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Abstract. To quantify the ecological consequences of recent nationwide restoration efforts in China, spatially
explicit information on forest biomass carbon stock changes over the past 20 years is critical. However, long-term
biomass tracking at the national scale remains challenging as it requires continuous and high-resolution moni-
toring. Here, we characterize the changes in the above- and belowground biomass carbon (AGBC and BGBC)
of forests in China between 2002 and 2021 at 1 km spatial resolution by integrating multiple types of remote
sensing observations with intensive field measurements through regression and machine learning approaches.
On average, 8.6± 0.6 and 2.2± 0.1 PgC were stored in above- and belowground live forests in China. Over the
last 20 years, the total forest biomass carbon pool in China has increased at a rate of 114.5± 16.3 TgC yr−1

(approximately 1.1 % yr−1). The most pronounced forest biomass carbon stock gains occurred in central to
southern China, including the southern Loess Plateau, Qinling mountains, southwestern karsts and southeast-
ern forests. While the combined use of multi-source remote sensing data provides a powerful tool to assess
the forest biomass carbon changes, future research is also needed to explore the drivers of the observed woody
biomass trends and to evaluate the degree to which biomass gains will translate into biodiverse, healthy ecosys-
tems that are sustainable. Annual forest above- and belowground biomass maps for China are now available at
https://doi.org/10.6084/m9.figshare.21931161.v1 (Chen, 2023).
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1 Introduction

Forest biomass carbon stock contributes to over 90 % of the
global vegetation biomass carbon pool (Ma et al., 2021). As
a net outcome of carbon gains from photosynthesis and car-
bon losses from respiration, mortality and disturbances, for-
est biomass carbon stock (approximately 50 % of biomass)
is a critical indicator of ecosystem function and ecosystem
services, such as carbon sequestration, wood production and
resource allocation (Kumar and Mutanga, 2017). Accurate
forest biomass carbon stock monitoring over space and time
is thus essential for assessing ecosystem management strate-
gies and mitigation policies (Kumar and Mutanga, 2017).

In recent decades, remote sensing tools have been in-
tegral in our efforts to map aboveground biomass (AGB)
or carbon stock (AGBC). By combining satellite imagery
(e.g. MODIS) and airborne lidar signals, forest cover and
canopy height can be mapped across large spatial scales (Hu
et al., 2016; Saatchi et al., 2011; Su et al., 2016; Tong et
al., 2020; Xu et al., 2021). Apart from optical images and li-
dar signals, microwaves can provide more detailed insights
into subcanopy forest structure and AGBC due to their abil-
ity to penetrate the canopy. Active microwave techniques,
i.e. Synthetic Aperture Radar (SAR) backscatters, facilitate
high-resolution (e.g. 100 m) AGB mapping, but the tempo-
ral coverage is limited (Cartus et al., 2012; Bouvet et al.,
2018). Conversely, vegetation optical depth (VOD) retrieved
from multiple passive microwave sensors can be used to
produce long-term continuous AGB maps (Frappart et al.,
2020; Liu et al., 2011, 2015), yet at a coarse spatial reso-
lution (e.g. 0.25◦). Because different remote sensing tech-
niques have their advantages and pitfalls, combining these
techniques and complementing them with direct ground mea-
surements is integral to maximizing the accuracy and preci-
sion of biomass carbon estimations across space and time.

Another source of uncertainty in vegetation biomass car-
bon stocks is the extent of biomass that is stored below-
ground as roots. While AGBC mapping is facilitated by
a suite of emerging remote sensing techniques, investigat-
ing the spatiotemporal variation in the belowground biomass
carbon pool (BGBC) remains challenging despite the large
contribution of roots to total carbon storage (Huang et al.,
2021; Ma et al., 2021). To map BGBC, the commonly used
approach is to combine aboveground biomass information
with vegetation-type-specific ratios of belowground biomass
(BGB) to AGB (i.e. root–shoot ratio or RSR; Xu et al.,
2021; Saatchi et al., 2011). Because field studies indicate a
near-linear relationship between log-transformed BGB and
AGB (Enquist Brian and Niklas Karl, 2002), BGB varia-
tions at large scales have often been approximated using
this relationship (Spawn et al., 2020). To capture the com-
plex relationship between BGB and biotic or abiotic vari-
ables (e.g. stand age, heat and water availability), machine
learning algorithms have been applied to map BGB (Huang
et al., 2021) and root mass fractions (Ma et al., 2021) glob-

ally. However, the reference plots were unevenly distributed
across the world and limited in developing countries, leading
to some uncertainties in BGB and BGBC estimation within
those regions (Huang et al., 2021).

China has been implementing national-scale afforestation
and reforestation programmes since the late 1990s (Lu et
al., 2018), promoting vegetation cover and carbon storage
in the Loess Plateau and the southwestern karst regions,
etc. (C. Chen et al., 2019; Niu et al., 2019; Tong et al.,
2018). A spatial understanding of forest biomass trends can
help evaluate the efficiency of ecological restoration pro-
grammes. High-quality, high-resolution and long-term con-
tinuous woody biomass monitoring in China has remained
challenging (Zhang et al., 2019; Huang et al., 2019).

In this study, by integrating multi-source remote sens-
ing data with large quantities of plot measurements, we
produced 1 km resolution above- and belowground for-
est biomass carbon pool maps for China during the past
20 years (2002–2021). This dataset, which is available
at https://doi.org/10.6084/m9.figshare.21931161.v1 (Chen,
2023) could provide new insights into forest carbon stock
changes in China over the past 2 decades.

2 Materials and methods

To map above- and belowground forest biomass carbon stock
in China during 2002–2021, we (1) calibrated a SAR-based
high-resolution forest aboveground biomass map in China
based on massive field measurements of AGBC during 2011–
2015, (2) extended the AGBC time series to 2002–2021
by referring to the tree and short vegetation cover retrieved
from optical remote sensing, (3) calibrated the AGBC time
series in some specific areas using a long-term, integrated
microwave-based VOD dataset and (4) mapped forestlands’
BGBC through a random forest model developed based on
the in situ records in the published literature. The basic pro-
cedure is shown in Fig. 1 and described below.

2.1 A benchmark map of forest aboveground biomass
carbon (AGBC) in China

By combining multiple satellite observations of SAR
backscatter, including the L-band ALOS PALSAR (Ad-
vanced Land Observing Satellite Phased Array L-band Syn-
thetic Aperture Radar) and C-band Envisat ASAR (Ad-
vanced Synthetic Aperture Radar) around the year 2010,
the first global high-resolution (100 m) forest AGB dataset,
GlobBiomass 2010, was published through the European
Space Agency (ESA)’s Data User Element (DUE) project
(Santoro et al., 2021), whose relative root mean square error
(RMSE) was below 30 % (Mialon et al., 2020). Apart from
GlobBiomass 2010, another high-resolution (30 m) forest
AGB for China was produced by relating the (lidar)-derived
ICESat/GLAS (Ice, Cloud and land Elevation Satellite/Geo-
science Laser Altimeter System) footprint AGB to various
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Figure 1. Workflow of forest biomass carbon pool monitoring in China during 2002–2021. AGBC and BGBC are the aboveground and
belowground biomass carbon, VCF is the vegetation continuous field, LPDR VOD is the global land parameter data record vegetation optical
depth, and CLCD is the China land cover dataset.

variables derived from Landsat optical images (Huang et
al., 2019). Because the ICESat data in 2006 were applied
as the training target of the random forest model, Huang et
al. (2019)’s dataset refers to the AGB status in 2006. Accord-
ing to a recent validation study, GlobBiomass and Huang
et al. (2019)’s AGB performed the best among all existing
AGB datasets in China (Chang et al., 2021). Mean forest
canopy heights and tree coverage are also good indicators
of the spatial pattern of forest biomass. The high-resolution
(30 m) forest canopy height map for China was developed
by interpolating the ICESat-2 and Global Ecosystem Dy-
namics Investigation (GEDI) data in 2019 through a neural
network (Liu et al., 2022), while the tree cover map at the
same resolution was derived from cloud-free growing sea-
son composite Landsat 7 data in around 2010 (Hansen et al.,
2013). We resampled GlobBiomass from 100 m resolution
(1/1125◦) to 1/1200◦ (approximately 90 m) and averaged
Huang et al. (2019)’s AGB map, canopy height map and tree
cover map to the same resolution.

A reviewable, consistent ecosystem carbon stock inven-
tory was conducted in China between 2011 and 2015 (Tang
et al., 2018). We requested the AGB carbon stock (AGBC)
data at more than 5000 30× 30 m sized forest plots from
the authors. Due to the scale mismatch between the maps of
biomass, canopy height or tree cover and the field measure-

ments, we dropped out the data within the 1/1200◦ resolu-
tion grids in which the standard deviation of tree cover was
greater than 15 % (according to Chang et al., 2021), leaving
2444 homogeneous forest plots remaining (see Fig. 2 for the
spatial distribution of these forest plots and Fig. S1a–b in
the Supplement for the cumulative frequency curve and his-
togram of the AGBC records). The AGBC records in these
forest plots were further multiplied by the mean fraction of
forestland over 2011–2015 in the corresponding grid, which
was computed from the annual 30 m resolution China land
cover dataset (CLCD) (Yang and Huang, 2021). By compari-
son, GlobBiomass 2010 AGB matches the best with the grid-
scale forest AGBC derived from plot measurements, with a
correlation coefficient (CC) of 0.50, followed by tree cover
(CC= 0.42), the product of canopy height and tree cover
(CC= 0.38) and, finally, the canopy height (0.27) and Huang
et al. (2019)’s AGB (0.25). Therefore, to obtain an improved
benchmark map of forest AGBC in China for the period
of 2011–2015, we chose the GlobBiomass 2010 dataset as
our basis and calibrated it against the in situ observation-
based, grid-scale forest AGBC. To build an equation for the
calibration, we divided the grid-scale AGBC values into 16
equidistant subranges (0–15, 15–30, . . . , 225–240 tC ha−1),
calculated the median of grid-scale AGBC values that are
within each subrange and then the median of GlobBiomass
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AGB values in the corresponding grids. According to pre-
vious studies, an exponential function would be suitable for
calibrating the GlobBiomass map in a region such as China
(Mialon et al., 2020). After the calibration, we averaged the
benchmark AGBC map from 1/1200 to 1/120◦ (approxi-
mately 1 km) to further reduce the uncertainties.

2.2 Temporally continuous forest AGBC mapping during
2002–2021

Because the benchmark AGBC was mapped based on SAR
data, the spatial pattern accuracy is guaranteed, but the tem-
poral coverage is limited to just a few years. Hence, to create
a forest AGBC time series over the past 20 years, we inte-
grated the benchmark AGBC with long-term continuous op-
tical and passive microwave remote sensing data.

The spatial resolution of optical remote sensing is higher
and is thus preferred in this study. By adopting the MODIS
vegetation continuous field (VCF) data (MOD44B v061),
which includes three ground cover components, we ob-
tain the percent tree cover, percent non-tree vegetation
(i.e. short vegetation) cover and percent non-vegetated area
(DiMiceli et al., 2022). We first calculated the mean tree
cover (hereinafter TCmean) and short vegetation cover (here-
inafter SVCmean) during 2011–2015 and resampled them
from 250 m to 1/120◦, which is the same resolution as the
benchmark AGBC map for 2011–2015. Because the canopy
heights of trees are usually similar within a small area, the
regional AGBC per TCmean can be assumed to be the same,
which is referred to as the “homogeneous assumption” here-
inafter. Accordingly, for each grid, we searched the TCmean,
SVCmean and AGBC within a 3× 3 window (1/40◦× 1/40◦)
and then regressed the AGBC values in nine grids against
both TCmean (the primary, or key, predictor of AGBC) and
SVCmean (assumed as a supplementary predictor) linearly.
Specifically, when the regression coefficient of SVCmean was
negative or the fitting efficiency was low (R2 < 0.5; signifi-
cance p value > 0.05), we excluded the supplementary pre-
dictor from the regression and only explored the linear rela-
tionship between TCmean and AGBC. Afterwards, if the re-
gression between TCmean and AGBC was still invalid, we
enlarged the searching window size to 5× 5, then 7× 7 and,
finally, 9× 9 until the regression and the coefficients became
valid. Then, the grid annual AGBC from 2002 to 2021 can
be estimated from the TC or both the TC and SVC in each
year, following the regression results. If the regression failed
even if the window size reached 9× 9, we stopped expanding
the searching window to avoid the homogeneous assumption
being invalid. In those grids, following a previous study (Xu
et al., 2021), we divided the estimated AGBC by the TCmean
during 2011–2015 and then multiplied the TC in each year
to obtain the AGBC time series. The above method utilized
spatial information to estimate the temporal variation, and
can thus be referred to as the “space-for-time” method.

Long-term continuous microwave VOD can also reflect
forest biomass changes, although the relationship was non-
linear (Jackson and Schmugge, 1991; O’Neill et al., 2021;
Liu et al., 2015; Wigneron et al., 1995). We selected the
global land parameter data record (LPDR) v3, 0.25◦ resolu-
tion, VOD product, which was generated using similar cal-
ibrated, X-band brightness temperature retrieved from the
Advanced Microwave Scanning Radiometer for Earth Ob-
serving System (AMSR-E) and the Advanced Microwave
Scanning Radiometer 2 (AMSR2; Du et al., 2017). As re-
vealed by a recent evaluation study, LPDR VOD is better
correlated with AGB than other long-term VOD products,
especially in less-vegetated areas (Li et al., 2021). Because
X-band VODs are still more sensitive to canopy cover than
stem biomass, and there is a data gap between October 2010
and June 2011, while the plot investigations were all con-
ducted in summer (Tang et al., 2018). We averaged the VOD
data from mid-July (the 206th day) until the end of Septem-
ber (the 274th day) in each year to represent the annual AGB
status. We also aggregated the benchmark AGBC map and
the VCF data (TCmean and SVCmean) to 0.25◦ resolution. Af-
ter each round of searching, we applied the shape language
modelling algorithm (D’Errico, 2022), to fit the nonlinear
but monotonous relationship between AGBC and VOD val-
ues within the searching window, and then fitted the bivariate
linear regression between AGBC and VCF. If the nonlinear
regression between AGBC and VOD is valid, and the R2 is
superior to the regression between AGBC and VCF data, then
the LPDR VOD data are expected to outperform VCF in pre-
dicting the interannual AGBC changes in the corresponding
0.25◦ grid. Therefore, in these areas, we calibrated the VCF-
derived high-resolution (1/120◦) annual AGBC by incorpo-
rating the ratio between the VOD-derived 0.25◦ AGBC and
the aggregated VCF-derived AGBC in that year.

2.3 Forest belowground biomass carbon (BGBC)
mapping during 2002–2021

This study mapped belowground forest biomass carbon
(BGBC) following the random forest (RF) model approach
(Huang et al., 2021). To reveal the forest above- and below-
ground biomass allocation rules in China, this study collated
both AGB and BGB records at 8729 forest plots through-
out China, which were obtained using allometric equations
or clear-cutting methods from published papers, including
Luo (1996), Luo et al. (2014), Guo and Ren (2014) and Wang
et al. (2014). Because forest stand age and tree species (forest
type) information are also available at 8182 plots, while the
climatic backgrounds are available from the WorldClim v2.1
dataset (Fick and Hijmans, 2017), the forest plot AGB, forest
type (hereinafter FOR_T), stand age, mean annual tempera-
ture (MAT), temperature seasonality (standard deviation of
monthly temperature× 100; abbreviated as Tsea), mean an-
nual precipitation (MAP) and precipitation seasonality (coef-
ficient of variation in monthly precipitation; Psea) were ap-
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Figure 2. The spatial distribution of (1) 2444 homogeneous forest plots with aboveground ground biomass carbon stock measured between
2011 and 2015 and (2) 8182 forest plots with both above- and belowground biomass records collated in this study.

plied as predictors of the forest plot BGB. For simplicity,
we distinguished all forests into the following five types: ev-
ergreen broadleaf forest (EBF), deciduous broadleaf forest
(DBF), evergreen needleleaf forest (ENF), deciduous needle-
leaf forest (DNF), and mixed forest (MF). Using the data
records at these 8182 plots (see Fig. 2 for the locations of
these forest plots and Fig. S1c–f for the cumulative frequency
curves and histograms of the AGB and BGB data), we trained
10-fold RF models using MATLAB R2021a. The number of
regression trees was set to 500.

Because the 1/120◦ resolution grids in which forest
AGBC data were available are often mixed with forestland
and some other land cover types, e.g. waterbodies, bare
ground and croplands, we converted the annual grid-average
AGBC into the AGBC per area forestland by incorporating
the annual fraction of forestland computed from the CLCD
at 30 m resolution. Considering the potential uncertainties in
the forestland fraction and the inclusion of shrub or herba-
ceous plant AGB in the SAR-derived AGB, we only calcu-
lated the annual AGBC per area forestland in grids that were
dominated by forestland (forestland fractions were consis-
tently over 50 %). In these forestland grids, we simulated the
forest BGBC per area forestland during 2002–2021 by in-
putting the estimated annual AGB (approximately 2 times
the AGBC) per forestland, annual forest type map derived
from the ESA Climate Change Initiative’s land cover clas-
sification dataset (Li et al., 2018), forest stand age (Besnard
et al., 2021) and climatic background variables into the RF
model. Afterwards, we multiplied the simulation results in

every forestland grid with the annual forestland fractions to
obtain the forest BGB and BGBC (0.5×BGB) time series.
Finally, for grids with forests, but which are not dominated
by forestlands, we sequentially searched for at least five valid
RSR values (the ratio of forest BGBC to AGBC) nearby
(Y. Chen et al., 2019) and then multiplied the annual forest
AGBC in the grid with the median of nearby RSR values in
each year to estimate the annual forest BGBC.

2.4 Evaluation and assessment

We compared the interannual trend of forest biomass car-
bon calculated in this study against that of existing glob-
al/regional long-term woody biomass datasets, including the
well-received global long-term terrestrial biomass data be-
tween 1993–2012, which were developed mainly based on a
long-term integrated VOD dataset (Liu et al., 2015), and an
updated woody biomass dataset covering 2001–2019, whose
long time series was derived from optical remote sensing data
(i.e. MODIS VCF dataset; Xu et al., 2021).

To justify the random forest models for BGBC predic-
tions, we drew partial dependence plots (PDPs) in MATLAB
R2021a to show the marginal effect that one predictor has
on the training target (e.g. BGB at forest plots; Hastie et al.,
2009). Here, for each predictor, we excluded the extreme val-
ues (the lowest 1 % and the highest 1 %) before calculating
the corresponding PDP to avoid roughly extending the PDP
lines to data-scarce areas. We performed 10-fold RF training
to derive the mean PDP values and the standard deviations.
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3 Results and discussion

3.1 Evaluation of forest AGBC and BGBC estimation

First, according to Fig. 3a, an exponential function,
y= 1.63× x0.73, can fit the relationship between the actual
grid-scale forest AGBC over 2011–2015 (y) and the AGB
values predicted by GlobBiomass 2010 (x). Hence, this func-
tion was applied to derive the benchmark map of forest
AGBC across China.

Second, when using the spatial information of tree cover
and short vegetation cover to estimate the temporal variation
in AGBC in each grid, the spatial searching window was at its
minimum of 3× 3 in most (53 %) grids with forests. Across
China, the temporal extension of AGBC in only 15 % of all
grids with forest cannot be achieved, even when the search-
ing window was enlarged to 9× 9 (Fig. 3b).

Next, as shown in Fig. 3c and d, the grids in which the
LPDR X-band VOD performed better than MODIS VCF
in predicting the temporal change in forest AGBC are usu-
ally located in regions with low tree cover. These grids ac-
count for just 10.4 % of all grids with forests and may suffer
from high uncertainty within the optical-based variation in
tree cover. Therefore, microwave-based VOD is supposed to
be more suitable for estimating the forest AGBC changes in
these regions.

The RF model designed for forest plot BGB estimation
(see Sect. 2.3) achieved a predictive R2 of 0.89± 0.02, while
the RMSE was 6.3± 0.5 t ha−1. AGB explained 53 % of the
variation in BGB among different plots. Long-term climate
backgrounds, i.e. mean annual temperature, temperature sea-
sonality, annual precipitation and precipitation seasonality
accounted for 8 %, 6 %, 8 % and 7 %, respectively. Forest
type and stand age also contributed 12 % and 8 % to the train-
ing efficiency, indicating that the effects of these factors are
nonnegligible. The selection of predictors of BGB basically
followed the existing knowledge (Huang et al., 2021), and the
seasonality of temperature and precipitation made sense in
the prediction (see Text S1 in the Supplement). On the other
hand, although previous studies incorporated many edaphic
factors as predictors of BGB (Huang et al., 2021), by com-
paring the training efficiencies with whether these edaphic
factors are incorporated or not, we could justify the reason-
ability of our simplified set of predictors (Text S1).

According to the collected woody plot data, AGB is a key
driver of BGB (Fig. 4). Yet, RSR changes among different
forest growth stages, decreasing in general, as previously re-
ported (Mokany et al., 2006). The overall negative impact of
mean temperature on BGB or RSR agrees with the mecha-
nism that higher heat promotes nutrient accessibility (Luo et
al., 2012; Ma et al., 2021) and increases the turnover rates of
roots at a higher magnitude than stems (Reich et al., 2014).
The U-shaped relationship between precipitation and below-
ground biomass allocation follows the optimal biomass allo-
cation theory because arid climates promote root extension,

yet too heavy rainfall reduces nutrient availability through
leaching and dilution effects (Luo et al., 2012). Other fac-
tors, including temperature seasonality, precipitation season-
ality and forest type, have supplementary effects on biomass
allocation (Fig. S2).

3.2 Forest biomass carbon pool, allocation and change
in China

Between 2002 to 2021, the forest above- and belowground
biomass carbon (AGBC and BGBC) pools in China were
8.6± 0.6 and 2.2± 0.1 PgC, respectively (Table 1). The
mean RSR for all forests was 0.25, basically equal to the
global average (Huang et al., 2021). Separated by forest type,
evergreen conifer forests (ENFs) occupy the highest biomass
carbon pool per unit area, mainly because ENFs are mainly
located in southwestern China and are more mature and nat-
ural (Yu et al., 2020; Zhang et al., 2017). Deciduous forests
(DBF and DNF) in northern China (see Fig. S3 for the distri-
bution of different forest ecosystems) harbour less biomass
carbon but higher BGBC (Fig. 5a), which can be attributed
to the higher RSR values (Table 1).

The forest biomass carbon stock in China increased at
an average rate of 114.5± 16.3 TgC yr−1 (p < 0.01) dur-
ing 2002–2021, and the annual biomass carbon gains were
the greatest from 2014 to 2015, reaching 736 TgC (Fig. 5b).
Changes in AGB and BGB accounted for 81.9 % and 18.1 %,
respectively, of the forest carbon stock gains over the past 20
years.

Our estimates of the forest biomass carbon pool, forest
RSR and the recent interannual trend of forest biomass car-
bon are generally consistent with previous estimates based
on massive field investigations (Table 1).

3.3 Spatial pattern of the forest biomass carbon stock
trend in China

The highest forest biomass carbon pools during 2002–2021
were observed in northeastern and southwestern China, es-
pecially South Tibet. Forest biomass carbon stocks were
also high in the natural or semi-natural forests in the Qin-
ling mountains, Hengduan Mountains, Hainan and Taiwan
(Fig. 6a). Above- and belowground forest biomass allocation
varies significantly among regions. RSR is highest in north-
eastern deciduous conifer forests and northern China’s decid-
uous broadleaf forests but low in southern China (Fig. 6b).
The strongest forest biomass carbon increases were found in
central to southern China, including the Loess Plateau, Qin-
ling mountains, southwestern karst region and southeastern
forests. Slight declines in forest biomass carbon only oc-
curred in some mature and natural forests, e.g. those in the
Greater Khingan mountain, Hengduan Mountains and South
Tibet (Fig. 6c). A total of 40.3 % of all forests in China
showed significant biomass carbon stock gains over the past
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Figure 3. Evaluation of the forest AGBC and BGBC mapping in this study. (a) The regression relationship between the grid-scale forest AGB
carbon stock derived from plot measurements during 2011–2015 and the GlobBiomass AGB dataset for 2010. (b) The minimum searching
window sizes of every 1/120◦ grid when the spatial variation in MODIS VCF was applied as the predictor of AGBC changes. (c) The spatial
pattern of the relative performances of MODIS VCF and LPDR VOD data in predicting the variation in AGBC. (d) Comparison of the mean
tree cover between the grids where VOD data were more suitable for predicting the variation in AGBC and the grids where VCF data were
the better predictor.

Table 1. Agreement of the estimated various forest RSR and the trend of forest biomass carbon in China with existing studies.

Variables Our estimate Previous estimates Reference

Forest AGBC 8.6± 0.6 (2002–2021)
8.7± 0.3 (2011–2015)

8.4± 1.6 (2011–2015) Tang et al. (2018)

Forest BGBC 2.2± 0.1 (2002–2021)
2.2± 0.1 (2011–2015)

2.1± 0.4 (2011–2015)

RSR of EBF 0.27± 0.07 0.22± 0.11 Tang et al. (2018)

RSR of DBF 0.31± 0.05 0.28± 0.15

RSR of ENF 0.22± 0.04 0.24± 0.11

RSR of DNF 0.29± 0.10 0.31± 0.13

Annual forest carbon stock increase 114.5± 16.3 TgC yr−1

(2002–2021)
105.1± 42.2 TgC yr−1

(2002–2010)

116.7 TgC yr−1

(2000–2010)
Fang et al. (2018)
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Figure 4. Influence of key factors on forest belowground biomass (BGB) and root–shoot ratio (RSR) in China. Subfigures (a–d) show partial
influences of (a) AGB, (b) stand age, (c) MAT and (d) MAP on BGB and RSR values of all forest plots. The error bars represent the standard
deviations of the 10-fold training. We did not draw the PDP for the impact of AGB on RSR, since the dividend of RSR calculation is AGB.

Figure 5. Forest biomass allocation and biomass change in China during 2002–2021. (a) Aboveground biomass carbon (AGBC) and below-
ground biomass carbon (BGBC) density of different forest ecosystems in China. (b) The interannual changes in forest AGBC and BGBC in
China. Total forest biomass carbon stock changes from the previous to the current year are represented by green columns.

20 years, whereas only 3.3 % of forests experienced signifi-
cant biomass carbon losses (Fig. 6d).

4 Data availability

Annual forest above- and belowground biomass maps
in China between 2002 and 2021 are now available
at https://doi.org/10.6084/m9.figshare.21931161.v1 (Chen,
2023). This dataset is also available on PANGAEA
(https://doi.org/10.1594/PANGAEA.955074, Chen et al.,

2023) and will also be available on the National Ti-
betan Plateau/Third Pole Environment website. Other open
datasets that made this research possible, and the related ref-
erences, are attached in the Supplement (Text S2).
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Figure 6. Maps of forest biomass carbon pool, allocation and trend in China during 2002–2021. (a) Spatial pattern of the forest biomass
carbon pool in China. (b) RSR of all forestland pixels. (c) Map of the forest biomass carbon stock trend from 2002 to 2021, with shaded
areas representing statistically significant trends at the 95 % confidence level. (d) histogram and basic statistics of all forest biomass carbon
stock trend.

5 Discussion

5.1 Comparison of the estimated forest biomass carbon
pool change in this study against the existing
datasets

Although there is potential overestimation, the interan-
nual variation in forest AGBC in China, according to Liu
et al. (2015), and that of total biomass carbon, accord-
ing to Xu et al. (2021), are both highly correlated with
our results (R2

= 0.65 and 0.88). Liu et al. (2015) pre-
dicted a forest AGBC increase rate of 102.2± 35.8 Tg yr−1

(p < 0.01), which is slightly higher than our estimate
of 80.8± 25.1 Tg yr−1 during 2002–2012, while Xu et
al. (2021) indicated a biomass carbon stock trend of
99.4± 23.2 Tg yr−1 (p < 0.01) from 2002 to 2019, which is
slightly lower than the rate of 115.6± 20.2 Tg yr−1 in this
study (Fig. 7a–b). The spatial maps of the forest biomass car-
bon trends estimated by Xu et al. (2021) and Liu et al. (2015)
were slightly patchy (Fig. 7c–d). Compared to this study, the
two existing datasets (i.e. the datasets of Liu et al., 2015,
and Xu et al., 2021) predicted higher biomass carbon stock

trends in the Qinling mountains and the mature deciduous
conifer forests in northeastern China. Meanwhile, they pre-
dicted lower carbon sinks in southern China (Fig. 7c–f),
where reforestation and forest-management-induced short-
term extensive carbon uptake (Tong et al., 2020) have been
confirmed by atmospheric inversions (Wang et al., 2020;
Yang et al., 2021).

Finally, by comparing Fig. 7e and f, we could also notice
that the hot spot of forest biomass carbon gains has moved
from the Loess Plateau over the first decade of our study pe-
riod (2002–2012) to southern China (e.g. Guangxi province)
later. This change was probably due to the large-scale im-
plementation of the “Grain for Green” project on the Loess
Plateau (Liu et al., 2020; Wu et al., 2019) before 2012 and the
massive plantation of fast-growing trees in southern China
after 2010 (Tong et al., 2020).

5.2 Some uncertainties in the forest biomass carbon
dataset and future prospects

During benchmark AGBC mapping, we converted the in
situ AGBC data at forest plots into the grid-scale average
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Figure 7. Comparison of the estimated forest biomass carbon pool change in this study with two existing datasets. (a) Comparison of the
interannual variation in forest biomass carbon in this study with the estimate by Xu et al. (2021) during 2002–2019. (b) Comparison of the
interannual variation in forest AGBC calculated in this study with the estimate by Liu et al. (2015) over 2002–2012. (c) Map of the interannual
trend of forest biomass carbon stock in China during 2003–2019, according to Xu et al. (2021). (d) Map of the forest AGBC trend in China
during 2003–2012, according to Liu et al. (2015). (e) Map of the estimated trend of forest biomass carbon stock over 2002–2019 in this
study. (f) Map of the estimated forest AGBC trend over 2002–2012 in this study.

AGBC by multiplying by the fraction of forestland during
the time period of field investigation. Considering the overall
high quality of the China’s land use/cover datasets developed
via the human–computer interactive interpretation of Land-
sat images (Liu et al., 2014; Yang and Huang, 2021), and
that the producer’s accuracy (PA) and user’s accuracy (UA)
for forestland classification in the CLCD dataset used in this
study were 73 % and 85 %, respectively, the errors within the
benchmark AGBC mapping induced by the scale conversion
based on the forestland area fraction were generally limited.

The variation in climatic conditions in the short term may
have subtle influences on that in the BGB, but explicit knowl-
edge on this effect is lacking. Instead, woody vegetation
BGB is much more driven by AGB (vegetation density), as
indicated by the very strong relationship between BGB and
AGB (R2

≥ 0.85). Moreover, the long-term climatic back-
ground is expected to have a stronger influence on the RSR
of perennial woody plants than the meteorological conditions
in only a few years, since above- and belowground biomass
allocation is the result of plants’ long-term adjustment to the
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environment (Qi et al., 2019). Therefore, it is reasonable not
to consider the influence of the specific climatic conditions
in a year on the variation in BGB.

In the near future, P-band microwave sensors, which
have higher penetrability into the canopy than L-band mi-
crowaves, will further improve AGB mapping. For example,
Biomass (Biomass Monitoring Mission for Carbon Assess-
ment), a fully polarimetric P-band SAR, is scheduled to be
launched in 2024 (Le Toan et al., 2011). Therefore, in the fu-
ture, the relationship between P-band microwave retrievals
and biomass should be addressed, in addition to the cali-
bration of historical AGB datasets (e.g. the long-term AGB
dataset in this study) against the P-band SAR-based AGB
benchmark map to extend the time series. In addition, an
intercalibration between the AMSR-E-based VOD and the
AMSR2-based VOD will further reduce the potential bias
within the long-term integrated VOD datasets (Wang et al.,
2021a, b). On the other hand, more in situ AGB and BGB
measurements in larger plots are needed to further improve
the estimation of belowground biomass allocation.
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