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Abstract. Rice is the most important staple food in Asia. However, high-spatiotemporal-resolution rice yield
datasets are limited over this large region. The lack of such products greatly hinders studies that are aimed
at accurately assessing the impacts of climate change and simulating agricultural production. Based on an-
nual rice maps in Asia, we incorporated multisource predictors into three machine learning (ML) models to
generate a high-spatial-resolution (4 km) seasonal rice yield dataset (AsiaRiceYield4km) for the 1995-2015
period. Predictors were divided into four categories that considered the most comprehensive rice growth con-
ditions, and the optimal ML model was determined based on an inverse probability weighting method. The
results showed that AsiaRiceYield4km achieves good accuracy for seasonal rice yield estimation (single rice:
R?> =0.88, RMSE =920kgha~!; double rice: R? =0.91, RMSE =554kgha~!; and triple rice: R? =0.93,
RMSE = 588 kgha~!). Compared with single rice from the Spatial Production Allocation Model (SPAM), the
R? of AsiaRiceYielddkm was improved by 0.20, and the RMSE was reduced by 618 kgha™! on average. In
particular, constant environmental conditions, including longitude, latitude, elevation and soil properties, con-
tributed the most (~ 45 %) to rice yield estimation. For different rice growth periods, we found that the predictors
of the reproductive period had greater impacts on rice yield prediction than those of the vegetative period and
the whole growing period. AsiaRiceYield4km is a novel long-term gridded rice yield dataset that can fill the
unavailability of high-spatial-resolution seasonal yield products across major rice production areas and promote
more relevant studies on agricultural sustainability worldwide. AsiaRiceYield4km can be downloaded from the
following open-access data repository: https://doi.org/10.5281/zenodo.6901968 (Wu et al., 2022).
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1 Introduction

As one major staple crop, rice (Oryza sativa L.) provides
more than a quarter of calories for approximately half of
the population but accounts for only 11 % of the arable land
on Earth (Maclean et al., 2002; Alexandratos and Bruinsma,
2012; Birla et al., 2017; Qian et al., 2020). Asia produces
and consumes more than 90 % of the global rice (Bandumula,
2018). The rice production is dominated by poor smallholder
farmers. . Therefore, information on the rice yield in Asia is
essential to maintain food security and farmers’ livelihoods
(Laborte et al., 2017). In the last half-century, the growth of
rice yields has contributed more to an increase in produc-
tion than the expansion of cultivation areas (Blomqvist et al.,
2020), and yield will remain a dominant factor considering
land-use policies aimed at reducing environmental pressure
(Lambin and Meyfroidt, 2011; Kim et al., 2021). In addi-
tion, Asia has complex rice-cropping systems, and rice may
be cultivated multiple times within 1 year (G. Zhang et al.,
2020). It is critically necessary to identify the long-term and
seasonal Asian rice yields — at high spatial resolution — to
monitor and guide agricultural production.

Previous global-scale crop yield datasets, including the
Harvester Area and Yields of 175 crops (M3-Crops) (Mon-
freda et al., 2008), the Spatial Production Allocation Model
(SPAM) (You and Wood, 2006; Yu et al., 2020), the Global
Dataset of Historical Yields of Major Crops (GDHY) (lizumi
et al., 2014; lizumi and Sakai, 2020) and the Global Grid-
ded Crop Model Intercomparison (GGCMI) phase 1 (Miiller
et al., 2019), have been produced and widely employed in
many studies (Folberth et al., 2020; Kaltenegger and Wini-
warter, 2020; Iizumi et al., 2021; Lin et al., 2021; W. Liu et
al., 2021). However, due to the different research goals and
technical restrictions, their spatial resolutions are relatively
coarser (e.g., ~ 10km for M3-Crops and SPAM; ~ 55km
for GDHY and GGCMI phase 1), and their temporal reso-
lutions are mostly annual (Laborte et al., 2017). Only a few
datasets have seasonal temporal information (e.g., GDHY),
but they still cannot cover all rice seasons (Kim et al., 2021).
In addition, the time spans are limited (e.g., only 1 year for
M3-Crops; every 5 years for SPAM). For the long-term rice
yield dataset (GDHY), the authors used a fixed rice area base
map that did not provide the interannual spatial dynamics of
the rice yield. To the best of our knowledge, a long-term sea-
sonal rice yield dataset with higher spatial resolution and a
dynamic spatial distribution is currently unavailable for the
major rice cultivation regions in the world.

To address the above issues, there is a significant need
to acquire multisource data and wiser technologies for rice
yield estimation (Chlingaryan et al., 2018; Cao et al., 2020;
van Klompenburg et al., 2020; Z. Zhang et al., 2020; Chen
et al., 2022). With the rapid development of remote sens-
ing technology in recent years, large-scale and long-term
high-spatiotemporal-resolution observations provide ample
and timely phenological and growing information for rice.
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Ground-based data, such as climate and soil, also provide
more key environmental information (Folberth et al., 2016;
Zhang et al., 2021). Many publications that have success-
fully combined satellite-derived data and ground environ-
mental information for yield estimation have expanded our
knowledge (Huang et al., 2013; Mosleh et al., 2015; Cao
et al., 2021; Fernandez-Beltran et al., 2021). Nevertheless,
to date, few studies have employed annual rice paddy areas
for yield estimation. Moreover, machine learning (ML) mod-
els, such as random forest (RF), extreme gradient boosting
(XGBoost) and long short-term memory (LSTM), have been
increasingly and successfully used in crop yield estimation
(Cai et al., 2019; van Klompenburg et al., 2020; Sakamoto,
2020; Luo et al., 2022). Such ML models can overcome the
drawbacks of two traditional estimation methods: process-
based crop models (PCMs) and statistical regression meth-
ods (SRMs). Compared with PCMs, ML can wisely select
input variables according to the actual requirements and lo-
cal geographical environmental conditions without compli-
cated parameters (Jeong et al., 2022). Due to the complex
functions with higher efficiency and flexibility, the yield es-
timation results of ML are always better than those of SRMs
(Chlingaryan et al., 2018). In addition, ML has a good spatial
generalization. Therefore, ML models combined with multi-
source data potentially provide a good chance for large-scale
gridded yield estimation and associated accuracy improve-
ment.

In this work, we integrate multisource data and annual
rice maps into ML models in order to generate a sea-
sonal rice yield dataset at a 4km resolution across Asia
(AsiaRiceYielddkm) for the period from 1995 to 2015.
AsiaRiceYield4km will better support agricultural monitor-
ing systems and related research over a large scale because
of its higher spatiotemporal resolution and longer time span.

2 Materials and methods

2.1 Study area

Asia is the most important rice-producing area, accounting
for 89 % of the cultivation area and 91 % of global production
(FAO, 2022). Considering the accessibility of local census-
based rice yield data, 14 main rice-producing countries in
Asia were selected and then divided into 27 cases (one case
refers to one specific rice-cropping period in a country) based
on different rice-cropping systems (single, double or triple
rice), as shown in Fig. 1.

2.2 Data

Multisource data were collected for rice yield estimation, in-
cluding annual rice area maps, the rice yield of 1400 admin-
istrative units (minimum administrative-division-scale units
for each country with available rice yield), leaf area index
(LAI) information (from remote sensing products) and rice

https://doi.org/10.5194/essd-15-791-2023



H. Wu, J. Zhang et al.: AsiaRiceYield4km 793
(2) (b)
60P E - “75PE 90P E 105° E 1200 E—— 135°E 150°E | country Case Cro).:ping systems
r number (rice seasons)
/ T N 2N Cambodia 1
SN S &P China 2
s India 3
Indonesia 4
Japan S
. . Single
Malaysia 6 .
(Single)
Myanmar 7
Nepal 8
2 Pakistan 9
Pakistany Republic of Korea 10
- Thailand 11
12
China
13
14
¥ India
{ 15
\ . . 16 Double
T N Philippines
\ 17 (Early, Late)
AN 18
Legend \ . Thailand n
[ | Country boundary{ =
. . Vietnam
Single rice 21
B Double rice 2
- - . o B h 23 )
I Triple rice |(589% Triple
24
No data 2 (Spring, Autumn,
. Winter)
0 500 1000 - 2000 P N Vietnam 26
B i ~A " R 27

Figure 1. (a) Rice cultivation areas with different cropping systems in the main rice-producing countries of Asia. The green area represents
the maximum rice paddy area where paddy rice grew for at least 1 year during the 1995-2015 period (Han et al., 2021, 2022). The pie chart
represents the area proportion of different rice-cropping systems. Panel (b) presents the case numbers and cropping system for each country.
Double rice follows the order of early before late (e.g., 12 and 13 represent the early-season rice and late-season rice in China, respectively),
and triple rice follows the order of spring, autumn and winter (e.g., 25, 26 and 27 represent the spring season rice, autumn season rice and

winter season rice in Vietnam, respectively).

growth environmental conditions (location, time, soil and cli-
mate). In addition, considering the necessity for phenologi-
cal information, we also produced gridded key phenological
dates from LAI data based on inflection-based and threshold-
based methods (Sect. 2.3.1). Except for yield records at the
administrative unit scale from official statistics (Table S1),
the other data were resampled to a 4 km x 4 km resolution us-
ing the nearest-neighbor resampling method in ArcMap 10.2
(the original spatial information is listed in Table S2).

2.2.1 Rice area maps

We selected the latest public rice distribution map dataset,
APRAS00 (an annual dataset of rice paddy area at a 500 m
resolution from 2000 to 2020), in this study (Han et al., 2021,
2022). APRAS00 provides annual rice distribution informa-
tion, which can reduce the influence of other land-cover
types. Due to the topographic conditions, cloud contamina-
tion and the mixed-pixel effects owing to fragmented crop-
land fields, the rice area in APRAS500 was somehow under-
estimated (Han et al., 2022). To reduce this effect, we used
the combined rice area of 3 years (the current year, the previ-
ous year and the following year) to represent the rice area of
the current year (e.g., the area of 2005 was the union of 2004,
2005 and 2006). Specifically, the union of area information
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from 2000, 2001 and 2002 was also applied to the years from
1995 to 2000 due to unavailable area maps.

2.2.2 Seasonal rice yield

Rice seasons were mainly determined based on RiceAtlas
(Laborte et al., 2017). RiceAtlas is the most comprehensive
and detailed database with respect to the rice season and has
been widely used in many studies (van Oort and Zwart, 2018;
Muehe et al., 2019; Fritz et al., 2019). The United States De-
partment of Agriculture (USDA, https://ipad.fas.usda.gov/
ogamaps/cropcalendar.aspx, last access: 7 April 2022) and
the national statistics of each country were also referenced
for rice season determination. The rice seasons have vari-
ous names in different countries, such as “Aman”, “Aus” and
“Boro” for triple rice in Bangladesh and “Rabi” and “Kharif”
for double rice in India. To make the data more readable and
consistent, we used single rice (single season), double rice
(early and late seasons) and triple rice (spring, autumn and
winter seasons) to refer to the three rice-cropping systems in
our study, as shown in Fig. 1b. A few rice seasons (e.g., the
early season in Cambodia, Malaysia, Myanmar and Indone-
sia as well as the winter season in India) were not considered
due to the lack of yield records.
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We collected seasonal rice yield data from the Food and
Agriculture Organization (FAO) of the United Nations and
other governmental websites (Table S1). Over 45000 rice
yield records from 1400 administrative units were collected
for the period from 1995 to 2015. The quality of these data
has been checked, and some yield outliers were filtered out
according to the following rules: (a) they exceeded the actual
biophysically attainable yields, and (b) they were beyond the
average * 2 times the variance during the 1995-2015 period
(Zhang et al., 2014; Cao et al., 2020, 2021).

2.2.3 Key phenological dates

The transplanting, heading and maturity dates are the three
most important phenological dates during the rice grow-
ing period. The whole growing period (WGP) is divided
into two subperiods, according to the three key phenolog-
ical dates, as follows: the vegetative period (VEP; from
transplanting to heading) and the reproductive period (REP;
from heading to maturity). However, most rice phenology
datasets are provided at the administrative scale and lack in-
formation on interannual variation. For example, the United
States Department of Agriculture (USDA) provides country-
scale growing phenological information, and RiceAtlas pro-
vides subnational phenology information but disregards the
annual dynamics (Laborte et al., 2017). In addition, these
datasets lack heading date information for rice. Here, we
retrieved the three dynamic key rice phenological dates
from remote sensing data in Asia during the 1995-2015
period at a 4km x 4km grid scale using inflection-based
and threshold-based methods (Sect. 2.3.1). The USDA and
RiceAtlas datasets provided a threshold range for phenology
and were used to validate our extracted phenological dates.

2.2.4 Location and time

Location information includes latitude (lat), longitude (long)
and elevation (ele). The Global 30 arcsec (1 km) gridded digi-
tal elevation model (DEM) dataset (GLOBE Task Team et al.,
1999) from the National Oceanic and Atmospheric Admin-
istration (NOAA) was employed in this study. The latitude
and longitude information was collected from the centroid of
each resampled 4 km pixel by ArcMap 10.2. The temporal
information is represented by the year (1995-2015).

2.2.5 Soil data

Soil properties are important factors controlling rice growth
and final yield. The Harmonized World Soil Database
(HWSD, v1.2) provides key soil property variables, includ-
ing the topsoil sand fraction (7_Sand), the topsoil silt fraction
(T_SILT), the topsoil clay fraction (7_CLAY), the topsoil ref-
erence bulk density, (7_BULK_DEN), topsoil organic carbon
(T_OC) and topsoil pH (H,O) (T_PH_H20) (https://www.
fao.org/soils-portal/soil-survey/soil-maps-and-databases/
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harmonized-world-soil-database-v12/en/, last access:
7 April 2022; Wieder et al., 2014).

2.2.6 Climate data

TerraClimate (Abatzoglou et al., 2018), a monthly
high-spatial-resolution (4km) meteorological dataset

(https://doi.org/10.7923/G43J3BOR, Abatzoglou et al,
2017) for the period from 1995 to 2015, was used in our
study. This dataset provides climate and water balance
information for Asian rice (Salvacion, 2022), including
the Palmer drought severity index (PDSI), precipitation
accumulated (Pre), downward surface shortwave radiation
(Stad), maximum temperature (Ti,x), minimum temperature
(Timin), vapor pressure (Vap) and wind speed (Ws).

2.2.7 LAl

Remote sensing indices have been widely used in rice yield
estimation (Son et al., 2020; Arumugam et al., 2021), but
few studies were conducted before 2000 (C. Liu et al.,
2021). To extend the period of the gridded yield dataset from
1995 in this study, we adopted Global Land Surface Satel-
lite (GLASS) Advanced Very High Resolution Radiometer
(AVHRR) LAI data (http://glass.umd.edu/Download.html,
last access: 7 April 2022; Xiao et al., 2013, 2016, 2017),
which begun from 1981 with a fine spatial resolution of 4 km
and a temporal resolution of 8 d. Compared with other similar
products, GLASS AVHRR LAI has the highest accuracy and
lowest uncertainty (Liang et al., 2021). The GLASS AVHRR
LAI was used for rice phenological information extraction
and yield estimation.

2.3 Methods

We applied three steps to generate AsiaRiceYield4km by in-
corporating multisource data into three ML methods: deter-
mining phenological dates, categorizing and selecting pre-
dictors, and developing the optimal models and generating
the gridded rice yield (Fig. 2). Details of each step are pro-
vided in the following sections.

2.3.1 Determining phenological dates

Inflection-based (Chen et al., 2016; Luo et al., 2020a) and
threshold-based (Manfron et al., 2017) methods were em-
ployed to detect rice phenological dates (Fig. 2, Step 1) ac-
cording to the following rules:

1. For transplanting dates, the LAI always maintains a
low value for a period before the transplanting date and
dramatically increases after this date (Sakamoto et al.,
2005; Chen et al., 2018). Therefore, if there is one point
in the LAI curve where the following first derivative is
>0 or its second derivative is equal to 0, this point is
defined as the transplanting date.
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Figure 2. Flowchart for generating long-term and high-resolution gridded rice yields by incorporating multisource data into ML models for
one case. All 27 cases followed these steps and were combined to obtain the AsiaRiceYield4km dataset.

2. For heading dates, the inflection point from VEP to REP
(Wang et al., 2018) is characterized by the maximum
value of the LAI between the transplanting date and the
maturity date (Son et al., 2013).

3. For maturity dates, the physiological activity of rice will
sharply drop during the harvesting period. The first in-
flection point at the LAI curve where its first deriva-
tive becomes negative is considered the maturity date.
In addition, LAI values of pixels beyond the average =+ 2
times the standard deviation (SD) were filtered (Zhang
et al., 2022).

If the phenological dates in some grids cannot be detected
nor filtered using the above rules, the average value of the
administrative unit where the grids are located is applied.
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2.3.2 Categorizing and selecting predictors

To provide comprehensive rice growth information for the
ML models, we divided the multisource data into four cate-
gories including 50 predictors (Table S3): cumulative grow-
ing predictors (CGPs) of different growing periods, extreme
growing predictors (EGPs), constant environmental condi-
tions (CECs) and temporal information (TT) (Fig. 2, Step 2).
A CGP includes the sum of each LAI and climate variable
in different growing periods (the VEP, REP and WGP), re-
flecting the overall growing and weather difference among
the three continuous growing periods. An EGP consists of
the maximum and minimum of each climate and LAI vari-
able, considering the impact of extreme events. CEC predic-
tors reflect the influence of the geographical environment on
rice growth. TI reflects long-term agronomic technological
improvements and variety renewal (Huntington et al., 2020).
All of these predictors were aggregated to the administrative
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scale. The predictor values of grids located in one adminis-
trative unit were averaged to this administrative unit.

High-dimensional predictors often affect the accuracy and
computational efficiency of ML methods (LeCun et al., 2015;
Zhang et al., 2019). To reduce this effect, Pearson correlation
analysis was employed to estimate the relationship between
yield and other variables for each case. The variables with a
significant correlation (p<0.05) were selected as predictors
(Cao et al., 2021). The yield and selected predictors of one
case were input into one model. Specifically, the four pre-
dictors (long, lat, ele and year) were considered to have a
stable impact on rice yield and were included in all 27 esti-
mation models for the 27 cases (Ray et al., 2019; Huntington
et al., 2020). Considering the covariate relation of CGPs for
the WGP and the remaining two periods, the predictors of the
WGP would be selected if its Pearson R was higher than that
in the remaining two periods, or vice versa.

2.3.3 Developing the optimal models and generating
gridded rice yield

The optimal yield estimation models were developed and
used for gridded rice yield dataset generation according to
the following process:

1. Dataset division rules. To effectively reduce overfitting
effects (Dinh and Aires, 2022), we divided all of the
data into three sets (training, validation and testing) that
were used to optimize the ML parameters, select the op-
timal model and evaluate its generalization ability, re-
spectively (Ripley, 2007). A diagram of the database di-
vision process is shown in Fig. 2 (Step 3). For each case,
the whole database contained the selected predictors
from all administrative-scale units during 1995-2010.
The database was randomly divided into two subsets
by the administrative unit: 20 % of the samples were
used for testing, and the remaining 80 % of the sam-
ples were randomly re-split into 70 % for training and
30 % for validation without considering the administra-
tive units. Thus, the training, validation and testing sets
contained 56 % (80 % x 70 %), 24 % (80 % x 30 %) and
20 % (20 % x 100 %) of the dataset, respectively. Such
rules with respect to division avoid information leaking
from the testing set to the training set (Meroni et al.,
2021) and enhance the robustness of the model.

2. ML models. ML can develop transfer functions based
on the relationships between predictors and target vari-
ables for rice yield estimation (Chlingaryan et al., 2018;
Shahhosseini et al., 2020). Three widely employed ML
models, RF, XGBoost and LSTM, were selected for rice
yield estimation. The RF model is based on the bag-
ging ensemble model, which generates multiple deci-
sion trees and obtains predictions by voting on all in-
dividual trees (Breiman, 1996, 2001). In addition, ex-
tra randomness is introduced to the RF when generat-
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ing trees and searching for the best tree stages (Shah-
hosseini et al., 2020). It provides more diversity for
trees and can generate overall better model performance
(Zhang et al., 2019). XGBoost uses optimized gradient
boosting for decision trees, which tries to make weak
learners strong (Chen and Guestrin, 2016). This method
adopts an updated strategy to train the estimated model,
and the updated model minimizes loss by reducing er-
rors from previous models (Obsie et al., 2020). LSTM
is a special recurrent neural network (RNN) that was
proposed to overcome the vanishing and exploding gra-
dient problems of RNNs (Hochreiter and Schmidhuber,
1997; Sak et al., 2014; Tian et al., 2021). LSTM con-
tains input, hidden and output layers, and the hidden
layers consist of memory cells (He et al., 2019; Zhang et
al., 2019). Tuning hyperparameters can effectively im-
prove the accuracy for rice yield estimation (Shahhos-
seini et al., 2021). The hyperparameter tuning details
and Python library information for the ML algorithm
are given in the Supplement.

. Model evaluation. The coefficient of determination (R?)

and root-mean-square error (RMSE) were adopted to
evaluate the performance of each model for each case.

RzZl_Z?:l(Yi?.l/)'—Yie,s) /Z, 1<Y0b ﬂtﬂ;) M
RMSEz\/ ZLI( e

Here, i is the number of administrative units, n is the
total number of administrative units and j is the year.
Y°b is the observed rice yield from governmental web-
s1tes or the FAO website in the ith administrative unit
of year j, Y; i,j 1s the average of the observed rice yield
in the ith administrative unit of year j and Yle; is the
AsiaRiceYield4km yield in the ith administrative unit
of year j.

2
. Yi?‘;) /n 2)

. Optimal yield estimation model selection. In this study,

three ML models can generate three different yield es-
timation results. Previous studies have recommend the
weighted ensemble method of combining the estima-
tion results of different methods; this technique aims
for a relatively stable result but sacrifices some accu-
racy (Shahhosseini et al., 2020, 2021). Moreover, many
studies have also selected the optimal ML model by
comparing only the accuracy of validation and/or test-
ing sets (Zhang et al., 2021; Chen et al., 2022; Luo et
al., 2022). Here, to conduct a comprehensive evalua-
tion of different ML models and datasets, we developed
an inverse proportional weight (IPW) method to assign
weights for training, validation and testing accuracy in
order to calculate the adjusted accuracy for each ML
model (Egs. 3—7). The ML model with the best adjusted

https://doi.org/10.5194/essd-15-791-2023



H. Wu, J. Zhang et al.: AsiaRiceYield4km

accuracy was selected as the optimal ML model.

Wy = P/ (P + Pva+ Pre) 3)
Wya = Pva/(Ptr + Pva + Pte) “4)
Wie = Pt/ (Pir + Pva + Pre) 5
Riy = Rip - w+ Ry, wya + R - wie ©)
RMSE.q = RMSEy; - wy +RMSEy, - wyy

+RMSE - e )

Here, tr, va and te are abbreviations for training, vali-
dation and testing, respectively; py, pva and pie are the
inverse proportions for the sizes of the training, vali-
dation and testing sets, respectively, and are equal to
1/0.56, 1/0.24 and 1/0.20, respectively; and wi, Wy,
and w are the weights of the training, validation and
testing sets, respectively. Rfd and RMSE,q represent the
adjusted R? and RMSE, respectively. R2, R2, and R2
are the R? values of the training, validation and testing
sets, respectively; RMSE, RMSE,, and RMSE, are
the RMSE values of the training, validation and testing
sets, respectively. The ML model with the highest Rfd
and lowest RMSE,q is regarded as the optimal model
for each season in Fig. 1b.

5. Gridded rice yield generation. For each case, predictors
of gridded scale consistent with administrative-scale se-
lected predictors (Sect. 2.3.2) were input into the op-
timal model, and the gridded rice yield was generated
for the period from 1995 to 2015. All 27 cases fol-
lowed this process and were combined to generated the
AsiaRiceYield4km dataset.

6. Uncertainty spatialization. To provide the spatial un-
certainty, the relative RMSE (RRMSE; Eq. 8) of
AsiaRiceYield4km was calculated according to Luo et
al. (2020b). The RRMSE of each administrative unit
was allocated to the centroid of the unit, and the kriging
interpolation method was used to spatialize the distribu-
tion of uncertainty.

RRMSE = \/ZTZI ((ij. - Y;f‘;) /Yi?lj?)2/m 100%, (8)

where m is the total number of years.

3 Results

3.1 Performance of the estimated models

After selecting the optimal ML model for each case, we plot-
ted the scatter of the seasonal training, validation, testing and
adjusted accuracy (Fig. 3). The training R is higher than 0.9
for all cases; validation and testing R* values average 0.78
and 0.69, respectively. The Rgd ranges from 0.60 to 0.90
(average of 0.77), with the lowest de found for the single
season in Malaysia and the highest R?d found for the winter

https://doi.org/10.5194/essd-15-791-2023

797

season in Bangladesh (Fig. 3c). As for the RMSE, the aver-
age values for training, validation and testing are 105, 408
and 489 kg ha~!, respectively. The RMSE,q ranges from 162
to 817kgha~!, and its average is 396kgha~!. The highest
RMSE,q is for single rice in China (Fig. 3d). The rice yields
in China are mostly higher than those of other countries,
which might cause more modeling uncertainty. For double-
rice systems (Fig. 3b, e), no significant difference is found
between their modeling accuracies, with values of approx-
imately 0.77 for the Rfd and 410kgha~! for the RMSE,q.
For triple rice, the winter season in Bangladesh has the high-
est Rgd (0.90; dot no. 24 in Fig. 3c), and the spring season in
Vietnam has the lowest RMSE.g (327 kg ha—!; dot no. 25 in
Fig. 3c). Additionally, the 27 optimal models consist of two
types of ML models — XGBoost for 15 seasons and RF for
12 seasons — but no LSTM models. The 27 optimal models
and their hyperparameters are listed in Table S5.

3.2 Comparing AsiaRiceYield4km products with the
observations

After aggregating AsiaRiceYield4dkm into administrative
units, we compared them with the observed yield at ad-
ministrative and annual scales. At the administrative scale,
comparisons were separately conducted for single, dou-
ble and triple rice, as shown in Fig. 4. The estimated
and observed yields are close to the 1:1 line. The over-
all R? is higher than 0.87, and the RMSE is lower
than 921kgha~!, suggesting that AsiaRiceYield4km is
mostly identical to the observations. The accuracy of sin-
gle rice (R>=0.88, RMSE =920kgha™!) is slightly lower
than that of double rice (R2 =0.91, RMSE =554kg ha=1)
and triple rice (R>=0.93, RMSE =494 kgha™!), mainly
because some high-yielding units are not well esti-
mated for single rice (Fig. 4a). Moreover, late rice
shows higher accuracy than early rice (R*>=0.92>0.89,
RMSE =553kgha~! <556kgha~!), which is consistent
with previous work (Cao et al., 2021). As for triple rice, win-
ter rice has higher accuracy than spring and autumn rice, even
though its yield range was the greatest.

At the interannual scale, the annual average yield from
AsiaRiceYield4dkm and the observed yields for each case
are presented. All seasons are statistically highly signifi-
cant (p<0.001), and the R? value of all of the results is
higher than 0.8. In addition, the differences of the SD are
also presented in Fig. 5. The largest difference is the early
season for double rice in Vietnam and is mainly attributed
to the underestimation in AsiaRiceYield4km after 2006. All
SD differences are lower than 200kgha~!, indicating that
AsiaRiceYield4km can estimate and capture the interannual
variations in observed yields well.
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Figure 4. Comparison of AsiaRiceYielddkm with observed yields at the administrative-unit scale for (a) single rice, (b) double rice and (c)

triple rice.

3.3 Comparing AsiaRiceYield4km products with SPAM

Due to the limited temporal coverage and rice season
information in SPAM, only single-rice systems in 2000,
2005 and 2010 were compared between AsiaRiceYield4km
and SPAM. The spatial distribution of the rice yield in
AsiaRiceYield4km and SPAM as well as the observed yield
in 2005 are presented in Fig. 6a—c, with zoomed in views
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of the Indo-Gangetic Plain (IGP) in Pakistan and India
(Fig. 6al—cl). After aggregating AsiaRiceYield4dkm and
SPAM data to administrative units, both products were also
quantitatively compared with the observed yield for 2005
(Fig. 6d). Similar comparisons for 2000 and 2010 are shown
in Fig. S1. Compared with SPAM, AsiaRiceYield4km has a
higher R? and a lower RMSE. Specifically, the R? values of
AsiaRiceYield4km are 0.18, 0.23 and 0.20 higher in 2000,
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Figure 5. Interannual comparison of AsiaRiceYield4km with the observed yield from 1995 to 2015.

2005 and 2010 than those of SPAM, respectively, and the
corresponding RMSE values are 570, 692 and 592 kgha~!
lower than those of SPAM. Moreover, AsiaRiceYield4km
shows better spatial consistency with the observed yield
across the whole area. The spatial variation in the yield in
AsiaRiceYield4km and the observed yield are identical in
the IGP, whereas some administrative unit yields are over-
estimated in SPAM (Fig. 6al—cl).
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3.4 Spatiotemporal characterizations of

AsiaRiceYield4km

799

Based on the estimated seasonal yields from optimal ML
models, we characterized the spatiotemporal patterns of rice
yields during the 1995-2015 period. Spatially, single rice
is widely distributed in 11 countries across the whole area,
where its yield varies greatly from 400 to 10000kgha~!
with an average of 5428kgha™!. Specifically, the highest
average yield is in China (7384kgha~!), and the lowest
yield is in India (1889kgha™'). Such a large difference
might be ascribed to better irrigation in China (Dawe et

Earth Syst. Sci. Data, 15, 791-808, 2023
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al., 2010) and relatively low-level soil fertility, investment
and technology in India (Srivastava and Mahapatra, 2012).
Double rice is mostly distributed between 30° N and the
Equator. Double rice shows insignificant differences between
the early yield and late yield: the early-season rice yield
ranges from 1041 to 8347 kgha™! with an average yield of
4598 kgha~!, whereas the late-season rice yield ranges from
666 to 7977 kgha~! with an average yield of 4539 kgha~!.
Three rice seasons (triple rice) exist in Bangladesh and Viet-
nam. The rice yield for spring, autumn and winter ranges
from 3034 to 6249, from 2690 to 6986 and from 2514 to
10870kgha™!, respectively, with corresponding averages of

Earth Syst. Sci. Data, 15, 791-808, 2023

4153, 4716 and 7794 kgha~!. Notably, the highest average
yield is 8597 kgha~! for winter rice in Bangladesh, due to
high-yielding hybrid rice varieties and well-managed field-
work (e.g., fully irrigated and increasing fertilizer, pesticide
and herbicide applications) (Meroni et al., 2021).
Temporally, the interannual rate of yield change (defined
as the yield difference between the previous year and the cur-
rent year divided by the yield of the previous year) from 1995
to 2015 for each case is shown in Fig. 8. The annual rate
ranges from —18.55 % to 25.57 %. The average interannual
rate during the 1995-2015 period increases in most cases,
with the exception of single rice in Japan (—0.01 %) and the
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Figure 7. Spatial patterns of the estimated rice yields (averages for the 1995-2015 period) for different seasons.

early season of double-rice systems in Thailand (—0.11 %).
Among all cases, the greatest average rate is 2.65 % in Cam-
bodia.

4 Discussion

4.1 The frequency and importance of the predictors in
ML models

In this study, 50 predictors were used in ML models, but their
contributions greatly varied. First, only predictors with a sig-
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nificant correlation with yields were selected for ML models,
with the exception of temporal and spatial predictors (year,
long, lat and ele) (see Sect. 2.3.2 for details). As a result, the
selection frequency of temporal and spatial predictors was 27
times, and the selection frequency of other predictors ranged
from 2 to 25 times (Fig. 9a). Using the selected predictors,
ML models then estimated rice yields and ranked the im-
portance of each predictor (Fig. 9a). The results show that
temporal and spatial predictors had relatively greater average

Earth Syst. Sci. Data, 15, 791-808, 2023
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Figure 8. Temporal variation in the estimated rice yield change for different seasons from 1995 to 2015.

importance (>0.05) and that the importance of the remaining
predictors was lower than 0.03 (Fig. 9a).

For different growing periods, the REP predictors had
greater average importance (0.010) in ML models, followed
by the WGP and VEP predictors (0.007 and 0.005, respec-
tively). The average selection frequency for the WGP and
VEP predictors (8.4 and 10.9 times, respectively) was much
lower than that of REP (14.5 times). Therefore, REP predic-
tors contributed the most to yield estimation, which was also
consistent with previous studies (Chang et al., 2005; Nazir et
al., 2021). In addition, we also found that EGPs had greater
average importance and selection frequency (0.014 and 21.3
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times, respectively) than CGPs (0.007 and 11.3 times, re-
spectively), indicating the stronger response of rice yields to
extreme growth conditions.

Figure 9b further shows the proportioned importance of
the four predictor categories for each rice season. Although
the proportioned importance varied for different rice seasons,
the overall contribution was highest for CECs (45 %), fol-
lowed by EGPs (21 %), TI (18 %) and CGPs (16 %). CECs
had the greatest proportioned importance for most countries,
which suggested the great importance of the geographical en-
vironment for rice yield estimation. More interestingly, the
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Figure 9. Panel (a) shows the average frequency and importance of each predictor, and panel (b) presents the proportioned importance of

each predictor category for seasonal rice.

importance of CECs for Myanmar, Thailand and the late sea-
son of Vietnam exceeded 0.8.

4.2 Improvements in AsiaRiceYield4km

AsiaRiceYield4km is a seasonal rice yield product with a
high spatiotemporal resolution and a long time span across
the dynamic rice cultivation areas in the main rice-producing
countries of Asia. Compared with SPAM, the spatial reso-
lution of AsiaRiceYield4km is 4 km, which is the current
highest resolution among all rice yield datasets. Addition-
ally, the product period covers the years from 1995 to 2015,
includes multi-seasonal rice yields within 1 year and incor-
porates more information than most other rice yield datasets.
Similarly, AsiaRiceYield4km considers both the annual dy-
namic change in rice cultivation areas and phenological in-
formation at the grid scale, rather than a constant cultivation
area map and a fixed growing period. Such dynamic infor-
mation assisted us in capturing better spatial and temporal
variations in rice yields and, consequently, greatly improved
the accuracy of our product. Moreover, we applied four pre-
dictor categories and the optimal ML models to estimate sea-
sonal yields. Four predictor categories provided comprehen-
sive rice growth information to ensure the accuracy of yield
estimations. The optimal models for each rice season are de-
termined by the IPW method. As it is a weighted ensemble
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assessment that fully considers training, validation and test-
ing accuracy, we are certain that the IPW method is more
robust and reasonable with respect to selecting the optimal
model for seasonal rice yield in Asia.

4.3 Uncertainty analysis

With respect to the spatial uncertainty, the RRMSE values
in most areas were below 30 %, indicating the low uncer-
tainty in AsiaRiceYield4km. High uncertainty in the RRMSE
(above 50 %) was distributed in northeastern China and west-
ern India for single rice and in central Bangladesh for the
winter season of triple rice (Fig. 10).

In this study, we have improved the yield predic-
tion processes in order to ensure the accuracy of the
AsiaRiceYield4km product as much as possible; however,
several factors might still negatively impact its accuracy. Due
to the limitations of remote sensing techniques (e.g., clouds
and topography), some rice paddy areas cannot be recog-
nized, leading to map errors (Han et al., 2022). Moreover,
the use of rice areas before 2000, based on the combined rice
area from 2000 to 2002, also introduces some uncertainty
due to the unavailability of specific information on these rice
areas. The spatial resolutions of multisource data also cause
uncertainty. For example, given that the rice cultivation ar-
eas in Asia are always fragmented (Lowder et al., 2016) but
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Figure 10. The spatial distribution of uncertainty (RRMSE, %) in AsiaRiceYield4km.

the LAI resolution in this study is somewhat coarser (0.05°),
mixed-pixel effects will inevitably influence the accuracy of
AsiaRiceYield4km in small rice cultivation areas. Although
the GLASS LAI has highest accuracy and lowest uncertainty,
and we have made several efforts to mitigate the uncertainty,
there is still uncertainty and inevitable effects on the rice
yield estimation (Liu et al., 2018; Li et al., 2018; Fang et al.,
2019; Chen et al., 2020). In addition, the crop intensity used
in this study is an administrative-scale value. The annual crop
intensity variation in rice still alters the yield estimation re-
sults. Finally, due to the lack of a process-based mechanism,
ML is weakly traceable and interpretable for rice yield vari-
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ability (Muruganantham et al., 2022), especially for extreme
rice yields. Nevertheless, compared with other public prod-
ucts (Fig. 6), our methods still generated better seasonal rice
yield predictions at a higher spatiotemporal resolution for a

longer period.

5 Data availability
The seasonal rice yield product for Asia during the

1995-2015 period (AsiaRiceYield4km) is available at
https://doi.org/10.5281/zenodo.6901968 (Wu et al., 2022).

https://doi.org/10.5194/essd-15-791-2023


https://doi.org/10.5281/zenodo.6901968

H. Wu, J. Zhang et al.: AsiaRiceYield4km

We encourage users to independently verify data products
before using them.

6 Conclusions

We produced a long-term seasonal rice yield dataset with
a high spatiotemporal resolution on dynamic rice paddy ar-
eas in Asia by using multisource data and ML models. Our
AsiaRiceYield4km dataset has higher accuracy than other
public datasets and shows more spatial consistency with the
observed yield. We attributed such improvements to more dy-
namic information (e.g., rice area and phenological dates),
full consideration of rice growth conditions and the novel
IPW method to select the optimal ML model. Moreover,
we discovered that constant environmental conditions con-
tributed the most (~45 %) to rice yield prediction com-
pared with other growing conditions. REP predictors had a
higher impact on yield predictions than those in the WGP
and VEP. Our dataset can address the lack of seasonal rice
yield datasets and support studies related to agricultural pro-
duction and development.
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