
tion procedure by Culberson, and the method by Bruevich.
The alkalinity examined in the samples was determined to
±1 µMkg−1 at the laboratory of Andrew Dickson. The inter-
calibration results showed that the Bruevich method agrees
well with the commonly used procedures of potentiometric
titration in a closed or open cell as well as with the single
addition method. The results of the intercalibration showed
that the alkalinity values obtained by the Bruevich method
using modern burettes, Na2CO3 of high purification degree
as a standard to establish the acid titre, and applying correc-
tion for the acid density and for the weight of the acid and
seawater samples in vacuum are in agreement with the stan-
dard within ±1 µMkg−1. Under field conditions, the usual
accuracy of the method for seawater analyses is equal to
±2.5 µMkg−1. The method presented is easy and well ap-
plicable to the microanalysis of interstitial waters of marine
sediments (Pavlova et al., 2008).
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Data from the V. I. Il’ichev Pacific Oceanological In-
stitute (Table 1, dataset no. 17, available on request from
irina@poi.dvo.ru) were produced using an indicator titra-
tion method in which 25 mL of seawater was titrated for AT
with 0.02 M HCl in an open cell (Bruevich, 1944; Pavlova
et al., 2008), and a potentiometric method was applied to
determine pH on the Pitzer pH scale (Pitzer, 1991) using a
closed cell held at constant 20 ◦C temperature with a sodium
and hydrogen glass electrode pair without liquid junctions
(Tishchenko et al., 2001, 2011). AT measurements were per-
formed with a precision of ∼ 2 µmolkg−1 with the accu-
racy set by calibration against Dickson CRMs (Scripps In-
stitution of Oceanography). A TRIS–TRIS–HCl–NaCl–H2O
buffer solution (Tishchenko et al., 2001, 2011) was used for
calibrations on the Pitzer pH scale. Both the hydrogen glass
electrode and the sodium glass electrode were calibrated us-
ing this buffer. Together with thermodynamic data (Dick-
son, 1990), the pH values were converted from the Pitzer
pH scale to the total hydrogen ion concentration scale (pHT)
(Tishchenko et al., 2001, 2011; Dickson et al., 2007). The
precision of pH measurements was about 0.004 pH units,
with an accuracy of ∼ 0.004 pH units set by calibration
against buffer solution on the Pitzer pH scale.

Data from the Climate Change Initiative Sea Surface Tem-
perature (CCI SST) Level 4 Analysis Climate Data Record
(Table 1, dataset no. 18), produced by merging observations
from satellite instruments NOAA Advanced Very High Res-
olution Radiometer (AVHRR) and ESA Along Track Scan-
ning Radiometer (ATSR) using a data assimilation scheme,
provide gap-free global daily fields of sea surface tempera-
ture (SST) at 0.2 m depth on a global 0.05◦ grid (Good et al.,
2019; Merchant et al., 2019). We used the Version 2.1 dataset
produced as part of the European Space Agency (ESA) Cli-
mate Change Initiative Sea Surface Temperature project from
1981 to 2016 and the complementary Version 2.0 dataset
from the Copernicus Climate Change Service (C3S) from
2017 to 2020.

Data from the Climate Change Initiative Sea Surface
Salinity (CCI SSS) Level 4 Analysis (Table 1, dataset
no. 19), produced by merging observations from satel-
lite instruments ESA Soil Moisture and Ocean Salinity
(SMOS) (January 2010–November 2019), NASA Aquarius
(August 2011–June 2015) and NASA Soil Moisture Active
Passive (SMAP) (April 2015–November 2019) using opti-
mal interpolation, provide gap-free weekly maps of sea sur-
face salinity (SSS) on a global 25 km EASE grid (Boutin
et al., 2020, 2021). We used the Version 2.31 dataset pro-
duced as part of the European Space Agency (ESA) Climate
Change Initiative Sea Surface Salinity project from 2011 to
2019. Comparisons of the weekly Level 4 product against
Argo floats over the whole period and at global scale show
a satellite–in situ bias of 0.0 and a root mean squared de-
viation (RMSD) of 0.28, while comparisons against ther-
mosalinograph (TSG) measurements show a bias of −0.01
and an RMSD of 0.49. Under optimal conditions (rain

rate= 0 mm h−1, 3 < 10 m wind speed < 12 m s−1, SST >

5 ◦C, > 800 km from coast), the bias and RMSD are respec-
tively 0.0 and 0.17 against Argo floats and 0.0 and 0.18
against TSG (Boutin et al., 2021).

Data from the Arctic Sea Surface Salinity Level 3 compos-
ites (Table 1, dataset no. 20), obtained from the Barcelona
Expert Center (BEC; http://bec.icm.csic.es/, last access:
20 February 2023), provide a daily weighted average of
SMOS SSS in all overpasses over a 9 d period on a 25 km
EASE grid centred on the north pole (BEC, 2021). We used
the Version 3.1 dataset from 2011 to 2019. Comparisons
against Argo floats for the complete period show a bias of
0.02 and a RMSD of 0.39 (Olmedo et al., 2018).

Data from the SMAP Sea Surface Salinity Level 3 com-
posites (Table 1, dataset no. 21), produced by Remote Sens-
ing Systems (RSS), provide a daily average of SMAP SSS in
all overpasses over an 8 d period on a global 0.25◦ grid (Re-
mote Sensing Systems, 2019; Meissner and Wentz, 2019).
We used the Version 4.0 dataset from 2015 to 2021.

Data from the Climate Change Initiative Ocean Colour
(CCI OC) Level 3 binned (Table 1, dataset no. 22), produced
by merging observations from satellite instruments NASA
SeaWiFS (September 1997 to December 2010), ESA MERIS
(April 2002 to April 2012), NASA MODIS (July 2002 to
present), NOAA/NASA VIIRS (2012 to present) and ESA
Sentinel 3A OLCI (May 2016 to present) using a blend-
ing method based on optical water type, provide Chl a on
a global 1/24◦ grid (Sathyendranath et al., 2019, 2021). We
used the Version 4.0 (1997–2019) and Version 5.0 (2019–
2020) datasets produced as part of the ESA Climate Change
Initiative Ocean Colour project. Comparisons against in situ
measurements show a global mean bias in log10(Chl a) of
−0.04 and RMSD of 0.34 (Sathyendranath et al., 2019).

Data from the NOAA Level 4 Analysis Climate Data
Record (Table 1, dataset no. 23), produced by merging
AVHRR satellite data with measurements from ships, buoys
and Argo floats using an optimal interpolation scheme, pro-
vide gap-free global daily SST on a global 0.25◦ grid (Huang
et al., 2021; Banzon et al., 2016; Reynolds et al., 2007). We
used the Version 2.0 dataset from September 1981 to Decem-
ber 2019 and Version 2.1 for 2020. As the analysis uses both
night and day observations, it cannot be considered foun-
dation sea surface temperature and includes some diurnal
warming effects.

Data from the Coriolis Ocean Dataset for Reanalysis
(CORA) dataset (Table 1, dataset no. 24), produced from
the merging of many different sources collected by Coriolis
data centre in collaboration with the In Situ Thematic Centre
of the Copernicus Marine Service (CMEMS INSTAC), ac-
quired both by autonomous platforms (Argo profilers, fixed
moorings, gliders, drifters, sea mammals), research or op-
portunity vessels (CTDs, XBTs, ferrybox), provide monthly
temperature and salinity on a global 0.5◦ grid (Szekely et al.,
2019). CORA is a 4-dimensional dataset, and we only used
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the temperature and salinity from the first level (1 m depth).
We used the Version 5.2 dataset from 1990 to 2019.

Data from the In Situ Analysis System (ISAS) dataset (Ta-
ble 1, dataset no. 25), produced from the merging of the Argo
network of profiling floats and other in situ sources using an
optimal interpolation scheme, provide monthly temperature
and salinity on a global 0.5◦ grid at several standard depth
levels (Kolodziejczyk et al., 2021; Gaillard et al., 2016).
We used only the salinity from the first level (1 m depth).
We used the ISAS15 v7 dataset from 2002 to 2015 and
ISAS20_ARGO v7 (Argo floats only) from 2016 to 2020.

Data from the OceanSODA-ETHZ dataset (Table 1,
dataset no. 26), produced by ETH Zurich from surface
ocean observations (SOCAT, GLODAP), using the newly de-
veloped Geospatial Random Cluster Ensemble Regression
(GRaCER) method, provide monthly CT, AT, pCO2w and
pH on a global 1◦ grid (Gregor and Gruber, 2021). We used
the CT, AT, pCO2w, pH, temperature and salinity variables
provided in the v2020b dataset from 1990 to 2018. For the
open ocean, the estimated pCO2w and AT show global near-
zero biases and root mean squared errors of 12 µatm and
13 µmolkg−1, respectively. Taking into account also the mea-
surement and representation errors, the total uncertainty in-
creases to 14 µatm and 21 µmolkg−1, respectively. Compar-
isons against direct observations from GLODAP show sur-
face ocean pH and CT global biases of near zero and root
mean squared errors of 0.023 and 16 µmolkg−1, respectively
(Gregor and Gruber, 2021).

Data from the Copernicus Marine Service (CMEMS)
Global Ocean Surface Carbon dataset (Table 1, dataset
no. 27) is a reconstruction of monthly surface ocean
pCO2w, air–sea fluxes of CO2 and pH with associated
uncertainties on a global 1◦ grid. The product is obtained
from an ensemble-based feedforward neural network,
mapping SOCAT in situ surface ocean fugacity, salin-
ity, temperature, sea surface height, Chl a, mixed layer
depth and atmospheric CO2 mole fraction. Surface ocean
pH on the total scale is computed from pCO2w and re-
constructed AT using the CO2sys speciation software.
We used pCO2w and pH from the CMEMS MULTI-
OBS_GLO_BIO_CARBON_SURFACE_REP_015_008
dataset (Chau et al., 2020), from 1990 to 2019. Comparisons
of pCO2w against SOCATv2021 show an absolute bias of
1.15 Pa and a RMSD of 1.86 Pa in the global open ocean.
Comparisons of pH against data from GLODAPv2.2021
bottle data show an absolute bias of 0.017 and RMSD of
0.03 in the global open ocean.

3 Methodology

3.1 Preprocessing

Before grouping in situ data into ROIs, the different in situ
datasets must first be merged into a single collated dataset
and sorted into date order. The largest in situ dataset (SO-

CAT) is first divided into yearly subsets. If the number of sta-
tions (unique sampling locations and times) in a year exceeds
a threshold of 105, it is subdivided into monthly subsets,
and if a month exceeds 105 stations, it is further subdivided
into daily subsets. Each subset is then sorted, first by date
and time, then by latitude and finally by longitude. Each sta-
tion is labelled with its data source and version (in this case
SOCATv2020); its estimated uncertainty; and its QC flag, if
available. For most datasets the latter is a World Ocean Cir-
culation Experiment (WOCE) flag, but in the case of SOCAT
this is always 2, so the QC flag is categorised from classifi-
cation A (the best) to D (the worst included in the final SO-
CAT product); see Lauvset et al. (2018) for details. The next
dataset (LDEO) is then similarly subdivided, sorted and then
merged into the first (after continuing to subdivide until both
datasets have the same temporal resolution) to form a single
dataset, continuing to subdivide where a yearly or monthly
subset expands beyond 105 data points. SOCAT and LDEO
have many measurements in common, and in case of match-
ing stations (defined by a separation < 1 km and < 30 s), the
LDEO station is discarded. This completes the main global
pCO2w datasets. The next dataset to be merged is GLODAP,
the main global AT, CT and pH dataset, using only stations
with sampling depth less than 10 m. Further variables from
GLODAP that have been included in the MDB are pH at
25 ◦C, dissolved oxygen, apparent oxygen utilisation, nitrate,
nitrite, silicate, phosphate, total and dissolved organic car-
bon, nitrogen, and Chl a. Again, the WOCE flag is always set
to 2 in GLODAP, so in this case the QC flag is a classification
indicating whether secondary QC has been performed on the
data (1.0) or not (0.0). All other datasets use the WOCE flag
where available, quoted as an integer, so the three types of
QC flag can be distinguished. All other in situ datasets are
then merged in the same way, discarding pCO2w measure-
ments if they match spatiotemporally with SOCAT or LDEO
measurements already in the dataset and AT, CT or pH mea-
surements if they match with GLODAP measurements. It is
possible that higher-quality laboratory pCO2w measurements
not included in SOCAT are excluded from the MDB due to
proximity to underway pCO2w measurements in SOCAT on
the same platform, but we have not checked for this.

Next, ancillary data are added to each sta-
tion in the collated dataset. The distance from
the nearest coast is spatially interpolated from
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/ (last
access: 20 February 2023), and where not included in
the original data, water depth is spatially interpolated
from https://www.gebco.net/data_and_products/gridded_
bathymetry_data/gebco_2019/gebco_2019_info.html
(last access: 20 February 2023). Climatological op-
timally interpolated T , S, nitrate, phosphate, silicate
and dissolved oxygen and their standard deviations
are all interpolated spatially and temporally from
https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
(last access: 20 February 2023). Wherever a station contains
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in situ AT, CT, T and S measurements, these are used to
solve the carbonate system and provide estimates of pCO2w,
pH, �A and �C with Monte Carlo uncertainty estimates.
These are estimated as their mean and standard deviation
from 100 runs of the SeaCarb package (version 3.2.12,
Gattuso et al., 2021), with AT and CT values taken from a
Gaussian distribution with a mean and standard deviation
equal to the measured value and its estimated uncertainty.
Nutrients were left at their SeaCarb defaults. In each run, the
following SeaCarb options are also selected randomly from
those with ranges of validity of temperature and salinity
appropriate to the given data point, hence including the
component of uncertainty arising from these choices:

– k1k2 is selected from “m10”, “m06”, “l” and “r”.

– kf is selected from “dg” and “pf”.

– ks is selected from “d” and “k”.

– b is selected from “l10” and “u74”.

It is of course possible to calculate the carbonate system from
other pairs of key variables (a total of six possible combina-
tions, some of which calculate pH and/or saturation states
better than others; e.g. Orr et al., 2018). However, we only
perform the calculation on collocated measurements rather
than measurements within a ROI, and AT and CT measure-
ments are most often collocated, so in the interest of clarity
we used only this combination. Other combinations could be
considered for future versions if there is sufficient demand.

3.2 Creating the radial in situ data

The next step is to group stations into cylindrical spatiotem-
poral ROIs, each of which consists of a circle on the Earth’s
surface (all points with a great circle distance from the centre
less than a given radius, assuming a spherical Earth) between
two dates and times. For the global MDB, the ROIs are re-
stricted to a maximum radius of 50 km (diameter 100 km)
and a maximum temporal extent of 10 d. These limits are ad-
justable; for example, smaller values might be more appro-
priate in a regional dataset with high spatiotemporal variabil-
ity. A ROI is the smallest spatiotemporal cylinder that can
contain all of its associated in situ stations. The procedure is
as follows:

1. Define the first ROI centred on and containing the first
station. A ROI containing a single station is infinitesi-
mally small. Add the new ROI to a “region” list.

2. Select the next station. If any ROIs in the region list are
more than 15 d older than the new station, they cannot
interact with a ROI to which the new station (or any
subsequent station) is added; hence they can be stored
and removed from the region list.

3. Try to add the new station to each ROI in the region list
in turn, starting with the most recent.

3a. If the new station is already within the ROI limits,
add the station to the ROI, and continue from step 2.

3b. If the ROI can be expanded to contain the new sta-
tion without exceeding the size limits, create a copy
of the ROI, expand it enough to add the station and
add it to a list of “found” ROIs for this station.

4. If the found list is not empty, check whether each found
ROI overlaps with others in the region list. If so, remove
it from the found list.

5. If the found list is still not empty, add the new station to
the found ROI that moved least relative to the limits; for
example, if a ROI moved temporally by 5 d or spatially
by 50 km, the relative distance would be 0.5. Replace
the original ROI in the region list with the expanded
ROI, and continue from step 2.

6. Add a new ROI centred on the new station to the region
list, and continue from step 2.

When a ROI is stored, the following summary statistics of
each value contained in the ROI are calculated: number of
measurements, minimum, maximum, mean, median, sample
standard deviation and interquartile range. This includes un-
certainty estimates; hence as well as the variability between
measurements in a ROI, we also calculate statistics of the es-
timated measurement uncertainty associated with each mea-
surement. The mean of pH variables is calculated geometri-
cally, i.e. from the mean of [H+], but it should be noted that
the standard deviation is that of pH not of [H+]. In addition to
pCO2w treated normally, a further dataset is processed con-
sisting of pCO2w corrected at each measurement to the mean
SST of the ROI using pCO2w at SSTROI = (pCO2w at SST)
exp[0.0433(SSTROI−SST)−4.35×10−5(SST2

ROI−SST2)]
(Takahashi et al., 2009). All data sources of each measure-
ment type in the ROI are listed along with the number of
measurements contributed by each source; for example, a
ROI might contain 10 pCO2w measurements from SOCAT
and 1 from LDEO. ROIs are stored in NetCDF files using the
trajectory format for ungridded data.

Sequential processing of all in situ data is a major task that
would take several weeks to complete on a normal personal
computer, a situation that is likely to worsen as data volume
continues to increase. To speed up processing, we initiated
ROI definition from different times. A start year and month
is specified, and ROIs are defined using only in situ data start-
ing from that time. In this way, the task can be divided into
parallel processing streams. Initial ROI definitions in each
stream are in general different from those that would be gen-
erated sequentially from the start, so care must be taken in
combining ROIs generated from different start times. The ap-
proach we have adopted is to allow processing from an earlier
start time to continue past the start time of the next processing
stream, creating two concurrent ROI sets covering the same
time period. The concurrent period is inspected for sequences
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Figure 1. Numbers of carbonate system measurements included in the database per year. (a) Seawater pCO2, (b) total alkalinity (AT),
(c) dissolved inorganic carbon (CT) and (d) pH.

of ROIs that are identical in the two sets of results. If such a
sequence is more than 10 d long, ROIs from the earlier stream
before the identical sequence cannot overlap with those from
the later stream after the identical sequence, and so it is safe
to merge the streams. If an identical sequence more than 10 d
long cannot be found, ROIs from the earlier stream before
the longest identical sequence can be compared individually
with those from the later stream after the identical sequence
to ensure that none overlap. The merged data are stored in
yearly netCDF files.

3.3 Creating the OceanSODA-MDB matchup database

Felyx is a tool created to extract data from along-track,
swath or gridded datasets such as Earth observation (EO)
data over defined ROIs (https://felyx.gitlab-pages.ifremer.fr/
felyx_docs/, last access: 20 February 2023). Felyx is a free
software solution, written in Python, the aim of which is
to provide Earth observation data producers and users with
an open-source, flexible and reusable tool to allow scien-
tific analysis and performance monitoring of scientific data
through subsetting over specific areas or matching up with
in situ measurements. The development of felyx is supported
by Copernicus, the European Union’s Earth observation pro-
gramme.

Felyx is used in this context to extract EO, model, clima-
tology and reanalysis data within maximum-sized ROIs cen-
tred on the in situ ROIs. Given the time and location of a ROI,
felyx is able, for each EO data source, to extract observation

subsets within a 50 km radius and±5 d from the ROI’s centre
time and location (Fig. 18).

Hence matchup data are all extracted over the same size
regions centred on matching in situ data. This methodology
ensures that all data being compared (e.g. satellite and in situ
observations) are treated as consistently and equally as pos-
sible, allowing all uncertainties in all observations to be in-
cluded within the analysis. The resultant radial matchup data
(the output from the felyx system) are stored in the same
NetCDF files used for the in situ data. For each averaged
parameter, the mean, median, standard deviation, minimum,
maximum, interquartile range and sample count of the obser-
vations found within the ROI’s search area and time frame
are calculated and provided. Finally, the output files are en-
riched with metadata for traceability in compliance with the
Climate and Forecast Convention and self-description of the
content, and the units are harmonised across the different in
situ and Earth observation sources.

4 Data overview

The collated input dataset contains 34 912 843 individual sta-
tions, of which 34 839 413 (99.8 %) contain pCO2w, 24 474
(0.07 %) contain AT, 27,032 (0.08 %) contain CT and 21 924
(0.06 %) contain pH (note that stations may contain more
than one carbonate system parameter). Based on the ROI
definition of 100 km radius and 10 d duration, this collated
dataset resulted in 285 822 ROIs, of which 272 753 (95.4 %)
contain pCO2w, 13 595 (4.8 %) contain AT, 15 041 (5.3 %)
contain CT and 19 613 (6.9 %) contain pH. Dates range from
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Figure 2. Numbers of ROIs per year (bars) included in the database containing measurements of each carbonate system parameter and the
mean number of measurements per ROI (lines), for (a) pCO2w, (b) total alkalinity (AT), (c) dissolved inorganic carbon (CT) and (d) pH.

Figure 3. Statistics of pCO2w in each ROI over the whole database (272 753 ROIs). (a) ROI mean, (b) ROI standard deviation and (c) number
of measurements in each ROI.
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Figure 4. Statistics of AT in each ROI over the whole database (13 595 ROIs). (a) ROI mean, (b) ROI standard deviation and (c) number of
measurements in each ROI.

Figure 5. Statistics of CT in each ROI over the whole database (15 041 ROIs). (a) ROI mean, (b) ROI standard deviation and (c) number of
measurements in each ROI.
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Figure 6. Statistics of pH in each ROI over the whole database (19 613 ROIs). (a) ROI mean, (b) ROI standard deviation and (c) number of
measurements in each ROI.

1957 (pCO2w) to December 2020 (pH) (missing years from
1959 to 1971 contain no in situ data), with steep increases
in the number of measurements in the 1990s and further in-
creases in pCO2w measurements in the early 2000s and in
pH measurements in the 2010s, the latter associated with the
recent development of autonomous pH sensors such as in the
Bio-ARGO programme (Fig. 1; note the logarithmic scale).
The recent reduction in AT and CT measurements may be as-
sociated with the situation that, unlike pCO2w and pH, all AT
and CT measurements in the dataset are performed in the lab-
oratory, resulting in a delay in data submission. There may
also be a reduction in support for core laboratory measure-
ments as new autonomous measurements become available,
although some will still be necessary for validating and cali-
brating autonomous sensors.

The total number of measurements is not necessarily a
good indication of representativity, especially with the ad-
vent of flow-through pCO2w instruments which can collect
many measurements spanning a small spatiotemporal range.
In this respect, the number of ROIs is a better guide. Fig. 2
(note the linear scale) shows the number of ROIs per year
and the mean number of measurements per ROI, which is
typically around 2 except in the case of pCO2w, for which it
increases from around 10 in the 1980s to over 200 in 2019.
Since the advent of Bio-ARGO, which typically delivers one
surface pH measurement per ROI, while cruises typically de-
liver more than one, the proportion of ROIs with one pH mea-

surement has increased, and the mean number of pH mea-
surements per ROI has decreased, and this is likely to con-
tinue as the number of Bio-ARGO floats increases.

Figures 3 to 6 show the mean, standard deviation (where
a ROI contains more than one measurement) and number of
measurements in each ROI over the whole dataset. Note that
the standard deviation is only over a 10 d period and so does
not show variability on longer timescales, such as seasonal-
ity or interannual variability. Note also that these plots in-
clude ∼ 270000 points in the case of pCO2w, and more re-
cent measurements overlay older ones, so specific features
seen in these plots should be checked in more detail. Vari-
ability is greatest in coastal regions and in parts of the Arctic,
for example, the Beaufort, East Siberian and Laptev seas and
between Greenland and Svalbard.

Figures 7 to 10 show the mean in each ROI divided into
seasons. Strong pCO2w seasonality is evident in the North-
ern Hemisphere, with high values in the northern Pacific and
Atlantic in January–March and in the subtropics in July–
September. Seasonality is less clear in CT and pH, which may
be due to the lower data density. This may also be due to the
relatively smaller amplitude of seasonal changes with respect
to the mean; for example, in Kitidis et al. (2017) a 6 % in-
crease in pCO2w results in a 0.7 % increase in CT and 0.3 %
decrease in pH over 19 years. We would only expect strong
seasonality in AT where there are large seasonal variations in
salinity or strong terrestrial influence.
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Figure 7. Mean pCO2w (µatm) divided into seasons. (a) January–March (70 658 ROIs), (b) April–June (67 631 ROIs), (c) July–September
(69 083 ROIs) and (d) October–December (65 381 ROIs).

Figure 8. Mean AT (µmolkg−1) divided into seasons. (a) January–March (3602 ROIs), (b) April–June (3682 ROIs), (c) July–September
(3960 ROIs) and (d) October–December (2351 ROIs).
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Figure 9. Mean CT (µmolkg−1) divided into seasons. (a) January–March (4029 ROIs), (b) April–June (4256 ROIs), (c) July–September
(4197 ROIs) and (d) October–December (2559 ROIs).

Figure 10. Mean pH (total scale, p = 0, 25 ◦C) divided into seasons. (a) January–March (5501 ROIs), (b) April–June (5386 ROIs), (c) July–
September (4959 ROIs) and (d) October–December (3767 ROIs).
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Figure 11. Mean pCO2w (µatm) divided into decades: 1751 ROIs to 1969, 1636 in the 1970s, 9090 in the 1980s, 42 548 in the 1990s, 97 313
in the 200s and 120 415 from 2010 to 2020.

Figures 11 to 14 show the mean in each ROI divided into
decades. As well as the increases in data density, the increase
in pCO2w with time is clearly visible. The recent Bio-ARGO
measurements can clearly be seen as a “speckle” pattern in
the Southern Ocean in 2010–2020 pH.

5 Example application

To illustrate the use of the MDB, we present a reparameter-
isation of the Takahashi et al. (2014) (T14) global algorithm
for potential alkalinity (PA), which is equal to AT plus ni-
trate. A parameterisation of pCO2w, which has much higher
data density, would better illustrate the advantages of the
MDB approach, but we could find no simple, global pCO2w
algorithm that could be reparameterised as T14 can. For this
we use in situ AT and SSS and WOA monthly climatological
nitrate, since this is what would be needed to produce syn-
optic maps of AT, for example, from satellite or model SSS.
The T14 algorithm is clearly not intended for application to
extreme coastal waters, of which there are many in the MDB,

and algorithm uncertainties are expected to increase if we in-
clude waters with coastal or benthic influence, but T14 offer
no criteria to distinguish these. Sasse et al. (2013) presented
their own algorithms for AT and CT, and they used the cri-
teria that waters should be considered free from coastal in-
fluence (“marine”) if greater than 300 km from the nearest
shore with water depth greater than 500 m. These thresholds
are global and likely to be over-conservative in many regions.
Here we adapt these criteria, aiming for a marine definition
that is as inclusive as possible while not significantly com-
promising the fit found in highly marine waters and provid-
ing a separate fit for the remaining coastal waters.

The T14 regions we use are shown in Fig. 15 and mapped
on a 1◦ grid in supplementary data. We have eliminated over-
laps in the original T14 regions, adjusted some boundaries to
align more closely with geographical boundaries, and added
the western and eastern basins of the Mediterranean Sea. We
now subdivide the data in order to distinguish marine from
coastal and to perform cross-validation. It should be noted
that this subdivision is done as a “user” of the MDB. The
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Figure 12. Mean AT (µmolkg−1) divided into decades: 128 ROIs in the 1970s, 707 in the 1980s, 3923 in the 1990s, 5196 in the 2000s and
3641 from 2010 to 2020.

subdivision used to create the MDB minimises the effect of
differences in data density, while the subdivision described
below is at a coarser scale and done for different reasons. In
each T14 region, we divided the data into marine and coastal
domains, initially defining marine as having distance from
the nearest shore greater than D = 300 km and water depth
greater than Z = 500 m. The data in each domain were di-
vided into up to 10 subsets for cross-validation using the
following methodology. If the number of marine data in a
region is less than 10, the (up to) 10 points with greatest
min(distance from coast / D, water depth / Z) are defined as
marine, and D and Z decreased by the minimum required
to ensure that the new marine data meet the marine defini-
tion. The data are divided into years, with the time series
from HOT and BATS being labelled as “year” 0 and 1, re-
spectively. If this results in more than 10 subsets, the subsets
with lowest occupancy are combined, with the proviso that

adjacent years cannot share the same subset. This prevents
early years, HOT and BATS, which tend to have lower data
density, from all being combined into a single subset and pre-
vents HOT and BATS from being merged. This continues un-
til the number of subsets is reduced to 10. If the number of
yearly subsets is less than 10, each data point is given its own
subset unless this results in more than 10 subsets, in which
case data are assigned randomly to 10 subsets with as equal
data numbers as possible. If the final number of subsets is
less than five, fitting is not attempted. If fitting occurs in one
domain but not the other, the fit parameters are applied to the
other domain (shown as brackets in Table 2).

Error analysis is done using cross-validation, training the
T14 relationship PA=A SSS+B on all but one of the sub-
sets using singular-value decomposition linear regression,
then the error (difference between the resulting fit and the
data) at each point of the remaining validation subset is
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Figure 13. Mean CT (µmolkg−1) divided into decades: 123 ROIs in the 1970s, 971 in the 1980s, 4613 in the 1990s, 5672 in the 2000s and
3662 from 2010 to 2020.

recorded. This process is repeated using a different valida-
tion subset each time, giving an error for every data point.
These errors are used to calculate the following summary
statistics: root mean squared error (RMSE), mean absolute
error (MAE), median absolute error (MDE), and mean and
median error (both measures of bias).

To check whether the marine definition was over-
conservative, we first defined an acceptable level of degra-
dation in marine RMSE (RMSEm) in exchange for an expan-
sion of the marine domain, RMSEmax =max(RMSEm+0.1,
RMSEm ·1.01). We then repeated the following procedure it-
eratively. We sorted the coastal data by either distance from
coast or water depth, then converted the points with maxi-
mum distance or depth to marine if their absolute error was
not greater than RMSEm, meaning that the addition of the
points would not increase RMSEm. D and Z were adjusted if

necessary to ensure that the new marine data obeyed the ma-
rine criteria, and marine and coastal fits and statistics were
recalculated. If the resulting marine RMSE was less than the
lowest RMSEm found so far, RMSEmax was recalculated.
Next, we tried going beyond the coastal data with absolute
error greater than RMSEm, continuing to lower distance or
depth until the absolute error again exceeded RMSEm but
with opposite sign. Adjusted fits were calculated separately
for adjustments of distance and depth, and for both com-
bined, and the new fit with lowest marine RMSE was ac-
cepted if the marine RMSE was no more than RMSEmax,
again adjusting D and Z and recalculating RMSEmax if nec-
essary. This procedure was repeated until it resulted in no
change from coastal to marine.

Results are shown in Tables 2 and 3. Table 2 shows the
region names, the RMSE of the original T14 and reparam-
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Figure 14. Mean pH (total scale, p = 0, 25 ◦C) divided into decades: 120 ROIs in the 1970s, 672 in the 1980s, 3428 in the 1990s, 4632 in
the 2000s and 10 761 from 2010 to 2020.

Figure 15. Regions used in reparameterisation of Takahashi et al. (2014). See Table 2 for region names.

eterised algorithms in the marine and coastal domains, and
the root mean squared difference (RMSdif) between the T14
and new algorithms, a measure of the extent to which re-
sults have changed due to the reparameterisation. Note that
the RMSE of the original algorithm includes data used by
T14 in the original fit and so may be an underestimate, while
that of the new algorithm is calculated using cross-validation.

This can result in the new RMSE being greater than the T14
RMSE despite the refitting. Table 3 gives details of the algo-
rithms, including the thresholds of distance from coast and
water depth used to define the marine domain and the slope
and intercept in each region and domain. Globally, the ma-
rine RMSE was reduced from 15 µmolkg−1 (likely to be an
underestimate; see above) using the original T14 algorithm
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Table 2. Quoted and calculated RMSE values in each region defined by Takahashi et al. (2014) (T14) partitioned into coastal and marine
subregions (see Table 3 for definitions). Calculated values are for the original T14 coefficients (RMSE T14), the coefficients recalculated
using the MDB with cross-validation (RMSE new) and the RMS difference between the two over the MDB data (RMSdif).

Region Quoted RMSE T14 Marine Coastal

RMSE T14 RMSE new RMSdif RMSE T14 RMSE new RMSdif

1 West GIN Seas 6.1 21.0 6.5 20.1 46.6 23.6 40.9
2 East GIN Seas 12.3 14.7 14.2 6.2 15.6 16.4 4.0
3 High Arctic 16.8 56.5 30.1 48.6 40.6 32.9 31.9
4 Beaufort Sea 60.5 34.4 29.9 18.4 69.0 57.0 42.0
5 Labrador Sea 17.2 11.3 10.5 6.1 39.3 25.2 30.9
6 Subarctic Atlantic 6.7 6.9 6.4 2.9 53.3 29.2 47.5
7 N. Atlantic Drift 6.5 7.9 7.8 2.2 48.5 43.5 25.4
8 Central Atlantic 12.6 11.0 10.4 4.0 22.7 22.6 8.3
9 S. Transition Zone 7.6 20.6 20.7 1.7 6.4 – 5.5
10 Subpolar Transition – – 14.9 – – 23.9 –
11 Antarctic (Atlantic) 5.4 9.4 8.8 4.1 8.9 9.4 1.6
12 Kuroshio-Alaska Gyre 9 13.8 11.8 7.6 33.9 33.6 9.9
13 N. Central Pacific 14.7 14.8 11.9 9.1 34.6 18.4 30.0
14 Transition Zone – – 14.0 – – 11.8 –
15 Okhotsk Sea 8.9 7.6 7.1 5.2 0.0 25.0 12.2
16 Transition Zone – – 8.9 – – – -
17 Central Tropical N. Pacific 8.9 8.4 7.6 3.7 9.4 9.8 1.4
18 Tropical East N. Pacific 9.7 11.7 5.9 10.4 21.4 16.1 15.5
19 Panama Basin 8.6 44.2 – – 21.4 – –
20 Equatorial Pacific – – 11.5 – – 14.9 –
21 Central South Pacific 9.4 12.1 12.5 1.5 7.7 – 3.8
22 E. Central South Pacific 4 11.2 9.1 9.1 7.2 8.0 1.6
23 Subpolar S. Pacific 7.8 8.3 8.2 3.2 4.1 – 2.1
24 Subpolar Transition – – 12.2 – – – –
25 Antarctic (Pacific) 6.7 12.8 9.9 10.9 11.9 8.2 10.1
26 Main North Indian 6.7 13.3 13.7 1.9 16.7 17.6 2.9
27 Red Sea 6.3 6.1 8.7 2.6 16.7 – 2.9
28 Bengal Basin 10.7 8.0 7.5 5.4 0.0 14.9 14.5
29 Main South Indian 7.6 8.0 8.1 1.5 9.5 10.1 2.2
30 S. Indian Transition 5.5 8.6 8.2 3.7 10.4 10.6 1.2
31 Subpolar Indian – – 7.1 – – 6.7 –
32 Antarctic (Indian) 6.6 11.0 9.0 6.8 12.1 11.6 4.1
33 Circumpolar Southern Ocean 9.1 8.2 3.7 7.9 12.1 – 4.1
34 Western Mediterranean – – 14.6 – – – –
35 Eastern Mediterranean – – 8.3 – – 22.8 –

to 12 µmolkg−1, while in coastal waters the RMSE was re-
duced from 32 to 23 µmolkg−1 using only data for which
T14 makes a prediction but reduced further to 22 µmolkg−1

when using all data.
The greatest marine RMSdif (49 µmolkg−1) occurred in

T14 region 3 (High Arctic) and the next greatest (20 and
18 µmolkg−1) in regions 1 and 4 (West GIN Seas and Beau-
fort Sea), all other regions having marine RMSdif less than
11 µmolkg−1. Note that in some cases the coastal RMSdif is
less than the marine RMSdif, suggesting that the T14 fit was
dominated in these regions by data that we classify as coastal.
The fits in regions 1 to 4 are shown in Fig. 16. In region 1 the
tightly linear data used by T14 are not present in the MDB,
and the few data that are consistent with the T14 relationship
are all coastal, while the rest of the data (marine and coastal)

follow similar relationships to those in region 2 (T14 Fig. 3,
West and East GIN Seas). The data in region 3 are mostly
marine, and while the data used by T14 mostly follow a re-
lationship also seen in some of the MDB data, most of the
MDB data follow another relationship, barely seen in the T14
data and consistent with the relationships seen in region 2
(T14 Fig. 3, High Arctic and East GIN Seas). In region 4,
the T14 and reparameterised relationships are quite consis-
tent with each other, the large RMSdif being mainly due to
the large variability in this region. T14 also note that some
of their region 1 data follow the region 2 relationship, which
they ascribe to eddies from region 2. One explanation might
be that these eddies have become more frequent since the
data used by T14, another that the water mass correspond-
ing to region 2 (Atlantic waters flowing north into the Arc-
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Table 3. Slope and intercept in each region defined by Takahashi et al. (2014) (T14). Original coefficients quoted by T14 are labelled T14,
and reparameterised coefficients are given for coastal and marine subregions, where a point is marine if both distance from coast and water
depth are greater than their regional thresholds.

T14 T14 Distance Water Marine Coastal

region Slope Intercept from coast depth Slope Intercept Slope Intercept

1 14.12 1796.2 300 500 54.13 418.9 45.61 716.2
2 59.57 232.0 251 207 58.92 248.5 55.04 390.1
3 27.30 1340.7 93 0 42.45 838.6 44.17 753.5
4 61.29 285.8 300 429 52.43 536.2 45.45 739.6
5 37.27 1016.2 290 0 0.74 2278.1 47.55 649.9
6 45.37 730.6 290 489 45.47 724.2 17.23 1710.1
7 45.30 733.0 163 0 44.73 751.0 30.20 1266.9
8 58.25 270.9 254 0 59.42 224.6 53.40 440.0
9 30.27 1259.4 0 0 28.58 1315.8 – –
10 – – 211 383 58.14 343.5 20.32 1622.9
11 57.78 367.8 248 500 59.36 318.4 60.16 288.5
12 44.88 724.8 298 0 40.14 891.2 48.16 627.0
13 79.92 −395.7 263 0 60.61 246.4 54.48 444.9
14 – – 272 0 29.71 1256.7 19.33 1609.5
15 59.37 301.4 0 500 76.37 −257.8 (76.37) (−257.8)
16 – – 0 0 42.05 824.1 – –
17 65.55 9.4 180 0 63.09 91.4 67.28 −51.7
18 82.20 −553.2 300 500 54.65 380.4 76.35 −340.9
19 74.27 −290.5 0 0 – – – –
20 – – 78 0 60.77 178.0 66.17 −9.7
21 66.64 −28.4 0 0 64.18 58.9 – –
22 58.88 268.5 300 500 51.86 519.0 56.23 358.8
23 45.10 733.6 0 445 38.54 960.3 – –
24 – – 0 0 −15.02 2812.9 – –
25 81.69 −450.8 294 293 52.89 525.6 68.13 13.4
26 57.07 302.3 224 0 56.73 312.4 58.06 269.8
27 26.27 1417.2 0 0 25.64 1443.0 – –
28 39.66 894.2 300 0 28.24 1271.4 (28.24) (1271.4)
29 65.03 20.0 107 184 65.54 3.6 63.22 81.5
30 23.76 1486.1 300 0 28.40 1323.5 23.30 1500.7
31 – – 193 0 5.54 2108.9 0.73 2279.8
32 62.57 202.0 87 0 37.37 1047.8 62.13 212.8
33 74.13 −192.3 0 0 63.82 166.2 – –
34 – – 17 0 86.34 −745.6 – –
35 – – 238 133 57.67 359.5 33.25 1317.6

tic) has expanded west into region 1 and north into region 3.
To test this, Fig. 17 shows a map of regions 1, 2 and 3 with
data points coloured red, green and blue in proportion to the
probability density of a Gaussian distribution with mean and
standard deviation equal to the T14 prediction and its RMSE
in T14 regions 1, 2 and 3, respectively. Hence a red point
would be consistent with the T14 region 1 prediction and in-
consistent with that of regions 2 and 3, a white point would be
consistent with all three predictions, and a black point would
be inconsistent with all three. This map indicates that only
a narrow strip close to the Greenland coast follows the T14
region 1 relationship, the rest being more consistent with re-
gion 2, that the region 2 relationship remains more plausi-

ble than the region 3 relationship up to about 86◦ N and that
the region 3 relationship performs poorly in the Beaufort Sea
sector between 130 and 180◦W.

This exercise has shown success in improving the fit of
T14, incorporating new data, clarifying the distinction be-
tween marine and coastal domains and providing an optimal
fit in marine areas and a generally poorer fit in coastal areas,
with estimated uncertainties.

6 Discussion

In order to stay relevant, the MDB must be regularly updated.
Updates to the MDB can be made by adding new data to the
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Figure 16. PA–SSS relationships in the first four T14 regions, all in the Arctic. Orange data are classified as marine, based on the distance
from the nearest coast in kilometres and the depth in metres both being greater than region-specific thresholds. All other data (in blue) are
classified as coastal. The thick green line is the T14 relationship, and the thin green lines show the T14 quoted RMSE. The red and purple
lines are the new fits to marine and coastal data. (a) Region 1, West GIN Seas; (b) region 2, East GIN Seas; (c) region 3, High Arctic;
(d) region 4, Beaufort Sea.

existing ROIs, only creating new ROIs where necessary. This
enables the MDB to be updated much more quickly and eas-
ily that recalculating all ROIs from the beginning. As well as
inclusion of new data, this process allows updating of data
already in the MDB, for example, if an existing dataset is re-
processed. The scale of the ROIs (100 km diameter, 10 d du-
ration) was chosen based upon our knowledge of the datasets
used, the likely spatial and temporal scales of changes in
these data and conditions, and the desire to ensure we have
matchups between the in situ ROIs and the other datasets.
These scales are adjustable, and regional MDBs may be cre-
ated on smaller spatiotemporal scales in regions where this
scale is inappropriate. This MDB is focused on the surface
carbonate system, and only ROIs containing carbonate sys-
tem variables are included, but the same methodology can be
used to create MDBs for other parameters of interest, such
as methane or dimethyl sulfide or an MDB based purely on a
single parameter like salinity, or SST.

It should be borne in mind that oceanic processes can have
strong effects on smaller scales than the MDB; for instance,
a growing phytoplankton bloom might significantly change
surface pCO2w over a 10 d period. These effects are poten-
tially detectable in the MDB through, for example, the stan-
dard deviation of pCO2w but in general will be masked by

the averaging inherent in the MDB method (the same is true
for any gridding or averaging approach). Other effects such
as surface temperature gradients affecting pCO2w (Woolf et
al., 2016) will be similarly masked by averaging over the top
10 m within the current MDB. The MDB approach might be
inappropriate if the subject of study is highly dependent on
sub-ROI effects, such as a study of the depth variation of
pCO2w in the surface layer, and in such cases it would be bet-
ter to use individual measurements. It should also be borne in
mind that averaging will not remove biases (e.g. regional or
seasonal) from the in situ data, though it will reduce stochas-
tic noise.

The reparameterisation described in Sect. 5, though suc-
cessful, could have been done with the original AT measure-
ments from the original sources, probably with similar re-
sults because the data density of AT measurements is typi-
cally low. Over 50 % of MDB regions with AT contain only
one AT measurement, and only 1 % contain 10 or more. The
real distinction between the MDB approach and use of in-
dividual data points comes when comparing data with very
high and low densities, which are more likely to be found in
parameters that can be measured at high frequency, such as
pCO2w. To illustrate, consider the hypothetical example of a
little-studied sea to which we wish to apply a simple model of
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Figure 17. T14 regions 1 (West GIN Seas, bottom left), 2 (East
GIN Seas, bottom right) and 3 (High Arctic, top) with correspond-
ing MDB data. Each point is coloured according to the probability
density of a Gaussian with mean equal to the T14 regression and
standard deviation equal to its quoted RMSE, which is a measure of
how consistent the data are with the T14 fit. The red component is
the consistency with the region 1 fit, green with the region 2 fit and
blue with the region 3 fit.

constant pCO2w. We have data from two cruises, one in win-
ter making a transect of 10 discrete samples and the other
in summer with an underway system making a transect of
1000 samples. The actual pCO2w has a mean of 400 µatm but
with a seasonal cycle from 375 to 425 µatm not accounted
for by our simple model. If the 10 winter measurements av-
erage to 375 µatm and the 1000 summer measurements to
425 µatm, simple averaging of all data gives an estimate of
just under 425 µatm, while if the 1000 samples are binned
into 10 regions of 100 measurements each, the correct aver-
age is found. Although this example is unrealistic, it is repre-
sentative of the problems that can occur when fitting models
to unevenly distributed data. The models are more complex
and the deviations less obvious, but if there are systematic
effects not captured by the model, and the data density is
greater towards one side of the distribution of these effects,
then the model becomes biased. The best way to overcome
this is to identify the biasing effects and account for them
(e.g. a seasonal split in the example), but some will always re-
main. The MDB approach lessens the effect of unaccounted

Figure 18. Spatial colocation principle for Earth observation data.
All gridded observations within or intersecting a 50 km radius from
the ROI centre for all the consecutive files within ±5 d around the
ROI centre time are averaged together. The mean and other statistics
(median, standard deviation, minimum, maximum and interquar-
tile range) are also calculated and provided in the output matchup
dataset.

biases by evening out differences in data density as consis-
tently as possible.

7 Data availability

All data are freely available on the IFREMER data repos-
itory at https://doi.org/10.12770/0dc16d62-05f6-4bbe-9dc4-
6d47825a5931 (Land and Piollé, 2022).

8 Code availability

Code will be made available by the authors on reasonable
request.

9 Conclusions

Here we present a global dataset created using a novel
methodology for combining different dataset types (e.g. in
situ, model, satellite) onto the same spatial and temporal
scales using “regions of interest” (ROIs). This method gives
advantages over previous methods, which predominantly
grid data by latitude and longitude, as it provides a uniform
spatiotemporal resolution across the globe and minimises bi-
ases created by differences in data density. We have col-
lated a large global dataset comprised primarily of publicly
available in situ, satellite and climatological data; processed
it using this methodology; and presented summary statis-
tics describing the results. The resulting matchup database
(OceanSODA-MDB) is suitable for reparameterising empir-
ical algorithms, as demonstrated here, but would also enable
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validation, evaluation and performance assessment of satel-
lite data, reanalysis or model datasets, as well as model–data
intercomparisons, by simply adding these data into the exist-
ing MDB.
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