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Abstract. Understanding the thermal behavior of lakes is crucial for water quality management. Under cli-
mate change, lakes are warming and undergoing alterations in their thermal structure, including surface water
and deepwater temperatures. These changes require continuous monitoring due to the possible major ecolog-
ical implications for water quality and lake processes. We combined numerical modeling and satellite ther-
mal data to create a regional dataset (LakeTSim: Lake Temperature Simulations) of long-term water temper-
atures for 401 French lakes in order to tackle the scarcity of in situ water temperature (Sharaf et al., 2023;
https://doi.org/10.57745/OF9WXR). The dataset consists of daily epilimnion and hypolimnion water tempera-
tures for the period 1959–2020 simulated with the semi-empirical OKPLM (Ottosson–Kettle–Prats Lake Model)
and the associated uncertainties. Here, we describe the model and its performance. Additionally, we present an
uncertainty analysis of simulations with default parameter values (parameterized as a function of lake charac-
teristics) and calibrated parameter values along with the analysis of the sensitivity of the model to parameter
values and biases in the input data. Overall, the 90 % confidence uncertainty range is largest for hypolimnion
temperature simulations, with medians of 8.5 and 2.32 ◦C, respectively, with default and calibrated parameter
values. There is less uncertainty associated with epilimnion temperature simulations, with medians of 5.42 and
1.85 ◦C, respectively, before and after parameter calibration. This dataset provides over 6 decades of epilimnion
and hypolimnion temperature data crucial for climate change studies at a regional scale. It will help provide
insight into the thermal functioning of French lakes and can be used to help decision-making and stakeholders.

1 Introduction

Lakes, both natural and artificial (i.e., reservoirs and gravel
pits), are sentinels of environmental change and provide im-
portant services such as access to drinking water, hydropower
production, recreation and fisheries (Adrian et al., 2009). Un-
der climate change and anthropogenic pressures, many lakes
are warming and consequently experiencing changes to their

biophysicochemical structure and function that are leading to
services being compromised (Janssen et al., 2021).

In lakes, water temperature is an essential parameter reg-
ulating processes such as the functioning of trophic webs,
oxygen conditions, the physical structure of the water col-
umn and the biogeochemistry (Yang et al., 2018). Under
warming, historical records and future projections demon-
strate that, for lakes, alterations in the thermodynamic func-
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tioning including warmer temperatures and shifts in mixing
regimes have already taken place and are expected to persist
in the future (Shatwell et al., 2019; Woolway and Merchant,
2019). In this context, they are undergoing shorter periods of
ice cover and longer, more stable periods of thermal stratifi-
cation (Woolway et al., 2022). These alterations could have
considerable ecological implications for the biological com-
munities (Lind et al., 2022; Havens and Jeppesen, 2018). For
instance, worldwide studies have shown that the expansion
of toxic cyanobacterial blooms is linked to warming (Griffith
and Gobler, 2020). Other responses include species reduced
body size (Daufresne et al., 2009), changes in thermal habitat
and shifts in species seasonality (Kharouba et al., 2018).

It is thus crucial to closely evaluate water temperature
trajectories over the entire water column in space and time
when assessing the impact of climate change on lake ecosys-
tems. However, the lack of data coverage, both spatially and
temporally, makes it difficult to accurately characterize lake
thermal response to climate change and to identify warm-
ing trends (Gray et al., 2018). Indeed, long-term datasets of
in situ temperatures are usually scarce and mostly limited
to large lakes (Layden et al., 2015). Moreover, the sampling
frequency and temporal coverage of in situ water tempera-
ture vary greatly from one lake to the next, from a few years
(Sharma et al., 2015) up to decades (Piccolroaz et al., 2020;
Rimet et al., 2020).

Due to the difficulties in setting up conventional (i.e., in
situ) monitoring programs tied to, e.g., costs, governance
and intercalibration, the coupling of modeling and satellite
remote-sensing data has become fundamental in the field of
limnology (Nouchi et al., 2019). Modeling provides a means
of interpolating both temporal and spatial gaps. It thereby
allows us to acquire information about surface water temper-
atures, which are globally the focus of lake climate change
studies and deepwater temperatures, which are as critical
though often disregarded in this context (see however Pilla
et al., 2020). Several numerical models that vary in complex-
ity exist for conducting water temperature simulations, the
most accurate being deterministic or process-based models.
Nevertheless, regional or global deterministic modeling ef-
forts over long periods are usually hindered by the lack of
sufficiently detailed input data (e.g., meteorological and field
data) to run the models (Kim et al., 2021). For practical and
operational purposes, simpler models (semi-empirical, statis-
tical or hybrid physical–statistical-based models) with fewer
requirements for forcing data have mostly been applied to
assess the impact of climate change on lake ecosystems and
to study them (Piccolroaz et al., 2020; Toffolon et al., 2014;
Sharma et al., 2008). Long-term simulations across a consid-
erable number of lakes are made possible with this type of
model, enabling the detection of trends in time series data
that are not achievable with shorter datasets (Gray et al.,
2018).

The performance of numerical models depends highly on
the calibration of their parameters as well as on the quality

of the input data. Satellite remote sensing is an effective way
of monitoring surface water temperature on a synoptic scale
(Schaeffer et al., 2018; Sharaf et al., 2019) and providing a
complementary source of data to in situ measurements for
model calibration or validation purposes (Allan et al., 2016;
Babbar-Sebens et al., 2013). In particular, thermal infrared
sensors on board the Landsat satellites are very adequate for
retrospective analysis of surface water temperature with a
spatial resolution adapted for small- to medium-sized lakes
and reservoirs at a bimonthly acquisition frequency. Landsat
4 and 5 TM (Thematic Mapper), 7 ETM+ (Enhanced The-
matic Mapper) and 8 TIRS (Thermal InfraRed Sensor) pro-
vide surface temperature data at spatial resolutions of 120,
60 and 100 m, respectively. Landsat series records of surface
water temperature can be used to validate 3D hydrodynamic
models when in situ measurements are scarce (Sharaf et al.,
2021) and to spatially assess the quality and suitability of the
aquatic habitat for biological communities (Halverson et al.,
2022). Although satellite thermal data are limited to the sur-
face, their integration into model calibration could improve
the accuracy of simulations over the surface layer and the
water column (Javaheri et al., 2016).

Here we present, on a regional scale, a long-term dataset,
LakeTSim (Lake Temperature Simulations), of daily epil-
imnion and hypolimnion temperature simulations as well as
uncertainties for the period 1959–2020 over 401 French lakes
monitored under the Water Framework Directive (WFD) in-
cluding natural and artificial lakes, reservoirs and gravel
pits. We present the OKPLM (Ottosson–Kettle–Prats Lake
Model) used to produce water temperature simulations and
its performance. Further, we provide an uncertainty analy-
sis of simulations with default (parameterized with in situ
and satellite thermal data over an entire set of lakes) and
calibrated (with in situ temperature measurements for each
lake) model parameter values as well as a sensitivity anal-
ysis for the latter. The goal of publishing this dataset is to
provide new insight into epilimnion and hypolimnion tem-
peratures of lakes in France, especially for those that are
not monitored regularly through conventional methods. This
long-term dataset is valuable for developing temperature in-
dicators for identifying warming trends, extreme events and
possible changes in the mixing regime, among others. These
indicators will contribute to assessing the impact of climate
change on lake thermal functioning and its influence on the
biological community structure and trophic webs.

2 Data and methodology

2.1 The ALAMODE (A LAke MODElling project)
software suite

The simulation, sensitivity and uncertainty analyses pre-
sented in this paper were done using the ALAMODE soft-
ware suite. ALAMODE (Danis, 2020) is a software suite
developed in Python 3 by the Pôle R&D Ecosystèmes La-
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custres (ECLA) and SEGULA Technologies to facilitate the
realization of simulations of lakes and the management of re-
lated information. It comprises multiple modules and pack-
ages designed for lake and tributary modeling as well as for
processing the data necessary to operate these models. These
packages include the OKPLM, CUSPY (Calibration, Uncer-
tainty analysis and Sensitivity analysis in PYthon), TMOD
(Temperature MODelling), GLMtools (General Lake Model
tools), “tributary”, TINDIC (Temperature INDICators) and
ALAPROD (ALAMODE-Production). The OKPLM (Prats-
Rodríguez and Danis, 2023b) is used to simulate epilimnion
and hypolimnion water temperatures in lakes, while CUSPY
(Prats-Rodríguez and Danis, 2023a) is used for model pa-
rameter estimations and conducting uncertainty and sensi-
tivity analyses. TMOD is used for managing the TMOD
database designated to facilitate the realization and consul-
tation of simulations. GLMtools is used to conduct lake hy-
drodynamic simulations using the one-dimensional hydrody-
namic General Lake Model (Hipsey et al., 2019), while trib-
utary is used for the estimation of the flow and temperature
of lake tributaries. The TINDIC package is used to calcu-
late temperature indicators from model simulations. Finally,
ALAPROD integrates all the functionalities to produce sim-
ulations into a single package: simulation of stream water
temperature, of lake hydrodynamics and temperature, and of
streamflow rate. It also includes sensitivity and uncertainty
analysis features. The functionalities of these packages can
be accessed either by using each package separately or by uti-
lizing the ALAPROD package, which depends on the TMOD
database and requires access to it.

At present, only the ALAMODE packages related to the
main functionalities used in this work are publicly available
(see the “Code availability” section): the simulation of lake
temperatures using the OKPLM (Prats and Danis, 2019), im-
plemented in the OKPLM package, and the sensitivity and
uncertainty analysis tools in the CUSPY package. We used
ALAPROD to access the functionalities of both packages.

2.2 The OKPLM description

The OKPLM (Prats and Danis, 2019) is a two-layer semi-
empirical data model adapted from Kettle et al. (2004) for
the epilimnion module and from Ottosson and Abrahams-
son (1998) for the hypolimnion module. The modifications
proposed in Prats and Danis (2019) consisted mainly of sim-
plifying the mixing algorithm used in Ottosson and Abra-
hamsson (1998) using a basic stability condition, whereas for
the epilimnion module a sinusoidal fit to the average daily
solar radiation was used instead of the theoretical clear-sky
radiation. The OKPLM also runs on weekly and monthly
frequencies. The regionalization of the parameters of the
model mainly depends on the geographical and morpholog-
ical properties of the lake (maximal depth, volume, surface
area, latitude and altitude). The model requires few meteoro-
logical forcing data: solar radiation and air temperature.

The model calculates water temperature as follows:

Te,i = A+Bf
(
T ∗a,i

)
+CSi, (1)

where Te is the epilimnion temperature (◦C); i is the day
number; A, B and C are calibration parameters; S is the so-
lar radiation (W m−2); and f (∗) is an exponential smoothing
function with T ∗a,i defined as

T ∗a,i = Ta,i −MAAT, (2)

where Ta,i is air temperature (◦C) and MAAT is the mean
annual air temperature (◦C). The smoothing function f (∗) is
such that it gives greater weight to the nearest observations
and the weights decrease exponentially. It is defined as

f
(
T ∗a,1

)
= T ∗a,1, (3)

f
(
T ∗a,i

)
= αT ∗a,i + (1 − α)f (T ∗a,i−1), (4)

where α is the smoothing factor. When α = 1, there is no
smoothing, while the smoothing increases with the decrease
in the value of α.

Th,i = A ·D+E · g
(
Te,i

)
, (5)

where Th is the hypolimnion temperature (◦C), D and E are
calibration parameters and g

(
Te,i

)
is an exponential smooth-

ing as follows:

g
(
Te,1

)
= Te,1, (6)

g
(
Te,i

)
= βTe,i + (1 − β)g(Te,i−1), (7)

where β is the exponential smoothing factor. As for α, there
is no smoothing for β = 1, and the smoothing increases as β
approaches zero.

In ALAPROD, the OKPLM can be run in two modes: the
“default” mode where model parameter values for each lake
are estimated using the parameterization presented in Prats
and Danis (2019) and the “calibrated” mode where model
parameters are calibrated individually for each lake by using
in situ temperature measurements. The default parameteriza-
tion was obtained by using the individually calibrated param-
eter values to fit appropriate expressions as a function of the
characteristics of lakes. In the epilimnion module, model pa-
rameter values A, B, C and α are estimated based on lake
characteristics (i.e., latitude, altitude, surface area, volume
and depth). These equations were determined using robust
regressions and Landsat infrared data (median skin temper-
atures) from 1999 to 2016 of French lakes to estimate mean
surface temperatures (Prats et al., 2018). In contrast, for the
hypolimnion module, parameter values E and β were de-
rived as a function of lake depth and lake type using tem-
perature profile data from 357 lakes; β can have values of 1
(E>0.95) or 0.13 (E ≤ 0.95). Parameter D was assigned a
constant value of 0.51.

The parameterization of the OKPLM parameters as pre-
sented in Prats and Danis (2019) is as follows:

A= 39.9− 0.484LLat− 4.52× 10−3LAlt− 0.167lnLA, (8)
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where LLat is lake latitude (◦ N), LAlt is lake altitude (m) and
LA is lake surface area (m2).

B = 1.058− 0.0010LDmax, (9)

where LDmax is lake maximal depth (m).

C = 1.12× 10−3
− 3.62× 10−6LAlt, (10)

E = e1+
1− e1

1+ exp[e3(e2− lnLD)]
, (11)

where e1, e2 and e3 are coefficients with respective values of
0.10, 2.0 and −1.8 for natural lakes and 0.49, 1.7 and −2.0
for artificial lakes (reservoirs, gravel pits, ponds and quarry
lakes), and LD is lake mean depth (m).

α = exp(0.52− 3.0× 10−4LAlt+ 0.25lnLA− 0.36lnLV), (12)

where LV is lake volume (m3).

2.3 Input data

The OKPLM was forced with two sources of meteorological
data extracted from the SAFRAN (Système d’Analyse Four-
nissant des Renseignements Adaptés à la Nivologie) analy-
sis system (Durand et al., 1993) and the S2M (SAFRAN–
SURFEX/ISBA–Crocus–MEPRA; Modèle Expert d’Aide à
la Prévision du Risque d’Avalanche) meteorological reanal-
ysis (Vernay et al., 2015, 2022).

The SAFRAN system provides meteorological variables at
an hourly time step estimated through interpolation and as-
similation processes with an 8 km square grid. Average daily
data from the nearest grid cell were selected for each study
site. The difference in altitude between the study site and the
grid cell was accounted for by applying an adiabatic eleva-
tion correction to air temperature.

The S2M model chain combines the SAFRAN meteoro-
logical analysis and the SURFEX/ISBA–Crocus snow cover
model including MEPRA. It is more adapted to mountain-
ous regions as it has a spatial definition where spatial het-
erogeneity is taken into consideration. The S2M reanalysis
uses a vertical resolution of 300 m and is the result of sim-
ulations performed over mountainous zones referred to as
“massifs” and covering the French Alps, Pyrenees and Cor-
sican mountainous regions. In order to use S2M meteoro-
logical data over each lake, an extraction of certain topo-
graphic classes is necessary. These include elevation, aspect
and slope, which represent the spatial variability over mas-
sifs. On average, a massif corresponds to a mountainous re-
gion of about 1000 km2 over which meteorological condi-
tions are considered homogeneous at a given elevation range.
Two types of S2M reanalysis simulations exist for each ele-
vation range, one in flat terrain and the other with eight as-
pects at two different slope angles. For this study, this infor-
mation (elevation, slope, aspect) was extracted from a dig-
ital elevation model (BD Alti, IGN) for each lake over its

drainage basin, combined into zones corresponding to S2M
topographic classes. We considered a zero slope and average
daily data for each study site.

In situ temperature profiles together with geographical
and morphological data of the study sites were initially ex-
tracted from the PLAN_DEAU database. The extracted data
were then incorporated into the TMOD database with the
aim of simplifying the process of simulations and access-
ing information about the characteristics of the simulated
lakes. Both databases are managed by INRAE (l’Institut Na-
tional de Recherche pour l’Agriculture, l’Alimentation et
l’Environnement) and Pôle R&D ECLA (ECosystèmes La-
custres) in Aix-en-Provence, France. The geomorphological
data consisting of maximal depth, volume, surface area, lat-
itude and altitude were extracted for 401 lakes. In situ tem-
perature profiles were extracted from the RCS/RCO (Réseau
de Contrôle de Surveillance/Réseau de Contrôle Opérationel,
French networks for the WFD) monitoring network for 170
lakes over different depths. Depending on each lake, the
number of years with samples could vary from 1 to 12, with
a number of samples ranging between 1 and 10 per year.

2.4 Lake simulations

For this study, we considered 401 lakes (Fig. 1) located in
Metropolitan France monitored according to the WFD. Here
we refer to lakes as natural lakes, reservoirs, gravel pits
and other artificial lakes (e.g., ponds and quarry lakes). The
present lake dataset includes epilimnion and hypolimnion
temperature simulations for 54 natural lakes, 302 reservoirs,
7 gravel pits and 38 other artificial lakes (Fig. 2). The lake
characteristics range between 0 and 2279.7 m for altitude,
between 0.8 and 309.7 m for maximal depth, between 0.08
and 577.12 km2 for surface area and between 5× 104 and
8.9× 1010 m3 for volume.

The OKPLM was run for each lake using either default or
calibrated parameters and either SAFRAN or S2M meteoro-
logical data. Specifically, calibrated model parameters were
adopted when in situ temperature profiles along the water
columns were available from the RCS/RCO monitoring net-
work; these temperature profiles were then transformed and
used as epilimnion and hypolimnion temperatures. For those
lakes, calibration parameters (A, B, C, D, E, α and β) are
lake-specific and determined using the lake-specific temper-
ature profiles. Conversely, default parameters were used for
the rest of the lakes as well as when bathymetry data neces-
sary for the transformation of temperature profiles into epil-
imnion and hypolimnion temperatures were not available. In
this case, the values of the parameters were estimated accord-
ing to Eqs. (8) to (12).

SAFRAN data were used for most of the lakes, except for a
few lakes at higher altitudes. Indeed, S2M data are more rep-
resentative of mountainous meteorological conditions than
SAFRAN data and were thus used, when possible, for sim-
ulating the water temperature in lakes situated at altitudes
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higher than 900 m. For some lakes, it was not possible to use
S2M data, either because their drainage basins are not en-
tirely part of a massif (n= 1) or because they are located in
massifs that are not covered by the S2M reanalysis dataset
(n= 18). Among the total number of study sites (n= 401),
the model was forced using SAFRAN and S2M meteorolog-
ical data for 210 and 21 lakes with the default model pa-
rameters and for 164 and 6 lakes with calibrated model pa-
rameters. The geomorphological characteristics of the simu-
lated lakes with each of the abovementioned configurations
are shown in Table 1.

2.5 Calibration, uncertainty and sensitivity analysis

Calibration, uncertainty and sensitivity analyses of model pa-
rameters were carried out using the CUSPY package, which
is part of the ALAMODE software suite (Danis, 2020) and
acts as an interface to the pyemu package (White et al., 2016,
2020). In addition to model parameters, sensitivity analy-
sis was extended to encompass forcing parameters (MAAT,
at_factor, sw_factor) as they provide information about the
degree of sensitivity exhibited by model parameters in re-
sponse to biases in the forcing data.

Parameter values were calibrated for lakes with avail-
able in situ data (temperature profiles and bathymetry). Pa-
rameter values were calibrated using the Gauss–Levenberg–
Marquardt algorithm, the Tikhonov regularization (White et
al., 2020) and the squared sum of residuals as an objective
function. In addition to the calibrated parameter values, the
calibration process also provided posterior parameter uncer-
tainty and composite scaled sensitivities. Composite scaled
sensitivities (CSSs) indicate the quantity of information pro-
vided by each parameter and the sensitivity of the model to
them (Ely, 2006). The parameters with higher CSS values
will have a greater impact on the resulting simulation com-
pared to those with low CSS values. To determine the CSS
values for each parameter, the dimensionless scaled sensitiv-
ities (DSSs) are used. DSSs indicate how important an ob-
servation or how sensitive a simulated equivalent of an ob-
servation is in relation to the estimation of a parameter. Fur-
ther information on these statistical measures is available in
Hill (1998) and Poeter and Hill (1997). The dimensionless
scaled sensitivity for i and j , i being one of the observations
and j being one of the parameters, is calculated as

DSSi,j =
[
∂y′i

∂bj

]
bjw

1/2
i , (13)

where y′i is the simulated value associated with the ith obser-

vation, bj is the j th estimated parameter, ∂y
′
i

∂bj
is the sensitiv-

ity of the simulated value associated with the ith observation
and wi is the weight of the ith observation calculated based
on the inverse of the variance–covariance matrix of the ob-
servation errors.

The CSS for parameter j is calculated from the DSS as
follows:

CSSj =

[∑ND
i=1(DSSij )2

|b

ND

]1/2

, (14)

where ND is the number of observations and b is a vector of
parameter values.

The uncertainty of the simulations (calibrated and default)
was analyzed using Monte Carlo simulations. For each lake,
100 Monte Carlo simulations were carried by randomly se-
lecting the values of the model parameters. Two parameters,
at_factor and sw_factor, multiplying the meteorological in-
put, were added to account for possible uncertainties in in-
put data. For the default simulations, the a priori distribution
of the parameters was assumed to follow a normal distribu-
tion with the average value and the lower and upper bounds
shown in Table 2. The ranges for parametersA,B andC were
estimated as 4 times the standard deviation of the residuals
of the formulas used to estimate them according to Prats and
Danis (2019). Parameters D, E and β are expected to lie in
the range 0–1 for mathematical and physical reasons. How-
ever, their respective values are highly interdependent and are
difficult to identify. Given their higher uncertainty, the full 0–
1 range was explored. For MAAT, at_factor and sw_factor,
reasonable ranges (±10 %) were chosen to account for me-
teorological data uncertainty (measurement error, errors in
regionalization, etc.). For the calibrated simulations, the dis-
tribution of the parameters was obtained from the calibration
results.

In this study, the non-parametric Kendall tau coefficient
(significance level at 5 %) was used to identify statistical as-
sociations between uncertainty values and CSSs with respect
to lake geomorphological characteristics (maximal depth,
volume, surface area, latitude and altitude).

3 Model performance

The performance of the OKPLM was assessed in Prats and
Danis (2019) by comparing its performance to two other
often-applied models in lake studies, air2water (the four-
parameter version) and FLake. The air2water model is a
semi-empirical model used to calculate the epilimnion tem-
perature of temperate lakes (Toffolon et al., 2014; Piccolroaz
et al., 2013). FLake is a one-dimensional (1D) hydrodynamic
lake model for simulating temperature vertical profiles and
mixing conditions in lakes (Mironov, 2008). To assess their
performances, the three models were run between 1999 and
2016 over two sets of French lakes of different types (reser-
voirs, natural lakes, ponds, quarry lakes and gravel pits): a
group of 5 lakes with continuous profile measurements and a
group of 404 lakes with less frequent temperature measure-
ments. The performance assessment was limited to the pe-
riod of 1999–2016 due to the availability of water tempera-
ture data (in situ and satellite) during that specific time frame.
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Figure 1. Locations and lake types of the 401 French lakes simulated with the OKPLM in “default” and “calibrated” modes, with SAFRAN
and S2M meteorological data for the period 1959–2020. The “other” artificial lakes consist of ponds and quarry lakes.

Table 1. Characteristics of the lakes simulated with the OKPLM in “default” and “calibrated” modes with SAFRAN and S2M meteorological
data for the period 1959–2020; n represents the number of lakes.

Variables Minimal–maximal range

Model parameters Default Calibrated

Meteorological data SAFRAN S2M SAFRAN S2M

n 210 21 164 6
Altitude (m) 1–1753 916–2213 0–2279.7 1577.5–2172.5
Latitude (◦ N) 41.47–50.87 42.55–46.21 42.88–49.87 42.65–42.86
Longitude (◦ E) −3.90–9.48 0.08–6.94 −4.24–6.96 −0.33–1.92
Maximal depth (m) 0.8–309.7 10.3–180 1.2–124 49–112
Surface area (km2) 0.08–577.12 0.11–6.52 0.29–57.57 0.45–1.21
Volume (m3) 5× 104–8.9× 1010 51.4× 104–33.32× 107 12.9× 104–49.88× 107 72.7× 105–68.6× 106

The scarcity of in situ water temperature measurements be-
fore 1999 applies to the entire set of lakes. However, it is
important to note that long-term in situ water temperature
data are available for a few large lakes and were used to
assess the performance of the three models (Prats and Da-
nis, 2015). The OKPLM was run with the default param-
eter values given by the parameterization in Prats and Da-
nis (2019). The air2water parameter values were obtained
as a function of lake depth from the parameterization pre-
sented in Toffolon et al. (2014) based on data from 14 lakes

around the globe. In this case, the air2water model param-
eters were not calibrated due to the fact that the percent-
age of missing data within the LakeSST dataset employed
in Prats and Danis (2019) exceeded 97 % for most lakes. Be-
yond this threshold of 97 % missing data, the performance of
the calibrated four-parameter version of the air2water model
was found to be unsatisfactory (Piccolroaz, 2016). However,
when evaluating the model performance with the set of five
lakes with continuous data, air2water was run using parame-
ter values calibrated for the individual lakes’ available data.
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Figure 2. Presentation of the LakeTSim data. (a) Epilimnion and (b) hypolimnion mean annual temperatures, with the average trend across
the lakes shown with a smooth spline. (c) Daily epilimnion temperature per lake in the dataset for 2010, with a smooth spline and the time
series for one lake (LDC63) highlighted. (d) Daily hypolimnion temperature per lake in the dataset for 2010, with a smooth spline and the
time series for one lake (LDC63) highlighted. LDC63 is the code for Lake Chauvet, a natural lake (45.46◦ N, 2.83◦ E) located at 1167 m a.s.l.,
with a surface area of 0.51 km2, a volume of 17.41×106 m3, and a maximum depth of 66.8 m. The simulation for LDC63 was conducted by
resorting to SAFRAN data and was run with the calibrated mode. (e) Uncertainties were calculated per lake and per day and are shown here
daily for LDC63, in 2010, for both the epilimnion (epi) and the hypolimnion (hyp). (f) Uncertainties are shown here seasonally for LDC63,
in 2010, for both the epi and the hyp. JFM corresponds to January–February–March, AMJ corresponds to April–May–June, JAS corresponds
to July–August–September, and OND corresponds to October–November–December.
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Table 2. Characteristics of the a priori distributions of the model parameters. Parameters with a circumflex accent indicate parameter values
estimated for a particular lake according to the regionalization formulas by Prats and Danis (2019).

Parameter Average value Lower bound Upper bound

A Â Â− 2 · 0.74 Â+ 2 · 0.74
B B̂ B̂ − 2 · 0.08 B̂ + 2 · 0.08
C Ĉ Ĉ− 2 · 0.004 Ĉ+ 2 · 0.004
D D̂ 0 1
E Ê 0 1
α α̂ 0 α̂+ 2 · 0.08
β β̂ 0 1
MAAT MÂAT MÂAT− 2 · 0.5 MÂAT+ 2 · 0.5
at_factor 1 0.9 1.1
sw_factor 1 0.9 1.1

FLake does not have calibration parameters. Meteorologi-
cal forcing (SAFRAN) consisted of air temperature for the
air2water model; solar radiation, vapor pressure, cloud cover
and wind speed for FLake; and air temperature and solar ra-
diation for the OKPLM.

The OKPLM, air2water and FLake simulations were as-
sessed through comparison to in situ measurements. For epil-
imnion temperatures, the average discrepancies calculated
between OKPLM simulations and observations remained be-
low 2 ◦C in most cases, in contrast to the air2water and
FLake models. The performance comparison between the
OKPLM, air2water and FLake yielded median RMSEs (root
mean square errors) of 1.7, 2.3 and 2.6 ◦C, respectively, cal-
culated between simulations and observations of the epil-
imnion water temperature, although, when using calibrated
parameter values for air2water, the median RMSE was below
1 ◦C in most cases. For hypolimnion temperatures, the me-
dian RMSEs by lake type obtained with OKPLM simulations
remained below 2 ◦C, except for gravel pits (RMSE= 2.7 ◦C)
and reservoirs (RMSE= 2.3 ◦C), whereas FLake yielded a
median RMSE of 3.3 ◦C. For the epilimnion temperatures,
the differences between the RMSEs of lake types were not
significant. In terms of depth, discrepancies between epil-
imnion temperature simulations with the OKPLM and mea-
surements were highest for lakes with a depth >10 m and
for ponds around 1 m deep. The OKPLM simulations were
also evaluated seasonally, in particular during summer and
winter. The model simulated temperatures well, with median
RMSEs of 1.4 and 1.6 ◦C in summer and winter, respectively.

4 Uncertainty analysis

Overall, for both simulations with default and calibrated
model parameters, uncertainty was higher for hypolimnion
temperature compared to epilimnion temperature, especially
in reservoirs (Fig. 3). In the default simulations, the uncer-
tainty of the simulated epilimnion temperatures showed a
clear and strong relation to lake maximal depth (Fig. 3, Ta-

ble 3). On the one hand, the maximal depth had the high-
est Kendall tau value of 0.64 (p value <0.0001), indicating
a strong positive correlation with uncertainty, followed by
volume with a Kendall tau of 0.59 (p value <0.0001). Un-
certainty increased with maximal depth and volume, in par-
ticular for lakes with depths greater than 10 m and volumes
greater than 106 m3 (Fig. 3). Overall, lakes with higher max-
imal depths have higher volumes and are located at greater
altitudes (Figs. A1–A2 in Appendix A). On the other hand,
moderate significant correlations were identified with surface
area, altitude and latitude (Table 3). Lakes with larger surface
areas and higher altitudes tend to have higher uncertainties,
whereas lakes located at higher latitudes tend to have lower
uncertainties (Fig. A3 in Appendix A). The latter can be
linked to the fact that more shallow lakes are located at higher
latitudes (Fig. A1 in Appendix A). For default simulations
of hypolimnion temperatures, uncertainty was maximal for
lakes with depths around 10 m. Kendall’s tau values revealed
a moderate significant correlation between hypolimnion tem-
perature uncertainty and altitude (−0.45, p value <0.0001).
The decrease in uncertainties with altitude can be related to
the fact that lakes situated at very high altitudes are mostly
deep. Further, in the present dataset, lakes with higher max-
imal depths occur as altitude increases (Figs. A1–A2 in Ap-
pendix A).

After calibration, there was an important reduction in sim-
ulation uncertainty. For default simulations of epilimnion
temperature, the median of the 90 % confidence uncertainty
range was 5.42 ◦C, while after calibration it was 1.85 ◦C. For
hypolimnion temperature, the median of the 90 % confidence
uncertainty range of the default simulations was 8.5 ◦C,
while it was 2.32 ◦C after calibration. However, many reser-
voirs with depths greater than 8 m still had a much greater un-
certainty (uncertainty range >4 ◦C) than the rest of the lakes
after calibration. Additionally, reservoirs (and a few natural
lakes) above 100 m in altitude showed the highest uncertain-
ties in the simulation of epilimnion temperature.
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Figure 3. Average 90 % confidence uncertainty range for epilimnion (a–c) and hypolimnion (d–f) temperatures in calibrated (n= 170) and
default (n= 231) simulations for the period 1959–2020. The other artificial lakes consist of ponds and quarry lakes.

Table 3. Kendall’s tau coefficients and p values of the average 90 % confidence uncertainty range for epilimnion and hypolimnion tem-
peratures obtained from default simulations (1959–2020) with respect to lake geomorphological characteristics. For each lake, “epilimnion
uncertainty” and “hypolimnion uncertainty” are defined as the average 90 % confidence uncertainty range calculated as the difference be-
tween the 95th and 5th percentiles of the daily simulated epilimnion and hypolimnion water temperatures.

Maximal depth Surface area Altitude Latitude Volume
(m) (km2) (m) (◦ N) (m3)

Epilimnion uncertainty 0.64∗∗∗∗ 0.31∗∗∗∗ 0.39∗∗∗∗ −0.40∗∗∗∗ 0.59∗∗∗∗

Hypolimnion uncertainty −0.13∗∗ 0.05 −0.45∗∗∗∗ 0.03 −0.03

The significance levels are represented as follows. ∗: 1.00× 10−2<p value ≤ 5.00× 10−2; ∗∗: 1.00× 10−3<p value ≤ 1.00× 10−2;
∗∗∗: 1.00× 10−4<p value ≤ 1.00× 10−3; ∗∗∗∗: p value ≤ 1.00× 10−4. Otherwise, correlations are not significant (p value >0.05).

5 Sensitivity analysis

The parameter to which the model was most sensitive was
parameter C (Fig. 4), which multiplies solar radiation in
Eq. (1). The CSSs for C were 1 order of magnitude greater
than for the next parameters with the highest CSSs, parame-
ters α and at_factor, both influencing the effect of air temper-
ature on simulated water temperature. Other parameters to
which the model was somewhat sensitive were E, B and β.
The model was quite insensitive to sw_factor, MAAT and A.
ParameterD, with CSSs several orders of magnitude smaller
than the other parameters, was unidentifiable.

The model tended to be more sensitive to the parameter
values in the case of reservoirs than in the case of natural
lakes (Figs. 5 and A4–A7 in Appendix A). Some parame-
ters showed a dependency on lake geomorphological char-
acteristics. With the exception of a weak correlation with
altitude (Kendall’s tau= 0.18), there was no significant de-

pendence between parameter C and lake geomorphological
characteristics (Table 4 and Fig. A4 in Appendix A). Param-
eter α being parameterized as a function of lake volume, sur-
face area and altitude reflect the thermal inertia of the lake.
This showed a clear, highly significant dependency, primar-
ily on lake depth (Kendall’s tau= 0.47) and followed by alti-
tude (Kendall’s tau= 0.4) and volume (Kendall’s tau= 0.39)
(Fig. 5, Table 4). The increase in model sensitivity to param-
eter α, primarily with depth as well as altitude and volume,
propagated to the default simulations and explains the in-
creased uncertainty with these same geomorphological char-
acteristics in the default simulations. The parameter at_factor
was weakly but significantly correlated with all lake geomor-
phological characteristics except for latitude, with which no
correlation was found (Fig. 5, Table 4 and Figs. A4–A7 in
Appendix A). CSSs were mostly low for parameter β, except
for a few reservoirs and artificial lakes that scored very high
CSS values. The sensitivity of β displayed a weak but signif-
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Figure 4. Composite scaled sensitivities (CSSs) for each parameter. The boxplots indicate the distribution of CSSs between the simulations
calibrated for different lakes. The y axis is in logarithmic form.

icant correlation with lake geomorphological characteristics,
except for volume (Table 4).

Although the model in general was not very sensitive to the
values of the parameters most directly related to hypolimnion
temperatures (D, E, β), the quality of hypolimnion tem-
peratures was greatly improved through calibration. This
would seem to indicate that the quality of the simulated hy-
polimnion temperature was improved through the improve-
ment of epilimnion temperature simulations.

6 Discussion and implications

Lakes are undeniably changing under climate change, and
long-term future projections show that the shifts in ecosys-
tem functioning will continue with aggravated alterations
(Woolway and Merchant, 2019). In particular, given the key
role of lake water temperature in regulating ecosystem pro-
cesses, its warming has become a response that is crucial to
monitor, explore and understand. Hence, the importance of
developing or adopting approaches, such as numerical mod-
els, will provide long-term information about water tempera-
ture and allow us to understand the thermal response of lakes
to climate change.

Here we used a semi-empirical model, the OKPLM, to
simulate 6 decades of epilimnion and hypolimnion water
temperatures in French lakes. In comparison to similar mod-
els, overall, the OKPLM provides acceptable estimations of
water temperatures, with better results for epilimnion tem-
peratures. The values of the RMSEs provided in Prats and
Danis (2019) and obtained between OKPLM simulations
and observations are comparable to values found in studies
applying complex hydrodynamic lake models (Read et al.,
2014; Fang et al., 2012). When using the default parameter
values, the uncertainty associated with epilimnion tempera-
ture simulations was significantly related to all geomorpho-
logical characteristics; however, it was especially strongly

correlated with lake maximal depth. In contrast, the uncer-
tainty in the hypolimnion simulations had a significant cor-
relation solely with altitude and maximal depth. The impor-
tance of this correlation was especially noteworthy in the
case of reservoirs located in low-altitude regions where un-
certainties were lowest. While the association between hy-
polimnion uncertainty and maximal depth exhibited only a
weak correlation, the instances of the highest uncertainties
were predominantly found in reservoirs with maximal depths
around 10 m. The correlations found between lake geomor-
phological characteristics and simulation uncertainties sug-
gest that there might be systematic biases in the definition
of model parameters or in the forcing data. The calibration
of model parameters significantly reduced the uncertainties,
yet, for hypolimnion temperatures, they remained consider-
ably high and increased with depth, especially in reservoirs.

The high levels of uncertainty found in reservoirs could
be somewhat attributed to the lack of consideration of water
level fluctuations in the model. In contrast to other lakes (e.g.,
natural lakes, artificial lakes and gravel pits), reservoirs expe-
rience significant variations in their water level, which influ-
ences the heat budget and hence their thermal regime. There-
fore, even under similar meteorological conditions, lakes and
reservoirs could have different thermal behaviors (Nowlin
et al., 2004). In reservoirs, the discharge depth is a driver
of thermal structure. Deep discharges could contribute to
warmer bottom waters (Carr et al., 2020), whereas, in some
cases, if the reservoir is shallow or if the discharge depth
is not deep, it could demonstrate lake-like thermal behavior.
This does not necessarily mean that, in this case, the entire
functioning of the reservoir resembles one of a natural lake;
there are still differences to consider (Detmer et al., 2021).

The application of the OKPLM should be done with cau-
tion given its performance and depending on the objective of
the study. The model does not take into account a complete
set of meteorological forcing (e.g., with cloud cover, relative
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Table 4. Kendall’s tau coefficients and p values of CSSs for model parameter values and drivers obtained from calibrated simulations
(1959–2020) with respect to lake geomorphological characteristics.

Maximal depth Surface area Altitude Latitude Volume
(m) (km2) (m) (◦ N) (m3)

CSSA 0.02 −0.1 0.14∗∗ −0.08 −0.07
CSSB 0.09 −0.04 0.14∗∗ −0.14∗∗ 0.02
CSSC −0.04 −0.09 0.18∗∗∗ −0.05 −0.1
CSSD −0.12∗ 0.02 −0.14∗∗ 0.06 −0.1
CSSE −0.01 −0.001 0.02 0.0003 −0.03
CSSα 0.47∗∗∗∗ 0.07 0.4∗∗∗∗ −0.23∗∗∗∗ 0.39∗∗∗∗

CSSβ 0.16∗∗ −0.12∗ 0.22∗∗∗∗ −0.19∗∗∗ 0.05
CSSat_factor −0.25∗∗∗∗ −0.14∗∗ −0.13∗ 0.04 −0.28∗∗∗∗

CSSsw_factor −0.22∗∗∗∗ −0.06 −0.14∗∗ 0.06 −0.2∗∗∗∗

CSSMAAT −0.09 −0.13∗∗ 0.13∗ −0.02 −0.15∗∗

The significance levels are represented as follows. ∗: 1.00× 10−2<p value ≤ 5.00× 10−2; ∗∗: 1.00× 10−3<p value
≤ 1.00× 10−2; ∗∗∗: 1.00× 10−4<p value ≤ 1.00× 10−3; ∗∗∗∗: p value ≤ 1.00× 10−4. Otherwise, correlations are
not significant (p value >0.05).

Figure 5. CSSs for each model parameter as a function of maximal depth. The other artificial lakes consist of ponds and quarry lakes.

humidity and wind speed and direction) or other variables
(e.g., inflow and outflow rates or water level fluctuations, in-
flow discharge depth and inflow temperature) that could in-
fluence the thermal structure of the ecosystem (Yang et al.,
2020; Carr et al., 2020). Furthermore, the OKPLM was pa-
rameterized for a specific set of lakes with particular geo-
morphological characteristics. Thus, it would be advisable to
apply the model over lakes with similar characteristics. If the
aim is to conduct a long-term regional or global study for
studying general patterns of climate change impacts over a
large number of study sites, the utilization of semi-empirical
models such as the OKPLM is the most suitable choice. Al-
though complex, deterministic or process-based models pro-
vide more accurate representations of thermal conditions, ap-
plying these models over several study sites and for long pe-
riods is usually hindered by the scarcity of the required input

data. The increased complexity of these models (with refer-
ence to an increased number of model parameters) is bene-
ficial for representing additional ecosystem processes. How-
ever, the greater number of model parameters increases the
sensitivity of models and requires more calibration efforts
(Lindenschmidt, 2006). Furthermore, a reduction in model
errors is sometimes associated with an increased complex-
ity in model structure; however, this is not always consistent,
since a complex model does not necessarily provide better es-
timations and thus lower errors than a simple model (Snowl-
ing and Kramer, 2001).

Our goal in publishing the present dataset is to expand
knowledge about the water temperature of French lakes and
to provide data with enough details and reliability so that it
could be implemented in different studies where water tem-
perature is used to understand specific processes or interac-
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tions, in particular under climate change, hence the signifi-
cance of the present findings. The present study, making use
of a semi-empirical model to provide long-term data on water
temperature, was necessary for several reasons. Equipping a
large number of lakes with thermal sensors is challenging
and labor-intensive: it comes with a high financial cost that
is often not available. Consequently, historical and even cur-
rent water temperature datasets are often scarce, which can
be problematic for studying the impact of climate change, as
it requires high-frequency data over a long duration of time
for accurate analysis. In general, the higher the sampling fre-
quency and duration, the better the data are suited to esti-
mating or analyzing specific processes or warming trends.
The sampling frequency and length of a dataset have been
shown to play a role in determining the accuracy of estimat-
ing warming trends where time series longer than 30 years
seem to be the most appropriate ones (Gray et al., 2018). Al-
though the duration and frequency of a dataset have a major
role in reflecting accurate representations, their influence is
scarcely addressed when it comes to climate change studies
related to warming trends in water temperature.

This dataset will be useful for climate change studies; it
could be used to develop and analyze several temperature
indicators (e.g., annual or seasonal maximal and minimal
temperature values, temperature exceeding certain thresholds
with biological implications). Further, mixing and stratifi-
cation dynamics are important to characterize as they drive
lake biogeochemistry. Among other processes, they influ-
ence the distribution of nutrients, primary productivity and
the composition of phytoplankton and zooplankton commu-
nities along the water column (Judd et al., 2005). With the
LakeTSim dataset, it is possible to classify the mixing regime
of lakes and to investigate possible triggers of regime shifts.

7 Data usage

The LakeTSim dataset comprises water temperature simula-
tions for natural lakes (n= 54), reservoirs (n= 302), gravel
pits (n= 7) and other artificial lakes (e.g., ponds and quarry
lakes, n= 38). The simulations are for both the epilimnion
and hypolimnion. Lakes that are fully mixed throughout the
year (typically shallower lakes) have the same temperature
value for both layers. More generally, the delta of tempera-
ture can be used to calculate mixing regimes (Sharaf et al., in
preparation).

The lakes in the dataset were selected because they are
monitored as part of the European Water Framework Direc-
tive (Directive 2000/60/EC). The majority of the 401 lakes
are non-natural, and some were only created after 1959 (i.e.,
the start of our simulations). We compiled the initial tem-
poral gap filling related to the initial filling years for 282 of
these 347 non-natural lakes (269 reservoirs and 13 artificial
lakes, Fig. A8 in Appendix A) in Table S1 (see the Supple-
ment) to be used as a companion dataset to LakeTSim. The

filling years were sourced from https://www.barrages-cfbr.eu
(last access: 27 April 2023) for 179 of the lakes and from the
PLAN_DEAU database for 103 of the lakes; the information
was not available for 33 reservoirs, 7 gravel pits and 25 other
artificial lakes of the LakeTSim dataset.

The median filling date was 1962, and 67 % of the lakes
with known filling dates were filled by 1980. While the com-
plete simulations ranging from 1959 to 2020 can also be used
as a theoretical lake temperature for comparison across sim-
ilar periods, we recommend that users of LakeTSim data for
reservoir and artificial lake simulations consider the initial
filling dates provided in Table S1 to filter out years from the
simulations during which lakes were not filled yet.

Additionally, users should be aware that some reservoirs
might be drained completely at certain intervals (e.g., every
10 years) for maintenance and inspection purposes and that
this is not reflected in our dataset. Finally, as mentioned in
the discussion, some of the lakes in the dataset experience
artificial (e.g., in reservoirs) or natural (e.g., in some smaller
ponds) water level fluctuations and potential intermittent dry
periods lasting weeks or months; none of these hydrological
processes is accounted for in the simulations.

8 Data availability

The LakeTSim dataset (Sharaf et al., 2023) for
the epilimnion and hypolimnion water tempera-
ture simulations and the supporting information are
available at https://doi.org/10.57745/OF9WXR. The
“00_Data_description.txt” file contains a description of the
dataset. The geographical (longitude and latitude) and mor-
phological (surface area, volume and maximal depth) data
for the 401 lakes are presented in the “01_Lake_data.txt”
file in addition to the name, type, altitude and identifi-
cation code for each lake. The data are located in two
main folders: “02_Temperature_data” containing daily
epilimnion (tepi) and hypolimnion (thyp) temperatures
simulated with the OKPLM as well as “03_Uncertainty_
data” containing daily tepi and thyp uncertainties. In
each folder, the data for temperature simulations and
their uncertainties are presented in text files available
in the “00_LakeTSim_SAFRAN_OKPdefault_data”,
“01_LakeTSim_SAFRAN_OKPcalibrated_data”,
“02_LakeTSim_S2M_OKPdefault_data” and “03_LakeT-
Sim_S2M_OKPcalibrated_data” folders. The name of each
file within these folders includes the identification code of
the lake. The uncertainty data are visible for each lake in
the geoportal at http://geo.ecla.inrae.fr/maps (last access:
2 December 2023).
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9 Code availability

The respective codes for the CUSPY
(https://doi.org/10.5281/zenodo.7585606, Prats-
Rodríguez and Danis, 2023a) and OKPLM
(https://doi.org/10.5281/zenodo.7585615, Prats-Rodríguez
and Danis, 2023b) packages, which can be used to conduct
sensitivity and uncertainty analyses and to run the OKPLM,
are available at https://github.com/inrae/ALAMODE-cuspy
(last access: 27 November 2023) and https://github.com/
inrae/ALAMODE-okp (last access: 27 November 2023) as
well as ZENODO.

10 Conclusions

We present the LakeTSim dataset and the semi-empirical
OKPLM for simulating water temperature in lakes. We ap-
plied the model over a set of 401 French lakes for the pe-
riod 1959–2020 to derive daily simulations of epilimnion
and hypolimnion water temperatures, here referred to as the
LakeTSim dataset. Previous efforts to assess the model’s per-
formance show an overall acceptable representation of epil-
imnion and hypolimnion temperatures when compared to in
situ measurements. The uncertainty analysis of the simula-
tions demonstrates that higher uncertainties are found for,
by order of relative importance, (1) default simulations, (2)
hypolimnion compared to epilimnion temperatures and (3)
deep lakes, in particular reservoirs (maximal depths greater
than 10 m for epilimnion temperature and around 10 m for
hypolimnion temperature simulated with the default model
parameters). Although the calibration significantly decreases
the uncertainties related to both the epilimnion and hy-
polimnion, in some cases they are still considerable in the
hypolimnion. Based on these results and whether enough ob-
servation data are available, optimally we recommend the
use of the OKPLM for shallow (maximal depth <8 m) lakes
with calibrated model parameters. However, when applied in
its default or even calibrated configuration over deep lakes,
one should be aware of the presented limitations and address
them in the analysis. The LakeTSim dataset is valuable for
assessing the impact of climate change on the thermal func-
tioning of lakes, which is often hindered by the lack of water
temperature observations. The present dataset will provide
new insights into the thermal behavior of French lakes, which
can provide a useful context for stakeholders as they design
management strategies in the context of climate change.
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Appendix A

Figure A1. Scatter plots of lake (n= 401) geomorphological characteristics: maximal depth (m), surface area (km2), volume (m3), altitude
(m) and latitude (◦ N).

Figure A2. Kendall’s tau correlation matrix of the geomorphological characteristics of lakes simulated in “default” mode (n= 231): maximal
depth (m), surface area (km2), volume (m3), altitude (m) and latitude (◦ N). The significance levels are represented as follows. ∗: 1.00×
10−2<p value ≤ 5.00×10−2; ∗∗: 1.00×10−3<p value ≤ 1.00×10−2; ∗∗∗: 1.00×10−4<p value ≤ 1.00×10−3; ∗∗∗∗: p value ≤ 1.00×
10−4. Otherwise, correlations are not significant (p value >0.05).
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Figure A3. Average 90 % confidence uncertainty range for epilimnion (a, b) and hypolimnion (c, d) temperatures in calibrated (n= 170)
and default (n= 231) simulations for the period 1959–2020 as a function of surface area (km2) and latitude (◦ N). The “other” artificial lakes
consist of ponds and quarry lakes.

Figure A4. CSSs for each model parameter as a function of altitude. The other artificial lakes consist of ponds and quarry lakes.
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Figure A5. CSSs for each model parameter as a function of volume. The other artificial lakes consist of ponds and quarry lakes.

Figure A6. CSSs for each model parameter as a function of surface area. The other artificial lakes consist of ponds and quarry lakes.
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Figure A7. CSSs for each model parameter as a function of latitude. The other artificial lakes consist of ponds and quarry lakes.

Figure A8. Distribution of initial filling years for lakes (e.g., reservoirs, gravel pits, ponds and quarry lakes) of the LakeTSim dataset.

https://doi.org/10.5194/essd-15-5631-2023 Earth Syst. Sci. Data, 15, 5631–5650, 2023



5648 N. Sharaf et al.: Simulated temperature in French lakes

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-5631-2023-supplement.
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