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Abstract. The alpine grassland ecosystem accounts for 53 % of the Qinghai–Tibet Plateau (QTP) area and
is an important ecological protection barrier, but it is fragile and vulnerable to climate change. Therefore,
continuous monitoring of grassland aboveground biomass (AGB) is necessary. Although many studies have
mapped the spatial distribution of AGB for the QTP, the results vary widely due to the limited ground sam-
ples and mismatches with satellite pixel scales. This paper proposed a new algorithm using unmanned aerial
vehicles (UAVs) as a bridge to estimate the grassland AGB on the QTP from 2000 to 2019. The innovations
were as follows: (1) in terms of ground data acquisition, spatial-scale matching among the traditional ground
samples, UAV photos, and MODIS pixels was considered. A total of 906 pairs between field-harvested AGB
and UAV sub-photos and 2602 sets of MODIS pixel-scale UAV data (over 37 000 UAV photos) were collected
during 2015–2019. Therefore, the ground validation samples were sufficient and scale-matched. (2) In terms
of model construction, the traditional quadrat scale (0.25 m2) was successfully upscaled to the MODIS pixel
scale (62 500 m2) based on the random forest and stepwise upscaling methods. Compared with previous studies,
the scale matching of independent and dependent variables was achieved, effectively reducing the impact of
spatial-scale mismatch. The results showed that the correlation between the AGB values estimated by UAV and
MODIS vegetation indices was higher than that between field-measured AGB and MODIS vegetation indices
at the MODIS pixel scale. The multi-year validation results showed that the constructed MODIS pixel-scale
AGB estimation model had good robustness, with an average R2 of 0.83 and RMSE of 34.13 g m−2. Our dataset
provides an important input parameter for a comprehensive understanding of the role of the QTP under global
climate change. The dataset is available from the National Tibetan Plateau/Third Pole Environment Data Center
(https://doi.org/10.11888/Terre.tpdc.272587; H. Zhang et al., 2022).

Published by Copernicus Publications.

https://doi.org/10.11888/Terre.tpdc.272587


822 H. Zhang et al.: A 250 m annual alpine grassland AGB dataset over the Qinghai–Tibet Plateau (2000–2019)

1 Introduction

Grasslands, accounting for approximately 37 % of the
Earth’s surface, play an essential role in the global carbon
cycle and food supply (Ómara, 2012). However, most natu-
ral grasslands have been degraded to a certain extent due to
overgrazing, farmland encroachment, soil erosion, and global
climate change (Suttie et al., 2005; Ramankutty et al., 2008;
Ómara, 2012). Therefore, timely monitoring of grassland
health is crucial for the sustainable development of livestock
and understanding of the global carbon cycle. Aboveground
biomass (AGB) is a key indicator of grassland status and an
important input parameter for ecological modeling and car-
bon storage estimation. Thus, accurate and rapid estimation
of AGB is valuable for grassland monitoring.

The advent of satellites has made it possible to map
the spatiotemporal dynamics of grasslands over large ar-
eas. Spectral information from different satellite sensors has
been employed for biomass estimation, such as Sentinel-2,
Landsat, and Moderate Resolution Imaging Spectroradiome-
ter (MODIS; Wang et al., 2019; Zhang et al., 2016). Although
there are differences in spatial and spectral resolution, the
core idea of the biomass estimation model is to construct
linear or nonlinear relationships between the field-measured
samples and various satellite spectral indices. Therefore, the
accuracy of the estimation is closely related to the quality
and quantity of ground samples (Morais et al., 2021; Yu et
al., 2021). However, there are still two deficiencies in ground
data acquisition, namely the large spatial gap between the tra-
ditional samples and satellite pixels and the low efficiency.

How to narrow the spatial gap between traditional sam-
ples and satellite pixels is an urgent problem to be solved.
Since it is impossible to harvest all grasses within a satellite
pixel range, the average of 3–5 quadrats (0.5 m× 0.5 m or
1 m× 1 m) is usually used as the measurement (Dusseux et
al., 2015; Yang et al., 2018), which results in a considerable
spatial gap. A lot of studies have been carried out to upscale
ground measurements to satellite pixels (Crow et al., 2012;
Bian and Walsh, 1993), such as block-kriging geostatistical
interpolation, different types of regression models, and ma-
chine learning algorithms (Cheng et al., 2007; Wang et al.,
2014; Cannavacciuolo et al., 1998; Dancy et al., 1986; Li et
al., 2018). However, the accuracy of these methods depends
on the density of sampling points. In addition, fine-resolution
satellite images were used as a bridge to reduce the impact
of the scale mismatch on AGB estimation (Yu et al., 2021;
He et al., 2019). The rationale is that, the finer the resolution
of the satellite image, the smaller the spatial gap with the
ground samples (Wang and Sun, 2014; Morais et al., 2021).
Therefore, filling the spatial gap between ground samples
and satellite pixels is the key to improving the accuracy of
satellite AGB estimations.

Improving the efficiency of ground sampling is another
issue that needs to be addressed. Although the traditional
sampling method can yield high-accuracy results, it is time-

consuming and labor intensive. For example, 5 years were
spent in completing the collection of ground samples to map
the grassland AGB in China (Yang et al., 2010). Moreover,
with limited original ground data, some scholars had to use
the data published by others to increase the sample amount
(Xia et al., 2018; Jiao et al., 2017). However, datasets from
different sources may affect the overall accuracy due to the
differences in quadrat size, plot size, and harvesting methods.

As a linkage/bridge between field observation and satel-
lites detecting grassland biomass, the development and pop-
ularity of unmanned aerial vehicle (UAV) technology has
provided a new solution to the abovementioned two issues.
UAV photography has been successfully used to estimate
ecological metrics such as fractional vegetation cover (FVC),
biomass, and canopy height (Chen et al., 2016; Zhang et al.,
2018; Bendig et al., 2015). The use of UAVs has the follow-
ing two unparalleled advantages over traditional sampling
methods. First, UAVs can effectively obtain two- or three-
dimensional vegetation information in a non-destructive way,
which is helpful for grassland monitoring (Lussem et al.,
2019; H. F. Zhang et al., 2022; Zhang et al., 2018). Second,
UAVs can rapidly collect key parameters of grassland within
satellite pixels (e.g., FVC, Chen et al., 2016). Hence, UAV
photographs can serve as a bridge to fill the spatial gap be-
tween field samples and satellite pixels. However, most cur-
rent UAV-based grassland biomass estimations are conducted
on a small scale, but a few studies are on a regional scale.
Whether UAVs can be used to fill the spatial gap between
traditional ground sampling and satellite pixels remains an
open question. In addition, there is a shortage of multi-year
validation to test the robustness of the AGB estimation model
over time due to the limited sample amount in previous stud-
ies.

This study proposed a new approach combining traditional
ground sampling, UAV photography, and satellite images to
produce a new reliable AGB dataset for the grasslands of the
Qinghai–Tibet Plateau (QTP). The objectives of this study
were (1) to construct a UAV-based grassland AGB estima-
tion model at the quadrat/MODIS pixel scales, respectively,
(2) to investigate whether UAVs can be used as a bridge to
fill the spatial gap between ground samples and satellite pix-
els to improve the accuracy of grassland AGB estimation,
and (3) to map the AGB of alpine grasslands on the QTP
from 2000 to 2019.

2 Materials and methods

2.1 Study site

The QTP is the highest and largest plateau on Earth
(26◦00′12′′–39◦46′50′′ N, 73◦18′52′′–104◦46′59′′ E), with
an average elevation of ∼ 4000 m and an area of approxi-
mately 257.24× 104 km2 (Fig. 1). It is located in western
China, with an average annual temperature and precipita-
tion of about 1.6 ◦C and 413.6 mm, respectively. The primary
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Figure 1. Distribution of field and UAV sampling sites in 2019 (a). UAV sampling sites in grasslands on the QTP from 2015–2018 (b–e).
Field_UAV_2019 represents the quadrat-scale sampling sites for the 2019 UAV field-synchronous grassland biomass experiment. UAV_year
represents the UAV sampling points based on the GRID or RECTANGLE mode of the corresponding year.
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grassland types are meadow, steppe, and desert, which play
a critical role in climate regulation, water conservation, and
biodiversity protection (Ding et al., 2013). In this study, the
boundary of the QTP (Zhang et al., 2014) was downloaded
from the National Earth System Science Data Center, Na-
tional Science and Technology Infrastructure of China (http:
//www.geodata.cn/, last access: 8 February 2023). Grassland
types were derived from the 1 : 1000000 Chinese digital
grassland classification map provided by the China Resource
and Environmental Science Data Center (https://www.resdc.
cn/, last access: 8 February 2023). This dataset, generated
through field surveys in the 1980s and supplemented by satel-
lite and aerial imagery, is the most detailed grassland-type
map available. To facilitate comparison with other AGB es-
timates, we regrouped the grassland types into three cate-
gories, i.e., meadow, steppe, and desert (Table A1), and re-
sampled this regrouped vector to a grid with 250 m spatial
resolution.

2.2 Overall technology roadmap

The overall flowchart of this study is shown in Fig. 2. It
consisted of four main steps, namely (1) UAV and field in-
vestigation, (2) constructing the AGB estimation model at
the quadrat scale, (3) upscaling the grassland AGB to the
MODIS pixel scale (250 m), and (4) building the AGB es-
timation model at the MODIS pixel scale (250 m) and ap-
plying it to the QTP region. More detailed information about
each step was described in the following sections.

2.3 Field investigation

2.3.1 UAV and route planning

DJI Phantom 3 Professional (SZ DJI Technology Co., Ltd.,
Shenzhen, China), a popular consumer quadrotor UAV with a
high-resolution RGB (red, green, and blue) camera, was used
to collect UAV photos of the QTP from 2015 to 2019. It has a
1/2.3 in. (11.04 mm) CMOS sensor and is capable of taking
12 MP photos. In addition, it uses a three-axis stable gimbal
to take photos vertically, downward, to eliminate the distor-
tion of UAV photos. It has good environmental adaptability,
with an operating temperature range from 0 to 40 ◦C, and a
maximum takeoff altitude of 6000 m. Therefore, DJI Phan-
tom 3 Professional is adequate to monitor grassland states on
the QTP. More detailed information about the UAV system is
listed in Table A2.

A fragmentation monitoring and analysis with aerial pho-
tography (FragMap) system was used for UAV route plan-
ning (Yi, 2017). During 2015–2019, we conducted UAV
monitoring of the QTP grasslands using FragMap (Fig. 1).
Over 2000 fixed flight routes were set up during this period,
and more than 40 000 UAV photos were collected, providing
a sufficient dataset for this study (Table 1).

GRID, RECTANGLE, and BELT are the most widely used
flight modes in FragMap software. Among these modes,

Table 1. UAV sampling information from 2015 to 2019.

Year Flight mode Number Photo Acquisition
of route number date

2015 RECTANGLE 214 2568 5 Jul–24 Aug

2016 RECTANGLE 334 4008 20 Jun–29 Sep
GRID 150 2400 20 Jun–23 Sep

2017 RECTANGLE 315 3780 10 May–24 Oct
GRID 322 5152 15 Jul–22 Aug

2018 RECTANGLE 79 948 22 Jul–3 Aug
GRID 303 4848 4 Jul–29 Aug

2019 GRID 885 14 160 12 Jul–21 Sep
BELT 151 2416 12 Jul–21 Sep

Total 2753 40 280

GRID and RECTANGLE modes have 16 and 12 waypoints
for capturing UAV photos within a MODIS pixel range
(250 m× 250 m; Fig. A1). The flying height and speed are
set to 20 m and 3 m s−1, respectively. The spatial coverage
area of a 20 m high UAV photo is about 26 m× 35 m. The
BELT mode is similar to GRID but is designed to obtain
near-ground UAV photos with a higher resolution (Fig. 3b).
Normally, the BELT size is set to 40 m× 40 m, and the fly-
ing height and speed are set to 2 m and 1 m s−1 to ensure that
field crews have enough time to place sampling quadrats un-
der the UAV waypoints. Therefore, it can be used to help field
workers place sampling quadrats quickly and evenly. As with
the GRID mode, 16 UAV photos can be captured in a single
flight of BELT. Compared with the MOSAIC mode (which
requires a guaranteed overlap rate between photos to obtain
a full view of an area), our design is more in line with the
traditional ecological sampling concept and more conducive
to rapid sample collection.

2.3.2 Synchronization experiment of UAV and field
sampling

A UAV field biomass synchronization experiment was con-
ducted in 2019 to ensure spatial matching among satellites,
UAVs, and ground sampling (Fig. 3). The specific four steps
were as follows. First, we set a GRID flight mode with a
MODIS pixel size (250 m× 250 m; Fig. 3a). Second, three
waypoints were selected from the GRID flight mode to set
the BELT flight modes (40 m× 40 m). For each BELT, a sam-
pling quadrat (0.5 m× 0.5 m) was placed at its 6, 7, 10, and
11 waypoints to ensure that the GRID photo could contain
the four abovementioned quadrats (Fig. 3b and c). Third, af-
ter the implementation of all fights, the grassland samples
were cut, bagged, and numbered. Finally, these samples were
dried at 65 ◦C to a constant weight to obtain the AGB values
measured in the field.
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Figure 2. The overall flowchart of UAV field survey and the construction of grassland AGB estimation models at different spatial scales.

2.4 Data processing

2.4.1 UAV photo pre-processing and indices calculation

Pre-processing of UAV photos included image quality in-
spection, cropping, and calculation of different indices. It
should be noted that only UAV photos at 20 m height were
used in this paper. First, we eliminated overexposed or
blurred 20 m high UAV photos. Second, the pixels in the sam-
pling quadrats were cropped and saved (Fig. 3e). Third, the
RGB indices, including color space, histogram, and vegeta-

tion indices, were calculated based on the method in our pre-
vious study (H. F. Zhang et al., 2022). In addition, 30 other
RGB indices were added as candidate independent variables.
The names, formulas, and references of the above indices are
shown in Table A3.

2.4.2 MODIS vegetation index and other spatial data

The MOD13Q1 (v006) product was downloaded from the
National Aeronautics and Space Administration (NASA)
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Figure 3. Schematic diagram of the UAV field synchronization experiment in 2019. A combination design of GRID (a) and BELT (b)
flight modes. A UAV photo with a quadrat from the BELT mode at the height of 2 m (d). A 20 m high UAV photo including four sample
quadrats (c). The cropped UAV photos at the quadrat scale from 20 m (e) and 2 m (f) height, respectively.

Earth Explorer website (https://earthexplorer.usgs.gov/, last
access: 8 February 2023) for detecting the alpine grassland
AGB on the QTP. The data contained two commonly used
vegetation indices, i.e., the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI), with
spatial and temporal resolutions of 250 m and 16 d, respec-
tively. A total of 2842 scenes from 2000 to 2019 were down-
loaded. Then, the MODIS images were reprojected and mo-

saicked using the MODIS Reprojection Tool (MRT). After
that, the corresponding vegetation indices closest to the date
of the UAV sampling were extracted to construct/validate the
MODIS pixel-scale AGB estimation model. In addition, the
kernel normalized difference vegetation index (kNDVI) was
calculated to overcome the NDVI saturation issue based on
the equation kNDVI=TANH (NDVI2) (Camps-Valls et al.,
2021). The annual maximum vegetation indices were cal-
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culated by the maximum-value composition (MVC) algo-
rithm to estimate the spatial AGB distribution of the QTP
from 2000 to 2019 (Holben, 1986; Wang et al., 2021; Gao et
al., 2020).

Furthermore, meteorological, soil texture, and topographic
data were included as candidate-independent variables for
constructing the MODIS pixel-scale AGB estimation model.
Meteorological factors, including mean annual tempera-
ture (MAT), mean annual precipitation (MAP), and total
annual solar radiation (TASR), were calculated based on
the daily meteorological dataset from the China Meteoro-
logical Data Service Centre (http://data.cma.cn/, last access:
8 February 2023). The data-processing steps mainly included
checking and eliminating the anomalous values of attributes,
cumulative summation, annual averaging, and interpolation
to obtain a meteorological raster dataset with a spatial reso-
lution of 1 km (Li et al., 2021). Moreover, soil texture data
at 1 km spatial resolution, including the ratio of soil organic
matter (SOM), clay, sand, and silt, were downloaded from
the Resources and Environmental Science Data Center of
China (https://www.resdc.cn/, last access: 8 February 2023).
All the meteorological and soil raster datasets were regridded
into 250 m by ArcGIS software (version 10.2; Environmen-
tal Systems Research Institute, Inc.) to match the MODIS
image.

Terrain factors including altitude, slope, and aspect were
derived from the digital elevation model (DEM) using the
terrain analysis tool of ArcGIS software. The DEM was re-
trieved from Shuttle Radar Topography Mission (SRTM) im-
agery (version 004; 90 m) and regridded to 250 m.

2.5 AGB modeling and computation at different scales

We estimated the grassland AGB at three scales, namely the
quadrat scale, the photo scale, and the MODIS pixel scale
(Fig. 4). More detailed information was described as follows.

2.5.1 Random forest model

Random forest (RF; Breiman, 2001) is an ensemble-learning
algorithm that has been widely used to estimate AGB due
to its excellent performance (Ghosh and Behera, 2018; Mu-
tanga et al., 2012; Wang et al., 2016). The two primary pa-
rameters, named the number of regression trees in the for-
est (ntree) and the number of feature variables required to cre-
ate branches (mtry), were firstly optimized based on the root
mean square error (RMSE) of training data. Here, the value
of ntree was set from 100 to 5000, with an interval of 100,
while mtry was set as the square root of the number of train-
ing sample features. In addition, the importance of each pre-
dictor was ranked by calculating the percentage increased in
mean square error (% IncMSE).

The backward feature elimination method (BFE) was used
to reduce the number of input variables to simplify the
RF model (Vergara and Estévez, 2014). The primary steps

were as follows: (1) constructing an AGB RF model by in-
cluding all predictors in the initial stages and calculating the
% IncMSE for each variable and (2) eliminating the least-
promising variable and then rerunning the RF model until
only one independent variable was left. Moreover, the cor-
responding coefficient of determination (R2) and the corre-
sponding RMSE were calculated in each iteration; (3) the
smallest subset of variables with the highest R2 was selected
as the final optimized indices.

In addition, different training and validation strategies
were used at different scales. Due to the limited ground
samples, a 10-fold cross-validation method was used at the
quadrat scale (Kohavi, 1995). At the MODIS pixel scale,
30 % of the UAV-estimated AGB samples in 2019 were ran-
domly selected as an independent validation dataset due to
the large size. Meanwhile, the UAV_AGB values from 2015
to 2018 were used for multi-year validation to test the robust-
ness of the model over time. Statistical metrics R2 (Eq. 1) and
RMSE (Eq. 2) were used to evaluate model performance.

R2
= 1−

n∑
i=1

(
ŷi − yi

)2
n∑

i=1

(
ŷi − yi

)2 (1)

RMSE=

√√√√√ n∑
i=1

(
ŷi − yi

)2
n

, (2)

where n is the number of samples, yi and ŷi represent the
measured and the predicted AGB value, respectively, and y is
the mean value of measured AGB samples.

2.5.2 AGB RF estimation model at the quadrat scale
(0.25 m2)

Since the spatial coverage area of a 20 m high UAV photo
(26 m× 35 m) is much larger than a single 2 m high UAV
photo (0.8 m× 1 m), it is easier to match the MODIS pixel
scale (250 m× 250 m). Hence, the 20 m high UAV photos
containing the sample quadrats were chosen for constructing
the quadrat-scale AGB estimation model. A total of 906 pairs
between field-harvested AGB and UAV sub-photos were col-
lected, with good spatial representativeness (Fig. 1a; yellow
dots). The observed AGB values ranged from 0 to 450 g m−2,
with mean and median values of 59.75 and 33.04 g m−2, re-
spectively (Fig. 5a). The cropped 20 m high UAV photo in-
dices and the measured AGB values were used as the inde-
pendent and dependent variables to build the RF model at the
quadrat scale (Fig. 2).

2.5.3 AGB calculation at the photo scale (∼ 900 m2)

The steps for AGB estimation of the whole 20 m high
UAV photo were as follows: (1) first, each UAV photo was
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Figure 4. Upscaling steps to estimate grassland AGB matching the MODIS pixel scale.

Figure 5. Histograms of field-measured AGB values at quadrat scale (a) and UAV-estimated AGB values of different years at the photo
scale (b).

split into ∼ 2000 quadrat-sized small patches. (2) Second,
the AGB of each small patch was calculated based on the
quadrat-scale AGB estimation model. (3) Finally, the aver-
age of all small patches was calculated as the AGB of the
whole photo. Based on the above steps, the AGB values of
more than 75× 106 quadrats in 37 864 photos in GRID or
RECTANGLE mode were calculated (Table 1).

2.5.4 AGB RF model construction at MODIS pixel scale
(62 500 m2)

The following steps were involved in constructing the AGB
estimation model at the MODIS pixel scale. (1) Since the
coverage area of a GRID or RECTANGLE mode was simi-

lar to that of a MODIS pixel, the average value of the AGB
of 16 or 12 UAV photos was taken as the AGB value of
the corresponding MODIS pixel. During 2015–2019, a to-
tal of 2602 UAV-estimated AGB samples were obtained at
the MODIS pixel scale (Table 1). (2) The MODIS vege-
tation indices and other spatial metrics (such as meteoro-
logical, soil texture, and topographic data) corresponding to
each GRID or RECTANGLE mode were then extracted us-
ing the ArcGIS software. Here, the MODIS NDVI, EVI, and
kNDVI indices closest to the sampling date were chosen to
minimize the time difference between sampling and satel-
lite overpass. (3) Subsequently, the UAV-estimated AGB val-
ues, MODIS vegetation indices, and other spatial metrics
were used as dependent and independent variables to build
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Table 2. Selected independent variables for the AGB modeling at quadrat and pixel scales. The full names of each variable at the quadrat
scale are listed in Table A3.

Scale Model Number Independent variables

Quadrat RFQ 36 FVC, WI, GI, EXG, TGI, EXGR, VEG, GRATIO, COM, CIVE, RGBVI, EXR,
GLA, GRRI, MVARI, MGRVI, GRVI, RGRI, GBRI, VARI, NDI, RRATIO,
EXB, V, IPCA, INT,
HOC_R_CORR, HOC_B_CHIS, HOC_R_CHIS, HOC_G_CHIS, HOC_G_CORR, HOC_B_CORR,
B, H, G, R

Pixel RFP 5 NDVI, kNDVI, EVI, DEM, MAP

the AGB-estimated model at MODIS pixel scale using the
RF model.

2.6 Uncertainty analysis

Since the actual AGB values of MODIS pixels cannot be di-
rectly obtained, the regression coefficient between vegetation
indices and estimated AGB was used to quantify the uncer-
tainty in different AGB estimation methods. In other words,
the higher the correlation between the estimated AGB and
MODIS vegetation indices, the more accurate the estima-
tion model was. The performance of the estimation model
was evaluated through three aspects. In this study, we first
compared the correlation between the MODIS vegetation in-
dices and AGB values obtained by traditional sampling and
UAV estimation methods. We also explored the uncertainties
in UAV sampling coverage area by regularly combining the
number of photos in a MODIS pixel and tested whether the
estimated AGB was closer to the “true” value as the number
increased. Furthermore, the AGB validation results between
GRID and RECTANGLE at the pixel scale were compared to
understand the uncertainties caused by different flight modes.

2.7 Trend analysis of grassland AGB

This study combined the Theil–Sen median trend analysis
and Mann–Kendall test to analyze the temporal variation
characteristics of grassland AGB in the QTP (Jiang et al.,
2015). The Theil–Sen median trend analysis is a robust trend
statistical method with high computational efficiency that
is insensitive to outliers (Hoaglin et al., 1983). The Mann–
Kendall test is a nonparametric test for time series trends,
which does not require the measurements to follow a nor-
mal distribution, and is not affected by missing values and
outliers. The Theil–Sen Median trend analysis and Mann–
Kendall trend test have been widely used to analyze the
temporal trends of the vegetation index, cover, and biomass
(Gao et al., 2020; Jiang et al., 2015; Fensholt et al., 2009).
The detailed formulas for the Theil–Sen median trend anal-
ysis and the Mann–Kendall method are provided by Jiang et
al. (2015).

Table 3. Validation results of AGB models at the quadrat and pixel
scales.

Scale Year Training set Validation set

R2 RMSE R2 RMSE
(g m−2) (g m−2)

Quadrat scale 2019 0.94 20.18 0.73∗∗∗ 32.94

Pixel scale 2019 0.96 10.68 0.85∗∗∗ 23.36
2018 – – 0.85∗∗∗ 24.83
2017 – – 0.85∗∗∗ 23.83
2016 – – 0.77∗∗∗ 31.28
2015 – – 0.63∗∗∗ 34.07

∗∗∗ Values significant at p < 0.001.

3 Results

3.1 Independent variables selected for AGB modeling

The independent variables for AGB estimation at the quadrat
and MODIS pixel scales are presented in Table 2. A total of
36 independent variables were selected at the quadrat scale,
including 26 vegetation RGB indices, 6 histogram indices,
and 4 color space indices (Fig. A2). At the MODIS pixel
scale, five variables were selected, including NDVI, kNDVI,
EVI, MAP, and DEM (Fig. A3).

3.2 Modeling and accuracy assessment

For the AGB estimation model at the quadrat scale, the re-
sults of 10 cross-validations showed that there was a signif-
icant linear relationship between the estimated and the field-
measured values (R2

= 0.73; p < 0.001; Tables 3 and A4).
There was no significant difference (p > 0.05) between the
predicted and the measured values of the mean AGB, at
a confidence level of 95 % (Table 4), with an RMSE of
32.94 g m−2 (Table 3). The model predicted well when the
measured biomass was less than 150 g m−2; however, under-
estimation was found when the measured biomass was more
than 200 g m−2 (Fig. 6a). It may be because the number of
samples of more than 200 g m−2 is relatively small, account-
ing for only 8.50 % of all samples (Fig. 5a). Although the
sample amount of the UAV varied year by year, the AGB
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Table 4. T test results between the predicted and measured AGB values for the modes at the quadrat and pixel scales. Note that df means
degrees of freedom.

Validation model Measured Predicted t df p value
mean mean

(g m−2) (g m−2)

2019_Quadrat_scale 51.57 54.35 −0.66 939.35 0.51
2019_Pixel_scale 136.68 137.75 −0.15 340.78 0.88
2018_Pixel_scale 152.49 131.48 4.01 723.81 6.63× 10−5

2017_Pixel_scale 141.42 120.60 5.48 1225.20 5.26× 10−8

2016_Pixel_scale 149.56 142.70 1.68 961.99 0.09
2015_Pixel_scale 108.65 98.23 1.96 1225.20 0.05

values estimated from UAV photos typically ranged from 0 to
300 g m−2 (Fig. 5b).

For the AGB estimation model at the MODIS pixel scale,
there was a strong linear relationship (p < 0.05) between
the estimated AGB and that measured by UAV photos
for 2015–2019 (Table A4). The fitting coefficient R2 was
0.85 for 2017–2019 and slightly lower for 2015–2016, with
the values of 0.63 and 0.77, respectively (Table 3, Fig. 6b–
f). The RMSE of the MODIS pixel-scale model ranged
from 23.36 to 34.07 g m−2 (Table 3). In addition, we found
no significant differences (p > 0.05) between the predicted
and measured values of the average AGB, except for 2017
and 2018 (Table 4). The average AGB estimated by the
MODIS pixel-scale model for 2017 and 2018 was 131.48 and
120.60 g m−2, which were 14.72 % and 13.78 % lower than
those estimated by UAV photos. Although the average AGB
estimates between the MODIS pixel-scale model and UAV
were different in 2017 and 2018, the error percentages were
acceptable. Therefore, the constructed MODIS pixel-scale
AGB estimation model had good performance and robust-
ness in different years (Fig. 6b–f).

3.3 Correlation analysis between AGB values and
MODIS indices

The correlations between the UAV-estimated AGB and
MODIS vegetation indices were much better than those be-
tween field-harvested AGB and MODIS vegetation indices
(Fig. 7a). For example, the correlation between NDVI and
field-harvested AGB was only 0.53, which is considerably
lower than the correlation between NDVI and AGB obtained
from a single UAV photo (R = 0.74). Moreover, the correla-
tion between NDVI and UAV-estimated AGB increased with
the increasing number of UAV photos. It increased rapidly as
the number of UAV photos increased from 1 to 4 (from 0.74
to 0.86) and then slowed down and stabilized (from 0.87
to 0.88). In addition, we compared the scatterplots and fitting
lines between NDVI and different AGB estimation meth-
ods (Fig. 7b–f). The results showed a weak linear relation-
ship between the field-measured AGB and NDVI, with an
R2 of 0.29. While using the UAV sampling method, the lin-

ear relationship was greatly improved and increased with the
increasing number of photos. The fit coefficient R2 increased
from 0.54 to 0.78, which is much higher than the traditional
sampling method (Fig. 7).

3.4 Spatial distribution of grassland AGB

The spatial distribution of the average grassland AGB on
the QTP from 2000 to 2019 was calculated (Fig. 8). The
AGB gradually increased from west to east. The average
AGB of eastern OA1, IIAB1, IB1, and IIC2 (see Table A5
for the full definitions of these and other abbreviations) eco-
geographical regions ranged from 150 to 190 g m−2, and the
average AGB of IC1 and IIC1 ranged from 80 to 110 g m−2

(Fig. 8b). The average AGB of IID2, IID3, IC2, and IID1
in the west was relatively low, ranging from 35 to 75 g m−2.
The ID1 region was dominated by desert grassland with the
lowest average annual AGB values, which fluctuated around
20 g m−2 (Fig. 8b). Except for the low AGB due to low
precipitation in 2015 (Fig. A4), the mean AGB showed an
overall increasing trend from 2000 to 2019, with an average
growth rate of 0.22 g m−2 a−1 (Fig. 9a). The overall mean
AGB of the QTP was 103.6 g m−2, with 151.85, 60.85, and
28.91 g m−2 for meadow, steppe, and desert grassland, re-
spectively (Fig. 9b). In addition, the temporal trend of grass-
land AGB in each pixel was analyzed. As shown in Fig. 10,
the IID3, ID1, IID2, and IIC2 eco-geographical regions of the
northern QTP showed an increasing trend from 2000 to 2019,
while the IC2, IB1, and IIC1 regions showed a decreasing
trend. Therefore, there was spatial heterogeneity in the tem-
poral variation.

4 Discussion

4.1 Scale matching and its impact factor

In previous studies, the AGB values at the satellite pixel scale
were usually represented by the average of 3–5 quadrat-scale
samples placed in the corresponding satellite pixel, result-
ing in a large spatial gap between the ground samples and
the satellite pixels (Yang et al., 2009, 2018; Meng et al.,
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Figure 6. Validation results of the AGB estimation models at the quadrat (a) and MODIS pixel scale for 2015–2019 (b–f).

2020). The spatial gap between ground samples and satel-
lite pixels affects the accuracy of grassland AGB estima-
tion models (Morais et al., 2021). Therefore, we used the
UAVs as a bridge to fill the spatial gap. Spatial-scale match-
ing of dependent and independent variables was achieved
by estimating AGB values at different scales. First, at the
quadrat scale, the independent variables were all derived
from cropped 20 m high UAV photos corresponding to the
ground samples (Fig. 3e). Second, the 20 m high UAV photo
was split into∼ 2000 quadrat-sized patches to ensure consis-
tency with the quadrat-scale model, and the average of these

patches was used as the final AGB at the photo scale. Fi-
nally, the AGB matching the MODIS pixel scale was calcu-
lated by averaging the AGB of 16 or 12 UAV photos within
the MODIS pixel (Fig. A1). With these three steps, we suc-
cessfully upscaled the measured AGB from quadrat scale
(0.5 m× 0.5 m) to photo scale (26 m× 35 m) and MODIS
pixel scale (250 m× 250 m). Our results showed that the cor-
relations between the UAV-estimated AGB values and the
MODIS vegetation indices were higher than that between
field-harvested AGB and MODIS vegetation indices (Fig. 7).
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Figure 7. Correlation between MODIS vegetation indices and different AGB estimation methods (a). Scatterplots of NDVI with different
AGB estimation methods (b–f). UAV_x represents the number of UAV photos used to estimate the average AGB at the MODIS pixel scale.
Here, x ranges from 1 to 16.

Furthermore, we found that the spatial coverage area of
the UAV sampling had an impact on the scale matching. Our
results showed that, the closer the spatial coverage area of
the UAV sampling was to the satellite pixel, the higher its
correlation with MODIS vegetation indices (Fig. 7a). It was
further confirmed by comparing the validation results of dif-
ferent flight modes. At the MODIS pixel scale, we found that
the R2 between the model predictions and the AGB values
estimated by GRID mode was better than that of the RECT-
ANGLE mode (Fig. 11). The reason is that GRID mode can
take 16 photos within a MODIS pixel, while RECTANGLE
mode can only take 12 photos (Fig. A1). As a result, UAV

photos could serve as a bridge to effectively fill the spatial
gap between traditional samples and satellite data.

4.2 Importance of the addition of non-vegetation
samples

Compared with traditional sampling (Yang et al., 2018),
UAV sampling has the advantage of larger spatial coverage
area (0.5 m× 0.5 m vs. 35 m× 26 m). Thus, the UAV photo
could capture non-vegetation background information such
as roads, water, soil, gravel, and riverbed (Fig. A5). Adding
non-vegetation samples could improve the accuracy of AGB
estimation at the photo scale, especially for areas with low
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Figure 8. (a) The spatial distribution of average grassland AGB on the QTP from 2000 to 2019. IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1
IIAB1, and OA1 are the eco-geographical regions of the QTP (Zheng, 1996). The full names of each eco-geographical region are listed in
Table A5. (b) AGB values of each eco-geographical region from 2000 to 2019. (c) Comparison of multi-year AGB averages in the different
eco-geographical regions.

vegetation cover. It was also suitable for the pixel-scale AGB
estimation model.

4.3 Comparison of the estimated AGB with previous
studies

We compared our results with previous studies at the quadrat,
pixel, and regional scales. At the quadrat scale, consistent
with our previous study, we further confirmed that the UAV
photos could be used to estimate grassland AGB (H. F. Zhang

et al., 2022; Zhang et al., 2018). Similar to the 2 m high
UAV photo, the 20 m high UAV photo could be used to
estimate the grassland AGB at the quadrat scale (R2

=

0.73; RMSE= 44.23 g m−2; Fig. 6a). Compared with the 2 m
high UAV photo (0.8 m× 1 m), the 20 m high UAV photo
(26 m× 35 m) is more suitable for matching the MODIS
pixel due to its larger spatial coverage area. In addition, the
direct use of the 20 m high photo eliminates the need for
spatial-scale conversions when upscaling the AGB estima-
tion from the quadrat scale to the photo scale.
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Figure 9. Variation trend for average grassland AGB on the QTP from 2000 to 2019 (a) and the average AGB of different grassland types (b).

Figure 10. Spatial trends of grassland AGB on the QTP from 2000 to 2019. IID1, IID2, IID3, ID, IIC1, IIC2, IC1, IB1 IIAB1, and OA1 are
the eco-geographical regions of the QTP (Zheng, 1996). The full names of each eco-geographical region are listed in Table A5.

At the pixel scale, compared with other studies, this pa-
per achieved the spatial-scale matching of independent and
dependent variables during the modeling. In previous stud-
ies (Yang et al., 2009, 2018; Meng et al., 2020), they con-
structed the models from the measured AGB values at the
quadrat scale and the spectral indices of the satellites without
considering the spatial-scale difference. It partly explained
why the R2 of the AGB linear model constructed by Yang et
al. (2009) was only 0.4. Our results confirmed that the R2 of
the linear model could be increased from 0.29 to 0.78 after
filling the spatial gap between measured AGB and MODIS
NDVI (Fig. 7). In addition, thanks to the rapid sampling of
UAV technology, a total of 2602 UAV samples matching
the MODIS pixel scale were collected during 2015–2019.

It allowed us to perform multi-year validation to assess the
robustness of the model over time, which has rarely been
performed in previous studies. Our results showed similar
validation results for 2017–2019, despite different sample
amounts and spatial distributions (Fig. 1; Table 1). But in
2015–2016, R2 was relatively low, at 0.63 and 0.77, respec-
tively (Table 3, Fig. 6). The reason was that, during 2015–
2016, some photos with unnatural white balance were ob-
tained due to improper settings, which reduced the estima-
tion accuracy (Fig. A6). The validation results showed that
the MODIS pixel-scale AGB estimation model had good ro-
bustness in different regions and times whenever the photo
quality was acceptable.
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Figure 11. Comparison of the validation results for the GRID (a, c, e) and RECTANGLE (b, d, f) modes in 2016–2018.

At the regional scale, consistent with previous results, we
found an overall increase in AGB over the QTP from 2000
to 2019, albeit with fluctuations (Zeng et al., 2019; Gao
et al., 2020). The annual average AGB of grassland was
103.6 g m−2, which was closest to X. Zhang et al. (2022)
and within the range of the previous estimates (59.63–
120.73 g m−2; Table 5). The mean AGB varied among dif-
ferent grassland types, with 151.85 g m−2 for the meadow
and 60.85 g m−2 for the steppe. Our estimation results were
similar to those of Zeng et al. (2019), but the overall av-
erage AGB was higher than their estimate of 77.12 g m−2.
The spatial distribution of AGB was consistent with previous
studies, showing a west-to-east increasing trend (X. Zhang

et al., 2022; Xia et al., 2018). Specifically, the average AGB
of OA1, IIAB1, IB1, and IIC2 eco-geographical regions in
the east was significantly higher than that of IID2, IID3, IC2,
IID1, and ID1 regions in the west (Fig. 8). In general, the
average AGB estimates for each eco-geographical region in
this paper were similar to those reported by X. Zhang et al.
(2022). Among them, our average AGB estimates for ID1,
IID1, IID3, and IID2 regions were slightly lower, but our
values were closer to the measured values of these regions
(Fig. 8c). The reason may be that they calculated the potential
AGB, while we calculated the actual AGB, so our estimate
was relatively low. In terms of spatial and temporal trends,
the data results showed that the eco-geographical regions
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Table 5. Comparison of AGB estimation results of different studies on the QTP.

Mean Steppe Meadow Study Approach Input parameter References
AGB (g m−2) (g m−2) period
(g m−2)

68.8 50.1 90.8 2001–2004 Linear regression EVI Yang et al. (2009)
– 22.4 42.37 2000–2012 Linear regression NDVI Liu et al. (2017)
120.73 – – 1980–2014 Exponential regression NDVI Jiao et al. (2017)
78.4 – – 1982–2010 RF NDVI, climate Xia et al. (2018)
77.12 76.43 154.72 2000–2014 RF NDVI, EVI, climate, terrain Zeng et al. (2019)
59.63 42.75 77.56 2000–2017 RF NDVI, climate Gao et al. (2020)
102.4 – – 2000–2020 RF Climate, soil, and terrain X. Zhang et al. (2022)
70.00 – – 1960–2002 Century Climate and soil data Zhang et al. (2007)
119.78 – – 2002–2004 ORCHIDEE Climate, soil and leaf area index (LAI) data Tan et al. (2010)
103.6 60.85 151.85 2000–2019 RF NDVI, kNDVI, EVI, DEM, MAP This study

in the northern part of the QTP demonstrated an increas-
ing trend (IID3, ID1, IID2, and IIC2), while the IC2, IIC1,
and IB1 regions exhibited a significant or non-significant de-
crease, which was consistent with the results of others (Gao
et al., 2020; Liu et al., 2017).

The difference between our estimated grassland AGB and
previous studies might be due to differences in data sources
and modeling methods. First, the sample amount and spatial
distribution of ground samples were different. The number of
ground samples is the most important variable affecting the
accuracy of the grassland AGB estimation model (Morais et
al., 2021). Unlike previous studies, we collected ground val-
idation data by combining the traditional sampling method
and UAVs. The newly proposed method could overcome the
shortcomings of traditional samplings (time-consuming and
labor intensive). It no longer takes years to obtain spatially
representative, large-scale ground validation data (Yang et
al., 2018). With UAV sampling, ground observations match-
ing the satellite pixel scale can be obtained in only 15–
20 min, which is difficult to achieve with traditional surveys.
Our new sampling method not only accelerates the sampling
speed and increases the sample amount but also improves
the spatial match between ground samples and satellite pix-
els. As a result, our ground validation data is better than pre-
vious studies in terms of quantity and spatial-scale match-
ing with the satellite data. Second, the input parameters of
AGB estimation models were different. Some scholars used
only a single vegetation index (NDVI or EVI), while others
combined the vegetation index with meteorological, soil, and
terrain indices to construct the AGB estimation models (Ta-
ble 5). In this study, NDVI, kNDVI, EVI, DEM, and MAP
were used as the final predictor variables to construct the
AGB estimation model at the MODIS pixel scale (Table 2).
Third, modeling methods might also affect the estimation re-
sults. As shown in Table 5, the overall AGB averages of the
QTP estimated based on different methods (such as linear or
nonlinear regression, machine learning, and ecological pro-
cess model methods) varied considerably. Yang et al. (2018)

found that the model performance of the artificial neural
network (ANN) was much better than the linear regression
model when using the same dataset to estimate grassland
AGB in the three-rivers headwaters region of China. Jia et
al. (2016) reported that the model forms could bring 13 %
uncertainty to the AGB estimation. Wang et al. (2017) com-
pared the RF with the bagging, mboost, and support vector
regression (SVR) algorithms and found that the RF yielded
the best performance in grassland AGB estimation.

4.4 Limitations and further work

We acknowledge that there are some shortcomings in this
study. (1) The predicted values of the quadrat-scale model
were underestimated when the measured biomass values
were greater than 250 g m−2 (Fig. 6). One of the reasons
may be that the number of samples larger than 250 g m−2

at the quadrat scale is relatively small, accounting for only
5.18 % of the total samples. Another possible reason is that
the height of the grassland could not be detected by a single
UAV photo. Therefore, it could lead to an underestimation
of AGB for grassland species with the same FVC but greater
heights. Previous studies have shown that adding vegetation
height information can improve the estimation accuracy of
grassland AGB (H. F. Zhang et al., 2022; Lussem et al., 2019;
Viljanen et al., 2018). In future work, an affordable DJI ZEN-
MUSE L1 scanner mounted on the UAV DJI Matrice 300 will
be introduced to detect the height of the grassland. (2) At the
MODIS pixel scale, limited by the estimation accuracy of
AGB from UAV photos, there was also some underestima-
tion in the high biomass area. Although the MODIS indices
closest to the sampling date were chosen for the construc-
tion/validation of the AGB estimation model, there was still
a time gap between the measured samples and the MODIS
indices, which might lead to estimation uncertainties. In ad-
dition, the NDVI saturation problem was not considered in
this study, which might affect the AGB estimation accuracy
in the QTP (Tucker, 1979; Gao et al., 2000; Mutanga and
Skidmore, 2004). In the next step, we will continue to collect
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samples with high biomass and try to correct the NDVI satu-
ration problem for optimizing the simulation accuracy of the
dataset. (3) During 2015–2016, we set the automatic white
balance mode for UAV shooting due to inexperience. As a
result, some photos with unnatural white balance were ob-
tained, reducing the accuracy of AGB estimation at the photo
scale (Fig. A6). (4) We collected grassland AGB only during
the peak growing season, and the applicability of the pro-
posed method to other growing seasons needs further study.
(5) During the modeling process, due to the poor positioning
accuracy, only the center points of the flight path were used
to find the corresponding MODIS pixels. Moreover, although
the UAV photos in the GRID or RECTANGLE mode could
cover most areas of a MODIS pixel, full-pixel coverage was
still not achieved. Therefore, we will gradually upscale to
MODIS pixels by combining UAVs with Sentinel-2 or Land-
sat images.

5 Data availability

The dataset is available from the National Ti-
betan Plateau/Third Pole Environment Data Center
(https://doi.org/10.11888/Terre.tpdc.272587; H. Zhang
et al., 2022). The dataset contains 20 years of AGB spatial
data of the QTP with a resolution of 250 m and is stored
in TIFF format. The name of the file is “AGB_yyyy.tif”,
where yyyy represents the year. For example, AGB_2000.tif
represents this TIFF file describing the alpine grassland
AGB condition of QTP in 2000. The data can be readily
imported into standard geographical information system
software (e.g., ArcGIS) or accessed in a programmatic
manner (e.g., MATLAB and Python).

6 Conclusion

This study developed a new AGB dataset for alpine grass-
lands on the QTP based on traditional ground sampling,
UAV photography, and MODIS imagery. The uniqueness of
this dataset is the use of UAVs as a spatial-scale-matching
bridge between traditional samples and MODIS pixels. The
study confirmed that UAV photos could be used for AGB
estimation at the quadrat/MODIS pixel scale, with R2 of
0.73/0.83 and RMSE of 44.23/34.13 g m−2, respectively. At
the MODIS pixel scale, the correlations between AGB esti-
mated by UAV and MODIS vegetation indices were higher
than that between field-harvested AGB and MODIS vegeta-
tion indices. Moreover, the spatial-scale matching of the de-
pendent and the independent variables was achieved during
the modeling. In addition, we performed a multi-year vali-
dation of the MODIS pixel-scale AGB estimation model to
confirm the robustness of the model and the accuracy of this
dataset. The availability of the new dataset is helpful in many
applications. First, this dataset provides reliable regional data
for estimating grassland productivity, carbon storage, ecolog-

ical carrying capacity, and ecological service functions (such
as feed for grazing livestock) of the QTP. Second, the dataset
can be used to understand the mechanisms of environmental
processes, such as hydrological cycle processes, soil erosion
and degradation, and carbon cycle processes in the QTP. In
addition, this dataset can be used as input or validation pa-
rameters for various ecological models to understand the re-
sponse mechanism of the QTP to global climate change.

Appendix A

Figure A1. Waypoints for GRID (a) and RECTANGLE (b) flight
modes.
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Figure A2. The important values for each independent variable (a) and the R2 results of the different number of input variables at the quadrat
scale (b).

Figure A3. The important values for each independent variable (a) and the R2 results of the different number of input variables at the
MODIS pixel scale (b).

Earth Syst. Sci. Data, 15, 821–846, 2023 https://doi.org/10.5194/essd-15-821-2023



H. Zhang et al.: A 250 m annual alpine grassland AGB dataset over the Qinghai–Tibet Plateau (2000–2019) 839

Figure A4. Mean annual precipitation (MAP) on the QTP from 2000–2019.

Figure A5. Examples of 20 m high UAV photos with different non-vegetation background information.
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Figure A6. An example of a set of GRID photos with unnatural white balance in 2015.

Table A1. Combined grassland types.

New Original grassland type
grassland
type

Meadow Alpine meadow, Lowland meadow, Montane meadow
Steppe Temperate steppe, alpine steppe, alpine meadow steppe
Desert Temperate steppe desert, alpine desert
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Table A2. Features of the DJI Phantom 3 Pro.

Features Description

Sensor 1/2.3 in. (11.04 mm); effective pixel: 12 MP
Field of view FOV 94◦ 20 mm
Aperture f/2.8
Shooting speed Electronic shutter: 8–1/8000 s
Photo size 4000× 3000

DJI Phantom 3 Pro Flight time ∼ 25 min
Image format JPEG
Hovering accuracy ±0.5 m vertically; ±1.5 m horizontally
Weight 1280 g

Table A3. Details of the independent variables for quadrat-scale AGB estimation. Note that HSV is for hue, saturation, and value.

Acronym Index name Formula Reference

GRVI Green–red vegetation index (G−R)/(G+R) Tucker (1979)

EXG Excess green vegetation index 2×G−R−B Woebbecke et al. (1995)

GLA Green leaf area (2×G−R−B)/(2×G+R+B) Louhaichi et al. (2014)

MGRVI Modified green–blue vegetation index (G2
−R2)/(G2

+R2) Bendig et al. (2015)

RGBVI Red–green–blue vegetation index (G2
−B×R)/(G2

+B×R) Bendig et al. (2015)

EXB Excess blue vegetation index (1.4×B−G)/(G+R+B) Maimaitijiang et al. (2019)

NDI Normalized difference index (R−G)/(R+G) Woebbecke et al. (1993)

EXR Excess red vegetation index 1.4×R−B Meyer and Neto (2008)

EXGR Excess green minus excess red index EXG−EXR Meyer and Neto (2008)

RRATIO Red ratio R/(R+B+G) Woebbecke et al. (1995)

BRATIO Blue ratio B/(R+B+G) Woebbecke et al. (1995)

GRATIO Green ratio G/(R+B+G) Woebbecke et al. (1995)

VARI Visible atmospherically resistant index (G−R)/(G+R−B) Gitelson et al. (2002)

NRBI Normalized red–blue index (R−B)/(R+B) Michez et al. (2016)

NGBI Normalized green–blue index (G−B)/(G+B) Michez et al. (2016)

VEG Vegetative index G/(Ra
×B(1−a)), where a = 0.667 Hague et al. (2006)

WI Woebbecke index (G−B)/(R−G) Woebbecke et al. (1995)

CIVE Color index of vegetation 0.441×R− 0.881×G+ 0.385×B+ 18.78745 Kataoka et al. (2003)

COM Combination vegetative index 0.25×EXG+ 0.3×EXGR+ 0.33×CIVE Guijarro et al. (2011)
+0.12×VEG

TGI Triangular greenness index G− 0.39×R− 0.61×B Hunt et al. (2014), Michez
et al. (2018)

GRRI Green–red ratio index G/R Maimaitijiang et al. (2019)

GBRI Green–blue ratio index G/B Maimaitijiang et al. (2019)

RBRI Red–blue ratio index R/B Maimaitijiang et al. (2019)

RGRI Red–green ratio index R/G Yue et al. (2018)

https://doi.org/10.5194/essd-15-821-2023 Earth Syst. Sci. Data, 15, 821–846, 2023



842 H. Zhang et al.: A 250 m annual alpine grassland AGB dataset over the Qinghai–Tibet Plateau (2000–2019)

Table A3. Continued.

Acronym Index name Formula Reference

INT Color intensity index (R+B+G)/3 Ahmad and Reid (1996)

MVARI Modified VARI (G−B)/(G+R−B) Cen et al. (2019)

IPCA Principal component analysis index 0.994× |R−B| + 0.961× |G−B| Saberioon et al. (2014)
+0.914× |G−R|

R An average value of R channel of the H. F. Zhang et al. (2022)
quadrat-scale UAV photo

G An average value of G channel of the
quadrat-scale UAV photo

B An average value of B channel of the
quadrat-scale UAV photo

H An average value of H channel of the
quadrat-scale image in HSV color
space

S An average value of S channel of the
quadrat-scale image in HSV color
space

V An average value of V channel of the
quadrat-scale image in HSV color
space

FVC Fractional vegetation cover

EGI Extra green index EGI= 2×G−R−B

GI Green index GI= 9× (H× 3.14159/180)+ 3×S+V

HOC_i_CORR The histogram correlation coefficient

corr=

∑
I

(
H1(I)−H1

)(
H2(I)−H2

)
√∑

I

(
H1(I )−H1

)2∑
I

(
H2(I)−H2

)2between the i band and the black
reference histogram, where the i
represents the three bands of RGB.

HOC_i_INTERSEC The histogram intersection coefficient
intersec=

∑
I

min(H1(I),H2(I))between the i band and the black
reference histogram, where the i
represents the three bands of RGB.

HOC_i_BHATTA The histogram Bhattacharyya distance

bhatta=
√

1− 1√
H1H2N2

∑
I

√
H1(I) ·H2(I)coefficient between the i band and the

black reference histogram, where the i
represents the three bands of RGB.

HOC_i_CHIS The histogram correlation coefficient

chis=
∑
I

(H1(I)−H2(I))2

H1(I)
between the i band and the black
reference histogram, where the i
represents the three bands of RGB.
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Table A4. Regression analysis for AGB estimation models at quadrat and pixel scales.

Model name Coefficient Value Standard t value p value
error

2019_Quadrat_scale Slope 0.67 0.016 42.58 9.05× 10−194

Intercept 20.10 1.49 13.59 5.96× 10−37

2019_Pixel_scale Slope 0.84 0.03 31.59 2.75× 10−73

Intercept 23.20 4.04 5.74 4.24× 10−8

2018_Pixel_scale Slope 0.73 0.02 45.81 8.28× 10−157

Intercept 20.43 2.74 7.46 6.01× 10−13

2017_Pixel_scale Slope 0.75 0.01 59.13 1.98× 10−260

Intercept 13.89 2.04 6.82 2.19× 10−11

2016_Pixel_scale Slope 0.94 0.02 40.45 4.69× 10−157

Intercept 2.48 3.75 0.66 0.03

2015_Pixel_scale Slope 0.82 0.04 18.88 2.59× 10−47

Intercept 9.50 5.25 1.81 0.04

Table A5. List of abbreviations of eco-geographical regions of the QTP.

Abbreviation Full name

IB1 Golog–Nagqu high cold shrub–meadow zone
IC1 Southern Qinghai high cold meadow–steppe zone
IC2 Qiangtang high cold steppe zone
ID1 Kunlun high cold desert zone
IIAB1 Western Sichuan–eastern Tibet montane coniferous forest zone
IIC1 Southern Tibet montane shrub–steppe zone
IIC2 Eastern Qinghai–Qilian montane–steppe zone
IID1 Nagri montane desert–steppe and desert zone
IID2 Qaidam montane desert zone
IID3 Northern slopes of Kunlun montane desert zone
OA1 Southern slopes of Himalaya montane evergreen broadleaved forest zone
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