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Abstract. Reliable precipitation data are highly necessary for geoscience research in the Third Pole (TP) region
but still lacking, due to the complex terrain and high spatial variability of precipitation here. Accordingly, this
study produces a long-term (1979–2020) high-resolution (1/30◦, daily) precipitation dataset (TPHiPr) for the
TP by merging the atmospheric simulation-based ERA5_CNN with gauge observations from more than 9000
rain gauges, using the climatologically aided interpolation and random forest methods. Validation shows that
TPHiPr is generally unbiased and has a root mean square error of 5.0 mm d−1, a correlation of 0.76 and a critical
success index of 0.61 with respect to 197 independent rain gauges in the TP, demonstrating that this dataset
is remarkably better than the widely used datasets, including the latest generation of reanalysis (ERA5-Land),
the state-of-the-art satellite-based dataset (IMERG) and the multi-source merging datasets (MSWEP v2 and
AERA5-Asia). Moreover, TPHiPr can better detect precipitation extremes compared with these widely used
datasets. Overall, this study provides a new precipitation dataset with high accuracy for the TP, which may have
broad applications in meteorological, hydrological and ecological studies. The produced dataset can be accessed
via https://doi.org/10.11888/Atmos.tpdc.272763 (Yang and Jiang, 2022).
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1 Introduction

The Third Pole (TP) region is one of the most complex ter-
rain regions with high elevations and heterogeneous land
surfaces, and strong water and energy exchanges between
land surface and atmosphere exist in this region (Chen et al.,
2021). Moreover, it is the source of many large Asian rivers,
providing abundant water resources and hydropower within
and beyond this region (Yao et al., 2022). Meanwhile, the
TP suffers from frequent natural hazards (e.g., flash floods,
debris flows, landslides), especially in the periphery of the
TP (Cui and Jia, 2015). Reliable gridded precipitation data
are essential for understanding hydrological processes, plan-
ning water resources and preventing natural hazards in the
TP (Gao et al., 2021; Wang et al., 2018).

At present, quasi-global and regional precipitation
datasets, including gauge-based products, satellite-based
products and reanalysis products, have played an important
role over the TP. These datasets include the Asian Precipi-
tation – Highly-Resolved Observational Data Integration To-
wards Evaluation (APHRODITE; Yatagai et al., 2012), the
Integrated Multi-satellitE Retrievals for Global Precipitation
Measurement (IMERG; Huffman et al., 2019), the TRMM
Multisatellite Precipitation Analysis (TMPA; Huffman et al.,
2007), the China Meteorological Forcing Dataset (CMFD;
He et al., 2020), the fifth-generation ECMWF atmospheric
reanalysis (ERA5; Hersbach et al., 2020) and its downscaled
version for land applications (ERA5-Land; Muñoz-Sabater
et al., 2021), the High Asia Refined analysis (HAR; Maus-
sion et al., 2014) and its version 2 (HAR v2; X. Wang et
al., 2020), et al. Among these products, gauge-based prod-
ucts may have large errors in the TP, since they are mostly
interpolated based on sparse gauge observations. Satellite or
satellite–gauge-combined products are most widely used in
the TP. However, they are proven to misrepresent solid pre-
cipitation and orographic precipitation and show large un-
certainties in winter and in the western and southeastern TP
(Gao et al., 2020; Lu and Yong, 2018; Xu et al., 2017). Atmo-
spheric simulation with fine spatial resolution can give rea-
sonable atmospheric water transport and precipitation spatial
variability in complex terrain (Curio et al., 2015; Maussion et
al., 2014; Norris et al., 2017; Ouyang et al., 2021; Sugimoto
et al., 2021; Y. Wang et al., 2020b; Zhou et al., 2021); more-
over, it is skillful in estimating solid precipitation (Lundquist
et al., 2019; Maussion et al., 2014). However, current atmo-
spheric simulation-based datasets consistently overestimate
precipitation amount in the TP (Gao et al., 2015; Y. Wang et
al., 2020b; Zhou et al., 2021). As a result, substantial differ-
ences exist among these datasets in the TP in terms of both
amount and spatial variability of precipitation (Li et al., 2020;
Lu and Yong, 2018; Tan et al., 2020; Wang and Zeng, 2012;
You et al., 2012). In addition, these datasets typically have
a horizontal resolution coarser than 10 km, which is insuffi-
cient to represent the fine-scale precipitation variability and
cannot be applied locally.

Errors in precipitation products hinder the correct under-
standing of water cycle processes in the TP. For example, Im-
merzeel et al. (2015) found that the simulated runoff in the
upper Indus using APHRODITE is much smaller than the ob-
servations and further confirmed that APHRODITE severely
underestimates precipitation amount in this region. Savéan
et al. (2015) pointed out that precipitation from rain gauges
with poor spatial representativeness leads to irrational runoff
component simulations in the central Himalayas. Jiang et
al. (2022a) demonstrated that currently widely used satellite-
based precipitation products cannot close the basin-scale wa-
ter budget in the eastern edge of the TP. Some other studies
also demonstrated the high uncertainties in current precip-
itation products for simulations of snow cover (Gao et al.,
2020), soil moisture (Yang et al., 2020) and river discharge
(Alazzy et al., 2017).

Merging multiple precipitation products is an effective
way to mitigate precipitation uncertainties. The most com-
monly used strategy for improving the accuracy of satel-
lite or modeling precipitation is bias correction with gauge
observation-based data. For example, Shen et al. (2014) com-
bined the probability density matching and the optimal inter-
polation to merge the CMORPH and rain gauge data and pro-
duced a high-accuracy precipitation dataset over China. Ma
et al. (2020, 2022) produced the AIMERG and AERA5-Asia
datasets by applying APHRODITE to correct IMERG and
ERA5-Land, respectively. Another strategy is merging mul-
tiple precipitation products by assigning different weights to
these products, in which the weights can be determined by
Bayesian-based methods (K. Li et al., 2021; Ma et al., 2018),
machine learning or the inverse of errors against gauge data
(Hong et al., 2021; Zhu et al., 2022). These methods are
flexible and are able to integrate information from multiple
sources. Recently, many efforts have been made to merge
different precipitation products over the TP; e.g., K. Li et
al. (2021) produced a high-accuracy precipitation dataset for
the southern TP by merging three satellite-based precipita-
tion datasets with high-density rain gauge data. Y. Wang
et al. (2020a) developed a long-term precipitation dataset
for the Yarlung Tsangpo River basin by merging data from
satellites, reanalysis and rain gauges. Although encouraging
progress has been made, there are still some limitations. First,
these works either corrected gridded precipitation with data
from sparse rain gauge networks or were conducted in sub-
regions of the TP. Second, most works have merged satellite
products with rain gauge data, while both the two sources of
precipitation perform poorly in reflecting heterogeneous pre-
cipitation in complex terrain. Therefore, substantial improve-
ments are still needed for producing high-accuracy precipi-
tation data in the TP.

Therefore, the main goal of this study is to produce a long-
term high-resolution precipitation dataset with high accuracy
for the TP, by merging dense rain gauge data with high-
resolution atmospheric simulation-based precipitation. Dif-
ferent from many previous works that usually merged satel-
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lite datasets with rain gauge data, our study uses an atmo-
spheric simulation-based precipitation with very high hori-
zontal resolution (1/30◦) as the background field, mainly due
to its advanced skill in giving the spatial variability of precip-
itation in complex terrain, which is especially important in
high mountains and the western TP. In addition, we collected
observations from more than 9000 rain gauges to generate the
merged data, including observations from rain gauges in the
central and western TP that are set up by this study. To the
best of our knowledge, such a gauge density is the highest
among the works of precipitation merging over the TP that
have usually used a portion of data from the China Meteoro-
logical Administration (CMA) or the Ministry of Water Re-
sources in China (MWR) stations that are mainly distributed
in the eastern TP.

2 Data

2.1 Rain gauge data

Rain gauge data used in this study are obtained from sev-
eral sources, including the CMA, the MWR, the Depart-
ment of Hydrology and Meteorology of Nepal (DHM), the
Global Historical Climatology Network (GHCN; Menne et
al., 2012), and some other field observation networks (Chen
et al., 2014, 2015; Luo, 2018; Wei and Wang, 2019; Wang,
2021; Yang, 2018; Yang et al., 2017; Zhang, 2018; Zhao,
2018; Zhao et al., 2017). These networks provide either daily
or sub-daily precipitation records. In addition, our group has
set up more than 80 rain gauges over the TP since 2017,
deployed in the Yadong Valley, on the south slope of the
Gangdise Range, on the eastern edge of the TP, in the sur-
roundings of Namco and in the inner TP. These rain gauges
record precipitation every hour, and observations from this
network are also used in this study. All the sub-daily records
are aggregated into daily sums so that they can be merged
with gridded data at a daily scale.

A series of quality control procedures are applied to
the rain gauge data, following the method of Hamada et
al. (2011), including an outlier check, a repetition check and
a spatial consistency check. Detailed judgment criteria for
each check can be referred to in Hamada et al. (2011). In
addition, for each rain gauge, data records for a certain year
with less than 60 d are removed, since they are likely to suf-
fer from technical breakdowns. After the quality control, data
from 9798 rain gauges are eventually selected for precipita-
tion merging, and these data have temporal coverages rang-
ing from a few months to more than 40 years. Figure 1b
shows the spatial distribution and temporal extent of these
rain gauges, and Fig. 1d gives the number of available rain
gauges in each year.

Rain gauge observations usually suffer from measurement
errors, including wind-induced undercatch, wet loss and
evaporation loss. This especially happens in the TP where
the wind is strong and solid precipitation accounts for a large

proportion of the total precipitation. Therefore, the measure-
ment errors are corrected in this study. For gauges where ob-
served wind speed and air temperature are provided, the em-
pirical relationships provided by Ye et al. (2007) and Ma et
al. (2015) are used to correct the measurements. For gauges
without wind speed and air temperature observations, the
random forest (RF; Breiman, 2001) model is used to correct
precipitation. This is achieved with the following steps: first,
the RF model is trained at the above-corrected gauges, using
wind speed and air temperature from ERA5 and original ob-
served daily precipitation as model input and the corrected
precipitation as the target; then, the trained model is applied
to gauges without wind speed and air temperature observa-
tions to estimate corrected precipitation, using wind speed
and air temperature from ERA5. ERA5 is used here mainly
because our evaluation with gauge observations showed that
ERA5 could give reliable wind speed and air temperature es-
timates over the TP, as well as reported by Huai et al. (2021),
who demonstrated that ERA5 is superior to other global re-
analysis datasets for most near-surface meteorological vari-
ables in the northeastern TP.

2.2 Gridded precipitation dataset

The background precipitation dataset used in this study
is called ERA5_CNN, an atmospheric simulation-based
dataset, derived from combining a short-term high-resolution
WRF (Weather Research and Forecasting) simulation (Zhou
et al., 2021) with ERA5 reanalysis. More specifically, a 2-
year high-resolution WRF simulation is first obtained and
used for training a convolutional neural network (CNN)-
based downscaling model. Then, the trained model is used
to downscale the long-term ERA5 precipitation to generate
ERA5_CNN (Jiang et al., 2021). ERA5_CNN has a daily
temporal resolution, covering the period from 1979 to 2020.
Compared with ERA5, ERA5_CNN has a higher horizontal
resolution of 1/30◦ and smaller wet biases over the TP. Our
previous evaluations showed that ERA5_CNN can give fine-
scale spatial variability of precipitation over the complex-
terrain TP with high spatial correlations with rain gauge
data. Moreover, ERA5_CNN is more skillful in reproducing
the elevation dependence of precipitation in the TP than the
coarse HAR v2 and the satellite-based IMERG (Jiang et al.,
2022b). However, ERA5_CNN still overestimates precipita-
tion in the TP, which is inherited from atmospheric simula-
tion (Jiang et al., 2021). Therefore, its accuracy needs to be
further improved by merging it with high-density gauge ob-
servations.

For comparison, three widely used global precipitation
datasets, including ERA5-Land (hereafter ERA5L), IMERG
and the Multi-Source Weighted-Ensemble Precipitation ver-
sion 2 (MSWEP v2; Beck et al., 2019), as well as one re-
gional dataset (AERA5-Asia, hereafter AERA5), are also uti-
lized in this study. ERA5L is the latest-generation reanal-
ysis of the ECMWF for land applications, which provides
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Figure 1. (a) Topography of the Third Pole region. (b) Spatial distribution of rain gauges used in this study and their temporal extent. (c) The
independent rain gauges used for validation, in which rain gauges marked by both black dots and blue triangles are used in the analysis
period of 1979–2020 (Sect. 4.1.2), and rain gauges marked by blue triangles are used in the analysis period of 2008–2015 (Sect. 4.2). (d) The
number of available rain gauges in each year. The blue line denotes the 2500 m contour of elevation, which is obtained from Zhang (2019).

0.1◦ precipitation data at 1 h intervals, compared to 0.25◦

of ERA5. According to Muñoz-Sabater et al. (2021), the
precipitation of ERA5L is produced by interpolating ERA5
with a linear model; thus, the precipitation of ERA5L and
ERA5 is slightly different, as shown in the results of Xu
et al. (2022). IMERG is a satellite precipitation dataset re-
trieved from the combination of both microwave and infrared
observations and is currently the most widely used in the
world, with a horizontal resolution of 0.1◦ and the highest
temporal resolution of 0.5 h. The IMERG Final Run v6 (here-
after IMERG), which has been corrected with monthly rain
gauge data, is used in this study. The MSWEP v2 with a hor-
izontal resolution of 0.1◦ is a merged dataset that has com-
bined multiple satellite, gauge and reanalysis precipitation
datasets. Moreover, it is corrected with observed discharge
from many catchments worldwide. AERA5 is a regional pre-
cipitation dataset for Asia, which is produced by combining
ERA5L with the APHRODITE dataset. It has a horizontal
resolution of 0.1◦ and temporal resolution of 1 h, covering
the period from 1951 to 2015. Previous evaluations showed
that AERA5 has a higher accuracy than ERA5L and IMERG,
in terms of several metrics involved in precipitation amounts,
events and extremes (Ma et al., 2022).

3 Methods

3.1 Merging algorithm

3.1.1 General flowchart

This study merges the ERA5_CNN precipitation with high-
density rain gauge data based on the idea of the climato-
logically aided interpolation (CAI; Willmott and Robeson,
1995), in which the anomalies/ratios of meteorological vari-
ables are interpolated and then added/multiplied to the cli-
matology, instead of directly interpolating the meteorological
variables. The CAI method has been widely applied for grid-
ding precipitation and has shown good performance (Con-
tractor et al., 2020; Schamm et al., 2014; Xie et al., 2007).
Figure 2 shows the flowchart for merging ERA5_CNN and
rain gauge data. The merging procedures include the con-
struction of monthly precipitation climatology, monthly pre-
cipitation and daily precipitation. Details are listed below.

1. Construction of monthly precipitation climatology.
Since the length of the data records varies from gauge
to gauge, it is undesirable to obtain monthly climatology
fields via directly interpolating the observed multi-year
average monthly precipitation. Therefore, we first con-
struct monthly precipitation climatology at gauge loca-
tions based on the monthly precipitation climatology of
ERA5_CNN, using the following formula:

Pco = Pce×
Pco1

Pce1
, (1)
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where Pco is the constructed monthly precipitation cli-
matology at a gauge location; Pce is the monthly pre-
cipitation climatology of ERA5_CNN averaged over
1979–2020; Pco1 is the monthly precipitation of rain
gauge averaged over the observing period, which varies
from gauge to gauge; and Pce1 is the monthly precipita-
tion of ERA5_CNN averaged over the same observing
period at the collocated grids.

The precipitation climatology fields for the 12 months
are then constructed by interpolating the monthly cli-
matology at gauge locations using a RF- and kriging-
based method, in which the monthly climatology of
ERA5_CNN is taken as an auxiliary and will be intro-
duced in Sect. 3.1.2.

2. Construction of gridded monthly precipitation. In this
study, the ratios of monthly precipitation to its cli-
matology are adopted for constructing monthly pre-
cipitation fields. There are four steps for constructing
monthly precipitation fields. First, the ratios of observed
monthly precipitation (Pmo) to the precipitation clima-
tology (Pco) are calculated at gauge locations (i.e., Rmo
in Fig. 2); second, the ratios are gridded using the RF
method by taking the monthly precipitation ratios of
ERA5_CNN (Rme = Pme/Pce) and static variables (Y )
as auxiliaries; third, the gridded ratios are multiplied by
the gridded monthly precipitation climatology (Pc) ob-
tained in step (1) to construct the first guess of gridded
monthly precipitation fields; finally, the residuals (εm)
of the first guess against gauge observations are gridded
using the kriging method and added to the first guess to
construct the final monthly precipitation fields (Pm).

3. Construction of gridded daily precipitation. The proce-
dures for constructing daily precipitation fields are sim-
ilar to monthly precipitation, with only two differences.
First, the ratios are daily precipitation to monthly cli-
matology (i.e., Pdo/Pco and Pde/Pce) in this part. Sec-
ond, the daily precipitation fields after residual correc-
tion (Pd1) are further adjusted to ensure that the sum
of the daily precipitation amount in a month is equal
to the corresponding monthly precipitation amount ob-
tained in step (2), given that monthly precipitation fields
are more reliable due to their smaller spatial variability
than daily fields (He et al., 2020). The adjustment can
be expressed as follows:

Pd,i = Pm×
Pd1,i∑n
i=1Pd1,i

, (2)

where Pd,i is the adjusted precipitation for the ith day
in a month, Pd1,i is the precipitation after residual cor-
rection for the ith day, Pm is the monthly precipita-
tion and n is the number of days in that month. When
the monthly precipitation (Pm) is non-zero, but the sum
(
∑n

i=1Pd1,i) of the daily precipitation amount in that

month is zero, we will search the nearest grid that has a
non-zero

∑n
i=1Pd1,i and then disaggregate Pm to daily

precipitation according to the day-to-day variation in
precipitation in the nearest grid.

In the above procedures, gridding multiple variables, in-
cluding the monthly climatology, the ratios of month-
ly/daily precipitation to monthly climatology and the
monthly/daily residuals, is achieved based on the RF
and ordinary kriging, which will be introduced in
Sect. 3.1.2.

3.1.2 Gridding method

Gridding monthly precipitation climatology, precipitation ra-
tio and the residual is the key for merging ERA5_CNN and
rain gauge data. In this study, the RF is combined with the
ordinary kriging to interpolate these variables, which is in-
spired by the regression kriging method, in which the inter-
polated target is assigned to the spatial trend (deterministic)
and the stochastic component (residual). A regression model
is applied to predict the spatial trend, and the ordinary kriging
is used to estimate the stochastic component that is expected
to be a Gaussian distribution. In this method, various regres-
sion methods can be combined with kriging, including ma-
chine learning methods. Machine-learning-based regression
models combined with kriging were widely applied in earth
science and proved to have good performance, as reported
in many previous works (Araki et al., 2015; Cellura et al.,
2008; Demyanov et al., 1998). The machine learning method
used in this study is the RF model, which is an ensemble ma-
chine learning model based on the decision tree algorithm
and can learn the complex non-linear relationships between
multiple covariates and the target variable. It randomly se-
lects samples for training each decision tree and aggregates
estimates from multiple decision trees. Compared to other
machine learning methods, the RF is less sensitive to hyper-
parameters, less likely to suffer from overfitting and has good
generalization capability. Moreover, the RF is easy to imple-
ment and has robust prediction accuracy, thus making it a
widely used method for the correction and downscaling of
meteorological variables (Baez-Villanueva et al., 2020; He
et al., 2016; Sekulić et al., 2021; Zhang et al., 2021). The
general formulation for constructing precipitation at multi-
ple timescales based on RF and kriging can be expressed as
follows:

Pc = f1 (Pce,Y )+ εc, for monthly precipitation
climatology

Pm = Pc× f2 (Rme, Y )+ εm for monthly precipitation
Pd1 = Pc× f3 (Rde, Y )+ εd for daily precipitation

, (3)

where Pc is the monthly precipitation climatology; Pm and
Pd1 are the monthly and daily precipitation, respectively; f1,
f2, and f3 are the non-linear regressive relationships built
with the RF model; Pce is the monthly precipitation climatol-
ogy from ERA5_CNN; Rme and Rde are the ratio of monthly
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Figure 2. General flowchart of the merging algorithm. The static variables include the longitude, latitude, elevation, standard deviation of
elevation and identifier of the clusters with different precipitation characteristics. The subscript “o” represents observation, “e” represents
ERA5_CNN, “c” represents climatology, “m” represents monthly, “d” represents daily, “n” represents the number of days in a month and “i”
represents the ith day in a month. f1, f2 and f3 denote the regression models based on random forest. εc, εm and εd represent the residuals
of estimations from RF, which are interpolated using the kriging method.

and daily precipitation to the climatology from ERA5_CNN,
respectively; Y is the static variables; and εc, εm, and εd are
the residuals of the estimated precipitation.

Multiple covariates are used to build the RF model. For
gridding monthly precipitation climatology, the target for
training the RF model is the monthly precipitation climatol-
ogy at the gauge locations (Pco), and the inputs are monthly
precipitation climatology from ERA5_CNN (Pce) at nine
grids around the target location, longitude, latitude, ele-
vation and standard deviation of elevation around the tar-
get location. In addition, the study area is divided into 25
clusters according to the monthly variation in precipitation,
and the identifier for the cluster is also input into the RF
model. For gridding the ratio of monthly/daily precipita-
tion to monthly climatology, the training target is the ob-
served ratio of monthly/daily precipitation to monthly clima-
tology (Rmo or Rdo), and the inputs are the same as those
for gridding precipitation climatology except that the ratios
of monthly/daily precipitation to monthly climatology from
ERA5_CNN (Rme or Rde) are input to the model rather than

monthly climatology. Model training is performed for each
month; i.e., samples from all gauges and all years in a month
are gathered together and used for model training.

In Eq. (3), the residuals are calculated as follows: first,
we calculate the differences between the gauge observations
(Pmo or Pdo) and the precipitation estimates from RF at
gauge locations; then, the ordinary kriging is used to inter-
polate the differences. The difference fields are added to the
precipitation estimates from RF to obtain the final estimates
of precipitation.

3.2 Evaluation metrics

Several metrics are used for validating the merged precipita-
tion, including relative bias (Rbias), root mean square error
(RMSE), correlation coefficient (CC), probability of detec-
tion (POD), false alarm ratio (FAR) and critical success in-
dex (CSI). The formulas and perfect values for these metrics
are listed in Table 1. These metrics are calculated at a daily
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Figure 3. Spatial patterns of the annual average precipitation from
(a) ERA5_CNN and (b) the merged data (TPHiPr), as well as (c)
the relative difference between them. The precipitation is averaged
over the period from 1979 to 2020. The relative difference is cal-
culated by subtracting ERA5_CNN from TPHiPr and then dividing
by ERA5_CNN.

scale by comparing the gauge observations with the gridded
precipitation from the nearest grid to the rain gauge.

4 Results

4.1 Validation of the merging algorithm

4.1.1 Merging effect on precipitation amount and spatial
pattern

The spatial patterns of average annual precipitation from
ERA5_CNN and the merged data (TPHiPr) during 1979–
2020 are shown in Fig. 3a and b. It can be found that
ERA5_CNN and TPHiPr have similar spatial patterns of pre-
cipitation in the TP. Both have large precipitation amounts
in the southeast of the TP and along the Himalayas while
having small precipitation amounts in the Qaidam Basin, the
Tarim Basin and the inner TP. The similar spatial patterns of
ERA5_CNN and TPHiPr demonstrate that the merging algo-
rithm generally retains the spatial characteristics of precipi-
tation from ERA5_CNN.

The relative difference between ERA5_CNN and TPHiPr
is also calculated and shown in Fig. 3c. Generally, by merg-

ing it with rain gauge data, the precipitation amount is re-
duced in the TP. The precipitation amount averaged over the
study area decreases from 696.4 mm yr−1 of ERA5_CNN
to 600.9 mm yr−1 of TPHiPr. This corresponds to previous
works that have demonstrated the overestimation in the at-
mospheric simulation-based precipitation datasets (Gao et
al., 2015; Jiang et al., 2021; Y. Wang et al., 2020b; Zhou
et al., 2021). Spatially, the precipitation decrease is evident
(up to 20 %) in the central and eastern TP, the western Hi-
malayas, the Karakoram, and the Tarim Basin, while precip-
itation amount increases in the Qaidam Basin and its north,
the southwest of the TP, and the eastern Kunlun.

4.1.2 Validation with independent gauge data

In this study, about 10 % of the total rain gauges are ran-
domly excluded for independent validation of TPHiPr, and
several metrics against rain gauge data are calculated for
ERA5_CNN and TPHiPr at these rain gauges based on daily
precipitation.

Figure 4 compares the boxplot of these metrics for
ERA5_CNN and TPHiPr. TPHiPr has remarkably better
performance than ERA5_CNN. In terms of the Rbias,
ERA5_CNN generally overestimates precipitation in the TP,
with a median Rbias value of 16.6 % for all these rain
gauges. In comparison, the overestimation is largely re-
duced in TPHiPr, which has a median value of 0.5 %. Also,
TPHiPr shows smaller RMSE values (with a median value
of 4.5 mm d−1) than ERA5_CNN (with a median value of
8.6 mm d−1). Regarding CC, ERA5_CNN has values be-
tween 0.40 and 0.60 at most rain gauges (the median value is
0.53), while they are generally larger than 0.70 for TPHiPr
with a median value of 0.84, indicating that precipitation
from TPHiPr has highly consistent temporal variations with
rain gauge data. In addition, it can be seen that the Rbias
(Fig. 4a) and RMSE (Fig. 4b) for TPHiPr are less divergent
than those for ERA5_CNN, implying that TPHiPr has more
spatially homogeneous accuracy than ERA5_CNN.

Figure 5 shows the differences in the three metrics be-
tween ERA5_CNN and TPHiPr at each rain gauge. After
the merging, the rain gauges with better Rbias, RMSE and
CC account for 68 %, 97 % and 96 % of the total validation
rain gauges, respectively. More than 50 % of the rain gauges
have RMSE reductions larger than 3.0 mm d−1, and about
67 % of the rain gauges have CC improved by more than 0.2.
Moreover, obvious improvements can be found at many east
rain gauges. In the western region, improvements can also be
found at many rain gauges in the high elevations, while the
metrics show little change at some rain gauges outside the
2500 m contour.

In summary, by merging ERA5_CNN with rain gauge
data, the accuracy of ERA5_CNN is well improved in the
TP, especially in regions where high-density rain gauges are
located.
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Table 1. The error metrics used in this study.

Metrics Formula Perfect value

Relative bias Rbias=
∑n

i=1(Mi−Oi )∑n
i=1Oi

0

Root mean square error RMSE=

√
1
n

n∑
i=1

(Mi −Oi )2 0

Correlation coefficient CC=
∑n

i=1(Mi−M)(Oi−O)√∑n
i=1(Mi−M)2

√∑n
i=1(Oi−O)2

1

Probability of detection POD= H
H+MM 1

False alarm ratio FAR= F
H+F

0

Critical success index CSI= 1
POD−1

+(1−FAR)−1−1
1

Here n is the number of days; Mi and Oi are the merged and observed precipitation on a specific day,
respectively; and M and O are the mean values of merged and observed precipitation, respectively. H is the
days when both merged data and observation have precipitation. MM is the days when only observation has
detected precipitation. F is the days when only merged data have detected precipitation. For calculating
POD, FAR and CSI, a threshold of 0.1 mm d−1 is adopted for distinguishing precipitation and
non-precipitation days.

Figure 4. Comparison of error metrics for ERA5_CNN and TPHiPr at 966 independent rain gauges. The box represents the distribution of
the metrics for all the independent rain gauges in the TP.

4.2 Comparison with other datasets

We also compare the merged precipitation data with other
widely used precipitation products. The comparison focuses
mainly on three aspects: the amount and spatial patterns of
precipitation, the error metrics against rain gauge data, and
the ability to reproduce precipitation extremes. Because the
AERA5 dataset is only available before 2015, the compari-
son between these datasets is conducted for the period from
2008 to 2015.

4.2.1 Precipitation amount and spatial patterns

Figure 6 shows the spatial patterns of the average annual
precipitation during 2008–2015 from the five precipitation
datasets, along with the relative differences between TPHiPr
and the other four datasets. For calculating the differences
between them, the coarser datasets are first resampled to the
same horizontal resolution as TPHiPr using bilinear interpo-
lation. Generally, the average annual precipitation (Fig. 6a–

e) from all four datasets decreases from the southeast to the
northwest, because the monsoon has brought abundant water
vapor to the southeastern region of the study area, while its
impact is reduced in the northwest. In addition, high moun-
tains along the Himalayas block the northward moisture and
result in large precipitation amounts in this region, which
is revealed by all these datasets. As shown in Fig. 6a–e,
precipitation from IMERG, MSWEP v2 and AERA5 varies
more smoothly in space than that from TPHiPr and ERA5L.
Moreover, compared with ERA5L, TPHiPr presents more
details related to local topography. For example, the dry
belt in the northern slope of the central Himalayas (around
29◦ N, 90◦ E), which was proved in the results of Wang et
al. (2019), is more evident in TPHiPr than in ERA5L. Be-
sides, TPHiPr shows greater spatial variability of precipita-
tion than ERA5L in the Hengduan Mountains where the to-
pography is very complex with many large mountain ranges
and valleys. In terms of the total precipitation amounts, as
shown in Fig. 6f–i, ERA5L generally has larger precipitation
amounts than TPHiPr, while the opposite is true for the other
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Figure 5. Spatial distribution of error metric differences between
ERA5_CNN and TPHiPr. The differences are calculated by sub-
tracting the metrics of ERA5_CNN from those of TPHiPr.

three datasets. The precipitation amounts averaged over the
study area from ERA5L, IMERG, MSWEP v2, AERA5 and
TPHiPr are 712.72, 490.50, 496.79, 481.74 and 614.11 mm,
respectively. Particularly, it can be noted from Fig. 6f–i that
the differences between these datasets are relatively small in
the eastern TP but are remarkable in the south of the Kun-
lun Mountains (around 35◦ N, 85◦ E) where almost no rain
gauges are located, highlighting the high uncertainties of pre-
cipitation in ungauged regions.

With respect to the seasonal variations in precipitation, af-
fected by the monsoon climate, most parts of the TP have
large precipitation in summer but small precipitation in win-
ter. In the westerly dominant western TP, the precipitation is
large in spring and winter but small in summer. All these
datasets can generally capture the seasonal cycles of pre-
cipitation in the TP (Fig. 7). The precipitation differences
among these datasets in spring, summer and autumn are gen-
erally similar to those of annual precipitation, with ERA5L
having a larger precipitation amount than TPHiPr but the
other three datasets having a smaller precipitation amount.
Apparent differences between these datasets occur in winter
(fourth column in Fig. 8), in which the relative differences
between ERA5L and TPHiPr are larger than 80 % in most re-
gions, while most regions have relative differences between
IMERG and TPHiPr of less than −80 %. The large differ-

ences in winter can likely be ascribed to solid precipitation,
which is challenging for current precipitation datasets, es-
pecially for satellite-based datasets (Li et al., 2020; Lu and
Yong, 2018).

4.2.2 Comparison of error metrics

The performance of the four widely used datasets is evalu-
ated with the rain gauge data used for independent valida-
tion in Sect. 4.1.2 and compared with that of TPHiPr in this
study. Note that the evaluation in this section spans a shorter
period from 2008 to 2015, considering the availability of the
AERA5 data and that there were only 197 independent rain
gauges (blue triangles in Fig. 1c) during this period.

Figure 9 compares the boxplots of the Rbias, RMSE and
CC of the five datasets. In terms of the Rbias (Fig. 9a and
the first column in Fig. 10), ERA5L overestimates precip-
itation at most rain gauges in the TP with a median value
of 14.5 %, while AERA5 underestimates precipitation with
a median value of −15.4 %. The other three datasets gen-
erally have small relative biases, and the median values
for IMERG, MSWEP v2 and TPHiPr are −5.1 %, −0.0 %
and 0.9 %, respectively. For RMSE (Fig. 9b and the sec-
ond column in Fig. 10), the three global/quasi-global datasets
have relatively large RMSE values in the TP, with a median
value of 7.8 mm d−1 for ERA5L, 8.0 mm d−1 for IMERG and
6.9 mm d−1 for MSWEP v2. By merging with APHRODITE,
AERA5 has a well-improved accuracy in the TP com-
pared to the original ERA5L dataset, with a median RMSE
value of 6.1 mm d−1. TPHiPr has a median RMSE value of
5.0 mm d−1, which is remarkably smaller than those of the
other datasets. Particularly, TPHiPr and AERA5 have re-
markably higher correlations with rain gauge data compared
to the other three datasets, with more than 70 % of the rain
gauges having CC values larger than 0.6 (Fig. 9c and the third
column in Fig. 10). The median values of CC for TPHiPr
and AERA5 are 0.76 and 0.71, respectively, followed by
MSWEP v2 (0.63) and IMERG (0.57). ERA5L has the low-
est correlations with rain gauge data, with CC values between
0.30 and 0.60 at most gauges and a median value of 0.55.

This study also calculates the POD, FAR and CSI for these
datasets to compare their performance in detecting precipita-
tion occurrence. In this section, a threshold of 0.1 mm d−1

is used to distinguish rain and no-rain days. Figure 11 com-
pares the boxplots of these metrics for these datasets, and the
spatial distributions for these metrics are shown in Fig. 12.
Among the five datasets, ERA5L, MSWEP v2 and AERA5
have high values of POD (all have a median value of 0.97).
However, it can be seen from Figs. 11b and 12 that ERA5L
and MSWEP v2 also have large FAR values. This is mainly
because ERA5L is atmospheric reanalysis that tends to over-
estimate precipitation frequency in the TP (Hu and Yuan,
2021), while the MSWEP v2 is produced by weighted aver-
aging multiple datasets, which can also increase the precip-
itation occurrence. However, AERA5 shows relatively low
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Figure 6. Spatial patterns of (a–e) the average annual precipitation during 2008–2015 from the five datasets and (f–i) the relative differences
between TPHiPr and the other four datasets. The differences are calculated by subtracting TPHiPr from the other four datasets and then
dividing by TPHiPr.

Figure 7. Spatial patterns of average seasonal precipitation from ERA5L (first row), IMERG (second row), MSWEP v2 (third row), AERA5
(fourth row) and TPHiPr (fifth row). The precipitation is averaged over the period from 2008 to 2015.
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Figure 8. Spatial patterns of the relative differences in average seasonal precipitation between TPHiPr and the other four datasets. The
differences are calculated by subtracting TPHiPr from the other four datasets and then dividing by TPHiPr.

Figure 9. Comparison of (a) Rbias, (b) RMSE and (c) CC for
ERA5L, IMERG, MSWEP v2, AERA5 and TPHiPr. The box rep-
resents the distribution of the metrics for all 197 independent rain
gauges in the TP.

FAR values, mainly ascribed to the correction with gauge
data at a daily scale. In contrast, IMERG, mainly based on
satellite estimates, has lower values of POD and FAR. With
respect to TPHiPr, Fig. 11 shows that it has relatively high
POD values (the median value is 0.93) and the lowest FAR
(the median value is 0.36). As a result, TPHiPr gains high
CSI values, with a median value of 0.61 that is close to
AERA5 (0.59), while the other three datasets have a median
CSI value of about 0.50.

In summary, the comparison of these error metrics shows
that TPHiPr generally has better performance than the
widely used reanalysis data (ERA5L) and satellite-based data
(IMERG) and even performs better than the multiple-source
merged data (MSWEP v2) and AERA5. In addition, it should
be noted that some validation data from the CMA, DHM and
GHCN have been used to produce IMERG, MSWEP v2 and

AERA5. Therefore, if these data are removed from the vali-
dation, more evident superiority of TPHiPr is expected.

4.2.3 Comparison of precipitation extremes

Extreme precipitation is the leading cause of many water-
related disasters. Therefore, this study also evaluates the per-
formance of TPHiPr to reproduce extreme precipitation. Fol-
lowing some previous works (Katsanos et al., 2016; Li et al.,
2022; Lockhoff et al., 2014), the 90th percentile of daily pre-
cipitation on wet days is set as the threshold for extreme pre-
cipitation in this study. Due to discontinuous temporal cov-
erages of gauge observations, this study only evaluates the
extreme precipitation of these datasets at 91 rain gauges with
at least 2-year precipitation records and covering a complete
seasonal cycle.

Figure 13 compares the detection skill of these precipita-
tion datasets for extreme precipitation. Compared with the
detection skill for all precipitation events (Fig. 11), the de-
tection skill of all the datasets for extreme precipitation is
obviously reduced, with lower POD and CSI but higher FAR.
Nevertheless, TPHiPr also shows good performance. The
median value of CSI for TPHiPr is 0.27, which is the highest
among these datasets.

The 90th percentile (R90p) of daily precipitation on wet
days, the average intensity (R90p_INT) and the frequency
(R90p_FRQ) of precipitation greater than R90p are also cal-
culated for each dataset and compared with those of rain
gauge data. Figure 14 shows that all these datasets have
smaller R90p and R90p_INT but higher R90p_FRQ com-
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Figure 10. Spatial distribution of Rbias (first column), RMSE (second column) and CC (third column) for (a–c) ERA5L, (d–f) IMERG,
(g–i) MSWEP v2, (j–l) AERA5 and (m–o) TPHiPr. The metrics are calculated at a daily scale.

Figure 11. Similar to Fig. 9 but for (a) POD, (b) FAR and (c) CSI.
These metrics are calculated using a threshold of 0.1 mm d−1.

pared to the gauge data, indicating all these datasets under-
estimate the intensity but overestimate the frequency of ex-
treme precipitation. TPHiPr has a worse performance than
IMERG; however, it performs better than the other three
datasets.

In summary, although TPHiPr underestimates the intensity
but overestimates the frequency of extreme precipitation, it
has better performance than the other four datasets in detect-
ing the occurrence of extreme precipitation.

5 Limitations

The above analysis shows that TPHiPr produced in this study
generally has high accuracy in the TP and is superior to the
most widely used precipitation datasets. However, there are
still some limitations in TPHiPr that need to be clarified.

As shown in Fig. 5, by merging the gridded data with the
rain gauge data, the accuracy of the gridded data is generally
improved, but the improvements vary greatly in space. In the
eastern TP, the improvement is evident; however, the accu-
racy at some western rain gauges outside the 2500 m contour
changes little and even gets worse. This highlights the impor-
tance of high-density rain gauge data for precipitation merg-
ing, as demonstrated in many previous works that rain gauge
density greatly impacts the accuracy of the produced dataset
(Berndt et al., 2014; Girons et al., 2015; Xie et al., 2007).
Therefore, TPHiPr may still have large uncertainties in the
west of the TP and regions where rain gauges are sparse.

Besides, previous studies have reported that atmospheric
simulation-based datasets generally overestimate the precip-
itation frequency (Hu and Yuan, 2021; P. Li et al., 2021).
Therefore, we investigate the probability distribution func-
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Figure 12. Similar to Fig. 10 but for POD (first column), FAR (second column) and CSI (third column).

Figure 13. Similar to Fig. 11 but for extreme precipitation. The
90th percentile of observed daily precipitation at each rain gauge is
taken as the threshold for calculating these metrics.

tion (PDF) of both precipitation frequency and amount in
TPHiPr with respect to different precipitation intensities.
As shown in Fig. 15, TPHiPr largely overestimates the fre-
quency of light precipitation (less than 5 mm d−1), although
the overestimation is smaller than that in ERA5L, MSWEP
v2 and AERA5. In addition, we can find from Fig. 15b that
TPHiPr overestimates the amount of light to moderate pre-
cipitation but underestimates the amount of heavy precipita-
tion, and the same is also found in ERA5L, MSWEP v2 and
AERA5. Particularly, Fig. 15 shows that the satellite-based

Figure 14. Comparison of (a) R90p, (b) R90p_INT and (c)
R90p_FRQ for rain gauge data (OBS), ERA5L, IMERG, MSWEP
v2, AERA5 and TPHiPr. R90p represents the 90th percentile of
daily precipitation on wet days for each dataset. R90p_INT repre-
sents the average precipitation intensity of daily precipitation larger
than R90p. R90p_FRQ represents the frequency of daily precipita-
tion larger than R90p.

IMERG has relatively good performance in reproducing the
PDF of precipitation frequency and amount, indicating that
IMERG can be an effective data source for correcting the
PDF of precipitation. Besides, some previous works have re-
ported that considering both occurrence and amount of pre-
cipitation could contribute to better precipitation merging re-
sults compared to only correcting the precipitation amount
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Figure 15. Comparison of the probability density function by (a)
precipitation frequency and (b) amount for rain gauge data and the
four datasets. The x axis is in the log space.

(Zhang et al., 2021; Zhu et al., 2022); therefore, methods in-
cluding both precipitation occurrence and amount correction
should be considered in precipitation merging in the future.

6 Code and data availability

The TPHiPr precipitation dataset in NetCDF format is avail-
able at the National Tibetan Plateau Data Center, which can
be accessed at https://doi.org/10.11888/Atmos.tpdc.272763
(Yang and Jiang, 2022). The codes used for producing this
dataset are available upon request to the authors.

7 Conclusion

This study collects more than 9000 rain gauges over and
around the Third Pole (TP) region from multiple sources.
Then, the following steps are applied for merging the high-
density gauge observations and the atmospheric simulation-
based ERA5_CNN: first, the monthly precipitation climatol-
ogy at gauge locations is obtained by correcting the clima-
tology of ERA5_CNN with rain gauge data, and the monthly
climatology at gauge locations is interpolated using a RF-
and kriging-based method; second, the ratios of observed
monthly/daily precipitation to the climatology at gauge loca-
tions are interpolated for each month/day using the RF-based

method; third, the monthly/daily precipitation fields are ob-
tained by multiplying the interpolated monthly climatology
by the interpolated monthly/daily ratios and then adding the
residual fields; finally, the daily precipitation fields are fur-
ther adjusted using the monthly precipitation. Eventually, a
long-term (1979–2020) high-resolution (1/30◦, daily) pre-
cipitation dataset (TPHiPr) is produced for the TP.

We compare the performance of the merged TPHiPr with
the original ERA5_CNN data and four widely used precipi-
tation datasets, including ERA5L, IMERG, MSWEP v2 and
AERA5. Results show that TPHiPr retains the general spa-
tial patterns of precipitation from ERA5_CNN but has a re-
duced wet bias in the TP, resulting in better error metrics than
ERA5_CNN at most validation gauges. Meanwhile, TPHiPr
generally performs better than the four widely used precipi-
tation datasets in the TP, with respect to errors in both precip-
itation amount and detection skill. Validation with 197 inde-
pendent gauges shows that TPHiPr has a small relative bias
(0.9 %), low RMSE (5.0 mm d−1), high correlation (0.76)
and high detection skill (CSI= 0.61). In addition, TPHiPr is
skillful in detecting extreme precipitation events, although it
overestimates the frequency but underestimates the intensity
of extreme precipitation.

In summary, a new high-accuracy precipitation dataset
is produced for the data-sparse TP, which can be used for
land surface modeling, water resource management, water-
related disaster assessment, climate change research, etc.
This dataset is expected to deepen our understanding of land
surface processes and water cycles in the TP. Nevertheless,
further efforts (e.g., setting up more rain gauges in remote re-
gions and developing more skillful merging methods) are still
needed for obtaining higher-accuracy precipitation datasets
for the TP; as clarified in Sect. 5, the produced data may still
have large uncertainties in data-sparse regions and cannot re-
produce the observed frequency and intensity of precipitation
well.

Author contributions. YJ: conceptualization, investigation, for-
mal analysis, methodology, software, visualization, writing – origi-
nal draft preparation; KY: conceptualization, data curation, funding
acquisition, project administration, resources, supervision, writing
– review and editing; YQ: data curation, validation, writing – re-
view and editing; XZ and JH: methodology, writing – review and
editing; HL and XinL: supervision, writing – review and editing;
YC: data curation, writing – review and editing; XiaL: data cura-
tion; BZ, AM, CS, XM, JT, and JZ: writing – review and editing.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Earth Syst. Sci. Data, 15, 621–638, 2023 https://doi.org/10.5194/essd-15-621-2023

https://doi.org/10.11888/Atmos.tpdc.272763


Y. Jiang et al.: A long-term high-accuracy precipitation dataset for the Third Pole region 635

Acknowledgements. The authors would like to thank all the data
contributors who shared their research data that supported the com-
pletion of this work and thank our group members for maintaining
rain gauge networks and collecting observational data. We are also
grateful to the reviewers and editors for their efforts in reviewing
and editing our manuscript.

Financial support. This research has been supported by the Sec-
ond Tibetan Plateau Scientific Expedition and Research Program
(STEP) (grant no. 2019QZKK0206), the Basic Science Center for
Tibetan Plateau Earth System of the National Science Foundation
of China (grant no. 41988101), and the National Key Research and
Development Program of China (grant no. 2018YFC1507505).

Review statement. This paper was edited by Qingxiang Li and
reviewed by two anonymous referees.

References

Alazzy, A. A., Lü, H., Chen, R., Ali, A. B., Zhu, Y., and Su, J.:
Evaluation of Satellite Precipitation Products and Their Poten-
tial Influence on Hydrological Modeling over the Ganzi River
Basin of the Tibetan Plateau, Adv. Meteorol., 2017, 3695285,
https://doi.org/10.1155/2017/3695285, 2017.

Araki, S., Yamamoto, K., and Kondo, A.: Application of re-
gression kriging to air pollutant concentrations in Japan with
high spatial resolution, Aerosol Air Qual. Res., 15, 234–241,
https://doi.org/10.4209/aaqr.2014.01.0011, 2015

Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Beck, H. E.,
McNamara, I., Ribbe, L., Nauditt, A., Birkel, C., Verbist, K.,
Giraldo-Osorio, J. D., and Xuan Thinh, N.: RF-MEP: A novel
Random Forest method for merging gridded precipitation prod-
ucts and ground-based measurements, Remote Sens. Environ.,
239, 111606, https://doi.org/10.1016/j.rse.2019.111606, 2020.

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D.
G., Van Dijk, A. I. J. M., McVicar, T. R., and Adler, R. F.:
MSWEP v2 Global 3-hourly 0.1◦ precipitation: Methodology
and quantitative assessment, B. Am. Meteorol. Soc., 100, 473–
500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019.

Berndt, C., Rabiei, E., and Haberlandt, U.: Geostatistical merg-
ing of rain gauge and radar data for high temporal resolutions
and various station density scenarios, J. Hydrol., 508, 88–101,
https://doi.org/10.1016/j.jhydrol.2013.10.028, 2014.

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1007/978-3-030-62008-0_35, 2001.

Cellura, M., Cirrincione, G., Marvuglia, A., and Miraoui, A.:
Wind speed spatial estimation for energy planning in Sicily:
A neural kriging application, Renew. Energy, 33, 1251–1266,
https://doi.org/10.1016/j.renene.2007.08.013, 2008.

Chen, F., Ding, L., Piao, S., Zhou, T., Xu, B., Yao, T., and
Li, X.: The Tibetan Plateau as the engine for Asian
environmental change: the Tibetan Plateau Earth sys-
tem research into a new era, Sci. Bull., 66, 1263–1266,
https://doi.org/10.1016/j.scib.2021.04.017, 2021.

Chen, R., Song, Y., Kang, E., Han, C., Liu, J., Yang, Y., Qing, W.,
and Liu, Z.: A cryosphere-hydrology observation system in a

small alpine watershed in the Qilian mountains of China and its
meteorological gradient, Arctic, Antarct. Alp. Res., 46, 505–523,
https://doi.org/10.1657/1938-4246-46.2.505, 2014.

Chen, R., Song, Y., Liu, J., Yang, Y., Qing, W., Liu, Z., and Han,
C.: Evaporation and precipitation dataset in Hulugou outlet in
Upstream of Heihe River (2011), Natl. Tibet. Plateau Data Cent.
[data set], https://doi.org/10.3972/heihe.110.2013.db, 2015.

Contractor, S., Donat, M. G., Alexander, L. V., Ziese, M., Meyer-
Christoffer, A., Schneider, U., Rustemeier, E., Becker, A., Durre,
I., and Vose, R. S.: Rainfall Estimates on a Gridded Network
(REGEN) – a global land-based gridded dataset of daily precipi-
tation from 1950 to 2016, Hydrol. Earth Syst. Sci., 24, 919–943,
https://doi.org/10.5194/hess-24-919-2020, 2020.

Cui, P. and Jia, Y.: Mountain hazards in the Tibetan Plateau:
Research status and prospects, Natl. Sci. Rev., 2, 397–399,
https://doi.org/10.1093/nsr/nwv061, 2015.

Curio, J., Maussion, F., and Scherer, D.: A 12-year high-
resolution climatology of atmospheric water transport over
the Tibetan Plateau, Earth Syst. Dynam., 6, 109–124,
https://doi.org/10.5194/esd-6-109-2015, 2015.

Demyanov, V., Kanevsky, M., Chernov, S., Savelieva, E., and Tim-
onin, V.: Neural Network Residual Kriging Application for Cli-
matic Data, J. Geogr. Inf. Decis. Anal., 2, 215–232, 1998.

Gao, H., Wang, J., Yang, Y., Pan, X., Ding, Y., and Duan, Z.:
Permafrost Hydrology of the Qinghai-Tibet Plateau: A Re-
view of Processes and Modeling, Front. Earth Sci., 8, 576838,
https://doi.org/10.3389/feart.2020.576838, 2021.

Gao, Y., Xu, J., and Chen, D.: Evaluation of WRF mesoscale cli-
mate simulations over the Tibetan Plateau during 1979–2011,
J. Climate, 28, 2823–2841, https://doi.org/10.1175/JCLI-D-14-
00300.1, 2015.

Gao, Y., Chen, F., and Jiang, Y.: Evaluation of a convection-
permitting modeling of precipitation over the Tibetan Plateau
and its influences on the simulation of snow-cover fraction, J.
Hydrometeorol., 21, 1531–1548, https://doi.org/10.1175/JHM-
D-19-0277.1, 2020.

Girons, L. M., Wennerström, H., Nordén, L.Å., and Seibert, J.: Lo-
cation and density of rain gauges for the estimation of spatial
varying precipitation, Geogr. Ann. Ser. A Phys. Geogr., 97, 167–
179, https://doi.org/10.1111/geoa.12094, 2015.

Hamada, A., Arakawa, O., and Yatagai, A.: An automated quality
control method for daily rain-gauge data, Glob. Environ. Res.,
15, 183–192, 2011.

He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li,
X.: The first high-resolution meteorological forcing dataset
for land process studies over China, Sci. Data, 7, 25,
https://doi.org/10.1038/s41597-020-0369-y, 2020.

He, X., Chaney, N. W., Schleiss, M., and Sheffield, J.:
Spatial downscaling of precipitation using adaptable
random forests, Water Resour. Res., 52, 8217–8237,
https://doi.org/10.1002/2016WR019034, 2016.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,

https://doi.org/10.5194/essd-15-621-2023 Earth Syst. Sci. Data, 15, 621–638, 2023

https://doi.org/10.1155/2017/3695285
https://doi.org/10.4209/aaqr.2014.01.0011
https://doi.org/10.1016/j.rse.2019.111606
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1016/j.jhydrol.2013.10.028
https://doi.org/10.1007/978-3-030-62008-0_35
https://doi.org/10.1016/j.renene.2007.08.013
https://doi.org/10.1016/j.scib.2021.04.017
https://doi.org/10.1657/1938-4246-46.2.505
https://doi.org/10.3972/heihe.110.2013.db
https://doi.org/10.5194/hess-24-919-2020
https://doi.org/10.1093/nsr/nwv061
https://doi.org/10.5194/esd-6-109-2015
https://doi.org/10.3389/feart.2020.576838
https://doi.org/10.1175/JCLI-D-14-00300.1
https://doi.org/10.1175/JCLI-D-14-00300.1
https://doi.org/10.1175/JHM-D-19-0277.1
https://doi.org/10.1175/JHM-D-19-0277.1
https://doi.org/10.1111/geoa.12094
https://doi.org/10.1038/s41597-020-0369-y
https://doi.org/10.1002/2016WR019034


636 Y. Jiang et al.: A long-term high-accuracy precipitation dataset for the Third Pole region

Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hong, Z., Han, Z., Li, X., Long, D., Tang, G., and Wang, J.: Gener-
ation of an improved precipitation dataset from multisource in-
formation over the tibetan plateau, J. Hydrometeorol., 22, 1275–
1295, https://doi.org/10.1175/JHM-D-20-0252.1, 2021.

Hu, X. and Yuan, W.: Evaluation of ERA5 precipitation over the
eastern periphery of the Tibetan plateau from the perspective
of regional rainfall events, Int. J. Climatol., 41, 2625–2637,
https://doi.org/10.1002/joc.6980, 2021.

Huai, B., Wang, J., Sun, W., Wang, Y., and Zhang, W.: Evaluation of
the near-surface climate of the recent global atmospheric reanal-
ysis for Qilian Mountains, Qinghai-Tibet Plateau, Atmos. Res.,
250, 105401, https://doi.org/10.1016/j.atmosres.2020.105401,
2021.

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin,
E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and
Wolff, D. B.: The TRMM Multisatellite Precipitation Analy-
sis (TMPA): Quasi-global, multiyear, combined-sensor precip-
itation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Kidd,
R. J. C., Nelkin, E. J., Sorooshian, S., Tan, J., and Xie, P.:
NASA Global Precipitation Measurement (GPM) Integrated
Multi-satellitE Retrievals for GPM (IMERG), Algorithm The-
oretical Basis Document (ATBD) Version 06, NASA/GSFC,
Greenbelt, MD, USA, 38 pp., 2019.

Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and
Bierkens, M. F. P.: Reconciling high-altitude precipitation in the
upper Indus basin with glacier mass balances and runoff, Hydrol.
Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-
4673-2015, 2015.

Jiang, Y., Yang, K., Shao, C., Zhou, X., Zhao, L., and
Chen, Y.: A downscaling approach for constructing
high-resolution precipitation dataset over the Tibetan
Plateau from ERA5 reanalysis, Atmos. Res., 256, 105574,
https://doi.org/10.1016/j.atmosres.2021.105574, 2021.

Jiang, Y., Yang, K., Li, X., Zhang, W., Shen, Y., Chen, Y., and Li,
X.: Atmospheric simulation-based precipitation datasets outper-
form satellite-based products in closing basin-wide water budget
in the eastern Tibetan Plateau, Int. J. Climatol., 42, 7252–7268,
https://doi.org/10.1002/joc.7642, 2022a.

Jiang, Y., Yang, K., Yang, H., Lu, H., Chen, Y., Zhou, X., Sun, J.,
Yang, Y., and Wang, Y.: Characterizing basin-scale precipitation
gradients in the Third Pole region using a high-resolution atmo-
spheric simulation-based dataset, Hydrol. Earth Syst. Sci., 26,
4587–4601, https://doi.org/10.5194/hess-26-4587-2022, 2022b.

Katsanos, D., Retalis, A., Tymvios, F., and Michaelides, S.: Anal-
ysis of precipitation extremes based on satellite (CHIRPS)
and in situ dataset over Cyprus, Nat. Hazards, 83, 53–63,
https://doi.org/10.1007/s11069-016-2335-8, 2016.

Li, D., Yang, K., Tang, W., Li, X., Zhou, X., and Guo, D.: Char-
acterizing precipitation in high altitudes of the western Tibetan
plateau with a focus on major glacier areas, Int. J. Climatol., 40,
5114–5127, https://doi.org/10.1002/joc.6509, 2020.

Li, K., Tian, F., Khan, M. Y. A., Xu, R., He, Z., Yang, L., Lu, H.,
and Ma, Y.: A high-accuracy rainfall dataset by merging multiple
satellites and dense gauges over the southern Tibetan Plateau for

2014–2019 warm seasons, Earth Syst. Sci. Data, 13, 5455–5467,
https://doi.org/10.5194/essd-13-5455-2021, 2021.

Li, P., Furtado, K., Zhou, T., Chen, H., and Li, J.: Convection-
permitting modelling improves simulated precipitation over the
central and eastern Tibetan Plateau, Q. J. Roy. Meteor. Soc., 147,
341–362, https://doi.org/10.1002/qj.3921, 2021.

Li, Y., Pang, B., Ren, M., Shi, S., Peng, D., Zhu, Z.,
and Zuo, D.: Evaluation of Performance of Three Satellite-
Derived Precipitation Products in Capturing Extreme Precip-
itation Events over Beijing, China, Remote Sens, 14, 2698,
https://doi.org/10.3390/rs14112698, 2022.

Lockhoff, M., Zolina, O., Simmer, C., and Schulz, J.: Eval-
uation of satellite-retrieved extreme precipitation over Eu-
rope using gauge observations, J. Climate, 27, 607–623,
https://doi.org/10.1175/JCLI-D-13-00194.1, 2014.

Lu, D. and Yong, B.: Evaluation and hydrological utility of
the latest GPM IMERG V5 and GSMaP V7 precipitation
products over the Tibetan Plateau, Remote Sens., 10, 2022,
https://doi.org/10.3390/rs10122022, 2018.

Lundquist, J., Hughes, M., Gutmann, E., and Kapnick, S.: Our skill
in modeling mountain rain and snow is bypassing the skill of
our observational networks, B. Am. Meteorol. Soc., 2473–2490,
https://doi.org/10.1175/BAMS-D-19-0001.1, 2019.

Luo, L.: Meteorological observation data from the integrated obser-
vation and research station of the alpine environment in South-
east Tibet (2007–2017), Natl. Tibet. Plateau Data Cent. [data set],
https://doi.org/10.11888/AtmosphericPhysics.tpe.68.db, 2018.

Ma, Y., Zhang, Y., Yang, D., and Farhan, S. B.: Precipitation bias
variability versus various gauges under different climatic condi-
tions over the Third Pole Environment (TPE) region, Int. J. Cli-
matol., 35, 1201–1211, https://doi.org/10.1002/joc.4045, 2015.

Ma, Y., Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y.,
Long, D., Li, C., Han, Z., and Liu, R.: Performance of
Optimally Merged Multisatellite Precipitation Products Us-
ing the Dynamic Bayesian Model Averaging Scheme Over
the Tibetan Plateau, J. Geophys. Res.-Atmos., 123, 814–834,
https://doi.org/10.1002/2017JD026648, 2018.

Ma, Z., Xu, J., Zhu, S., Yang, J., Tang, G., Yang, Y., Shi,
Z., and Hong, Y.: AIMERG: a new Asian precipitation
dataset (0.1◦/half-hourly, 2000–2015) by calibrating the GPM-
era IMERG at a daily scale using APHRODITE, Earth Syst.
Sci. Data, 12, 1525–1544, https://doi.org/10.5194/essd-12-1525-
2020, 2020.

Ma, Z., Xu, J., Ma, Y., Zhu, S., He, K., Zhang, S., Ma, W., and Xu,
X.: A Long-Term Asian Precipitation Dataset (0.1◦, 1-hourly,
1951–2015, Asia) Anchoring the ERA5-Land under the Total
Volume Control by APHRODITE, B. Am. Meteorol. Soc., 1146–
1171, https://doi.org/10.1175/BAMS-D-20-0328.1, 2022.

Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and
Finkelnburg, R.: Precipitation seasonality and variability over
the Tibetan Plateau as resolved by the high Asia reanalysis,
J. Climate, 27, 1910–1927, https://doi.org/10.1175/JCLI-D-13-
00282.1, 2014.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Hous-
ton, T. G.: An overview of the global historical climatology
network-daily database, J. Atmos. Ocean. Technol., 29, 897–910,
https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-

Earth Syst. Sci. Data, 15, 621–638, 2023 https://doi.org/10.5194/essd-15-621-2023

https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JHM-D-20-0252.1
https://doi.org/10.1002/joc.6980
https://doi.org/10.1016/j.atmosres.2020.105401
https://doi.org/10.1175/JHM560.1
https://doi.org/10.5194/hess-19-4673-2015
https://doi.org/10.5194/hess-19-4673-2015
https://doi.org/10.1016/j.atmosres.2021.105574
https://doi.org/10.1002/joc.7642
https://doi.org/10.5194/hess-26-4587-2022
https://doi.org/10.1007/s11069-016-2335-8
https://doi.org/10.1002/joc.6509
https://doi.org/10.5194/essd-13-5455-2021
https://doi.org/10.1002/qj.3921
https://doi.org/10.3390/rs14112698
https://doi.org/10.1175/JCLI-D-13-00194.1
https://doi.org/10.3390/rs10122022
https://doi.org/10.1175/BAMS-D-19-0001.1
https://doi.org/10.11888/AtmosphericPhysics.tpe.68.db
https://doi.org/10.1002/joc.4045
https://doi.org/10.1002/2017JD026648
https://doi.org/10.5194/essd-12-1525-2020
https://doi.org/10.5194/essd-12-1525-2020
https://doi.org/10.1175/BAMS-D-20-0328.1
https://doi.org/10.1175/JCLI-D-13-00282.1
https://doi.org/10.1175/JCLI-D-13-00282.1
https://doi.org/10.1175/JTECH-D-11-00103.1


Y. Jiang et al.: A long-term high-accuracy precipitation dataset for the Third Pole region 637

gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349–
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Norris, J., Carvalho, L. M. V., Jones, C., Cannon, F., Bookha-
gen, B., Palazzi, E., and Tahir, A. A.: The spatiotemporal vari-
ability of precipitation over the Himalaya: evaluation of one-
year WRF model simulation, Clim. Dynam., 49, 2179–2204,
https://doi.org/10.1007/s00382-016-3414-y, 2017.

Ouyang, L., Lu, H., Yang, K., Leung, L. R., Wang, Y.,
Zhao, L., Zhou, X., LaZhu, Chen, Y., Jiang, Y., and Yao,
X.: Characterizing uncertainties in ground “truth” of pre-
cipitation over complex terrain through high-resolution nu-
merical modeling, Geophys. Res. Lett., 48, e2020GL091950,
https://doi.org/10.1029/2020gl091950, 2021.

Savéan, M., Delclaux, F., Chevallier, P., Wagnon, P., Gonga-
Saholiariliva, N., Sharma, R., Neppel, L., and Arnaud,
Y.: Water budget on the Dudh Koshi River (Nepal): Un-
certainties on precipitation, J. Hydrol., 531, 850–862,
https://doi.org/10.1016/j.jhydrol.2015.10.040, 2015.

Schamm, K., Ziese, M., Becker, A., Finger, P., Meyer-Christoffer,
A., Schneider, U., Schröder, M., and Stender, P.: Global grid-
ded precipitation over land: a description of the new GPCC
First Guess Daily product, Earth Syst. Sci. Data, 6, 49–60,
https://doi.org/10.5194/essd-6-49-2014, 2014.
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