
Earth Syst. Sci. Data, 15, 5227–5259, 2023
https://doi.org/10.5194/essd-15-5227-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-decadal trends and variability in burned area from
the fifth version of the Global Fire Emissions Database

(GFED5)

Yang Chen1, Joanne Hall2, Dave van Wees3, Niels Andela4, Stijn Hantson5, Louis Giglio2,
Guido R. van der Werf3, Douglas C. Morton6, and James T. Randerson1

1Department of Earth System Science, University of California, Irvine, CA, USA
2Department of Geographical Sciences, University of Maryland, College Park, MD, USA

3Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
4BeZero Carbon, London, UK

5Earth System Science Program, Faculty of Natural Sciences, Universidad del Rosario, Bogota, Colombia
6Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

Correspondence: Yang Chen (yang.chen@uci.edu)

Received: 11 May 2023 – Discussion started: 26 May 2023
Revised: 18 October 2023 – Accepted: 18 October 2023 – Published: 28 November 2023

Abstract. Long-term records of burned area are needed to understand wildfire dynamics, assess fire impacts
on ecosystems and air quality, and improve fire forecasts. Here, we fuse multiple streams of remote sensing
data to create a 24 year (1997–2020) dataset of monthly burned area as a component of the fifth version of the
Global Fire Emissions Database (GFED5). During 2001–2020, we use the Moderate Resolution Imaging Spec-
troradiometer (MODIS) MCD64A1 burned area product and adjust for the errors of commission and omission.
Adjustment factors are estimated based on region, land cover, and tree cover fraction, using spatiotemporally
aligned burned area from Landsat or Sentinel-2. Burned area in croplands, peatlands, and deforestation regions
is estimated from MODIS active fire detections. Along-Track Scanning Radiometer (ATSR) and Visible and
Infrared Scanner (VIRS) active fire data are used to extend the time series back to 1997. The global annual
burned area during 2001–2020 is estimated to be 774± 63 Mhayr−1 or 5.9± 0.5 % of ice-free land. Burned area
declined by 1.21± 0.66 %yr−1, a cumulative decrease of 24.2± 13.2 % over 20 years. The global reduction is
primarily driven by a decrease in fires in savannas, grasslands, and croplands. Forest, peat, and deforestation
fires did not exhibit significant long-term trends. The GFED5 global burned area is 93 % higher than MCD64A1,
61 % higher than GFED4s, and in closer agreement with products from higher-resolution satellite sensors. These
data may reduce discrepancies between fire emission estimates from activity-based and atmospheric-based ap-
proaches, and improve our understanding of global fire impacts on the carbon cycle and climate system. The
GFED5 global burned area product is freely accessible at https://doi.org/10.5281/zenodo.7668423 (Chen et al.,
2023).

Published by Copernicus Publications.

https://doi.org/10.5281/zenodo.7668423


5228 Y. Chen et al.: Trends and variability in GFED5 burned area

1 Introduction

Wildfire is an integral part of the earth system (Bowman
et al., 2009), influencing the structure and functioning of
many terrestrial ecosystems (Beerling and Osborne, 2006;
Bond, 2016). Humans have a long history of using fire to en-
hance ecosystem services (Bowman et al., 2011), including
the use of prescribed fire to maintain habitat for animal and
plant species, increase crop productivity, and control plant
disease (Pyne, 2020). Fires on earth exhibit substantial tem-
poral and spatial variability on regional-to-global scales as
a consequence of both natural variability and human influ-
ence. In particular, changes in factors such as fire occurrence,
fuel amount, fuel moisture, fuel continuity, fire spread, fire
severity, and fire suppression, resulting from multiple global
change drivers, have significantly altered fire regimes in re-
cent decades (Archibald et al., 2013; van der Werf et al.,
2017).

The areal extent of burning is an essential fire character-
istic that regulates the amount of gas and particulate matter
released into the atmosphere (Seiler and Crutzen, 1980), and
the scope of fire impacts on ecosystem function. Accurate
delineation of burned area can improve our understanding of
fire impacts on the global carbon cycle, atmospheric compo-
sition, and climate (van der Werf et al., 2017); fire predictions
on daily, seasonal, interannual, and decadal timescales (Chen
et al., 2016; Taylor et al., 2013); the development and vali-
dation of prognostic fire models (Pereira et al., 2022); and
the identification of important climate, ecosystem, and hu-
man fire mechanisms that are responsible for variability and
trends in fire dynamics (Andela et al., 2017). In this con-
text, burned area mapping provides essential information for
a broad community of science and management stakehold-
ers interested in ecosystem conservation, climate mitigation,
and approaches for limiting fire impacts on human health and
infrastructure.

Before the satellite era, burned area was often estimated
using field surveys, aerial photographs, and expert opinion,
often with statistics aggregated to regional, state, or country-
wide areas by workers in fire management agencies (Crutzen
and Andreae, 1990). Recent advances in satellite remote
sensing have provided an alternative approach for mapping
burned areas in a consistent and timely manner (Chuvieco
et al., 2019; Giglio et al., 2009). Satellite-based detection has
also considerably increased the spatial coverage and resolu-
tion of burned area mapping. Most satellite-based algorithms
compare the spectral surface reflectance of post-fire images
with those of pre-fire images in order to map burned areas,
often using fire-specific vegetation indices in the change de-
tection algorithm (Alonso-Canas and Chuvieco, 2015; Ei-
denshink et al., 2007; Giglio et al., 2009; Roy et al., 2008).
The quality of different satellite-derived burned area prod-
ucts, including the accuracy, uncertainty, frequency, cover-
age, and resolution, can vary considerably and is dependent
on factors such as sensor design, orbit characteristics, and

retrieval algorithms (Chuvieco et al., 2019; Mouillot et al.,
2014).

At a global scale, near-daily repeat coverage from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
instruments onboard the Terra and Aqua satellites enabled
important advances in burned area mapping. High-quality
near infrared and shortwave infrared bands at a 500 m spa-
tial resolution provided the basis for change detection using
surface reflectance indices sensitive to the impact of fire on
vegetation (Giglio et al., 2009; Roy et al., 2008). At the same
time, analysis of MODIS mid-infrared and thermal infrared
bands (and information from other wavelengths) provided a
concurrent set of active fire observations (Giglio et al., 2016),
which have been shown to be highly effective in providing
training data needed to separate burned and unburned areas
in a locally adaptive manner (Giglio et al., 2018). Analysis
of these MODIS fire products has enabled the characteriza-
tion of long-term burned area trends (Andela et al., 2017),
regional variations in fire number and fire size (Andela et al.,
2019), and the effects of climate on fire occurrence, expan-
sion, and duration (Balch et al., 2022; Gutierrez et al., 2021).

More recently, a revolution is underway in estimating re-
gional and global burned area using finer-resolution satellite
imagery from Landsat (Hawbaker et al., 2017) and Sentinel-
2 (Roteta et al., 2019). Several technical advances have made
it practical to map burned areas at continental scales at 20 m
(Sentinel-2) or 30 m (Landsat) spatial resolution. First, with
two Sentinel-2 satellites launched in 2015 and 2017 in com-
plementary orbits, the revisit time for tropical areas is now
less than 5 d (Drusch et al., 2012). This more frequent cov-
erage is essential for mapping fires in tropical areas where
there is considerable cloud cover and the imprint of a grass-
land fire on land surface reflectance may persist only for
a period of several weeks, depending on the timing of the
fire relative to the onset of the wet season (Melchiorre and
Boschetti, 2018). Second, improved computation and data in-
frastructure, including cloud computing and the software in-
frastructure provided by the Google Earth Engine and other
online services, has made it easier to work with the large data
volumes required for burned area mapping at this resolution
(Franquesa et al., 2020a; Roteta et al., 2021). Third, a new
generation of thermal anomaly and active fire detection from
the Visible and Infrared Imaging Spectroradiometer (VIIRS)
on Suomi-NPP and NOAA-20 satellites at a 375 m reso-
lution (Schroeder et al., 2014) provides access to a finer-
resolution and more sensitive set of fire detections for use in
the design and validation of burned area mapping algorithms.
Compared to the coarser-resolution burned area products
from MODIS, the Landsat and Sentinel-2 burned area prod-
ucts are more effective in mapping burned areas from small
fires. Analysis of the Sentinel-2 burned area product from
Africa has revealed an 80 % increase relative to the standard
MODIS-based NASA burned area product (MCD64A1 C6)
for 2016 (Ramo et al., 2021; Roteta et al., 2019).
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However, within cropland – a quintessential small-fire
landscape – there are still technological limitations that im-
pact the ability to accurately map the full extent of burned
area. These fires occur on a heterogeneous, managed land-
scape where the burn scar is often manipulated by plowing or
seeding within hours or days after the fire (Hall et al., 2021b).
Therefore, the 3–5 d combined Sentinel-2 and Landsat revisit
time is often too long to capture all the burns. While MODIS
data have more temporal coverage, field sizes are typically
smaller than 1–2 MODIS pixels, and therefore the spectral
reflectance change induced by fire is often not strong enough
to trigger thresholds in the burned area detection algorithm.
This leads to an underestimation from MODIS-based burned
area products (Hall et al., 2016, 2021a). Consequently, active
fire products are very useful for identifying these small burns,
although the timing and short duration of actively burning
fires may impact the ability to map the full extent of agricul-
tural burns with the current generation of satellite sensors.

While the future of global burned area mapping is likely
to occur at the fine resolution of 20–30 m, leveraging the
combined information provided by Sentinel-2 and Landsat
(Claverie et al., 2018), the time series of more frequent ob-
servations required for burned area mapping in many trop-
ical areas is quite limited. There is a need to understand
longer-term trends and variability in burned area for many
science and management applications. An important chal-
lenge in this regard is to find ways to harmonize the infor-
mation contained in the earlier (and coarser-resolution) fire
products with the information provided by the new Sentinel-
2 and Landsat data, drawing upon the higher sensitivity to fire
detection but shorter duration (and limited spatial coverage)
of the newer products.

In this study, we combine information from satellite im-
agery time series of coarser (MODIS) and finer (Landsat and
Sentinel-2) resolution to create a 24-year (1997–2020) record
of global burned area at 0.25◦ (or 1◦) spatial and monthly
temporal resolution, as a component of the fifth version of
the Global Fire Emissions Database (GFED5). The 20 year
(2001–2020) MODIS active fire (Giglio et al., 2016) and
burned area (Giglio et al., 2018) products serve as the back-
bone of the time series we develop. By comparing spatiotem-
porally aligned burned area estimates for selected reference
scenes, we derive region- and vegetation-specific corrections
for reducing omission and commission errors in the 500 m
MODIS burned area. An explicit cropland-specific burned
area methodology that relies on active fire detections is used
to improve the quantification of crop-residue burned area
(Hall et al., 2023a). We also use active fire detections from
the Along-Track Scanning Radiometer (ATSR) (Arino et al.,
1999) and the Visible and Infrared Scanner (VIRS) (Giglio
et al., 2003) to extrapolate the adjusted burned area to include
the pre-MODIS era (1997–2000), although the spatiotempo-
ral variability is not as well preserved as during the MODIS
era.

The details of the algorithms and data used for deriving
the burned area are presented in Sect. 2. In Sect. 3, we report
the long-term trends and variability of regional and global
burned area with our new time series. We also compare our
data with multiple independent regional and global burned
area products. In Sect. 4, we discuss the implications and un-
certainty of the new dataset and identify directions for future
research. After presenting data availability in Sect. 5, we re-
port our main conclusions in Sect. 6.

2 Data and method

2.1 Method overview

Our approach to estimate GFED5 global burned area (Fig. S1
in the Supplement) at a 0.25◦ spatial resolution and monthly
time step during the MODIS era (2001–2020) takes advan-
tage of the high spatial resolution and detection sensitivity
of burned area products from Landsat and Sentinel-2. Addi-
tionally, it leverages more frequent observations, global cov-
erage, and extensive time series provided by the Terra and
Aqua MODIS fire products, surpassing the temporal capa-
bilities of Landsat and Sentinel-2. We separately derived the
burned area for fires over normal land cover types, croplands,
tropical peatlands, and deforestation regions in each 0.25◦

grid cell (x) and month (t) during 2001–2020 (Eq. 1).

BAGFED5(x, t)=
∑

v
BAGFED5−norm(x, t,v)

+BAGFED5−crop(x, t)
+BAGFED5−peat(x, t)
+BAGFED5−defo(x, t). (1)

The total GFED5 burned area, BAGFED5(x, t), was es-
timated as the sum of the adjusted normal burned
area (based on Eq. 2) aggregated over all land cover
types (

∑
vBAGFED5−norm(x, t,v)), and the additional

burned area from cropland fires (BAGFED5−crop(x, t)),
peat fires (BAGFED5−peat(x, t)), and deforestation fires
(BAGFED5−defo(x, t)). The normal land cover types (ν) are
defined as the 17 vegetation classes, as shown in Table S1 in
the Supplement.

BAGFED5−norm(x, t,v)=
∑

tc
(BAMCD64A1(x, t,v, tc)

×α(v, tc, reg)
+AFMODIS,out(x, t,v, tc)
×β(v, tc, reg)). (2)

The core input dataset for GFED5 monthly normal
burned area (BAGFED5−norm(x, t,v)) during the MODIS
era is the 500 m MODIS MCD64A1 burned area product
(BAMCD64A1(x, t,v, tc); see Sect. 2.2.1 for details). By com-
paring this dataset with a suite of finer-resolution reference
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Table 1. Multiple burned area datasets derived from Landsat (LS) or Sentinel 2 (S2) imagery that are used to calibrate scaling coefficients
or validate the GFED5 burned area time series. The term “Ref” refers to datasets with manual quality inspection such as those reported in
the Burned Area Reference Database (BARD). The term “Auto” refers to datasets created using an automatic approach based on machine
learning.

Name Type Satellite Years Region Original data
name

Reference Data source DOI

Datasets used for calibration

AFRS2 Ref S2 2016 Sub-Saharan
Africa

BARD – FireCCI
Africa S2

Franquesa et al. (2020a, b) e-scienceData https://doi.org/
10.21950/BBQQU7

GLB0314 Ref LS 2003–2014 Global BARD – FireCCI
global 2003–2014

Franquesa et al. (2020a, b) e-scienceData https://doi.org/
10.21950/BBQQU7

GLB08 Ref LS 2008 Global BARD – FireCCI
global 2008

Franquesa et al. (2020a, b) e-scienceData https://doi.org/
10.21950/BBQQU7

C3S Ref LS 2017–2019 Global BARD – C3S
global

Franquesa et al. (2020a, b) e-scienceData https://doi.org/
10.21950/BBQQU7

GREECE Ref LS 2016–2018 Greece BARD – NOFFi Franquesa et al. (2020a, b) e-scienceData https://doi.org/
10.21950/BBQQU7

USA Ref LS 2003, 2008,
2013

CONUS BARD – CONUS Franquesa et al. (2020a, b) e-scienceData https://doi.org/
10.21950/BBQQU7

NBAC Auto LS 2018 Canada National Burned
Area Composite

Hall et al. (2020) CWFIS https://doi.org/
10.1071/WF19201

IDNS2Ref Ref S2 2019 Indonesia Indonesia BA S2 Gaveau et al. (2021b) Zenodo https://doi.org/
10.5281/zenodo.4551243

MAWAS Auto LS 2001–2015 Mawas in
Indonesia

Mawas Landsat Vetrita and Cochrane
(2019)

ORNL DAAC https://doi.org/
10.3334/ORNLDAAC/1708

Datasets used for validation

NBAC Auto LS 2016 Canada National Burned
Area Composite

Hall et al. (2020) CWFIS https://doi.org/
10.1071/WF19201

AFR Ref LS 2016 Sub-Saharan
Africa

BARD – FireCCI
Africa

Franquesa et al. (2020a, b) e-scienceData https://doi.org/
10.21950/BBQQU7

QLD Auto LS and S2 2016 Queensland in
Australia

Queensland
Landsat

Goodwin and Collett
(2014)

TERN https://doi.org/
10.1016/j.rse.2014.03.021

SFD Auto S2 2016 Sub-Saharan
Africa

FireCCI SFD11 Roteta et al. (2019), Chu-
vieco et al. (2018)

CEDA https://doi.org/
10.5285/065f6040ef08485
db989cbd89d536167

USGS Auto LS 2003–2018 CONUS CONUS BA
Landsat

Hawbaker et al. (2020),
Vanderhoof et al. (2020)

EarthExplorer https://doi.org/
10.5066/F7T151VX

MAPB Auto LS 2019 Brazil MapBiomas BA
Landsat

Souza et al. (2020) MapBiomas https://doi.org/
10.3390/rs12060924

RUSS2 Auto S2 2020 spring Russia Russia BA S2 Glushkov et al. (2021) Greenpeace https://doi.org/
10.1088/1748-9326/ac3287

IDNS2 Auto S2 2019 Indonesia Indonesia BA S2 Gaveau et al. (2021b) Zenodo https://doi.org/
10.5281/zenodo.4551243

burned area datasets derived from Landsat or Sentinel-2 im-
agery (Sect. 2.3), we made two adjustments to account sep-
arately for commission and omission errors at the coarser
0.25◦ resolution. Within MODIS burned perimeters, we ex-
pected the presence of sub-pixel unburned islands, consid-
ering that not all the area within a 500 m cell is required
to burn in order for the MODIS burned area algorithm to
flag a pixel as burned (Giglio et al., 2018). We adjusted for
this commission error by multiplying the MCD64A1 burned
area with a correction scalar (α) derived from fine-resolution
burned area and spatiotemporally aligned MCD64A1 burned
area images, allowing α to vary as a function of vegeta-
tion type (ν), tree cover fraction bin (tc), and continental-
scale GFED region (reg). The scalar α is unitless (the ratio
of two different areas) and typically varies from 0.5 to 0.9.
The overall correction for commission errors using informa-
tion from α is given by the first term on the right-hand side
of Eq. (2), with 1 minus α representing the fraction of un-

burned islands within the MCD64A1 burned area according
to the fine-resolution burned area data. At the same time,
there are also small fires or incompletely mapped burned
areas by the MCD64A1 burned area algorithm, mostly due
to its coarser spatial resolution. These omission errors have
been shown to contribute to low biases in burned area at re-
gional and global scales, especially at the beginning and end
of the fire season (Ramo et al., 2021; Randerson et al., 2012).
We corrected for omission errors by multiplying the surface
area of MODIS active fire detections outside the perimeter
of 500 m MCD64A1 burned area pixels (AFMODIS,out) with
a scalar, β, derived from the ratio of Landsat or Sentinel-
2 reference burned area to the corresponding AFMODIS,out,
again as a function of vegetation type, tree cover fraction
bin, and GFED region. The scalar β is also unitless (the ratio
of two different areas) and typically varies between 0.5 and
4.0. The overall term describing the omission error correc-
tion using β is given by the second term on the right-hand
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side of Eq. (2). The two sets of correction scalars α and β
used in Eq. (2) were derived using the aggregated sums of
burned area and active fires from MODIS, as well as the fine-
resolution burned data from Landsat or Sentinel-2 in differ-
ent reference tiles (Table 1).

Equation (2) was only used to estimate normal burned
area (BAGFED5−norm), which does not include vegeta-
tion burning in croplands (BAGFED5−crop), tropical peat-
lands (BAGFED5−peat), or that associated with deforestation
(BAGFED5−defo). Burned areas for these fire types are often
difficult to map using MODIS surface reflectance imagery,
and therefore we used specific approaches that rely on the
scaling of active fire detections (AFMODIS) to calculate the
GFED5 burned area for these cases (Eq. 3).

BAGFED5-[crop,peat,defo](x, t)

= AFMODIS,[crop,peat,defo](x, t)× γ[crop,peat,defo]. (3)

For cropland burned area estimates, we used the Global
Cropland Area Burned (GloCAB; Hall et al., 2023a, b) prod-
uct which scales MODIS active fire pixels to match manually
mapped crop-specific burned area reference data (Hall et al.,
2021b) across major global agricultural regions. The scalar
for peatland burning was derived by comparing the sur-
face area of MODIS active fire detections with burned area
mapped using Landsat imagery in the peatlands of Mawas,
Central Kalimantan, Indonesia. Peat areas where the algo-
rithm was applied both within Mawas and across the trop-
ics as a whole were identified using version 2 of the Global
Wetlands map (Gumbricht et al., 2017). The scalar for de-
forestation burning was derived by comparing the cumu-
lative surface area of MODIS active fire detections in de-
forestation areas with the long-term deforestation area re-
ported by PRODES (Programa de Monitoramento da Flo-
resta Amazônica Brasileira por Satélite) for the Brazilian Le-
gal Amazon (Almeida et al., 2022). For more information on
how each term in Eqs. (1)–(3) was estimated, see Sect. 2.4.

Prior to the MODIS era (1997–2000), we scaled active fire
detections from two other satellite sensors, ATSR or VIRS, to
approximate the monthly burned area at a coarser spatial res-
olution (1◦). The scaling coefficients were derived from lin-
ear regressions between GFED5 burned area (including con-
tributions from all fire types) and active fire detections from
the ATSR or VIRS during years when these datasets overlap.
The detailed approach for estimating GFED5 burned area for
the 1997–2000 period is described in Sect. 2.5.

2.2 Primary datasets for burned area development

We used several datasets at the MODIS spatial resolution
(500 m) for the purpose of global burned area estimation and
adjustment. A list of the datasets used in this study is sum-
marized in Table 2 and described in detail in the following
subsection of Sect. 2.2.

2.2.1 MODIS 500 m burned area

The MODIS instruments on NASA’s Terra and Aqua satel-
lites have provided global fire data for over two decades.
In this study, we used the Terra and Aqua combined Col-
lection 6 monthly Burned Area data product (MCD64A1)
(Giglio et al., 2018) as the core basis for deriving the
GFED5 burned area dataset during 2001–2020. The MODIS
MCD64A1 burned area data also served as a spatial mask to
separate the fine-resolution burned area images from Land-
sat or Sentinel-2 and MODIS active fire data into two classes
(denoted as in or out). Landsat or Sentinel-2 burned area data
within (overlapping with) the MCD64A1 pixels were used to
derive commission correction factors. Landsat or Sentinel-
2 burned area data and MODIS active fires outside of the
perimeter of MCD64A1 pixels were used together to esti-
mate the omission correction factors. MCD64A1 data are
available from NASA and the University of Maryland fuoco
sftp site (ftps://fuoco.geog.umd.edu, accessible with login
name “fire” and password “burnt”, last access: 17 Novem-
ber 2023). All data files are in Hierarchical Data Format (hdf)
at MODIS sinusoidal projection and contain data layers of
burn date, burn data uncertainty, quality assurance, and other
attributes.

2.2.2 MODIS active fires

In addition to the MODIS burned area, we also used the
Terra and Aqua MODIS Collection 6 Thermal Anoma-
lies/Fire locations 1 km data product (MCD14ML) (Giglio
et al., 2016). The MCD14ML product records actively burn-
ing fires considerably smaller than those detected by the
MODIS burned area algorithm (Giglio et al., 2006b). The
monthly MCD14ML text files record multiple attributes as-
sociated with each active fire pixel detected by MODIS.
Each record contains the center latitude and longitude loca-
tion, the date and time of the detection, the satellite platform
(Terra or Aqua), the along-scan sample position, the hot spot
type, confidence level, and other attribute fields. The spa-
tial resolution of the MODIS active fire product varies from
1 km× 1 km at nadir to 4.8 km× 2.0 km at the scan edge. We
only used active fire pixels with fire type marked as presumed
vegetation fire. In calculating non-crop type burned areas, we
filtered out pixels with confidence levels smaller than 30 %
and scan angles greater than 0.5 radians (30◦) (correspond-
ing to a maximum pixel area of ∼ 1.7 km2) to reduce the ge-
olocation error.

MODIS MCD14ML fire location data were used in this
study for deriving scalars and estimating burned area (for
all types of burning as shown in Eq. 2). We also used the
MCD14ML data to calculate annual fire persistence (Chen
et al., 2013), which in turn was used to estimate the defor-
estation mask and derive burned area for fires associated with
deforestation (see Sect. 2.2.6 for more information). For ease
of comparison with other MODIS data, we converted the
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Table 2. Primary coarse-resolution datasets used in this study to derive the GFED5 burned area.

Name Origin Product/method Res. Purpose Reference Data source DOI

MODIS burned area
(BAMCD64A1)

MODIS C6 MCD64A1 500 m Derive 0.25◦ BA, for
Separate AFin and AFout

Giglio et al. (2018) Fuoco https://doi.org/
10.5067/MODIS/MCD64A1.006

MODIS active fire
(AFMODIS)

MODIS C6 MCD14ML 1 km Derive BA outside of
BAMCD64A1

Giglio et al. (2016) Fuoco https://doi.org/
10.5067/FIRMS/MODIS/MCD14ML

Land cover type (LCT) MODIS Reclassified C6 MCD12Q1 500 m Separate BA over LCT bins Van Wees et al. (2022) Van Wees
et al. (2022)

https://doi.org/
10.1111/gcb.15591

Fractional tree cover
(FTC)

MODIS C6 MOD44B 250 m Separate BA over FTC bins Dimiceli et al. (2021) LPDAAC https://doi.org/
10.5067/MODIS/MOD44B.006

Peatland cover (PeatM) CIFOR Tropical and Subtropical
Wetlands Distribution V2

231 m Separate peatland BA Gumbricht et al. (2017) CIFOR https://doi.org/
10.17528/CIFOR/DATA.00058

VIRS active fire (AFVIRS) VIRS VIRS AF 0.5◦ Estimate BA in pre-MODIS
era

Giglio et al. (2003) Fuoco https://doi.org/
10.1080/0143116031000070283

ATSR active fire
(AFATSR)

ATSR World Fire Atlas Alg1 0.5◦ Estimate BA in pre-MODIS
era

Arino et al. (1999) ESA DUE –

Fire persistence (FP) MODIS Derived from AFMODIS 5 km Derive deforestation mask Randerson et al. (2012) This study –
Deforestation mask
(DefoM)

MODIS Derived from FP, LCT, FTC 5 km Separate deforestation BA This study This study –

Cropland burned area Multiple
satellite
data

GloCAB 0.25◦ Used for cropland BA esti-
mation

Hall et al. (2023a) Zenodo https://doi.org/
10.5281/zenodo.7860452

original active fire location data to monthly 500 m rasterized
images of active fire area masks (AFMODIS). In order to do
this, we first determined the 500 m sinusoidal grid cell that
contains each valid active fire detection. We then marked this
grid cell and the eight surrounding cells as the active fire area,
considering that about 10 % of the MODIS active fires were
outside but within 1500 m of the boundary of the burned area
patch (Hantson et al., 2013). While this assumption may not
have a substantial impact on the total burned area estimate
(as we used fine-resolution burned area to calibrate the scal-
ing coefficients), it does not translate into a constant distance
buffer across all tiles of the sinusoidal grid. According to the
source of the satellite, we created three active fire datasets
(one for Terra only, one for Aqua only, and one for Terra and
Aqua combined) for each month.

The orbital dynamics for Terra and Aqua satellites pro-
vide denser spatial coverage toward the poles (and more
daily overpasses), which changes the absolute number of ac-
tive fires that are detected for a fire of the same size, inten-
sity, and duration (Giglio et al., 2006a). Thus, MODIS ac-
tive fire observations have systematic differences in their fire
detection efficiency over different latitudinal bands. This be-
comes an issue when we derive scalars for use in a single
GFED region that spans a wide range of latitudes. To correct
this effect, we adjusted the MODIS-derived active fire area
by multiplying it with a latitude-dependent overpass coeffi-
cient (AFMODIS,adj=AFMODIS,ori× cos(latitude)). After the
adjustment with this unitless coefficient, the AFMODIS data
are normalized to the overpass frequency at the Equator. Note
that this adjustment was performed during the process of de-
riving the omission error correction scalar, and also during
the GFED5 burned area estimation by converting MODIS ac-
tive fire data to burned area.

2.2.3 Land cover type

In this study, we used the Collection 6 MODIS land cover
type product (MCD12Q1) derived using a supervised classi-
fication of MODIS reflectance data (Friedl et al., 2010). The
MCD12Q1 product maps annual global land cover at 500 m
resolution using multiple land cover classification schemes.
We reclassified the IGBP classification in MCD12Q1 to in-
clude 20 land cover types (Table S1 of van Wees et al., 2022)
with additional masks coming from the FAO Global Ecologi-
cal Zones (GEZ) 2010 update (FAO, 2012) for separating the
tropical, temperate, and boreal zones. The reclassified 500 m
land cover type (LCT) files were saved in GeoTIFF format
with a MODIS sinusoidal projection and used in this study
to assign burned area and active fire pixels according to nor-
mal vegetation burning types. Active fires sampled in pixels
of classes 12, 14, and 19 (Table S1) were aggregated and
used with ancillary information to estimate cropland burned
area. All pixels within the mask of peatland (see Sect. 2.2.5)
or the annual area of active deforestation (see Sect. 2.2.6)
were considered as special types of burning, regardless of
their original MODIS-based land cover type.

2.2.4 MODIS 250 m vegetation cover data

For a given land cover type, there can be significant varia-
tions in the density of vegetation that influences the relation-
ship between active fire detection and burned area and the
efficacy of burned area detection. Here we used the annual
Fractional Tree Cover (FTC) layer in the 250 m Terra and
Aqua combined Collection 6 Vegetation Continuous Fields
product (MOD44B) (DiMiceli et al., 2021; Hansen et al.,
2005) to further aggregate burned pixels into FTC (tc) bins
(a total of 10 bins, each with a width of 10 %) for the pur-
pose of estimating commission and omission corrections.
The original data from USGS Land Processes Distributed
Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/
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products/mod44bv006/, last access: 17 November 2023)
were resampled to 500 m resolution at the MODIS sinusoidal
projection to be compatible with other data.

2.2.5 Tropical and subtropical peatland map

The Global Wetlands Map was produced by the Sustainable
Wetlands Adaptation and Mitigation Program (SWAMP) us-
ing a hydro-geomorphological model based on an expert sys-
tem approach (Gumbricht et al., 2017). Here, we used ver-
sion 2 of the Global Wetlands Map that is available for down-
loading at the Center for International Forestry Research
(CIFOR) website (https://www2.cifor.org/global-wetlands/,
last access: 17 November 2023). Specifically, we combined
the peatland cover layer in this dataset with MODIS data
to extract the burned area and active fire area in tropical
and subtropical peatland areas. The original 231 m GeoTIFF
data were reprojected, cropped to latitudinal bands of 60◦ S–
40◦ N, and aligned with the 500 m MODIS sinusoidal grid.

2.2.6 Fire persistence and deforestation mask

MODIS active fire data were also used for deriving defor-
estation masks in this study. Fire persistence (FP), defined as
the mean number of days with active fire detections within
a region during a calendar year, has been shown to be a
good indicator of aggregated burning and often used for clas-
sifying deforestation fires (Chen et al., 2013; Giglio et al.,
2006b; Morton et al., 2008). Here we counted the number
of active pixels at 500 m resolution for each year using the
MODIS active fire data (recorded by both Terra and Aqua),
and then calculated mean FP values for each 5 km and 0.25◦

grid cell, respectively. The annual fire persistence data, to-
gether with the yearly MODIS FTC data (from MOD44B),
were used to derive a 5 km annual mask for tropical defor-
estation. All active fire areas (AFMODIS) located within this
mask were considered burning associated with deforestation
fires. The deforestation mask was created only for 0.25◦ grid
cells within the tropical forest biome, with a mean fractional
tree cover greater than 20 %, and a mean FP greater than 1.2.
Within these cells, the 5 km sub-pixels with mean FP greater
than 1.5 were used as the tropical deforestation mask. Dur-
ing 2001–2002, the FP value was derived using active fire
detections recorded by Terra MODIS only. To adjust for the
period with Terra-only data, we lowered the 0.25◦ FP thresh-
old from 1.2 to 1.08 and the 5 km FP threshold from 1.5 to
1.23 in the calculation of the tropical deforestation mask for
2001 and 2002. These new thresholds were optimized using
the 2003–2020 period for which both Terra and Aqua data
were available, so that the total deforestation area from Terra
(summed over the tropics) was the same as that derived using
both Terra and Aqua data.

2.3 Landsat and Sentinel-2 burned area datasets

In recent decades, Landsat or Sentinel-2 imagery has been
used to generate burned area products in many regions for
various purposes (Franquesa et al., 2020a; Gaveau et al.,
2021b; Glushkov et al., 2021; Goodwin and Collett, 2014;
Hall et al., 2020; Hawbaker et al., 2020; Roteta et al., 2019;
Souza et al., 2020; Vetrita and Cochrane, 2019). We gath-
ered multiple sources of Landsat or Sentinel-2 burned area
products (Table 1) for use in calibrating scaling coefficients
and validating our GFED5 burned area time series. Among
these high-resolution products, some have been manually in-
spected and quality assured, while others have been derived
using an automated burned area algorithm.

2.3.1 Reference datasets from BARD

The Burned Area Reference Database (BARD) was created
and compiled by the European Space Agency’s (ESA) Cli-
mate Change Initiative (CCI) program (Franquesa et al.,
2020a). This publicly available database includes several
global and regional burned area reference datasets from
multiple international projects (Franquesa et al., 2020a).
These datasets were derived from Landsat or Sentinel-2
imagery, have undergone internal quality checks includ-
ing visual inspection, and have been reprojected and refor-
matted with a uniform set of attributes and metadata de-
scriptors. The BARD database is available for download
from the e-cienciaDatos repository (https://doi.org/10.21950/
BBQQU7). The initial BARD database included six refer-
ence datasets, with image tiles located in a continental or sub-
continental region (NOFFi data in Greece, AFR and AFRS2
in Africa, and CONUS data in the United States), or dis-
tributed across the globe (FireCCI Global 2008 and FireCCI
Global 2003–2014). Another global dataset (C3S) was added
to BARD in 2021 (Lizundia-Loiola et al., 2021).

The BARD burned area perimeters are stored in shapefile
format in UTM/WGS84 projection. Each dataset includes a
summary metadata csv file (which contains the acquisition
dates of the pre-fire and post-fire images), a shapefile of all
image locations for each project, and shapefiles of all vectors
within each image boundary that indicate the status of burn-
ing: (1) burned area, (2) undetected area, and (3) unburned
area.

2.3.2 Automated datasets

The reference datasets in BARD are quality-assured, but their
spatiotemporal coverage is often limited. In addition to the
reference datasets in BARD, we used several regional or
global burned area products derived from automated algo-
rithms developed for Landsat or Sentinel 2 imagery.

The National Burned Area Composite (NBAC) is a GIS
database and system developed by the Canada Centre for
Mapping and Earth Observation and the Canadian Forest Ser-
vice (Hall et al., 2020). By using the best data source(s) avail-
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able for each fire event, including field maps, airborne maps,
30 m Landsat imagery, and 1 km MODIS hotspots, this tool
produced the area of forest burned in Canada for each year
since 1986. Note that burned area in cropland is excluded
from this dataset. The annual burned area data in shapefiles
can be downloaded from the Canadian Wildland Fire Infor-
mation System (CWFIS) Datamart (https://cwfis.cfs.nrcan.
gc.ca/datamart, last access: 17 November 2023).

An automated approach based on the time series of
Landsat 5, 7, 8, and Sentinel-2A imagery was recently
developed to classify burned area in the state of Queens-
land (QLD), Australia (Goodwin and Collett, 2014).
This approach combines the spectral, thermal, temporal,
and contextual information from satellite imagery. The
monthly burned area data across QLD over 1987–2016
(Collett, 2022) are available for download at the Terres-
trial Ecosystem Research Network (https://portal.tern.org.
au/annual-scars-landsat-qld-coverage/22979, last access:
17 November 2023). Each annual data file (in GeoTIFF
format) contains the month of first detection for pixels at
Landsat resolution (30 m).

The MAWAS dataset provides maps of annual burned
area for part of the Mawas conservation program in Cen-
tral Kalimantan, Indonesia, from 1997 through 2015 (no fires
were recorded in 2008 and 2010) (Vetrita and Cochrane,
2019). Landsat imagery (TM, ETM+, OLI/TIR) at 30 m
resolution serves as the primary imagery used for the
burned area classification. A random forest classifier was
used to separate burned and unburned 30 m pixels with in-
puts of composites of Landsat indices and thermal bands,
based on the pre- and post-fire values. Annual burned
area shapefiles are available for download at Oak Ridge
National Laboratory Distributed Active Archive Center
(https://doi.org/10.3334/ORNLDAAC/1708).

Drawing on time series analysis of Sentinel-2 imagery,
Gaveau et al. (2021b) created a new burned area dataset for
2019 in Indonesia (IDNS2) using a supervised random forest
classification algorithm. An independent reference dataset
(IDNS2Ref) was also developed by randomly sampling
burned and unburned sites, and visually detecting a smoke
plume, burn, or heat source from the archive of original
Sentinel-2 images. Both the burned area dataset and the refer-
ence dataset are in shapefile format. The burned area dataset
contains annual burned polygons across the region, while the
reference dataset contains the locations of reference points.
Both datasets can be downloaded at the open access data
repository Zenodo (https://doi.org/10.5281/zenodo.4551243,
Gaveau et al., 2021a).

An algorithm combining Sentinel-2 MSI images and
MODIS active fire detections was developed and imple-
mented by ESA CCI to generate the Small Fire Database
which contains 20 m burned area estimations covering the
sub-Saharan region in Africa (Roteta et al., 2019). The
version 1.1 product (FireCCISFD11) containing monthly
burned area (in GeoTIFF format) is available for 2016 at

pixel or grid resolutions at the Centre for Environmental
Data Analysis (CEDA) archive (https://catalogue.ceda.ac.
uk/uuid/065f6040ef08485db989cbd89d536167, last access:
17 November 2023). The updated version 2 product covers
sub-Saharan Africa for the year 2019.

MapBiomas is a multi-disciplinary network aiming to re-
construct annual land use and land cover information be-
tween 1985 and 2020 for Brazil (Souza et al., 2020). Map-
Biomas mapped fire scars in Brazil using mosaics of Land-
sat images and a classification algorithm based on deep
neural networks (Alencar et al., 2022). We downloaded
the 2019 MapBiomas burned area product (MAPB) from
the MapBiomas website (https://brasil.mapbiomas.org/en/
colecoes-mapbiomas/, last access: 17 November 2023).

Imagery from different generations of satellites in the
Landsat program has been used by the United States Ge-
ological Survey (USGS) to generate annual burned area
products in the contiguous United States (CONUS) (Haw-
baker et al., 2020; Vanderhoof et al., 2017) for years since
1984. Here we used the Collection 1 CONUS Landsat
Burned area dataset (https://www.sciencebase.gov/catalog/
item/587017d7e4b01a71ba0c5ff7, last access: 17 Novem-
ber 2023) that was derived from an updated algorithm (Haw-
baker et al., 2020) from the earlier Landsat Burned Area
Essential Climate Variable (BAECV) algorithm. Note that
burned area mapping using Landsat has been shown to be
challenging in many agricultural and rangeland ecosystems
(Vanderhoof et al., 2017).

Using Sentinel-2 optical satellite imagery, a spring-
specific burned area dataset was created on the territory of
the Russian Federation from 1 January to 15 May 2020
(Glushkov et al., 2021). The mapping was based on a partic-
ipatory crowdsourcing digitizing approach that was specifi-
cally designed for rapid land-change assessment. This burned
area dataset (RUSS2) is available at the Greenpeace web-
site in shapefile format (https://maps.greenpeace.org/maps/
spring_fires_2020, last access: 17 November 2023).

2.3.3 Geospatial data pre-processing

The Landsat and Sentinel-2 burned area datasets (reference
or automated) described earlier have different data formats
and resolutions. Before using them for adjusting MCD64A1
burned area, we processed these datasets and converted them
into a uniform format. Specifically, for data in vector shape-
file format, we first rasterized each reference image at 20 m
resolution (close to the resolution of the Sentinel-2 multi-
spectral instrument, MSI). The output GeoTIFF files have a
sinusoidal projection, compatible with the sinusoidal grids
used by the MODIS land data products. We then aggregated
the 20 m images to 500 m resolution (still in sinusoidal pro-
jection) by calculating the total area of burned scars (BA),
unburned regions (UBA), and undetected regions (UDA) (if
available in the original dataset) within each 500 m pixel.
This pre-processing of the higher-resolution burned area data
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enabled an easier spatial alignment with the MODIS data and
facilitated the derivation of correction scalars used for adjust-
ing MCD64A1 burned area described in the next section.

2.4 Estimating burned area for the MODIS era
(2001–2020)

2.4.1 Deriving correction scalars for commission and
omission errors

To estimate and account for commission and omission errors
within the MCD64A1 burned area product (for the normal
type burning), we calculated two sets of correction scalars
(α and β in Eq. 2) using the area sums derived from re-
sized Landsat or Sentinel-2 burned area and spatiotempo-
rally aligned MODIS data at 500 m resolution. For each fine-
resolution burned area image used for calibration, we ex-
tracted the MODIS burned area, active fire area, as well as
land cover type data (including the derived masks for crop-
lands, deforestation, and tropical peatlands) and fractional
tree cover data that overlapped spatially and temporally with
the reference burned area (Fig. 1). Note, the same year data
of vegetation and deforestation masks were used for pixel
classification. If the detection date of a MODIS burned area
pixel is within the temporal range defined by the pre-burning
and post-burning dates of the reference image, this pixel will
be marked as burned. We summed up the total burned area
from MODIS MCD64A1 (BAMCD64A1). Similarly, a 500 m
resampled active fire grid cell is marked as burned if the
recording date is within the temporal range of the Landsat
or Sentinel-2 reference data. By using the MODIS image
corresponding to each reference tile, we defined two masks
representing the area within (in) and outside (out) of the
MODIS burned scar. Note that all pixels marked as “UDA”
(undetected area) were explicitly excluded from both masks.
With these masks, we summed up the total fine-resolution
burned areas (BAhr,in and BAhr,out) and MODIS active fire
areas (AFMODIS,in and AFMODIS,out) for each land cover type
and each tree cover fraction bin (based on MODIS vegeta-
tion cover data). When calculating the AFMODIS,out sum, we
excluded all active fire pixels within the 500 m buffer of a
MODIS MCD64A1 burned pixel (i.e., the 8 pixels surround-
ing each burned area pixel).

A look-up table of correction scalars for normal type
burned area (α and β in Eq. 2) was derived using an aggrega-
tion of these area sums from different reference datasets (Ta-
ble 1). The commission scalar α was calculated as the ratio of
total BAhr,in to total BAMCD64A1. The omission scalar β was
defined as the ratio of total BAhr,out to total AFMODIS,out. To
enable the calculation for cases when either Terra or Aqua
data are unavailable (see Sect. 2.4.4 for detail), we created
three sets of β using AFout from Terra only (T), from Aqua
only (A), and from both Terra and Aqua MODIS (M). Burn-
ing pixels within the masks of cropland, tropical peatlands,

and deforestation were excluded from the summation of ar-
eas and derivation of α and β in Eq. (2).

Considering the balance between representativeness and
sampling density soundness, we computed α and β as a func-
tion of GFED region (14 in total, Fig. 2), normal land cover
type (17 in total, Table S1), and fractional tree cover bin (10
in total). For each GFED region, we selected several refer-
ence datasets for deriving correction scalars (Table S2) and
left others for independent validation of the adjusted burned
area (Table 1). We preferentially used reference tiles with
higher quality (in particular those from the BARD database),
spatial coverage, and sampling for the calculation of scalars
in each region. The reference scenes we selected spanned
all major regions of vegetation fires (Fig. 2) and were rel-
atively evenly distributed across the globe. Since the Mid-
dle East (MIDE) and Northern Hemisphere South America
(NHSA) regions did not have enough reference burned area
samples, we merged the region MIDE with Northern Hemi-
sphere Africa (NHAF) and the region NHSA with South-
ern Hemisphere South America (SHSA), respectively (Ta-
ble S2). For each region, we derived scalars α and β as a
function of land cover type and tree cover fraction bin us-
ing the area sums from all valid reference tiles. For each
unique combination of FTC bin (tc) and land cover type (v)
where total recorded data did not have sufficient samples
(i.e., BAMCD14A1 or AFMODIS,out < 20 km2), we generated
a global look-up table of the two scaling coefficients (also
as a function of v and tc) using all available reference data
(Fig. 3) and filled in the gaps.

For each GFED region, fires occur only in a subset of
vegetation types and fractional tree cover bins. For the core
period from 2003 to 2020, when Aqua and Terra data are
available, the upper bound on the total possible number of α
and β parameters (Eq. 2) estimated from the reference data
is 13 regions (14 GFED regions− 2 regions merged to oth-
ers+ 1 global region)× 17 vegetation types× 10 fractional
tree cover bins× 2 parameters= 4420. After consideration
of the limited distribution of vegetation types within each re-
gion and the limited set of fractional tree cover bins for each
vegetation type, the total number of actual parameters drops
to 724. The area of reference tiles used to estimate these pa-
rameters for each GFED region is shown in Table S2. Al-
though we used independent time series to verify the perfor-
mance of our overall approach (as described in the follow-
ing), an important next step is to develop quantitative uncer-
tainty ranges for the parameters using cross-validation or a
similar technique.

2.4.2 Deriving scalars for cropland, peatland, and
deforestation fires

In this study, we separately estimated burned areas associ-
ated with three additional fire types other than the normal
vegetation burning: fires in croplands, fires in tropical and
subtropical peatlands, and fires associated with deforestation.
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Figure 1. Example images used for adjusting burned area for normal fire type. The 20 m burned area data from the 2016 FireCCI Africa
Sentinel-2 dataset (for tile T34NEP) are aggregated to a 500 m resolution burned fraction image (BAhr). The MODIS 500 m data (AF:
active fire area; FTC: fractional tree cover (%); LCT: land cover type, BAmod: MCD64A1 burned mask) are used to create images that are
spatiotemporally aligned with the BAhr image. The BAhr and AF pixels are further separated into those within (BAhr_in) and outside of
(BAhr_out, AF_out) the MODIS burned perimeter.

Figure 2. A global map of Landsat and Sentinel-2 reference burned area scenes used in this study to derive regional omission and commission
scaling coefficients for normal fire type. Detailed information about the datasets can be found in Tables 1 and S2. The inset shows the locations
of 14 GFED regions.
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Figure 3. Mean values of commission scalars, omission scalars, and burned areas for dominant normal type fires in each bin combination of
fractional tree cover (FTC, in percent) and land cover type (LCT) were derived globally (shown here) and for each GFED region (not shown)
using reference burned area data as shown in Table 1 and Fig. 2. Note, the bins with small burned area (BAMCD64A1 < 500 km2 yr−1,
for commission scalar) or active fire areas outside of the burned area (AFMODIS,out < 500 km2 yr−1, for omission scalar) are shown in
gray. Scalars over Water, Wetlands, Urban, Snow/Ice, and Barren LCTs were not derived due to insufficient data samples.

For these special burning types, large omission errors pre-
vent the direct use of the MCD64A1 burned area product.
Instead, we derived correction scalars from the reference data
and estimated burned area by scaling the active fire data from
MODIS.

We used the GloCAB product to estimate the burned area
associated with agricultural burning (Hall et al., 2023a). In
the GloCAB algorithm, crop type conversion factors (γcrop)
were calculated for several widespread burnable crops, in-
cluding winter wheat, spring wheat, maize, rice, sugarcane,
and generic/other (Table S3). The crop type conversion fac-
tors were derived from manually mapped cropland burned

area reference data regions spanning about 190 000 fields
(about 72 000 km2) over five countries: Russia, Ukraine,
the United States, Canada, and Brazil. These field-level,
cropland-specific burned area reference data were created
using a combination of all available 20 m Sentinel-2 Multi-
Spectral Instrument (MSI), 30 m Landsat-8 Operational Land
Imager (OLI), and 3 m PlanetScope imagery (http://www.
planet.com, last access: 17 November 2023), in conjunc-
tion with filtered VIIRS (VNP14IMGML) and MODIS
(MCD14ML) active fire data. Assuming that each reference
data region is associated with a majority crop type, conver-
sion factors were calculated by weighting each burned field
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by its burned area fraction, summing all burned fields within
the region, and dividing by the total number of cropland-
filtered, latitudinally adjusted MODIS active fire detections
within the spatial and temporal constraints of each reference
area. Global crop-type-specific γcrop scalars in Eq. (3) were
calculated based on the median values of a combination of
reference regions (see Table S3 for the crop-type reference
region combinations). We refer to Hall et al. (2021b) and
Hall et al. (2023a) for more details on the cropland burned
area reference regions and the GloCAB product.

For the peatland burning, we derived a scalar (γpeat)
based on the Landsat-derived burned area data (MAWAS)
in Mawas, Indonesia. Using the MAWAS dataset, we tal-
lied the total burned area during 2003–2015 (when Terra and
Aqua data are also available) within the peatland mask. Note,
the MAWAS data contained unlabeled areas that were not
mapped due to cloud obscuration and/or Landsat 7 ETM+
Scan Line Corrector gaps, and here we assumed these areas
were unburned. We then summed up the total active fire area
recorded by MODIS (Terra and Aqua combined) within the
same study region during the same years, and calculated the
mean burned area associated with unit active fire area. With-
out the availability of data over global peatland, we assume
the scalar derived from this high-quality regional data repre-
sents the mean burned area in peatlands associated with unit
area of MODIS active fire.

Similarly, we used a regional dataset to derive a
scalar (γdefo) that converts MODIS active fire area
to burned area associated with tropical deforestation.
By analyzing Landsat images, the National Institute
for Space Research of Brazil (INPE) has reported
yearly gross primary forest deforestation statistics through
the PRODES project since 1988 (http://www.obt.inpe.
br/OBT/assuntos/programas/amazonia/prodes, last access:
17 November 2023). We separately summed the total area of
deforestation and cumulative MODIS active fire areas within
the deforestation mask in the Brazilian Legal Amazon during
2003–2020. While the deforestation and burned areas may
not match on the annual scale since the burning of biomass
can occur in multiple years following the deforestation or for-
est loss detection can be delayed (van Wees et al., 2021), we
assume that over a long period they should be roughly the
same. The ratio of the cumulative area of deforestation to
the total area of active fire was used as a scalar to convert
monthly MODIS active fire areas to GFED5 burned area as-
sociated with deforestation in the tropics.

2.4.3 Using scalars to estimate GFED5 burned area
during the MODIS era

As mentioned in Sect. 2.1, for each month during the
MODIS era (2001–2020), we partitioned 500 m burned pix-
els (BAMODIS) into different categories based on vegetation
type, tree cover fraction bin, and fire type. By counting the
burned pixels located outside cropland, peat, and deforesta-

tion masks, we calculated the area sums for normal type veg-
etation burning (BAMCD64A1) over separate unique combina-
tions of vegetation type and tree cover fraction bin in each
0.25◦ grid cell. Similarly, we also summed up the total area
of active fire pixels located outside of the monthly MODIS
area (AFMODIS,out) for each bin in each 0.25◦ grid cell. These
monthly MODIS burned area and active fire data were then
either combined with pre-calculated correction scalars for
commission errors (α, as described earlier) or omission er-
rors (β) to estimate the adjusted burned area for normal burn-
ing (Eq. 2).

For each 0.25◦ grid cell, the cropland burned area was ex-
tracted from the GloCAB product. GloCAB calculates the
effective cropland burned area by multiplying latitudinally
adjusted MODIS active fires (within the cropland mask)
with crop type scalars (γcrop; see Sect. 2.4.2). The GEO
Global Agricultural Monitoring (GEOGLAM) Best Avail-
able Global Crop-Specific Maps (BACS) (Becker-Reshef
et al., 2020; Whitcraft et al., 2019) were used for identi-
fying winter wheat, spring wheat, maize, and rice, and the
2010 Spatial Production Allocation Model (SPAM; https:
//www.mapspam.info/, last access: 17 November 2023) was
used for assigning sugarcane to individual MODIS cropland
pixels. Any active fire occurring on a cropland pixel not clas-
sified as winter wheat, spring wheat, maize, rice, or sugar-
cane was assigned a “generic/other” scalar (Table S3) to esti-
mate burned area. To account for any double burning within
a 12-month period, the final monthly burned area is adjusted
to ensure the 6-month cumulative sum (centered on the peak
burning month) does not exceed the crop area within the
0.25◦ grid cell.

For fires associated with peat burning and deforestation
burning, we calculated the monthly total area of active fires
in each grid cell (AFMODIS−peat and AFMODIS−defo). By mul-
tiplying the active fire data with the pre-calculated adjusting
scalars (γpeat and γdefo), we can estimate the total burned area
associated with these two fire types.

To compute the total GFED burned area in a given grid
cell, we aggregated the burned areas recorded in all fractional
tree cover bins from normal burning, and added the burned
area estimations from croplands, peatland, and deforestation
burning (Eq. 1).

2.4.4 Estimating GFED5 burned area when MODIS
data are incomplete or unavailable

Between 2003 and 2020, MODIS active fire data from both
Terra and Aqua are available for the majority of the time
period. As described earlier, we estimated the normal type
burned area outside of the MODIS burned area (second term
on the right-hand side of Eq. 2) in each month during these
years using the total AFMODIS,out (as well as the correction
scalars for omission errors β) from both MODIS instruments
on Terra and Aqua. Since the full-year Aqua data started
from 2003, we used AFMODIS,out derived from Terra MODIS
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only for the omission error adjustment in the years 2001 and
2002. The omission error correction scalars (β) were also
derived using Terra MODIS data only. Note the use of Terra-
only data does not bring systematic biases over large spatial
scales since all sets of correction scalars were derived using
the same reference data (Fig. S2, Table S4).

Similarly, the scalars used for special fire types (crop-
land burning, peatland burning, and deforestation burning)
were also derived using the combined detections by Terra
and Aqua MODIS for the calculation of burned area (Eq. 3)
in 2003–2020. During 2001–2002 when the Aqua MODIS
data were not available, we multiplied the Terra-only active
fire data with region-specific coefficients (γcropT, γpeatT, and
γdefoT) to estimate the monthly burned area for these fire
types (BAGFED5−crop,BAGFED5−peat,BAGFED5−defo). These
coefficients were derived by combining previously derived
GFED5 burned area and active fire area recorded by the Terra
MODIS for the period 2003–2020. This adjustment ensures
that there was no significant bias between regional or global
burned area sums after scaling using Terra-only data and us-
ing data from both Terra and Aqua (Fig. S3). We derived a
global map of the adjustment coefficient at a 0.25◦ grid level.
For grid cells with insufficient burned area during the Terra
and Aqua period (< 2 km2 yr−1), we assigned the mean value
derived using the area sums over the corresponding GFED
region.

There were major science data outages for Terra (15 June–
3 July 2001) and Aqua (16 August–2 September 2020)
MODIS observations, which may have resulted in substan-
tial underestimation of active fire detections, and therefore
the AFMODIS,out estimation in June 2001 and August 2020.
To address this issue, during the second gap when only Terra
data were available (August 2020), we used the Terra ac-
tive fire data to calculate burned area outside of the MODIS
burned area (using the same approach as for 2001–2002).
During the first gap when neither Terra nor Aqua data were
available, we first adjusted the Terra active fire data for June
2001 by assuming the active fire detection frequency during
the gap remained the same as it was in the first half of the
month when data were available. The same Terra-only cor-
rection approach was then used to derive the AFMODIS,out for
June 2001.

2.5 Estimating burned area for the pre-MODIS era
(1997–2000)

During the pre-MODIS era (including November–December
2000 when Terra MODIS data were available but fire persis-
tence was not derived), we used active fire data recorded by
VIRS or ATSR to estimate GFED5 burned area. VIRS was
aboard the Tropical Rainfall Measuring Mission (TRMM)
satellite, and monthly active fire data products were pro-
duced for pan-tropical regions (38◦ S–38◦ N) during 1998–
2010 (Giglio et al., 2003). Nighttime ATSR (onboard the
ERS-2) and AATSR (Advanced ATSR onboard the Envisat

satellites) imagery was used to generate monthly global ac-
tive fire maps (World Fire Atlas) for June 1995–March 2012
(Le Page et al., 2008). We resampled the VIRS active fire
data and binned the ATSR active fire locations to 1◦ reso-
lution (without an overpass correction) to reflect the higher
uncertainty and lower spatial resolution of available active
fire datasets.

We used a two-step approach similar to that described
by van der Werf et al. (2017) to estimate monthly GFED5
burned area during 1997–2000. First, based on the common
era (2001–2010 for VIRS and 2001–2011 for ATSR) when
GFED5 BA data were estimated from MODIS (Eq. 1) and
active fire data were available from VIRS/ATSR, we derived
a linear relationship between active fires and burned area
sums over each GFED region (reg), for each dominant veg-
etation class (vc) (Table S1), and for each of the three sea-
sonal periods (ss; early season: 1–6 months prior to the peak
burning month; middle season: peak fire month; late sea-
son: 1–5 months after the peak burning month). We forced
the regressions with an intercept of zero to reduce biases at
low values. We assumed that in each region, the burned area
from the regression (BAregr) was more reliable when the ad-
justed r2

reg,vc,ss value (representing the goodness-of-fit) was
higher during the overlap period. When the regional sums
of VIRS/ATSR active fires and GFED5 BA had a low co-
variation (small r2

reg,vc,ss) during the common era, we instead
relied more on the burned area climatology (BAMODIS,clim)
for each calendar month (m) to approximate the burned area
in the pre-MODIS era. The total regional sums of the burned
area (aggregated over all vegetation classes), determined by
combining BAregr and BAMODIS,clim (Eq. 4), were estimated
for each monthly time step (t) during the pre-MODIS era
(1997–2000).

BApreMOD(reg, t)=
∑
vc

(
r2

reg,vc,ss(t)×BAregr(reg,vc, t)

+ (1− r2
reg,vc,ss(t))

×BAMODIS,clim(reg,vc,m(t))
)
. (4)

The preference of using VIRS or ATSR active fire data
depends, in part, on the data availability. In tropical regions
the VIRS-based regressions were found to have better perfor-
mance than the ATSR-based approach. Therefore, when both
ATSR and VIRS were available (1998–2000), we used VIRS
data to estimate the burned area in Africa, Southeast Asia,
Equatorial Asia, and Australia. We used ATSR for other re-
gions and when VIRS data were unavailable prior to 1998. If
the ATSR or VIRS active fires for any given month were out-
side of the seasonal dynamic range of active fires during the
MODIS era, we instead used parameters from a linear regres-
sion derived from all of the monthly data during the MODIS
era for that region.

In the second step, we distributed the derived monthly re-
gional sum of burned area (BApreMOD(reg, t)) to each 1◦ grid
cell within a region. We assumed that the spatial distribution
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of monthly burned area within each GFED region area can
be represented by two spatial distribution functions (SDFs)
(Eq. 5).

BApreMOD(x, t)= BApreMOD(reg, t)×
((
r2

reg,m(t)

×SDFAF(reg,x, t)+ (1− r2
reg,m(t))

×SDFBA,clim(reg,x,m(t)
))
. (5)

The first spatial distribution, SDFAF(reg,x, t), is charac-
terized by the number of active fires detected by ATSR and
VIRS within a GFED region (reg) during each month (t).
VIRS has a coarse spatial resolution (2 km at nadir), and
ATSR can only detect fires at night. The approach of using
ATSR or VIRS active fires may lead to a bias toward large
fires, which generally burn longer and emit higher radiative
energy. Therefore, we also used a second spatial distribution
function SDFBA,clim(reg,x,m(t)), to better account for con-
tributions from small, “background” fires that were not de-
tected by ATSR or VIRS. This climatological SDF was de-
rived from the GFED5 burned area (which contains more in-
formation from small fires than ATSR and VIRS) averaged
over 2003–2020. The weights, representing the relative con-
tributions of these two SDFs, were determined by the spatial
correlations between GFED5 burned area and ATSR/VIRS
active fires (rreg,m(t)) (i.e., the performance level of the re-
gression model based on ATSR/VIRS active fires during the
overlap period).

Equation (5) is similar to the pre-MODIS era burned area
estimation algorithm described by van der Werf et al. (2017)
but uses r2 instead of r to partition burned area between
the distribution of active fires and a MODIS-era climatol-
ogy. It is important to keep in mind that the ATSR and
VIRS instruments were not specifically designed for fire de-
tection, and they are less efficient at detecting active fires
than MODIS. Therefore, the quality of the GFED5 data dur-
ing 1997–2000 is not on par with data from the MODIS
era (Figs. S4 and S5). Specifically, the spatial variability of
burned area (derived from ATSR and VIRS active fires) was
not well resolved in many regions (Table S4). For this reason,
in the pre-MODIS era, we only reported the total GFED5
burned area summed over all land cover types (i.e., normal,
cropland, peatland, and deforestation types combined) at a
coarser-resolution grid (1◦× 1◦).

We recommend that users carefully consider the discon-
tinuities in the GFED5 data stream for their specific appli-
cation. Quantitative trend analysis for a single grid cell or
small group of grid cells is not advised prior to the MODIS
era due to discontinuities in the density of active fires. While
we have attempted to account for these discontinuities at a
regional scale in building the cross-sensor time series, attri-
bution of burned area to individual grid cells is affected by
changes in the density of active fire observations.

3 Results

3.1 Global total and spatial pattern

During the MODIS era (2001–2020), when higher-quality
remote sensing data are available, the total GFED5 burned
area over the globe is estimated to be 774 (multi-year
mean) ± 63 (standard deviation of interannual variability)
Mha per year or 5.9± 0.5 % of the global burnable area
(defined as the global land area not permanently covered
by snow or ice). The spatial distribution of burned area is
highly heterogeneous, with high levels of burning occurring
in the tropics and Northern Hemisphere temperate regions
(Fig. 4). Among the 14 GFED regions, Northern Hemisphere
Africa (NHAF; 242± 25 Mhayr−1) and Southern Hemi-
sphere Africa (SHAF; 245± 13 Mhayr−1) together con-
tribute to about 63 % of global annual burned area (Table 3).
Other tropical and Southern Hemisphere regions, including
Southeast Asia (SEAS; 59± 8 Mhayr−1), Southern Hemi-
sphere South America (SHSA; 54± 12 Mhayr−1), Aus-
tralia (AUST; 56± 23 Mhayr−1), Central America (CEAM;
13± 2 Mhayr−1), Northern Hemisphere South America
(NHSA; 9.4± 1.7 Mhayr−1), and Equatorial Asia (EQAS;
3.7± 2.0 Mhayr−1) combined contribute an additional 25 %
of burning each year. In the Northern Hemisphere, most
burning occurs in Central Asia (CEAS; 43± 11 Mhayr−1),
boreal Asia (BOAS; 32± 11 Mhayr−1), and temperate North
America (TENA; 6.4± 0.9 Mhayr−1), and these regions to-
gether account for 11 % of global burned area. The other
three temperate and boreal regions of the Northern Hemi-
sphere, including Europe (EURO; 4.3± 1.3 Mhayr−1), bo-
real North America (BONA; 4.1± 1.3 Mhayr−1), and the
Middle East (MIDE; 3.1± 0.8 Mhayr−1), contribute to the
remaining 1 % of annual global burned area.

Herbaceous plants and shrubs are the dominant vegetation
types that burn globally, with about 60 % of annual burned
area occurring in open savanna (260± 17 Mhayr−1) and
tropical grassland (203± 22 Mhayr−1) vegetation classes
(Table 3). Around 81 % of the burning in these ecosys-
tems (374± 34 Mhayr−1) is located in Africa (Fig. S6).
Major forest fires occur around the perimeter of trop-
ical rainforests and in many seasonally dry boreal and
temperate forests. Tropical forest and woodland fires ac-
count for 9 % (71± 6 Mhayr−1) of global burned area, with
the largest contributions occurring in Southern Hemisphere
Africa (SHAF; 26± 2 Mhayr−1), Southeast Asia (SEAS;
22± 4 Mhayr−1), and Northern Hemisphere Africa (NHAF;
15± 2 Mhayr−1). Burning in croplands (83± 14 Mhayr−1)
is similar in magnitude to that in forests, with hotspots
in CEAS (21± 6 Mhayr−1), NHAF (21± 6 Mhayr−1), and
SEAS (13± 2 Mhayr−1).

The global distribution of crop burning is broadly consis-
tent with spatial patterns of agricultural land use and crop
yield (Lobell et al., 2011). While the area burned associ-
ated with peatland fires (2.7± 0.5 Mhayr−1) and deforesta-
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Table 3. Annual mean GFED5 burned area (in Mhayr−1) for different GFED regions, burning types, and land cover types (for normal
burning) during 2001–2020.

Region Total Normal land cover type Crop Peat Defo

Tundra Sparse Boreal Temp. Temp. Temp. Temp. Trop. Trop. Open Woody Trop. Other
boreal forest grass shrub mosaic forest grass shrub savanna savanna forest
forest

BONA 4.12 0.16 0.97 1.40 0.01 0 0.12 0.06 0 0 0 0 0 0.04 1.37 0 0
TENA 6.37 0 0 0 1.92 0.10 0.76 0.27 0 0 0.06 0 0 0.13 3.09 0.02 0.01
CEAM 12.62 0 0 0 0.30 0.13 0.59 0.09 1.02 0.01 2.08 3.30 2.49 0.04 2.44 0.08 0.11
NHSA 9.44 0 0 0 0 0 0 0 3.38 0.01 3.99 1.01 0.42 0.03 0.36 0.22 0.06
SHSA 53.89 0 0 0 1.58 0.28 3.00 0.12 12.46 0.46 21.35 3.92 4.10 0.29 4.35 0.58 1.63
EURO 4.26 0.02 0.04 0.06 0.37 0.03 0.73 0.10 0 0 0 0 0 0.08 2.82 0 0
MIDE 3.14 0 0 0 0.26 0.08 0.05 0.02 0.03 0.03 0 0 0 0.06 2.60 0 0
NHAF 242.1 0 0 0 0 0 0 0 98.32 0.05 100.7 7.28 14.63 0.15 20.52 0.33 0.31
SHAF 244.5 0 0 0 1.51 0.12 0.23 0.06 58.02 4.35 116.9 33.09 26.40 0.29 2.47 0.56 0.77
BOAS 32.38 1.84 5.71 4.82 2.73 0 9.26 1.56 0 0 0 0 0 0.17 6.29 0 0
CEAS 42.85 0.09 0.21 0.15 17.34 0.03 2.18 0.51 0.02 0 0.11 0.16 0.14 0.46 21.39 0.02 0.04
SEAS 59.03 0 0 0 0.06 0.02 0.10 0.03 3.74 0.09 8.24 10.49 22.35 0.13 13.27 0.30 0.30
EQAS 3.71 0 0 0 0 0 0 0 0.06 0 0.69 0.82 0.52 0.03 0.64 0.56 0.39
AUST 55.54 0 0 0 0.88 3.83 0.76 0.38 25.70 16.28 5.60 0.06 0.07 0.03 1.80 0.03 0.14

GLOBAL 774.0 2.3 6.9 6.4 27.0 4.6 17.8 3.2 202.7 21.3 259.7 60.1 71.1 1.9 83.4 2.7 3.8

Figure 4. Global distribution of the mean annual GFED5 burned area, expressed as a percentage of the burnable land area in each
0.25◦× 0.25◦ grid cell, from 2001 to 2020. The two area charts displayed above and to the right of the map provide a visual represen-
tation of the relative fractions of burned area along the longitude and latitude axes, respectively.

tion (3.8± 1.2 Mha yr−1) accounts for only a small fraction
(< 1 %) of the global annual total, fuel consumption and the
emissions of trace gases and aerosol particles associated with
these fires can be substantial as a result of high fuel load-
ing (Andela et al., 2022; van Leeuwen et al., 2014; Turetsky
et al., 2015; van der Werf et al., 2017; van Wees et al., 2022).
Further, these fire types often are not balanced by regrowth
or ecosystem recovery, and as a consequence they contribute
significantly to land use carbon emissions and the build-up

of atmospheric CO2 in the atmosphere (Friedlingstein et al.,
2022).

3.2 Long-term trends and interannual variability

From 2001 to 2020, global burned area declined by
−1.21± 0.66 %yr−1 (p< 2× 107), corresponding to a cu-
mulative loss of 24.2 % or 187 Mhayr−1 over the 20 year
span (Table 4, Fig. 5). Considering the longer but more
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Table 4. Long-term relative trends of GFED5 burned area (%yr−1) for different GFED regions, burning types, and land cover types (for
normal burning) during 2001–2020. The trends are calculated using the ordinary least squares (OLS) regression method. Significant trends
(p< 0.05) are highlighted in bold.

Region Total Normal land cover type Crop Peat Defo

Tundra Sparse Boreal Temp. Temp. Temp. Temp. Trop. Trop. Open Woody Trop. Other
boreal forest grass shrub mosaic forest grass shrub savanna savanna forest
forest

BONA −0.91 −3.19 −1.16 0.28 2.45 – 5.23 4.92 – – – – – −1.41 −2.50 – –
TENA 0.19 – – – 1.57 0.61 0.93 2.84 – – −3.31 – – −0.40 −0.97 −2.66 0.57
CEAM −0.68 – – – 1.64 4.01 −0.56 −0.27 −0.47 −1.40 −1.22 −1.11 0.08 1.99 −1.22 −0.01 1.14
NHSA −0.89 – – – – – – – 0.49 −0.96 −2.40 −0.91 0.74 1.02 −0.10 −0.21 1.71
SHSA −2.07 – – – −4.44 −4.88 −1.71 0.94 −1.85 −4.84 −2.00 −0.93 −1.45 1.44 −3.62 −0.28 −3.27
EURO −3.44 −1.95 −3.56 −3.82 −2.12 −0.30 −0.95 0.23 – – – – – −0.04 −4.53 – –
MIDE 1.49 – – – 2.91 3.85 2.14 2.96 3.64 4.39 – – – 2.09 1.19 – –
NHAF −1.23 – – – – – – – −1.39 1.39 −1.16 2.42 0.63 1.04 −3.58 0.52 4.88
SHAF −0.39 – – – −1.77 0.59 0.74 3.37 −1.41 −1.17 0.02 −0.72 0.60 1.45 −2.30 0.70 4.69
BOAS −3.55 −6.62 1.00 −0.99 −3.04 −9.12 −4.88 −4.21 – – – – – −1.39 −6.93 – –
CEAS −3.28 −5.97 −0.76 −7.40 −3.95 3.89 −1.92 −1.19 −4.55 −3.23 −4.77 −8.62 −6.71 5.51 −3.06 1.20 5.92
SEAS 0.56 – – – 1.77 5.47 2.55 2.83 0.91 2.50 −0.03 0.65 0.15 3.85 1.33 0.71 3.42
EQAS −2.51 – – – – – – – 0.05 – −2.01 −2.92 −2.44 1.10 −5.05 −1.23 −1.05
AUST −3.08 – – – −1.97 −4.81 1.50 5.11 −2.74 −4.47 −2.35 −0.09 0.48 −0.19 0.80 0.79 8.10

GLOBAL −1.2 −6.2 0.6 −0.9 −3.1 −4.0 −3.0 −1.2 −1.5 −3.8 −0.7 −0.2 0.3 2.1 −2.5 −0.1 0.5

uncertain 1997–2020 period, which draws upon VIRS and
ATSR active fire observations for the pre-MODIS period, the
decreasing trend from 1997 to 2020 is −0.91± 0.79 %yr−1

(Fig. 5a), with a cumulative change over this interval of
−21.8 %. Our time series provides evidence that the global
decline in burned area reported by Andela et al. (2017) for the
period 1997–2015 has continued for the more recent 2016–
2020 period and is visible in both the GFED5 product and un-
derlying MODIS burned area time series. The annual declin-
ing trend during the MODIS era is slightly weaker than that
reported by Andela et al. (2017) when measured as a relative
change, primarily because the adjustments here for omission
errors allowed us to include many more small fires each year
for which burned area seems to have declined less than for
larger fires over the time period. This is illustrated in Fig. 5a
by the different trends shown for MCD64A1 and GFED5 and
in Fig. S7 by a positive trend in the ratio of GFED5 relative
to the underlying MODIS MCD64A1 burned area.

The main regions driving the global declining trend in
burned areas are tropical north Africa, northern Australia,
Southern Hemisphere South America, and the Eurasian
Steppe (Figs. 6 and 7). Burned areas in some boreal regions
(e.g., eastern Siberia and western Canada) and temperate re-
gions (e.g., croplands in China and India, forests in south-
ern Australia) show an increasing trend during 2001–2020,
but their contributions at a global scale are relatively small
(Table 4). The northern boreal region north of 60◦ N has a
non-significant positive trend of 2.5± 3.0 %yr−1. In all other
latitude bands, burned area has significant negative trends,
with the most rapid decline (−2.7± 2.1 %yr−1) occurring in
Northern Hemisphere mid-latitudes (Fig. 5).

By fire type, savanna (−1.0± 0.8 %yr−1), grass
(−1.7± 0.9 %yr−1), and cropland (−2.5± 1.6 %yr−1)
fires have the strongest decreasing trends, while forest

(0.2± 1.4 %yr−1), deforestation (0.5± 5.4 %yr−1), and
peatland (−0.1± 3.1 %yr−1) fires do not show significant
changes at a global scale during the past two decades.
Even though the total amount of burned area in forests is
considerably lower than in savannas or grasslands, these
biomes typically have high fuel loading, and therefore the
increasing fire emissions in forest areas may partly offset the
decreasing emissions from herbaceous and shrub burning
(Zheng et al., 2021).

3.3 Characterization of seasonal variability

Seasonal patterns of burned area from GFED5 differ signifi-
cantly in many regions compared to other burned area prod-
ucts (Fig. 8). In many tropical areas, increases in burned
areas in GFED5 relative to other products are strongest
at the end of the fire season. We also find that the rel-
ative change in burned area from MODIS MCD64A1 to
GFED5 (defined as the enhancement ratio, (BAGFED5−

BAMCD64A1)/BAMCD64A1) varies monthly and is typically
smallest near the peak burning month and higher at the edges
of the peak season (Fig. 9). This pattern is consistent with
the monthly variations of the active fire area, which have
a larger fraction located outside of the MCD64A1 burned
area near the beginning and end of the fire season (Fig. S8).
We also observe that the burned area in the late fire season
occurs in areas with higher fractional tree cover (Fig. S9).
The mean fractional tree cover for burning pixels is gener-
ally higher after the month of peak burning, suggesting that
burning into ecosystems with higher fuel loadings is likely
to occur later in the dry season as fuels in areas with denser
vegetation cover (and deeper roots) take longer to dry out.
With the exception of boreal North America (BONA), the
active fire pixels outside of the burned area have slightly

Earth Syst. Sci. Data, 15, 5227–5259, 2023 https://doi.org/10.5194/essd-15-5227-2023



Y. Chen et al.: Trends and variability in GFED5 burned area 5243

Figure 5. Long-term trends in global burned area from GFED5 (in %yr−1), normalized by the annual mean, for (a) different time intervals
and data products, (b) normal type fires in aggregated vegetation classes, (c) crop, peat and deforestation fires, and (d) five latitudinal
bands: boreal (60–90◦ N), NHtemp (Northern Hemisphere temperate, 23.5–60◦ N), NHtrop (Northern Hemisphere tropical, EQ–23.5◦ N),
SHtrop (Southern Hemisphere tropical, 23.5◦ S–EQ), and SHextrop (Southern Hemisphere extra-tropical, 90–23.5◦ S). An asterisk indicates
a significant (p< 0.05) trend value. Labels and arrows on panels (c, d) denote the y-axis scale for each GFED5 burned area category.

higher mean fractional tree cover than those located inside
the MCD64A1 burned area. Including burned areas associ-
ated with these “out” fires with higher fractional tree cover
may further modify burned area and emission seasonality.

Some GFED regions, such as BOAS, CEAS, and TENA,
have multiple peaks of burning, with one or more of the peaks
associated with agricultural and prescribed fire. The agricul-
tural fires are small and tend to occur in pulses during the
pre-planting or post-harvest periods. Large amplification of

burned area for these small-fire classes considerably modifies
the annual cycle of burned area within each region (Fig. S8).
Better representation of these fire types improves the agree-
ment between GFED5 and regional high-resolution products
(see Sect. 3.4).
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Figure 6. Global maps of GFED5 burned area trends during 2003–2020. (a) Map of the linear trend in units of absolute change in percent
burned area for each 0.25◦ grid cell (% burned area yr−2); (b) map of relative burned area trend in each grid cell (%yr−1). The values in
panel (b) were estimated by dividing the values in panel (a) by the all-year mean burned area shown in Fig. 4.

3.4 Comparison with validation datasets

We used regional burned area products derived from fine-
resolution satellite imagery (Landsat and Sentinel-2) to as-
sess the quality of the GFED5 burned area product derived in
this study. As described earlier, these higher-resolution prod-
ucts were intentionally excluded from our reference data list
used for deriving scalars to correct for omission and commis-
sion errors.

The comparisons were performed in major fire regions
across the globe (Fig. 10). It is clear that, relative to the un-
adjusted MCD64A1 burned area, the GFED5 data generally
have a significantly higher magnitude, although with variable
enhancement ratios in different regions. The boost is particu-
larly evident in tropical regions (including Africa, Indone-
sia, and Brazil) where small fires and understory fires are
frequent and fire mapping is difficult with coarse-resolution
sensors. For most regions, this enhancement leads to better

agreement with the high-resolution burned area data used for
validation.

The GFED5 burned area also has good agreement with the
validation data in terms of interannual variability (Fig. S10)
and regional spatial variability (Fig. 11). Over the whole of
Indonesia, the annual burned area in 2019 from MCD64A1
(2.2 Mha) is smaller than that derived from Sentinel-2
(3.1 Mha) (Gaveau et al., 2021b). After adjustment, the 2019
GFED5 burned area in Indonesia increases to 3.8 Mha, and
the bias has been substantially reduced in the interior tropical
forests of Borneo and Sumatra (Fig. 11).

Africa contributes about 63 % of the global burned area
(Table 3). Recently, Ramo et al. (2021) and Roteta et al.
(2019) published a new burned area product (FireCCI-
SFD11) that was developed from 20 m Sentinel-2 imagery
and covers the whole of sub-Saharan Africa for the year
2016. The total 2016 burned area in sub-Saharan Africa
from GFED5 is 509 Mha after correction for commission
and omission errors, which is considerably larger in mag-
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Figure 7. Time series of monthly (red lines) and annual (black lines) GFED5 burned area in 14 GFED regions from 1997 to 2020. The
values in parentheses (in %yr−1) are long-term trends during this period, normalized by the all-year mean values. An asterisk indicates a
significant (p< 0.05) trend value.

nitude than MCD64A1 (270 Mha). Compared to the SFD11
data, with the annual burned area of 489 Mha (Ramo et al.,
2021), the GFED5 data reduce the overall bias from −45 %
to +3.8 %. In addition, the non-uniform boost also increases
the spatial correlation of the burned area to the SFD11 pattern
(r2 increases from 0.57 for MCD64A1 to 0.71 for GFED5
(Fig. 11).

The annual MCD64A1 burned area in Queensland for the
year 2016 is 7.0 Mha, which is 30 % lower than the burned
area sum derived from Landsat (9.9 Mha) (Goodwin and Col-
lett, 2014). After adjustment for omission and commission
errors, the GFED5 burned area over Queensland in 2016 is
10.2 Mha, which is very close to the Landsat-derived esti-
mate.
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Figure 8. Comparison of the regional burned area seasonality from GFED5, MCD64A1, and GFED4s. The climatological monthly GFED5
and MCD64A1 burned area values are based on data from 2001 to 2020, and the GFED4s values are based on data from 2001 to 2016. Note
the y axes are plotted on a chemlog10 scale.

The total burned area in Brazil in 2019 as estimated by
GFED5 is 31 Mha, which represents a 61 % increase com-
pared to the MCD64A1 burned area estimate. Relative to
the Landsat-derived MapBiomas data (Alencar et al., 2022),
the GFED5 burned area exhibits a positive bias in most re-
gions of Brazil, with the exception of the central Amazon,
Caatinga, and temperate Pampa region (Fig. 11). GFED5
also has a significant increase in the number of grid cells
(0.25◦× 0.25◦) with non-zero burned area compared to the
MCD64 data (8630 vs. 5725). This number is closer to the
number derived from Landsat data (9784).

Glushkov et al. (2021) used Sentinel-2 imagery to map
burned area across the Russian Federation for the spring
of 2020. Their product showed that there was 5 times
more burned area compared to the MCD64A1 burned area

estimate, likely due to the higher sensitivity of Sentinel-
2 to small fires in croplands, grasslands, and abandoned
croplands. Our approach, which ingests a cropland-focused
burned area product, also resulted in a nearly 5-fold increase
in the burned area for the spring of 2020 (Fig. S11). The total
burned area for the spring of 2020 (January–May) increased
from 3.3 Mha as reported by MCD64A1 to 15.8 Mha. The
GFED5 product is much closer in magnitude to the burned
area derived from Sentinel-2 data (13.4 Mha) (Fig. 10).

3.5 Comparison with other global fire products

Relative to the original MCD64A1 data, our adjustment for
commission errors tends to exclude unburned islands and to
decrease the total burned area, while the adjustment to cor-
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Figure 9. The ratio of (a) burned area from GFED5 to that from MODIS MCD64A1 (BAGFED5/BAMCD64A1), and (b) MODIS active fire
area that is located outside the burned area to that located within the burned area (AFout/AFin). Each data point represents the mean monthly
value, averaged in each GFED region over the 7-month period from 3 months before the peak burning month to 3 months after the peak
burning month, for the 2001–2020 period. Regions with multiple or no major fire seasons are not shown.

Figure 10. Evaluation of GFED5 burned area using independent products from higher-resolution imagery. For each source of Landsat or
Sentinel-2 data (the datasets are listed in Table 1), the total burned areas (in Mha) from GFED5 and MCD64A1 are calculated over the same
region and periods as in the higher-resolution reference images. The regional burned area sums are compared in the inset bar charts, with
the title indicating the region name, the year(s) of the measurements, and the name of the higher-resolution data source (in parentheses).
In the comparison with Landsat data in CONUS and the NBAC data in Canada, we excluded the MCD64A1 and GFED5 burned area over
croplands. We note that the GFED5 burned area and the higher-resolution datasets are not always directly comparable in this respect, as the
burned area mapping from high-resolution datasets may be incomplete due to persistent cloud cover or sensor failure.

https://doi.org/10.5194/essd-15-5227-2023 Earth Syst. Sci. Data, 15, 5227–5259, 2023



5248 Y. Chen et al.: Trends and variability in GFED5 burned area

Figure 11. A spatial (0.25◦× 0.25◦) comparison of burned area from GFED5 with burned area from MCD64A1 and higher-resolution satel-
lites (SFD for Africa, MAPB for Brazil, IDNS2 for Indonesia; see Table 1 for details) is shown for (a) Africa, (b) Brazil, and (c) Indonesia.

rect for omission errors adds information from undetected
fires and increases the burned area estimation. During the
20 years in the MODIS era (2001–2020), our estimation of
global burned area (774 Mhayr−1) is 93 % higher than that
from MCD64A1 (401 Mhayr−1) (Table 5, Fig. S12). Around
58 % of the increase in mean burned area (220 Mhayr−1)
is associated with burning in Africa. The basis for this
amplification is tied closely to active fire detections that
are outside MCD64A1 fire perimeters, and for which fine-
resolution satellite imagery shows significant levels of burn-
ing. Active fire detections located outside of the MCD64A1
burned perimeter are significantly higher than those within
the burned area perimeter in SEAS, EQAS, CEAS, CEAM,
and TENA (Fig. S13). Accounting for burned area associ-
ated with these small fires increases the burned area estimates
in these regions substantially. The enhancement ratio from
MCD64A1 to GFED5 burned area is also found to be re-

lated to the burning type and land cover type (Fig. S14). The
burned area in savanna and grassland has a relatively smaller
amplification (less than 100 %) than burning in forests and
croplands.

In addition to the Collection 6 MCD64A1 data, we also
compared the GFED5 burned area with historical versions of
GFED (GFED4s) (van der Werf et al., 2017) and MCD64A1
(Collection 5) (Fig. 12). There are four main differences be-
tween GFED4s and GFED5. First, GFED4s was based on the
Collection 5 MCD64A1 burned area data. The MCD64A1
burned area mapping algorithm was subsequently improved
in Collection 6 to offer better detection of small burns (Giglio
et al., 2018). The resulting Collection 6 MCD64A1 burned
area product detects more global burned area (26 %) than
Collection 5 data. Second, in the GFED4s algorithm, each
active fire detection outside of the MCD64A1 burned area
was assumed to be associated with a certain area of burn-
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Table 5. Comparison of GFED5 mean annual burned area (Mhayr−1) and long-term relative trends (%yr−1, in parentheses) globally and
in different GFED regions (see Fig. 2 for locations) with other global burned area estimates. Significant trends (p< 0.05) are highlighted in
bold.

Region GFED5 GFED5 MCD64A1 C6 GFED5 GFED4s
(1997–2020) (2001–2020) (2001–2020) (2001–2016) (2001–2016)

BONA 4.13 (−0.80) 4.12 (−0.91) 2.23 (−0.45) 4.11 (0.45) 2.83 (1.72)
TENA 6.52 (0.51) 6.37 (0.19) 2.80 (2.60) 5.95 (0.17) 2.86 (2.01)
CEAM 13.40 (−1.12) 12.62 (−0.68) 2.68 (−0.59) 11.89 (−1.26) 2.97 (−0.85)
NHSA 9.36 (−0.28) 9.44 (−0.89) 5.42 (−0.04) 8.94 (−2.46) 5.25 (−1.88)
SHSA 53.59 (−1.05) 53.90 (−2.07) 28.85 (−1.22) 52.51 (−2.73) 25.97 (−2.00)
EURO 4.42 (−2.59) 4.26 (−3.44) 0.91 (−3.45) 4.26 (−4.36) 1.19 (−4.08)
MIDE 3.01 (2.10) 3.14 (1.49) 1.00 (1.91) 2.90 (2.47) 1.27 (2.00)
NHAF 253.3 (−1.49) 242.1 (−1.23) 123.6 (−1.89) 236.7 (−1.18) 151.4 (−2.24)
SHAF 243.1 (−0.09) 244.5 (−0.39) 147.3 (−0.61) 232.0 (−0.23) 172.9 (−0.71)
BOAS 31.70 (−1.65) 32.38 (−3.55) 9.27 (−0.86) 33.04 (−3.76) 9.34 (−2.00)
CEAS 40.54 (−1.50) 42.85 (−3.28) 17.5 (−4.26) 43.28 (−3.81) 22.06 (−3.35)
SEAS 59.26 (0.83) 59.03 (0.56) 13.9 (1.30) 55.41 (1.07) 14.88 (1.81)
EQAS 4.45 (−4.34) 3.71 (−2.51) 1.43 (−2.20) 3.95 (−0.71) 2.05 (−1.11)
AUST 58.45 (−2.55) 55.54 (−3.08) 44.52 (−3.42) 55.53 (−3.77) 50.43 (−3.48)
GLOBAL 785.2 (−0.91) 774.0 (−1.21) 401.4 (−1.43) 750.4 (−1.27) 465.4 (−1.64)

Figure 12. Comparison of GFED5 burned area with GFED4s and different versions of the MODIS MCD64A1 burned area product (Collec-
tions 5 and 6) for the 14 GFED regions, based on the average burned area during 2001–2016.

ing. This scaling factor, which is a function of region, sea-
son, and vegetation type, was estimated by comparing the
mean difference normalized burn ratio of active-fire pixels
observed outside and inside the MCD64A1 burned perimeter
(Randerson et al., 2012). While this approach helps capture
some burned areas associated with small fires and boosted
the global burned area estimates by about 40 %, the GFED4s
burned area was still likely conservative on the global scale
considering the spectral signal for small fires is often hard
to detect at MODIS resolution. Third, in addition to correct-
ing the omission error that arises mainly from small fires,

the GFED5 algorithm also explicitly adjusts the overestima-
tion of MCD64A1 burned area by excluding the unburned
islands. Fourth, the cropland burned area methodology in
GFED5 is completely new and based on a more comprehen-
sive training data of burned area derived from high-resolution
Landsat, Sentinel-2, and PlanetScope imagery. By compar-
ing GFED5 data with GFED4s, we find the GFED5 burned
area is able to account for more small fires in many regions of
the world (Fig. 12). Relatively speaking, the long-term trend
of global burned area from GFED5 is less negative than that
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from the GFED4s and MCD64A1 Collection 6 products (Ta-
ble 5).

4 Discussion

4.1 Implication for reconciling fire emission estimates
from activity-based and atmospheric-based
approaches

In recent decades, several global fire emission inventories
have been created to assess better the impact of fire on cli-
mate and air quality, to understand how climate change af-
fects the frequency and intensity of wildfires, and to develop
better strategies to manage wildfires. Burned area is a key
driver in the multiplicative approach proposed by Seiler and
Crutzen (1980) for estimating emissions from biomass burn-
ing. Inventories derived using this activity-based approach
include various versions of GFED (van der Werf et al., 2006;
van der Werf et al., 2010; van der Werf et al., 2017), the Fire
Locating and Modeling of Burning Emissions (FLAMBE)
model (Reid et al., 2009), and the Fire Inventory from NCAR
(FINN, Wiedinmyer et al., 2011; Wiedinmyer et al., 2023).
Thermal radiation measured by satellites at the top of the at-
mosphere is used in other global emissions inventories, such
as the Global Fire Assimilation System (GFAS, Kaiser et al.,
2012), the Quick Fire Emissions Dataset (QFED, Koster
et al., 2015), and the Fire Energetics and Emissions Research
(FEER, Ichoku and Ellison, 2014), drawing upon the linear
relationship between the integral of fire radiative power and
fuel consumption (Wooster., 2002).

There are multiple lines of evidence that current activity-
based global fire emission inventories may have underesti-
mated fire emissions, particularly particulate matter emis-
sions, in many regions. Model-simulated pollutant concen-
trations are often found to be lower than satellite and in situ
measurements in the fire-affected regions (Reddington et al.,
2016). To match observations of aerosol optical depth from
surface or satellite data, fire emissions from inventories often
have to be increased by a factor of 2–4 (Johnston et al., 2012;
Kaiser et al., 2012; Pan et al., 2020; Xu et al., 2021). There
is also a substantial gap between activity-based estimates of
fire emissions and those inversely derived from atmospheric-
based approaches that assimilate trace gas and aerosol optical
depth observations (Ichoku and Ellison, 2014; van der Velde
et al., 2021; Naus et al., 2022).

Many factors can contribute to the gap between activity-
based and atmospheric-based estimates of fire emissions.
Some are due to underestimation of various processes, such
as fuel combustion (van Wees et al., 2022; Potter et al.,
2023) and emission factors (Jayarathne et al., 2018; Stock-
well et al., 2016; Wiggins et al., 2021; Wooster et al., 2018).
Others may be related to the model deficiencies in accurately
resolving the physics and chemistry of fire pollutants in the
atmosphere, such as the calculation of aerosol optical depth
(Reddington et al., 2019). Our analysis and the development

of the GFED5 burned area product suggest that the burned
area data in several widely used global emission inventories
are substantially underestimated, largely due to the difficulty
of detecting and measuring burned area associated with small
fires (Randerson et al., 2012). As a result, fire emissions and
associated impacts on atmospheric composition may have
been underestimated in past work that relied on global in-
ventories, such as GFED4s, in many regions. Our work sug-
gests that an amplification may be expected in many other
continental-scale regions. The improved characterization of
burned area in this study will contribute to a higher estima-
tion of fire emissions in the next generation of GFED.

We also find that the imbalanced increase in the burned
area during different stages of the fire season may help re-
duce the seasonal cycle bias in modeled trace gasses such
as CO. For example, atmospheric inversion-constrained es-
timates of emissions, using MOPITT observations (van der
Werf et al., 2006; Zheng et al., 2018), have identified a
fire seasonal cycle in Africa that peaks later than that from
activity-based approaches. Ramo et al. (2021) found that im-
proved detection of small fires prolongs the fire season in
Africa, as more small fires occur in the shoulder seasons (be-
ginning and end of the fire season) when the atmosphere is
more humid. Our analysis shows that in many regions, the
relative increases in burned area from MCD64A1 to GFED5
are higher in the early and late phases of the fire seasons than
during the peak burning month (Fig. 9a). Relatively more
MODIS active fires are detected outside of the MCD64A1
burned perimeter (Fig. 9b) near the edges of the fire sea-
son, particularly in the later fire season, and these fires occur
over types with higher fractional tree cover. The inclusion of
small-fire contributions in the GFED5 burned area product
is, therefore, likely to reduce the seasonal variability of fire
emissions, which is more consistent with the atmospheric-
based estimates.

4.2 Implications for fire science and global carbon
studies

We have developed a multi-decadal time series of global
burned areas that includes the contributions from small fires
and has a better representation of cropland burning. The
GFED5 burned area dataset is expected to contribute to fire
science and global carbon studies in several ways.

First, a longer and higher-quality time series may improve
fire prediction on subseasonal-to-seasonal (S2S) time scales.
Machine learning techniques (Cohen et al., 2019) used in
S2S fire forecasts require information input from multiple
sources, such as the seasonality, long-term trends, recent fire
observations, and external climate drivers (Anderson et al.,
2022; Chen et al., 2020). The forecast skill depends heavily
on the quality and duration of the training data. We expect
that the temporally consistent, higher-quality burned time
series from GFED5 can enhance the accuracy of S2S fire
forecasting systems in many regions where higher-resolution
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time series from Landsat or government records are unavail-
able.

Second, the GFED5 burned area can be used to evaluate or
improve the performance of prognostic fire models. Current
fire models, such as those from the Fire Model Intercompari-
son Project (FireMIP), often use satellite observations to con-
strain the simulation. Therefore, the global burned areas from
these models are shown to converge to the value represent-
ing historical satellite data (Hantson et al., 2020). However,
these models are often unable to adapt well to the changes
in factors that influence the burned area. For example, they
have been shown to be unable to reproduce the observed de-
cline in global burned area (Andela et al., 2017) and may also
underestimate the fire impacts on the carbon cycle and vege-
tation distribution (Lasslop et al., 2020). An improved global
burned area such as GFED5 may help calibrate the parame-
ters used in these models and reduce the differences between
observations and model results.

Third, the GFED5 burned area dataset may also be used
to improve our understanding of the climate and human con-
trols on the interannual variability of global fires. By tracking
burned areas globally for four different burning types and 17
different non-crop land cover types (Tables 3 and 4), this new
dataset reveals variable patterns and trends in burned areas
over different regions. The GFED5 time series of burned area
confirms the decline of fire in many ancient grassland ecosys-
tems that are under threat (Buisson et al., 2022). The new
time series also indicates that burning in cropland regions has
declined considerably in many regions and at a global-scale.
The economic and technological drivers behind the cropland
trends require further study. At the same time, our analysis
reveals a positive trend in the burned area in many high north-
ern boreal ecosystems, including Siberia. These findings will
help connect variability and long-term trends of fires to un-
derlying climate, land use, and socioeconomic data (Andela
et al., 2017). An improved understanding of the factors con-
trolling the burned area variability may also contribute to a
better projection of future changes in fire risk in response to
global environmental change (Knorr et al., 2016).

Fourth, the global burned area data are an important piece
of information for understanding the impact of fires on trends
in atmospheric composition and radiative forcing. During the
process of combustion, fires release large amounts of trace
gasses and particulate matter into the atmosphere, changing
the composition and air quality of the atmosphere and mod-
ifying the radiative balance of the earth system. The GFED5
data are expected to help quantify the effect of smoke from
fires on air quality and mortality rates, and validate trends
in atmospheric chemical composition as well as the radia-
tive forcing from prognostic fire models used in global earth
system models (Li et al., 2019).

Fifth, in contrast to previous iterations of GFED, the
GFED5 dataset incorporated fine-resolution data products
and accounted for a broader spectrum of smaller-scale fires.
In addition, we separately adjusted burned areas associated

with typical landscape fires and special fire activity within
croplands, peatlands, and deforested regions. These enhance-
ments provide GFED5 with improved attributes compared to
its predecessors, making it more valuable for many of the ap-
plications mentioned earlier, including fire and smoke fore-
cast, evaluating model performance across seasons, facilitat-
ing inversion-based studies, and improving the accuracy of
long-term trend assessments.

4.3 Uncertainties and limitations

Our study improves the quantification of long-term global
burned area trends by reducing the biases associated with
unburned islands and small fires. Specifically, compared to
the earlier GFED4s version, which used normalized burn ra-
tio calculations (Randerson et al., 2012), the algorithm for
adjusting omission errors has been considerably improved.
However, there are still important limitations. These limita-
tions stem from uncertainties in the input MODIS datasets
for burned area and active fire time series and from the lim-
ited spatial extent (and accuracy) of fine-resolution refer-
ence burned area datasets we used to estimate corrections for
commission and omission errors. Additional discontinuities
were introduced when we attempted to harmonize the global
time series across time periods when only ATSR, VIRS, or
MODIS Terra observations were available.

Measurements by MODIS instruments aboard Terra and
Aqua provide the basis for GFED5 burned area estimation
during 2001–2020. Although the Collection 6 MODIS ac-
tive fire detection algorithm is an improvement compared to
Collection 5, the presence of omission errors (from fires ob-
scured by thick smoke) and commission errors (false alarms
in tropical ecosystems) in the MODIS active fire data (Giglio
et al., 2016) may still contribute to uncertainties in the dis-
tribution of burned area estimation outside of the MCD64A1
burned area.

We used regional burned area products derived from
Sentinel-2 or Landsat measurements to adjust the MCD64A1
burned area. These fine-resolution products are able to map
areas from small and fragmented burning, but they also have
quality and representativity issues. In particular, the longer
revisit time of these sensors may impair or impede the de-
tection of fires in regions with frequent cloud cover and
rapid vegetation regeneration (Hawbaker et al., 2017; Padilla
et al., 2015). In addition, the spatial and temporal coverage
of these high-resolution data is often limited. Therefore, spa-
tial and temporal sampling designs that balance the quan-
tity and quality of reference images are needed to make the
best use of these data. In this study, we derive a significant
number of omission and commission scalars, each tailored to
specific fire types, land cover categories, and fractional tree
cover levels, and calculated separately for each GFED re-
gion (Table S2). It is important to note that in certain cases,
these scalars were based on relatively limited sample sizes,
which can introduce considerable uncertainties in the derived
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burned area. We particularly highlight the need for improved
reference datasets, especially in regions that are currently un-
derrepresented, such as Siberia, Central America, and South
America. Enhancing the quality and availability of reference
data in these areas is paramount for reducing uncertainties in
the methodology. With the current algorithm, we also assume
that these scalars remain the same during different stages of
the fire season, which ignores possible seasonal variations in
fire size and severity due to changes in fire weather and fuel
moisture.

During the pre-MODIS era, the GFED5 burned area data
are estimated using active fire detections from ATSR or VIRS
and an additional 336 parameters to convert these time se-
ries into burned area. This extrapolation is uncertain but does
not appear to introduce significant bias in many continen-
tal or sub-continental scales (Fig. S4, Table S4). For GFED
regions with the largest burned area (NHAF, SHAF, SEAS,
SHSA, and AUST), the time series of regional burned area
derived from ATSR or VIRS active fires generally have a
high correlation (r2> 0.89) with the GFED5 time series de-
rived from MODIS observations. The correlation is some-
what lower in other continental regions, including TENA,
EURO, and CEAS (r2 between 0.66–0.86), likely due to the
low sensitivity of ATSR to small fires in these regions. The
spatial distribution of burned area is less well resolved in
many regions, particularly in boreal and temperate regions
(Table S4). Therefore, we suggest using the pre-MODIS
GFED5 burned area data time series with caution, particu-
larly with respect to spatial patterns and temporal variabil-
ity in small regions. Further analysis and integration of Ad-
vanced Very High Resolution Radiometer (AVHRR) (Giglio
and Roy, 2020) and Landsat imagery and burned area product
(e.g., Schroeder et al., 2016) may reduce uncertainties during
this period.

The time series we developed here provides further con-
firmation that burned area is declining at a global scale.
In the context of interpreting the global cumulative loss of
24.2± 13.2 % during 2001–2020, and trends at finer levels
of disaggregation, several key sources of uncertainty require
careful consideration. First, in many areas where fires are be-
ing lost from the landscape, the largest fires are declining at a
faster rate. This may be a consequence of landscape fragmen-
tation (Andela et al., 2017), and evidence for this is shown in
Fig. 5, where the coarser-resolution MCD64A time series de-
clines faster than GFED5. As fires become smaller, they be-
come more difficult to detect, which in turn introduces higher
levels of uncertainty in trend estimates. Second, as the record
length grows, the cumulative effects of climate change may
begin to influence satellite fire detection and burned area al-
gorithm performance. In this context, a key future step is to
quantify trends in cloud cover and how they may influence
the efficacy of our retrieval algorithms. Third, as previously
described, spatial discontinuities from the harmonization of
time series across periods with different sensor availability
restrict our ability to estimate trends for individual grid cells

or small groups of cells. For this reason, in Fig. 6, we only
present a map of trends for the 2003–2020 period when con-
sistent data from Aqua and Terra were active. Finally, we
note that we used ordinary least squares regression to esti-
mate the slope and uncertainty of the slopes reported here;
the assumption of a Gaussian distribution of errors around
the fitted line is unlikely to apply in all locations.

4.4 Future directions

Terra and Aqua, two NASA platforms that provide MODIS
data, have already passed their design lives and are expected
to be retired within the next few years. In order to continue
to understand long-term fire trends and produce consistent
global burned area data after the MODIS era, we need to
combine the active fire data from other remote sensors, such
as VIIRS, with finer-resolution Landsat or Sentinel-2 burned
area datasets. Key challenges toward this goal include (1)
building global wall-to-wall burned area maps from 20 and
30 m data and fusing them with earlier MODIS records, (2)
creating new maps of global land cover classes and contin-
uous fields of tree and shrub and grass vegetation fractional
cover and fusing these products with earlier MODIS records,
and (3) understanding the differences between VIIRS and
MODIS active fire products and the implications for long-
term trends. In particular, the higher spatial resolution and
better geolocation accuracy of VIIRS may lead to a more ac-
curate representation of small fires over different land cover
types.

Another pivotal avenue of research should involve the ac-
quisition of supplementary reference burned area datasets
generated from fine-resolution sensors. The inclusion of such
datasets can significantly enhance the precision of adjust-
ments applied to MODIS-based products. Additionally, it is
essential to delve into enhanced techniques for mitigating
spatial variability in both omission and commission errors.
The accumulation of a substantial volume of high-quality
reference data presents an opportunity to explore innovative
machine learning approaches that can operate with fewer pa-
rameters, all while retaining the capability to perform cross-
region adjustments. This endeavor holds the potential to alle-
viate issues related to over-fitting and to ultimately augment
the accuracy and applicability of wildfire burned area estima-
tion methods.

In recent years, there have been efforts to aggregate pixel-
based fire detections (active fire or burned area) into indi-
vidual fire objects in order to track the evolution and associ-
ated attributes of individual fire events (Andela et al., 2019;
Artés et al., 2019; Balch et al., 2020; Chen et al., 2022; Lau-
rent et al., 2018). An important future direction is to create a
fire event dataset that tracks the spatiotemporal evolution of
burned area, radiative energy, and emissions associated with
individual large fires. The emissions estimation for individual
fires can benefit from recent advances in fuel consumption
quantification at 500 m spatial resolution (van Wees et al.,
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2022). Combining gridded GFED5 burned area data with
event-based data will likely provide a more comprehensive
and detailed view of fire regime changes over the past few
decades and potential insight into future trajectories.

5 Data availability

The monthly GFED5 burned area data produced in this
study are available in netCDF files. For years between 2001
and 2020, five layers of burned area (Norm: normal type,
Crop: cropland burning, Defo: deforestation burning, Peat:
peatland burning, Total: the sum of all burning) are pro-
vided at 0.25◦× 0.25◦ resolution. The “Norm” layer contains
burned areas in each grid cell (in km2) separated by 17 ma-
jor land cover types. For the pre-MODIS era (1997–2000),
only the “Total” burned area layer with reduced spatial res-
olution (1◦× 1◦) is provided. We also provide two global
maps of burnable area (with water, snow and ice cover ex-
cluded) in each grid cell (0.25◦× 0.25◦ for the MODIS era
and 1◦× 1◦ for the pre-MODIS era). The GFED5 burned
area dataset is publicly available on the open repository Zen-
odo (https://doi.org/10.5281/zenodo.7668423) (Chen et al.,
2023). All data sources used to derive the GFED5 burned
area are described in the text and in Tables 1 and 2.

6 Conclusions

In this study, we develop the fifth version of the Global
Fire Emissions Database (GFED5) monthly burned area data
spanning the 24-year period from 1997 to 2020 by fusing
multiple coarse- and high-resolution data streams.

During the period 2001–2020, we adjust the Collection 6
MODIS MCD64A1 burned area by correcting for both com-
mission (unburned islands) and omission (incomplete detec-
tion of small fires) errors in all land cover types excluding
croplands. The commission error scaling factors are derived
by aligning burned area images from MODIS with higher-
resolution Landsat or Sentinel-2 reference datasets. Omis-
sion errors are corrected by multiplying the MODIS active
fire data with the Landsat or Sentinel-2 burned area data, both
sampled outside of the MCD64A1 burned area. In addition,
a cropland-specific burned area product was used to improve
the representation of small fires within croplands. Account-
ing for both corrections, the derived GFED5 global burned
area (774 Mhayr−1) is 93 % higher than the MCD64A1
burned area, with the largest enhancements over crop and
forest regions, and during non-peak burning months. Global
burned area shows a decreasing trend of 1.21 % per year
over the 20-year span of the MODIS era (2001–2020), and a
smaller decreasing trend of 0.91 % per year over 1997–2020.

Relative to MCD64A1 and other global burned area prod-
ucts, the GFED5 burned area has a better agreement with
independent estimations from finer-resolution data, and may
substantially reduce the disparity between the activity-based

and atmospheric-based estimates of fire emissions. An im-
portant next step is to use these data with improvements in
emissions modeling (van Wees and van der Werf, 2019; van
Wees et al., 2022) and emission factor observations (Wig-
gins et al., 2021) to generate a GFED5 emissions product in
order to advance climate, atmospheric chemistry, and global
carbon cycle studies.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-5227-2023-supplement.
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