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Abstract. We present IT-SNOW, a serially complete and multi-year snow reanalysis for Italy
(∼ 301× 103 km2) – a transitional continental-to-Mediterranean region where snow plays an important but
still poorly constrained societal and ecological role. IT-SNOW provides ∼ 500 m daily maps of snow water
equivalent (SWE), snow depth, bulk snow density, and liquid water content for the initial period 1 September
2010–31 August 2021, with future updates envisaged on a regular basis. As the output of an operational chain
employed in real-world civil protection applications (S3M Italy), IT-SNOW ingests input data from thousands
of automatic weather stations, snow-covered-area maps from Sentinel-2, MODIS (Moderate Resolution Imag-
ing Spectroradiometer), and H SAF products, as well as maps of snow depth from the spatialization of over
350 on-the-ground snow depth sensors. Validation using Sentinel-1-based maps of snow depth and a variety
of independent, in situ snow data from three focus regions (Aosta Valley, Lombardy, and Molise) show little
to no mean bias compared to the former, and root mean square errors are of the typical order of 30–60 cm
and 90–300 mm for in situ, measured snow depth and snow water equivalent, respectively. Estimates of peak
SWE by IT-SNOW are also well correlated with annual streamflow at the closure section of 102 basins across
Italy (0.87), with ratios between peak water volume in snow and annual streamflow that are in line with ex-
pectations for this mixed rain–snow region (22 % on average and 12 % median). Examples of use allowed us
to estimate 13.70± 4.9 Gm3 of water volume stored in snow across the Italian landscape at peak accumulation,
which on average occurs on 4 March ± 10 d. Nearly 52 % of the mean seasonal SWE is accumulated across the
Po river basin, followed by the Adige river (23 %), and central Apennines (5 %). IT-SNOW is freely available at
https://doi.org/10.5281/zenodo.7034956 (Avanzi et al., 2022b) and can contribute to better constraining the role
of snow for seasonal to annual water resources – a crucial endeavor in a warming and drier climate.
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1 Introduction

The seasonal snow cover is a key modulator of global climate
(Flanner et al., 2011) and a primary source of freshwater for
more than one-sixth of the world’s population (Barnett et al.,
2005; Immerzeel et al., 2020). Snow water resources play
a particularly important role in Mediterranean, summer-dry
regions, where winter accumulation and the following sum-
mer freshet provide highly needed runoff to support societies
and ecosystems as their demand peaks and precipitation de-
clines (Zanotti et al., 2004; Bales et al., 2006; Viviroli et al.,
2007). Snow-dominated regions include, among others, the
U.S. mountainous west, where snow provides 53 % of total
runoff (Li et al., 2017), central Asia (Immerzeel et al., 2010),
the Andes (Soruco et al., 2015), and the European Alps (Vivi-
roli et al., 2007), which are regions from where the benefits
of snow propagate downstream and across the globe (Sturm
et al., 2017). The critical role of snow for water resources,
energy management, and ecosystem services is at the foun-
dation of one of the most recurring, simplest, and yet most
elusive questions in mountain hydrology (Bales et al., 2006;
Margulis et al., 2015; Sturm et al., 2017): how much snow is
accumulated across the landscape at any given time?

Despite major advances since the seminal 1906 field cam-
paigns by James E. Church on Mount Rose (NV, USA), this
quest to quantify snow amount and distribution remains wide
open (Dozier et al., 2016). In situ measurements from ultra-
sonic snow depth sensors (Ryan et al., 2008) or snow pillows
(Cox et al., 1978) are only representative of point conditions,
with extrapolation at larger scales being hindered by the
striking spatial heterogeneity of the snowpack (Grünewald
et al., 2010; Grünewald and Lehning, 2015; De Michele
et al., 2016) and possible perturbations of in situ instrumenta-
tion to snow natural conditions (Malek et al., 2017). Extrap-
olation may be assisted by measuring snow amount along
courses (Rice and Bales, 2010) or at strategically chosen lo-
cations that are representative of large-scale patterns (Zhang
et al., 2017b), but these solutions still imply intense labor
and a comparatively high budget. Remote sensing, whether
in the form of airborne lidar (Kirchner et al., 2014; Painter
et al., 2016), remotely piloted aircraft (Bühler et al., 2016;
De Michele et al., 2016; Harder et al., 2016; Avanzi et al.,
2018), or optical and microwave satellites (Dietz et al., 2012;
Gascoin et al., 2019b), has recently gained popularity in this
context, particularly because it allows one to capture the full
spatial distribution of the snowpack (Blöschl, 1999; Lievens
et al., 2019). However, remote sensing techniques are lim-
ited by either comparatively long revisit times, small areal
coverage, uncertainties related to complex morphology, high
maintenance costs, or cloud coverage. Finally, snowpack dis-
tribution models can simulate snow amount at virtually any
resolution, but uncertainties in input data and in process rep-
resentations make estimates based solely on the modeling of
limited value in operational snow hydrology (Tang and Let-
tenmaier, 2010; Pagano et al., 2014; Avanzi et al., 2020).

Reanalyses obtained by assimilating in situ and remote
sensing data into models are progressively becoming the
most frequent, and arguably the most successful, solution
to estimate snow water resources. Recent examples of such
reanalyses for snow are the snow water equivalent (SWE)
product by Margulis et al. (2016) across Sierra Nevada, Cal-
ifornia, the hyper-resolution ensemble-based reanalysis ap-
plied in Switzerland by Fiddes et al. (2019), the meteoro-
logical and snow reanalysis across the French mountains by
Vernay et al. (2022), the High Mountain Asia UCLA Daily
Snow Reanalysis by Liu et al. (2021), or the Austrian re-
analysis product by Olefs et al. (2020). Estimates of snow
coverage and amount are also available through Earth sys-
tem reanalyses like the ERA suite by ECMWF (https://doi.
org/10.24381/cds.e2161bac, last access: 19 July 2022), the
NASA Global Land Data Assimilation System (GLDAS; see
https://ldas.gsfc.nasa.gov/gldas, last access: 19 July 2022),
or the Japanese 55-year Reanalysis (https://jra.kishou.go.jp/
JRA-55/index_en.html, last access: 19 July 2022), among
many others. Despite inheriting some of the original uncer-
tainty in the data and models, reanalysis products optimally
combine data and models in reconciled estimates and provide
consistent coverage in space and time, thus paving the way
for a new generation of snow science.

We present IT-SNOW, a ∼ 500 m snow reanaly-
sis providing estimates of snow patterns across Italy
(∼ 301× 103 km2) – a topographically and climatically com-
plex region including some of the highest peaks in Europe
(the Alps and the Apennines) and partially snow-dominated,
socio-economically relevant regions like the Po river basin
or the central Apennines. To our knowledge, this is the first
open, sub-kilometric, serially complete, and multi-year snow
reanalysis providing information on snow depth and mass
for the Italian territory. Thus, IT-SNOW fills an important
scale gap between in situ measurements and climate models
or satellite-based datasets at kilometric resolution – such as
the already mentioned ERA suite at 9 km, the H SAF suite
(https://hsaf.meteoam.it/Products/ProductsList?type=snow,
last access: 19 August 2022), the Twentieth Century Re-
analysis Project at ∼ 200 km or more (Compo et al., 2011),
the National Center for Atmospheric Research (NCAR)
Climate Forecast System Reanalysis at ∼ 50 km or more
(Saha et al., 2014), the NASA Modern-Era Retrospec-
tive analysis for Research and Applications (MERRA)
reanalysis product at ∼ 50 km or more (Gelaro et al.,
2017), or the non-mountainous Globsnow product at 25 km
(Pulliainen et al., 2020, see a complete review at https:
//globalcryospherewatch.org/reference/snow_inventory.php,
last access: 19 August 2022).

IT-SNOW blends modeling, in situ data from snow depth
sensors, and satellite observations from Sentinel-2, MODIS,
and the H SAF initiatives and is the output of a real-time
operational monitoring chain developed and maintained by
CIMA Research Foundation for the Italian Civil Protection
Department called S3M Italy (S3M stands for Snow Mul-
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Figure 1. Schematic of methods and data flows in S3M Italy, the operational chain used to generate the IT-SNOW dataset. All components
of this chain are available in an open-source framework at https://github.com/c-hydro/ (last access: 30 August 2022). SWE is snow water
equivalent, LWC is liquid water content of snow, and SCA is snow-covered area.

tidata Mapping and Modeling and is the underlying model
used in this operational chain). The present dataset (IT-
SNOW v1.0) includes daily reanalyzed outputs of SWE,
snow depth, density, and bulk liquid water content from
S3M Italy for water years 2011 through 2021 (a water year
is defined as a period between 1 September and the follow-
ing 31 August and is indicated with the calendar year in
which it ends). Future updates are planned to expand this
dataset (see Sect. 4). IT-SNOW is freely available at https:
//doi.org/10.5281/zenodo.7034956 (Avanzi et al., 2022b).

The paper is organized as follows. Section 2 describes
S3M Italy (Sect. 2.1) and the preparation of the IT-SNOW re-
analysis over the historical period 1 September 2010–31 Au-
gust 2021 (Sect. 2.2). Section 3 evaluates the performance
of IT-SNOW by using remote sensing data, in situ data, and
an indirect water balance approach using streamflow. This
section also includes a discussion of IT-SNOW sources of
uncertainty (Sect. 3.3). Finally, Sect. 4 provides examples of
use, while Sect. 5 details the data format and standards.

2 S3M Italy and IT-SNOW

2.1 The S3M Italy operational chain

S3M Italy provides real-time, spatially explicit estimates of
snow cover patterns at ∼ 200 m resolution and with a la-

tency of a few hours for the whole of the Italian territory
(∼ 301× 103 km2). This operational chain includes algo-
rithms to ingest in situ weather station data and satellite maps
of snow cover, spatialization, and remapping tools to gener-
ate weather input and assimilation maps, parallel scripts to
manage model simulations on multi-core servers, and a va-
riety of post-processing and maintenance tools to generate
final visualizations. S3M Italy is open source and available
at https://github.com/c-hydro/ (last access 30 August 2022),
in particular through the Python package called fp-s3m. A
schematic of the methods and data flows of this operational
chain is reported in Fig. 1.

The core of S3M Italy (and hence of the reanalysis IT-
SNOW) is the Snow Multidata Mapping and Modeling sys-
tem or S3M (Avanzi et al., 2022a). S3M is a spatially dis-
tributed cryospheric model solving the snow mass balance
and parametrizing snowmelt using a hybrid temperature in-
dex and radiation-driven melt approach. Other processes in-
cluded in S3M are snow settling, liquid water outflow, snow
albedo evolution, and precipitation-phase partitioning. Com-
plementary to these processes is an estimate of glacier melt
based on the same hybrid approach used for snow but with
modified parameters. Land cover effects, turbulent fluxes,
and snow–forest interactions are currently not taken into ac-
count.
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Figure 2. Examples of input data used by S3M Italy to produce the IT-SNOW reanalysis. (a) Location of the radiation and relative humidity
sensor stations for 4 February 2021 at 10:00 UTC. (b) Air temperature map for 14 February 2022 at 20:00 UTC, along with delineation
of meteorological homogeneous regions in black (2019 update). (c) Precipitation map based on a modified conditional merging between
precipitation gauges and radars for 23 November 2019 at 09:00 UTC (Bruno et al., 2021). Background map from the Esri satellite theme.
Note that some stations in panel (a) may host both types of measurements.

S3M is a raster-based model, where snow model equations
are solved for each cell with no exchange of mass or energy
across pixels. S3M is also open source and freely available at
https://github.com/c-hydro/s3m-dev (last access: 30 August
2022), while more details on model physics and user require-
ments can be found in Avanzi et al. (2022a).

2.1.1 Input data preparation

Every hour at HH:40 UTC (where “HH” means every hour),
the input data required by the model are downloaded and
saved in predefined formats. These inputs include total pre-
cipitation, air temperature, relative humidity, and solar radia-
tion, all of which are obtained from the database of the Italian
Regional Administrations, Autonomous Provinces, and the
Italian Civil Protection. Input data have an hourly time step.
To fill potential gaps due to occasional malfunctioning and/or
failures, every hour the automatic procedures check the ex-

istence of hourly inputs for the last 30 h. An unique estimate
of the precision of the considered weather data is not avail-
able, as the type of sensor installed varies from one region
to another. The installation and maintenance of the sensors
generally follow guidelines from the World Meteorological
Organization, to which the reader is referred (WMO, 2018).

Total precipitation fields are the result of a modified condi-
tional merging approach applied to precipitation gauges (spa-
tial density of ∼ 1/100 km2) and radar observations (Bruno
et al., 2021), so no further spatialization is performed in
S3M Italy (Fig. 2). This modified conditional merging spa-
tializes in situ precipitation data using an approach similar to
kriging (called GRISO, from the Italian version of Random
Generator of Spatial Interpolation from uncertain Observa-
tions), where the covariance structure is estimated for each
precipitation gauge and each hour using radar data (see full
details in Sinclair and Pegram, 2005; Apicella et al., 2021;
Bruno et al., 2021; Lagasio et al., 2022). Final maps have a
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Figure 3. Daily national lapse rate climatology (a) and frequency distribution of daily national lapse rates according to S3M Italy for the
period September 2010–August 2021. Q1, Q2, and Q3 are the first, second, and third quartiles of the daily national lapse rates for each
month.

resolution of ∼ 1 km2, with a median root mean square error
of less than 1 mm for a selection of 70 heavy precipitation
events in Italy with accumulation greater than 100 mm or a
maximum precipitation rate greater than 50 mmh−1 during
the 2011–2014 period (see details in Bruno et al., 2021). No
phase partitioning is performed at this stage; separation be-
tween rainfall and snowfall is performed by the S3M model
using the parametric approach by Froidurot et al. (2014),
which relies on both air temperature and relative humidity.

Data of air temperature, solar radiation, and relative hu-
midity are obtained as in situ point stations and further spa-
tialized between HH:50 and HH+1:10 UTC (∼ 1 km for tem-
perature and ∼ 500 m for radiation and relative humidity).
For air temperature, the spatialization is performed by or-
ganizing station data into meteorological homogeneous re-
gions as dictated by the Italian Civil Protection (see an ex-
ample in Fig. 2; 2019 update) and fitting region-specific
hourly linear regressions between air temperature and eleva-
tion (Figs. 2 and 3). These linear regressions are then applied
using the meteorological homogeneous region’s digital ele-
vation model to derive temperature maps. Figure 3 reports
monthly quartiles, and the frequency distribution of daily
average national lapse rates, as derived through this proce-
dure, which agree with the estimates by Rolland (2003) in the
Alps. As for relative humidity and incoming shortwave radia-
tion, we currently employ a computationally efficient method
based on inverse distance weighting; no shadow effect or re-
flections from surrounding terrain are currently considered
here, unless these are already captured by the comparatively
dense network of stations.

Input data preparation ends between HH+1:10 and
∼HH+1:20 UTC, when input maps are cropped over the
20 computational domains, each corresponding to one Italian
administrative region. Computational grids for these 20 do-
mains were originally derived from a 20 m digital elevation
model provided by the Italian Institute for Environmental

Protection and Research (ISPRA), which was resampled at
200 m resolution using an averaging method. Besides eleva-
tion, S3M Italy employs static glacier maps from the Ran-
dolph Glacier Inventory v 6.0 (Pfeffer et al., 2014).

2.1.2 Assimilation data preparation

Data assimilation in S3M Italy is performed in the form of
both satellite snow-covered area (SCA) and snow depth maps
(Fig. 4). Maps of the snow-covered area are produced, once
per day, by blending images from the ESA Sentinel-2, NASA
MODIS, and EUMETSAT H SAF initiatives (product H10).
First, 20 m maps of Sentinel-2 for the last 6 d across Italy
are mosaicked (using the most recent one in case of over-
lapping images). A latency of 6 d is allowed both to man-
age the fairly infrequent revisit time of Sentinel-2 (∼ 5 d in
Italy) and as a first provision to manage cloud obstruction.
These maps at 20 m are then resampled at the ∼ 200 m grid
of S3M Italy using the Python raster processing package
Rasterio, with a mode resampling approach, to assign the
dominant land cover among the 20 m pixels inscribed in
each 200 m pixel. Once this first-guess SCA map is avail-
able, cloud-covered or unclassified pixels are further filled
using resampled MODIS (https://modis.gsfc.nasa.gov/data/
dataprod/mod10.php, last access: 13 December 2022) and
H SAF H10 data (https://hsaf.meteoam.it/Products/Detail?
prod=h10, last access 13 December 2022), which have both
nominal daily frequency and are used as distributed by the
respective providers with no further processing. The result is
a blended snow map providing information on snow cover,
bare ground, and non-classified pixels. Besides mosaicking
maps from multiple sources with different revisit times, no
additional gap-filling for cloud coverage is performed. As-
similation for cloud-covered pixels was thus foregone. Like
input data, this map is then remapped across the 20 regional
domains to be assimilated.
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Figure 4. Data assimilated in S3M Italy to produce the IT-SNOW reanalysis. (a) Homogeneous snow regions based on snow climatology
and expert knowledge. (b) Blended snow-covered area maps based on Sentinel-2, MODIS, and H SAF H10 snow products for 13 February
2022. (c) Snow-depth-interpolated map for 13 February 2022. For visualization reasons, the snow depth map in panel (c) was clipped using
the concurrent snow-covered-area map. Snow depth estimates for some homogeneous regions were missing on that day due to insufficient in
situ data; available regions are shown with 50 % transparency. Background map from the Esri satellite theme.

Currently, Sentinel-2 SCA is produced by operationally
applying the Sen2Cor algorithm by ESA (https://step.esa.int/
main/snap-supported-plugins/sen2cor/, last access 30 Au-
gust 2022). Albeit lower in accuracy than snow-specific and
high-resolution products like Theia (Gascoin et al., 2019a),
SCA maps derived with Sen2Cor were validated against
snow depth sensors at the national scale during the average,
representative, 2020 snow season and showed typical accu-
racy scores of the order of 0.7 to 0.8, as expected (see Fig. S1
in the Supplement and Main-Knorn et al., 2017).

Snow depth maps are produced based on the interpolation
of snow depth sensor in situ data. Every day during winter,
measurements of the ∼ 350 snow depth sensors across Italy
at 10:00 UTC are downloaded and quality-checked using an
automatic filtering approach based on seasonality, climato-
logical thresholds on minimum and maximum snow depth,
and a filter based on a 6 h moving window coefficient of vari-
ation to detect grass growth after snowmelt. The specific de-
vice used to automatically monitor snow depth varies across

the country, with the majority of them using an ultrasonic
principle with an accuracy of ∼± 1 cm (Ryan et al., 2008).

The ∼ 350 snow depth in situ data are then organized into
10 homogeneous regions defined along the boundaries of the
International Standardized Mountain Subdivision of the Alps
(SOIUSA; see Valt et al., 2018), based on a tradeoff between
maximizing data availability for each region and comply-
ing with expected climatology (e.g., we differentiated be-
tween inner-Alpine valleys and coastal, maritime, and moun-
tain ranges; see Fig. 4 for a delimitation of these regions).
For each of these homogeneous regions, a separate multi-
linear regression model is fitted across observed snow depth
at sensor locations (predictand), elevation, slope, and aspect
(predictors, with slope and aspect retained only if statistically
significant). By applying the resulting (daily) multilinear re-
gressions using a digital elevation model of each homoge-
neous region, daily snow depth maps are created and then
cropped across the 20 computational domains of S3M. This
is only done if at least 10 observations are available in a given
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homogeneous region; otherwise, spatialization and thus as-
similation for that homogeneous region is foregone. An eval-
uation of this multilinear regression model in Aosta Valley
showed biases of the order of 10 cm compared to avalanche
probes, while a comparison with Sentinel-1 snow depth data
at the national scale showed typical biases of up to 5 cm and
typical root mean square errors below 10 cm (see Sect. 3 for
details on these evaluation data).

Along with maps of snow depth, the procedure also gen-
erates a Kernel map quantifying spatial uncertainty in the
multilinear regression model based on the distance across
snow depth sensors (Avanzi et al., 2021a, 2022a). This ker-
nel is employed to assimilate snow depth map via a spa-
tially distributed Newtonian relaxation approach (also known
as nudging), under the assumption that uncertainty in snow
depth maps will be lower in areas with a denser network of
snow depth sensors. When a snow depth map is available,
the assimilation procedure computes pixel-wise differences
between a priori SWE and snow-depth-map-based SWE (af-
ter the conversion of snow depth maps into SWE maps using
modeled density); this difference is then added to a priori
SWE via Kernel weighting.

SCA maps are not assimilated directly but are used to clip
snow-free pixels in snow depth maps before assimilation in
the S3M model (thus assigning no snow to instances where
snow depth maps estimate no snow although SCA maps ob-
served snow). Both positive and negative differences are as-
similated, meaning that the assimilation may result in either
a decrease or an increase in simulated SWE. To further cope
with grass interference in snow depth sensor data, the assim-
ilation of snow depth and SCA maps is only performed be-
tween December and April, once per day, conventionally at
10:00 UTC.

2.1.3 Model runs and postprocessing

Upon completion of the input data remapping component
of the modeling chain, parallel runs of S3M are performed
(a first batch is launched at HH+1:24 UTC and a second
one at HH+1:34 UTC). The runtime depends on the size
of each modeling domain, with all simulations being com-
pletely roughly by HH+2:00 UTC; hence, there is a latency
of less than 2 h for all domains. A Python wrapper manages
each run, with S3M being a compiled Fortran executable. Ev-
ery day at 3:00 UTC, summaries of previous day’s simula-
tions are compiled by mosaicking each domain on a national
grid and saving outputs for visualization on the Italian Civil
Protection WebGIS maintained by CIMA Foundation called
myDEWETRA.

2.2 IT-SNOW preparation

For the scopes of IT-SNOW, we replicated an operational run
of S3M Italy over the historical period from 1 September
2010 to 31 August 2021 (with a first period from 1 September
2009 through 31 August 2010 used as spinup). Historically
observed weather data were thus downloaded and spatialized
as outlined above, while also downloading, processing, and
spatializing both satellite SCA maps and snow depth maps.
Note that Sentinel-2 data were used only from summer 2021
and thus the assimilated SCAs before that period are the re-
sult of MODIS and H SAF maps. The native resolution of
this historical run was ∼ 200 m, in line with the operational
chain of S3M Italy.

Outputs of this historical run were saved every 6 h (at 5:00,
11:00, 17:00, and 23:00 UTC), and those at 11:00 UTC were
assumed to be representative snapshots of daily conditions.
These outputs at 11:00 UTC were thus remapped from the
native∼ 200 m grid to a national, geographic grid at∼ 500 m
(WGS84; EPSG 4326; pixel size of 0.005057◦). No pro-
jection was performed to avoid accuracy and distortion is-
sues related to such cartographic systems. Owing to the geo-
graphic grid, the actual pixel size in meters changes with lati-
tude, from a minimum of∼ 460 m to a maximum of∼ 508 m.
We remapped at∼ 500 m, using a nearest-neighbor approach
for computational efficiency reasons and as an intermediate
tradeoff maximizing on the predictive confidence between
the native resolution of S3M Italy and the coarser resolution
of precipitation data at 1 km2. Remapped outputs include in-
stantaneous snow water equivalent (SWE), snow depth, bulk
snow density, and bulk liquid water content, which overall
form the IT-SNOW reanalysis dataset (see Sect. 5). Addi-
tional outputs are available upon request, and remapping over
alternative grids is also possible.

3 IT-SNOW evaluation

3.1 Methods

Given that snow depth sensor data from the 20 regional net-
works were assimilated in IT-SNOW, we looked for alter-
native data that could act as truly independent evaluation
sources. The first one was the satellite product by Lievens
et al. (2019), C-SNOW, which provides daily, 1 km snap-
shots of snow depth across mountainous areas of the North-
ern Hemisphere based on an empirical change detection
method applied to the Sentinel-1 measurements of the cross-
polarization ratio. While C-SNOW is a remote sensing prod-
uct, and as such may have locally larger uncertainties than
in situ data, it has been successfully compared with in situ
data from ∼ 4000 sites, with biases within ± 0.1 m for most
of them (Lievens et al., 2019). For the scope of evaluating IT-
SNOW, the main advantage of C-SNOW compared to in situ
data is that it is natively spatially distributed and thus allowed
us to compare IT-SNOW across the landscape rather than at
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specific points. The evaluation period went from 1 September
2016 to 8 April 2020, which is the full span of 1 km C-SNOW
data that are currently available. We remapped C-SNOW data
onto the ∼ 500 m grid of IT-SNOW using a nearest-neighbor
approach and then computed the pixel-wise bias and root
mean square error with regard to IT-SNOW. Note that C-
SNOW data are available only for dry snow conditions and
that the optimization procedure included some (but not all)
of the Italian in situ snow depth sensor data.

The second source of validation data considered here were
in situ data taken in Aosta Valley (northwestern Italy; see
Fig. 6), Lombardy (northern Italy; see Fig. 7), and Molise
(central Italy; see Fig. 8). These three areas present signif-
icantly different climates and thus snow types (Sturm and
Liston, 2021), with Aosta Valley and Lombardy being char-
acterized by a seasonally consistent and deep Alpine snow-
pack and Molise more exposed to lake effect snowfalls from
the Adriatic Sea and thus to a more ephemeral and maritime
snow cover (Da Ronco et al., 2020). These three datasets
are topographically diverse and cover a comparatively long
time span (see below), meaning that they are representative
of larger-scale performances of IT-SNOW.

Measurements in Aosta Valley included yearly snow
course manual samples taken at peak accumulation every
50–100 m along elevation transects of several kilometers up-
stream of five hydropower reservoirs (water years 2011–
2021; elevation above 2000 ma.s.l., above sea level), daily
to weekly manual measurements at recurring locations for
avalanche forecasting (water years 2011–2021; elevations
above 1000 ma.s.l.), and hourly automatic measurements
from an ultrasonic snow depth sensor and a SWE sensor in
Torgnon (2012–2020; elevation 2160 ma.s.l.; see a data in-
ventory in Avanzi et al., 2021a, 2022a). Data in Lombardy in-
clude weekly estimates of snow depth and SWE obtained by
running the physics-based multi-layer SNOWPACK model
(Bartelt and Lehning, 2002) in correspondence with auto-
matic weather and snow stations at medium elevation (1800–
2600 ma.s.l.), where the model was forced using local in-
put data and assimilating local snow depth (henceforth AWS
snow depth and SWE – years 2016 through 2021, with AWS
standing for automatic weather station) and measurements
of snow depth and SWE collected between May and June
on glacier terrains at a very high elevation for mass balance
purposes (elevations above 3000 ma.s.l.; years 2016 through
2021; henceforth glacier snow depth and SWE). Data in
Molise included daily to weekly manual measurements at
four recurring locations for avalanche and water supply fore-
casting (2011–2021; elevation 1200–1500 ma.s.l.). Perfor-
mance metrics between observed and simulated SWE, snow
depth, and bulk snow density included bias, root mean square
error, mean absolute error (MAE), positive and negative
mean error (PME and NME, respectively), the Kling–Gupta
efficiency (Kling et al., 2012), and Pearson’s correlation co-
efficient.

The third source of validation data were streamflow mea-
surements for a selection of 102 basins in Italy for which
long-term, serially complete, and quality-checked time series
of streamflow were available for the period from 1 Septem-
ber 2010 through 31 August 2019 (Bruno et al., 2022). We
used these data to compare the annual peak of water stored
in snow and annual cumulative streamflow at the closure sec-
tion of these basins (both in Gm3) as a proxy for the pro-
portion of annual flow that was accumulated as snow. To this
end, water stored in snow (simply SWE in Gm3 in the follow-
ing) was obtained by multiplying pixel-wise SWE (in mw.e.)
from IT-SNOW by the area of each cell and then summing
all pixel-wise values. Given that it is general knowledge that
Italian precipitation climatology is a mix between snow and
rain, we not only expect these ratios to be between 0 and 1
but also to predominately be smaller than 0.5. Owing to pre-
cipitation increasing with elevation (Avanzi et al., 2021a), we
also expect these ratios to increase with the average elevation
of each of these catchments. While indirect in that IT-SNOW
is not evaluated against snow data, this third evaluation stems
from a long-standing tradition of inverting the hydrological
cycle (Valery et al., 2009) to provide insights into the consis-
tency of IT-SNOW estimates with the local water budget.

3.2 Results

3.2.1 Evaluation of snow depth against C-SNOW

Mean pixel-wise bias between IT-SNOW and C-SNOW was
close to zero (−0.01 m), with a median value of zero, and
the first and third quartiles being −0.03 and +0.02 m, re-
spectively (Fig. 5c). Thus, the distribution of spatial biases
was well centered around zero (Fig. 5c). Mean pixel-wise
RMSE was 0.22 m (Fig. 5d), i.e., close to the mean absolute
error found by Lievens et al. (2019) in the original evalua-
tion of C-SNOW with snow depth sensors (0.18 to 0.31 m).
The first, second, and third quartiles of pixel-wise RMSE
were 0.14, 0.19, and 0.27 m, with only a fraction of values
above 0.5 m (Fig. 5d; both bias and RMSE were calculated
between time series at each pixel). We conclude that the two
products provide consistent estimates of snow depth across
the Italian landscape.

The spatial distribution of bias across the Italian Alps and
the central Apennines showed no obvious pattern, with only
a tendency of IT-SNOW to underestimate C-SNOW snow
depth at high elevations (see Fig. 5a and b). This may be
related to well-known biases of precipitation gauges and
radars, the main sources of input precipitation in S3M Italy,
at high elevations and/or in inner-Alpine areas (Zhang et al.,
2017a; Cui et al., 2020; Avanzi et al., 2021a, see Sect. 3.3
for a discussion). Besides this bias with elevation, biases and
RMSEs between IT-SNOW and C-SNOW were consistent
across the 10 homogeneous regions used to generate snow
depth maps to be assimilated in IT-SNOW (Figs. S2 and S3
in the Supplement).

Earth Syst. Sci. Data, 15, 639–660, 2023 https://doi.org/10.5194/essd-15-639-2023



F. Avanzi et al.: IT-SNOW v 1.0 647

Figure 5. Evaluation of IT-SNOW using the Sentinel-1 snow depth product C-SNOW for the period September 2016 through April 2020.
Pixel-wise bias for the Italian Alps (a) and the central Apennines (b), frequency distributions of pixel-wise bias (c) and root mean square
error (d) are shown. The background map is from the Esri satellite theme. Panels (a) and (b) refer to the two areas of Italy with seasonally
deep snow cover.

3.2.2 Evaluation against in situ data

IT-SNOW estimates of snow depth, SWE, and bulk snow
density were generally well correlated with measurements in
Torgnon (Aosta Valley; Fig. 6e, g, and i), with local RMSE
for snow depth, SWE, and density being 30 cm, 95 mm,
and 93 kgm−3, respectively (Table 1), and Pearson’s corre-
lation between 0.43 and 0.81 (Table 1). Biases were minor
in Torgnon, with Kling–Gupta efficiencies that were signif-
icantly above the no-skill threshold of −0.41 (see Knoben
et al., 2019, and Table 1). From a seasonal perspective, IT-
SNOW and measurements in Torgnon also agreed in terms of
accumulation and snowmelt temporal patterns, in addition to
the date of peak accumulation (Fig. 6d, f, and h). The lowest
correlation was found for bulk snow density (Table 1), which
is not surprising, given that density was indirectly derived
from measurements of snow depth and SWE (DeWalle and
Rango, 2011), a procedure that may increase noise (Terzago
et al., 2020). Performance scores decreased when consider-
ing avalanche probes (Fig. 6c and Table 1) and high-elevation

snow courses (Fig. 6b and Table 1), which was expected,
given the significant scale of mismatch between a ∼ 500 m
reanalysis and topographically diverse, in situ manual mea-
surements and the already mentioned possible underestima-
tion of precipitation fields at high elevations (see Fig. 5 and
Avanzi et al., 2021a). Overall, evaluation results in Aosta
Valley showed that IT-SNOW successfully reconstructs both
the seasonal dynamics and peak timing of snow depth and
mass, and hence density, of this heavily instrumented region
(see Figs. 2 and 4).

In Lombardy, IT-SNOW estimates of snow depth and
SWE generally agreed well with those provided by SNOW-
PACK at medium elevations, despite somewhat larger RM-
SEs and biases, larger mean absolute errors, and a lower cor-
relation than in Aosta Valley (Table 1 and Fig. 7). Note that
these medium-elevation data in Lombardy were not directly
observed but were the result of modeling, which may have in-
creased their own uncertainty. On the other hand, IT-SNOW
in Lombardy showed an expected systematic underestima-
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Figure 6. Evaluation of IT-SNOW in Aosta Valley. (a) Topography of the focus region, along with sampling location of evaluation data.
Panels (b) and (c) show observed vs. simulated snow depth at snow course and avalanche probe locations. Panels (d) and (e) show simulated
vs. observed snow depth at Torgnon. Panels (f) and (g) show simulated vs. observed SWE at Torgnon. Panels (h) and (i) show simulated vs.
observed bulk snow density at Torgnon. Note that simulated snow depth, SWE, and density in panels (d), (f), and (h) were smoothed using a
5 d moving window for readability. r is Pearson’s correlation coefficient, HS is snow depth, and SWE is snow water equivalent.

tion of very-high-elevation mass balance measurements on
glaciers (biases of −717 mm and −110 cm; Table 1), despite
a promising correlation and a KGE between observations and
simulations (Table 1). While overcoming these underestima-
tions is a major challenge for large-scale reanalyses like IT-
SNOW, again because of the scale and undercatch issues dis-
cussed with regard to C-SNOW (Fig. 5) and Aosta Valley

data (Fig. 6), and while very-high-elevation regions play only
a minor role in a catchment water balance, we discuss path-
ways to improve IT-SNOW in this regard in Sect. 3.3.

Correlations between measured and simulated snow depth,
SWE, and density were lower in Molise than in Aosta Valley
and Lombardy (Fig. 8b, c, and d; RMSE of 61 cm, 200 mm,
and 109 kgm−3, respectively, and biases of 34 cm, 82 mm,
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Table 1. Overview of IT-SNOW performance versus in situ data in Aosta Valley, Lombardy, and Molise. RMSE is the root mean square
error, MAE is the mean absolute error, PME is the positive mean error, NME is the negative mean error, KGE is the Kling–Gupta efficiency
(Kling et al., 2012), and r is Pearson’s correlation coefficient.

Area Variable RMSE Bias MAE PME NME KGE r

Aosta Valley SWE (Torgnon) 95 mm −8.5 mm 66.2 mm 59.6 mm −72 mm 0.74 0.81
Snow depth (Torgnon) 30 cm −1.9 cm 20 cm 16.4 cm −24.7 cm 0.73 0.75
Density (Torgnon) 93 kg m−3

−5.8 kgm−3 70 kgm−3 59.4 kgm−3
−82.5 kgm−3 0.37 0.43

Snow depth (Aval. probes) 56 cm 7.9 cm 37.6 cm 37.7 cm −37.4 cm 0.25 0.55
Snow depth (courses) 132 cm −55 cm 105 cm 87 cm −113 cm 0.06 0.21

Lombardy SWE (AWS) 290 mm −112 mm 202 mm 158 mm −220 mm 0.54 0.57
Snow depth (AWS) 63 cm −19 cm 43 cm 39 cm −44 cm 0.60 0.63
SWE (glacier) 842 mm −717 mm 722 mm 139 mm −733 mm 0.33 0.60
Snow depth (glacier) 135 cm −110 cm 113 cm 27 cm −117 cm 0.41 0.60

Molise SWE 200 mm 82 mm 135 mm 161 mm −80 mm 0.37 0.45
Snow depth 61 cm 34 cm 44 cm 49 cm −26 cm −0.19 0.48
Density 109 kgm−3

−24 kgm−3 86 kgm−3 82 kgm−3
−89 kgm−3 0.35 0.44

Figure 7. Evaluation of IT-SNOW in Lombardy. (a) Topography of the focus region, along with location of evaluation data and an example
of glacier data sampling geometry (b, c) IT-SNOW vs. SNOWPACK snow depth and SWE at medium-elevation snow stations, respectively.
(d, e) Observed vs. IT-SNOW snow depth and SWE at very-high-elevation glacier sites in the context of end-of-season mass balance surveys.
r is Pearson’s correlation coefficient, AWS is automatic weather station, and SWE is snow water equivalent.
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Figure 8. Evaluation of IT-SNOW in Molise. (a) Topography of the focus region, along with sampling location of evaluation data. (b–
d) Simulated vs. observed snow depth, SWE, and bulk snow density at Molise snow stations, respectively. (e–g) Example of simulated vs.
observed time series of snow depth, SWE, and bulk snow density at Pescopennataro, respectively. Note that simulated snow depth, SWE, and
density in panels (e–g) were smoothed using a 5 d moving window for readability. r is Pearson’s correlation coefficient, HS is snow depth,
and SWE is snow water equivalent. Density was measured with a resolution of 20 kgm−3; hence, the discrete values of the point cloud along
the x axis are shown in panel (d).

and −24 kgm−3, respectively; Table 1). We interpret this
outcome as being due to the sparser network of assimilated
snow depth sensors used in southern Italy compared to north-
ern Italy (see Fig. 4). Yet, IT-SNOW successfully recon-
structed not only the seasonal dynamics of accumulation of

melt in Molise but also the much more significant interannual
variability in peak SWE than in Aosta Valley (Fig. 8f).

These performances of IT-SNOW against in situ data are
consistent with snow reanalyses over other areas of the Alps.
In this regard, Vernay et al. (2022) report median RMSEs
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for snow depth of the order of 10–40 cm in France (max-
imum RMSEs up to 90 cm), with an increasing trend with
elevation; both results echo findings in this paper for areas
at medium elevation, where the bulk of forcing and evalu-
ation data are available (Avanzi et al., 2021a). In Austria,
Olefs et al. (2020) found RMSEs for snow depth and SWE
of the order of 10 cm and 100 mm, with correlations of 0.86
and 0.91, respectively; this accuracy is higher than that of IT-
SNOW, likely because of the much more homogeneous cov-
erage of snow data in Austria compared to Italy (see Fig. 1 in
Olefs et al., 2020). Finally, Fiddes et al. (2019) report RMSEs
of the order of 38–53 cm for snow depth and 184–258 mm for
SWE, which again tallies with the accuracy of IT-SNOW.

Simulated time series of snow depth and SWE in Torgnon
present frequent, abrupt oscillations that are not related to
any physical process such as melt or settling (Fig. 6d and f).
These oscillations, which were already noted in Avanzi et al.
(2022a), are due to the assimilated snow depth maps, which
often include – or even propagate – instrumental noise (Ryan
et al., 2008). Indeed, similar oscillations are not visible in
bulk snow density time series, which are unaffected by as-
similation (Fig. 6h), or in Molise (Fig. 8e and f), where as-
similation is much rarer due to a sparse network of snow
depth sensors. While these oscillations do not affect the sea-
sonal reconstruction of snow depth or the temporal patterns
of peak SWE, it is important to bear them in mind when per-
forming temporally fine analyses with IT-SNOW. Such os-
cillations could be better handled by assimilation techniques
that explicitly account for point measurement uncertainty,
such as a Kalman or particle filter (Piazzi et al., 2018), but
doing so would entail significantly higher computational de-
mands that are currently non-feasible given the tight, real-
time schedule required by S3M Italy.

3.2.3 Comparison of estimated SWE with observed
streamflow

On average, peak SWE is about 22 %± 24 % of annual
streamflow across the considered 102 gauge stations and
9 water years (median of 12.8 % for the period 2011–2019;
see Fig. 9b. Note that SWE is expressed in this section in
the form of total water volume stored in snow, Gm3; see
Sect. 3.1). As expected, the distribution of this ratio is highly
skewed toward values below 50 % and shows a clear lat-
itudinal trend, with higher values for rivers draining from
the southern Alps in the Po river valley and a handful of
basins draining from central Apennines (Fig. 9a). In these
snow-dominated regions, the average ratio across the con-
sidered 9 water years locally exceeds 50 % to 60 %, espe-
cially in the high-elevation regions of northwestern Italy and
the Adige valley. Comparatively small watersheds on the
central–western side of the Italian peninsula show signifi-
cantly smaller values, reflecting lower elevations and a more
maritime and warmer climate.

As an additional, indirect validation of IT-SNOW, peak
SWE is significantly correlated with annual streamflow
(Pearson’s correlation coefficient of 0.87; Fig. 9c). In other
words, peak SWE is a robust predictor of annual stream-
flow in Italy, which agrees with past findings in more snow-
dominated regions of the world (Pagano et al., 2004; Rosen-
berg et al., 2011; Harrison and Bales, 2016). Again, as ex-
pected, peak SWE is smaller than annual streamflow (Fig. 9c)
and is significantly correlated with the mean elevation of
each watershed. Overall, these evaluations show consistency
between IT-SNOW SWE estimates and the Italian water bud-
get.

3.3 Sources of uncertainty

Like all reanalyses combining sparse data and a model over
large domains, IT-SNOW is the result of a number of tradeoff
choices and epistemic uncertainties that should be taken into
consideration when handling this dataset. The first source of
uncertainty is represented by precipitation estimates, similar
to any snow–hydrologic model simulation in mountain re-
gions. The modified conditional merging approach used in
IT-SNOW has already been extensively validated and shows
robust performances for heavy precipitation events at the na-
tional scale (relative error in high flows < 25 % for 72 % out
of 241 Italian river sections when used to force a hydrologic
model; see Bruno et al., 2021). However, it does not in-
clude explicit provisions for reconstructing precipitation oro-
graphic gradients (besides those captured by the location of
stations and by radar images). Previous work in Aosta Valley
(Avanzi et al., 2021a) and elsewhere (Lundquist et al., 2015;
Zhang et al., 2017a; Avanzi et al., 2020), in addition to the re-
sults reported in this paper (Figs. 5 and 7), show that includ-
ing these orographic gradients is important to close the water
budget of small, high-elevation, Alpine catchments. Targeted
validations for such high-elevation Alpine catchments will
thus be the subject of future work.

A second source of uncertainty related to precipitation and
more generally to in situ weather data is data sparsity and
how this can affect spatialization in partially ungauged re-
gions. While the density of weather data in Italy is compar-
atively high (as an order of magnitude, there is ∼ 1 station
every 100 km2 or more), and stations are routinely monitored
and maintained by regional administrative authorities, we ex-
pect estimates for regions at the boundary of the Italian terri-
tory to show an inherently larger uncertainty than the rest of
the country (because of a lack of input data outside the Italian
territory). Data sparsity also limits the amount of snow depth
data that we can currently employ in assimilation and the ex-
tent of evaluation regions in this paper (see Sect. 3). While
estimating a real-time layer of uncertainty for this reanalysis
product is currently not feasible, this will be target of future
work.

Regarding the assimilation data, uncertainty in satellite
SCA is in line with standards by the European Space Agency

https://doi.org/10.5194/essd-15-639-2023 Earth Syst. Sci. Data, 15, 639–660, 2023



652 F. Avanzi et al.: IT-SNOW v 1.0

Figure 9. Indirect validation of IT-SNOW with streamflow data. (a) Mean annual ratios (in %) between peak SWE and annual cumulative
streamflow for a selection of 102 water basins with long-term, serially complete, and quality-checked time series of streamflow. (b) Frequency
distribution of these annual ratios across all sections and years. (c) Correlation between annual streamflow and annual peak SWE across all
sections and years (red line is the 1 : 1 reference line; the black dashed line is a linear regression between peak SWE and annual streamflow).
(d) Correlation between mean peak SWE and river basin mean elevation (the black dashed line is a linear regression between these two data).
Q is annual streamflow. Note that considered water sections of the central Po river valley do not account for snow accumulated in the Swiss
canton Ticino, which is not included in IT-SNOW (Ticino represents about 5 % of the Po river basin at its most downstream closure section).
The background map is from the Esri satellite theme. SWE is expressed here in the form of total volume of water stored in snow (Gm3; see
Sect. 3.1).

(ESA), as already discussed in Sect. 2. On the other hand,
we noted that noise in snow depth sensor data, along with
the likely simplistic multilinear regression approach used to
spatialize snow depth across the landscape, often introduces
artifacts in snow depth that translate into abrupt oscillations
in snow depth values at the daily timescale (Fig. 6). Another
source of uncertainty in this regard is that we organized the
Italian territory in 10 homogeneous regions, but no smooth-
ing at the regional boundaries is currently in place. As a
result, IT-SNOW may sometimes overestimate snow depth
variability across the boundaries of these homogeneous re-
gions and/or exaggerate the role of single topographic predic-
tors of snow depth, such as aspect. An alternative to our ap-
proach would be to directly assimilate remote sensing prod-
ucts; ongoing efforts by the European Space Agency and oth-

ers are moving towards this direction, and we aim to include
new findings in this regard in our assimilation framework.

In terms of epistemic uncertainty, the S3M model relies on
an enhanced temperature index approach that was calibrated
in Aosta Valley and then extensively evaluated elsewhere in
Italy (both in this paper and in other projects, such as Al-
fieri et al., 2022). Relying on the same parameters across
the whole country could introduce some additional uncer-
tainty at the local scale. However, results in this paper show a
credible reconstruction of melt dynamics, even in areas with
only occasional assimilation (Fig. 8). In this regard, Bouamri
et al. (2018) reported encouraging results when transferring
model parameters of the same enhanced temperature index
approach to uncalibrated sites. A more influencing factor in
this sense could stem from S3M not solving the full energy
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balance, but Magnusson et al. (2015) show that this is not a
key driver of model performance for snow bulk variables at
the daily scale.

4 Examples of use

By providing spatially explicit, high-resolution, and seri-
ally complete estimates of snow patterns, reanalyses like IT-
SNOW have the potential to fill important knowledge gaps
in hydrology, for example, by elucidating the role of snow
in supporting worldwide water security (Viviroli et al., 2007)
or snow sensitivity to climate extremes like droughts (Hatch-
ett and McEvoy, 2018). IT-SNOW also responds to press-
ing societal questions from operational water resources man-
agers and decision-makers, who need diversified information
on snow distribution, amount, and interannual variability to
make accurate decisions regarding water allocation and use
(Harrison and Bales, 2016). In this section, we show exam-
ples of how IT-SNOW can be used to answer the follow-
ing two societally relevant questions (Dozier, 2011; Margulis
et al., 2015; Painter et al., 2016): (1) how much snow is ac-
cumulated across the landscape? (2) Where is it distributed?

4.1 How much snow is accumulated across the
landscape?

Figure 10a shows total daily SWE across Italy for the whole
period of record, again in the form of total water volume in
snow (Gm3; see Sect. 3.1). Peak SWE in Italy is on aver-
age 13.70± 4.9 Gm3, with a minimum in 2017 (∼ 5 Gm3)
and a maximum in 2014 (∼ 23 Gm3). SWE peaks are, on av-
erage, on 4 March ± 10 d, i.e., about 1 month earlier than
the 1 April reference date; this finding is in agreement with
a recent reconsideration of this conventional date (Montoya
et al., 2014). The earliest peak SWE date was 3 February
(2019), while the latest was 26 March in 2013. Seasonal dy-
namics show signs of intraseasonal melt (e.g., see late 2011
to early 2012), which is expected in a Mediterranean region
where cold-alpine and maritime snow types coexist (Sturm
et al., 1995; Sturm and Liston, 2021). Nonetheless, snow sea-
sons are temporally continuous, with no episode of intrasea-
sonal melt out. Little to no carryover occurs between seasons.

A large fraction of Italian snow accumulates across the
southern Alps, while snow accumulation on the Apennines
is spatially more limited and – importantly – more variable
from one season to the next (Fig. 10b to l). This increased
variability in the Apennines compared to the Alps agrees
with sparse, but consistent, previous work showing that snow
in the Apennines – and particularly on their eastern side –
is the result of intense, highly seasonal, lake effect storms
(Da Ronco et al., 2020). One such event is evident in the 2012
reanalysis of IT-SNOW (Fig. 10c), when central Italy was
hit by extensive snowfalls as part of a continental cold wave
(Demirtaş, 2017). Data for February 2012 report 150 cm or
more of fresh snow in places, with more precise estimates of

the return period for this event being challenged by the spar-
sity of the data network (Bisci et al., 2012). Another sim-
ilarly exceptional event was the 2014 season in the south-
ern Alps (Fig. 10e), with 8 m of peak snow depth at 2000 m
(200 % of the long-term mean; see Chiambretti et al., 2014).
IT-SNOW also correctly captured rare but significant low-
elevation snowfall events (see water year 2011; Fig. 10b).

The spatially and temporally consistent framework of IT-
SNOW can aid not only climatological and hydrologic stud-
ies, for example, by providing highly necessary validation
datasets of snow cover and SWE, but also operational water
resources managers who routinely use SWE as an estimate
of freshet volume (Harrison and Bales, 2016). Similar ef-
forts have already been made in other regions like California,
USA, where Margulis et al. (2016) estimate about 20 Gm3 of
mean peak water volume in snow across the Sierra Nevada,
or Japan, where Niwano et al. (2022) estimate 42.2 Gm3 on
average during the 2017–2022 winters. These estimates tally
with those of IT-SNOW across the Italian mountain ranges
(Fig. 10), an area with a similar geographic span to the Sierra
Nevada, California, or Japan but a less snow-dominated cli-
mate. With its high spatial resolution and fine temporal gran-
ularity, IT-SNOW can contribute to the quest for constraining
the extent and volume of the world’s cryosphere.

4.2 Where is it distributed?

Spatially aggregating mean winter SWE across major Ital-
ian watersheds shows that ∼ 52 % of Italian snow water re-
sources accumulate across the Po river basin, the largest Ital-
ian water basin (Fig. 11b). The second-largest snow reservoir
in Italy is, as expected, the Adige river basin (23 %), followed
by the Piave, Tagliamento, and Brenta basins (6 %, 3 %,
and 3 %, respectively). Collectively, these five Alpine water
basins host nearly 87 % of Italian snow. A second hotspot for
snow accumulation is the central Apennines, with the Tiber
river basin accumulating about 2 % of the national mean win-
ter SWE. This and other three basins in central Italy (Aterno–
Pescara, Garigliano, and Sangro) accumulate about 5 % of
national SWE, with the remaining 8 %–9 % scattered across
the remaining basins.

Median and quartiles of daily SWE for a selection of the
most snow-dominated Italian basins show the typical sea-
sonal dynamics of snow accumulation and melt, with the
peak SWE date between water year days ∼ 180 and ∼ 200
(that is, between the end of February and mid-March; see
Fig. 11c to i. SWE is expressed as total volume of water
stored in snow, Gm3; see Sect. 3.1). As already noted in
Fig. 10, the Apennines basins show much more interannual
variability than Alpine basins, as evident from the larger
spread between the first and third quartiles in Fig. 11g to i
compared to Fig. 11c to f.

Italian basins also show significantly different melt rates,
e.g., the mean annual SWE for the Po river basin is 4 Gm3,
with an almost continuous snow cover and an almost sym-
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Figure 10. Example of use of IT-SNOW. (a) Spatially aggregated total daily SWE across Italy. (b–l) Mean annual SWE (November to June
for water years 2011 to 2021). The background map is from Esri terrain. SWE in panel (a) is expressed in the form of total volume of water
stored in snow (Gm3; see Sect. 3.1).

metrical accumulation and melt season (Fig. 11c). This sym-
metry significantly differs from more radiation-driven and
maritime snow types, such as that of the Aterno–Pescara or
Tagliamento rivers (Fig. 11f and h), where the melt season is
shorter than the accumulation season.

With its initial time span of 11 years, IT-SNOW-derived
statistics like those from Fig. 11c to i can provide estimates
of medium-term SWE variability and thus put accumulation
at any given time (like those in Fig. 10) into a broader con-
text. Such a broader context is becoming all the more im-

portant in a warming and drier climate, particularly given the
growing emergence of snow droughts as a specific typology
of droughts (Harpold et al., 2017; Hatchett et al., 2017; Hun-
ing and AghaKouchak, 2020). In this regard, medium-term
climatological bands like those in Fig. 11 have already been
used to contextualize the severe 2022 precipitation deficit
in northern Italy by showing that this deficit translated into
∼ 40 % SWE compared to the 2009–2021 median (Toreti
et al., 2022). While the initial time span of IT-SNOW snow is
too short for rigorous deficit estimates, the operational chain
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Figure 11. Example of use of IT-SNOW. (a, b) Percentage of mean winter SWE that is accumulated across the major Italian river basins
(right) and location of these major basins across Italy (left). (c–i) Median and quartiles of daily basin-wide SWE across a selection of the
most snow-dominated basins in Italy. Q2 is the median, and Q1 and Q3 are the first and third quartiles, respectively. The background map is
from the Esri satellite theme. SWE is expressed here in the form of total volume of water stored in snow (Gm3; see Sect. 3.1).

delivering this reanalysis will provide yearly updates for fu-
ture seasons, while an extension to the near past (say, 2002–
2009) is also in consideration. Besides deficit analysis, we
expect the notion of snow accumulation and melt rates to aid
in other contexts, such as ecology (Slatyer et al., 2022) or
climate change assessments (Musselmann et al., 2017).

5 Data format

IT-SNOW is available in an open-access framework at
https://doi.org/10.5281/zenodo.7034956 (CC BY-NC 4.0;
see Avanzi et al., 2022b). Data are organized in monthly
netCDF files, with zlib compression, each hosting a 3D ma-
trix of daily maps for one variable of interest (SWE, snow
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depth, bulk snow density, and bulk liquid water content).
Filename strings follow a consistent convention, including
variable name and month (e.g., ITSNOW_SWE_201009.nc
for SWE data of September 2010). Variable labels and units
are as follows: SWE for snow water equivalent (mmw.e.),
HS for snow depth (cm, Fierz et al., 2009), RhoS for bulk
snow density (kgm−3), and Theta W for bulk liquid water
content (vol%).

In addition to data, each netCDF file includes information
regarding the reference system (variable crs, including well-
known text strings for EPSG 4326), latitude and longitude
matrices, and a time array. Compatibility with the NASA
Panoply system (https://www.giss.nasa.gov/tools/panoply/,
last access: 23 August 2022) and with QGIS were both veri-
fied, including reprojection to a UTM (Universal Transverse
Mercator) metric system. Each netCDF file also includes
metadata identifying contact points and curators.

6 Code and data availability

IT-SNOW is available in an open-access framework at
https://doi.org/10.5281/zenodo.7034956 (CC BY-NC 4.0;
see Avanzi et al., 2022b).

Sources of the data used are reported in the paper
and include the database of the Italian Regional Admin-
istrations and Autonomous Provinces, as accessible by
CIMA Research Foundation through the Italian Civil Pro-
tection, the Aosta Valley Environmental Protection Agency
(snow courses), the Aosta Valley Ufficio Neve e Valanghe
(avalanche probing data), Meteomont (as available for the
Molise Region; Molise snow data), the Lombardy Envi-
ronmental Protection Agency (Lombardy data), and the C-
SNOW initiative (Lievens et al., 2019).

The S3M model is open-source software. Official releases
are available at https://doi.org/10.5281/zenodo.4663899
(Avanzi et al., 2021b). The most important components
of the S3M Italy operational chain are also open source
(see https://doi.org/10.5281/zenodo.5040388, Avanzi et al.,
2021c).

7 Conclusions

We presented IT-SNOW, a spatially explicit and multi-year
reanalysis of snow cover patterns across Italy at∼ 500 m res-
olution. IT-SNOW is the reanalyzed output of S3M Italy,
a cryospheric modeling chain operationally delivering spa-
tial snapshots of snow water resources for civil protection
applications. Through S3M Italy, IT-SNOW ingests input
data from thousands of automatic weather stations across
the Italian territory, while assimilating daily snow-covered-
area maps from ESA Sentinel-2, NASA MODIS, and EU-
METSAT H SAF products and multilinear regressions of
on-the-ground snow depth data. Validation results show lit-
tle to no mean bias compared to C-SNOW, a state-of-the-art

retrieval of snow depth from Sentinel 1, root mean square
errors of the order of 30–60 cm for in situ measured snow
depth and 90 to 300 mm for in situ measured snow water
equivalent, a strong (0.87) correlation between peak SWE
and annual streamflow, and ratios between peak SWE and
annual streamflow that are in line with expectations for this
mixed rain–snow region (22 % on average). Examples of
use showed how IT-SNOW can both fill fundamental knowl-
edge gaps in snow hydrology and support real-world appli-
cations by answering recurring questions like “how much
snow is accumulated across the Italian landscape?” (on aver-
age 13.70± 4.9 Gm3 peak SWE), or “where is it?” (∼ 52 %
and 21 % across the Po and Adige river basins, respectively,
with the remainder between less snow-dominated watersheds
in northeastern Italy and the central Apennines).

IT-SNOW will be updated annually, and community en-
gagement will be favored to maintain a high-resolution re-
analysis of snow for Italy. Engagement will follow two
lines of action. The first is institutional, as we are engag-
ing with the Italian regional administrations to benchmark
IT-SNOW against their long-standing systems providing lo-
cal to regional estimates of SWE with methodologies that
vary among the offices. The second is bottom-up, as we are
designing tools to favor engagement through a GitHub dis-
cussion page hosted at https://github.com/c-hydro (last ac-
cess: 30 August 2022). The author team thus remain open
to critical feedback from the user community on IT-SNOW
accuracy, issues, and improvement opportunities.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-639-2023-supplement.
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