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Abstract. Quantifying the full-volatility organic emissions from cooking sources is important for understand-
ing the causes of organic aerosol pollution. However, existing national cooking emission inventories in China
fail to cover full-volatility organics and have large biases in estimating emissions and their spatial distribution.
Here, we develop the first emission inventory of full-volatility organics from cooking in China, which covers
emissions from individual commercial restaurants as well as residential kitchens and canteens. In our emission
estimates, we use cuisine-specific full-volatility emission factors and provincial policy-driven purification fa-
cility installation proportions, which allows us to consider the significant impact of diverse dietary preferences
and policy changes on China’s cooking emissions. The 2021 emissions of volatile organic compounds (VOCs),
intermediate-volatility organic compounds (IVOCs), semi-volatile organic compounds (SVOCs), and organic
compounds with even lower volatility (xLVOCs) from cooking in China are 561 (317–891, 95 % confidence
interval) kt yr−1, 241 (135–374) kt yr−1, 176 (95.8–290) kt yr−1, and 13.1 (7.36–21.0) kt yr−1, respectively. The
IVOC and SVOC emissions from cooking account for 9 %–21 % and 31 %–62 % of the total emissions from all
sources in the five most densely populated cities in China. Among all cooking types, commercial cooking dom-
inates the emissions, contributing 54.5 %, 66.2 %, 68.5 %, and 46.7 % to the VOC, IVOC, SVOC, and xLVOC
emissions, respectively. Sichuan–Hunan cuisine contributes the most to total cooking emissions among all com-
mercial cuisines. Residential cooking emissions are also important, accounting for 22.2 %–47.1 % of the cooking
organic emissions across the four volatility ranges, whereas canteens make minor contributions to each volatility
range (< 10 %). In terms of spatial distribution, emission hotspots mainly occur in densely populated areas and
regions with oily and spicy dietary preferences. From 2015 to 2021, national organic emissions from cooking in-
creased by 25.2 % because of the rapid growth of the catering industry, despite being partly offset by the increased
installation of purification facilities. Future control measures need to further promote the purification facilities in
commercial restaurants and improve their removal efficiency as well as reduce emissions from residential cook-
ing. Our dataset and generalizable methodology serve as valuable resources for evaluating the air quality, climate,
and health impacts of cooking sources, and help to formulate effective emission control policies. Our national,
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multi-year, high-spatial-resolution dataset can be accessed from https://doi.org/10.6084/m9.figshare.23537673
(Li et al., 2023).

1 Introduction

Organic compounds are ubiquitous in the atmosphere, ex-
hibiting a continuous volatility distribution spanning both
particle and gaseous phases (Robinson et al., 2007). They can
be categorized based on the saturation vapor concentration
(log10C*/(µg m−3)) into volatile organic compounds (VOCs,
> 6.5), intermediate-volatility organic compounds (IVOCs,
2.5–6.5), semi-volatile organic compounds (SVOCs, 0.5–
0.25), and organic compounds with even lower volatility (ex-
pressed as xLVOCs, <−0.5) (Donahue et al., 2012). All of
these organics affect climate, air quality, and human health
to varying degrees (An et al., 2023; Zheng et al., 2023a).

Cooking activities are a significant source of organic emis-
sions, as cooking fumes contain many complex organic
compounds derived from oil, ingredients, and seasonings
(Jin et al., 2021). Source apportionment results based on
aerosol mass spectrometry–positive matrix factorization (the
AMS-PMF method) indicate that cooking organic aerosol
(COA) contributes 5 %–37 % of the total atmospheric or-
ganic aerosol (OA) mass concentrations at various urban sites
worldwide (Lee et al., 2015; Mohr et al., 2012; Huang et al.,
2021; Abdullahi et al., 2013). Additionally, gaseous VOCs,
IVOCs, and SVOCs emitted from cooking have been iden-
tified as crucial precursors of secondary OA (SOA) and O3
(Yuan et al., 2023; Yu et al., 2022; Zhang et al., 2021). Fur-
thermore, I/SVOCs have been reported to produce SOA more
efficiently than VOCs and to contribute significantly to the
OA burden (Zheng et al., 2023b; Jathar et al., 2014). There-
fore, quantifying the full-volatility organic emissions from
cooking sources is important for understanding the causes of
OA pollution and formulating effective policies.

In China, the large and dense population results in a sub-
stantial demand for cooking. Furthermore, Chinese cooking
stands distinct from those of other countries due to its cui-
sine diversity and unique cooking styles (Zhao and Zhao,
2018). With the vast regional variation, various popular Chi-
nese cuisines such as Sichuan cuisine and Cantonese cuisine
have flourished, each having distinct cooking methods and
ingredients (Lin et al., 2022; Liang et al., 2022). This di-
versity results in significant variations in emission character-
istics. Additionally, compared to Western cooking methods,
the common practice of using oil at high temperatures in Chi-
nese cooking, especially the widespread technique of high-
temperature stir-frying (Chen et al., 2018; Liang et al., 2022),
might result in more complex organic compound emissions
(Zhao et al., 2018). Therefore, the unique characteristics and
significance of Chinese cooking warrant special attention.
However, the complexity of cooking emissions in China, in-

cluding a myriad of distinct emission sources (restaurants
serving diverse cuisines, home kitchens, and canteens) and
thousands of chemical species, poses significant challenges
to emission estimation (Lin et al., 2022; Zhao and Zhao,
2018; Liang et al., 2022).

In recent years, many efforts have been made to quan-
tify cooking emissions in China. Testing of PM2.5 and VOC
emission factors (EFs) for different cooking cuisines (Lin et
al., 2019; Wang et al., 2018a, 2015; Cheng et al., 2016) and
surveys of restaurant activity data and purification equipment
installations (Jin et al., 2021; Wang et al., 2018a; Li, 2020)
have provided the necessary data for emission calculations.
The use of online oil fume monitoring systems (Yuan et al.,
2023) and the use of catering-related point of interest (POI)
data (Lin et al., 2022) in the digital map have improved the
spatial resolution of cooking emissions. Small-scale inven-
tories of PM2.5 and VOC cooking emissions have been es-
tablished for cities or districts such as Beijing, Shanghai,
and Shunde (Lin et al., 2022; Wang et al., 2018a; Yuan et
al., 2023; Qi et al., 2020). At the national scale, a few stud-
ies have established cooking emission inventories using rel-
atively simplified methods compared to small-scale invento-
ries (Wang et al., 2018a; Jin et al., 2021; Liang et al., 2022;
Cheng et al., 2022), as gathering detailed data over large spa-
tial and temporal scales is difficult. Some national-scale stud-
ies have indirectly calculated China’s particle-phase organic
carbon (OC) and VOC emissions from cooking by propor-
tionally extrapolating city-scale emissions based on easily
obtained statistical data, such as population and catering con-
sumption expenditure (Wang et al., 2018a; Jin et al., 2021).
Other studies have adopted population or meat consumption
as the activity data and used nationwide per capita EFs and
EFs per unit of meat consumption to directly estimate the OC
and VOC emissions from cooking nationwide (Cheng et al.,
2022; Liang et al., 2022). Both of the above methods essen-
tially assumed a linear relationship between cooking emis-
sions and national total activity levels such as population,
cooking oil consumption, and meat consumption. Moreover,
regarding the pollution control conditions, most studies sim-
ply assume that all restaurants are equipped with purifica-
tion facilities and therefore apply controlled EFs to all restau-
rants. Restaurants without pollution control are only consid-
ered in the study by Jin et al. (2021), which applied purifi-
cation facility installation proportion (PFIP) survey results
from two cities to the whole country.

The above inventories provide a preliminary understand-
ing of national cooking emissions, but they still have ma-
jor shortcomings and considerable uncertainties. Firstly, the
existing national cooking inventories fail to cover full-
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volatility organics. They primarily consider gaseous (VOCs)
and particle-phase primary OA (or related OCs or PM2.5), ig-
noring the important gaseous I/SVOC emissions, which may
lead to significant underestimation of SOA formation. Also,
Chang et al. (2022) have developed a full-volatility emission
inventory for China for most emission sources, but the cook-
ing source was missing from the inventory, possibly due to
the lack of EFs, which hinders an accurate understanding of
OA sources. Benefiting from advanced measurement tech-
niques, full-volatility organic EFs have recently been mea-
sured for different cooking sources (Yu et al., 2022; Song et
al., 2022; Huang, 2023). This makes it possible to establish
an unprecedented full-volatility organic cooking emission in-
ventory, but such efforts have not yet been made.

Moreover, previous national inventories suffer from signif-
icant biases in their estimates of emissions and spatial distri-
butions. The statistical data currently used for emission cal-
culations hardly reflect the complex cooking activities that
occur in millions of commercial restaurants, countless home
kitchens, and canteens. Meanwhile, the relationship between
emissions and national statistics is not simply linear, because
different regions have vastly different dietary habits, cook-
ing styles, and cooking pollution control policies, leading to
large differences in EFs and PFIPs (Jin et al., 2021; Lin et al.,
2022). These issues introduce large uncertainties in emission
estimation. Most importantly, the aforementioned methods
cannot accurately describe the spatial distribution of cook-
ing emissions, which is crucial due to the strong linkage be-
tween the location of cooking emissions (which potentially
pose significant health risks) and human living environments
(Lin et al., 2022; Wang et al., 2018a).

In this study, we develop the first inventory of full-
volatility organic emissions from cooking sources in China,
encompassing high-resolution emissions from each individ-
ual commercial restaurant as well as family kitchens and
canteens during 2015–2021. We estimate the emissions us-
ing cuisine-specific EFs and dynamically changing PFIPs
driven by provincial-level control policies. Further, we an-
alyze the sources, regional variations, and temporal trends in
full-volatility cooking emissions in China. We also quantify
the contribution of key drivers to emission changes and pro-
vide recommendations for future control strategies.

2 Methodology and data

We use the emission-factor method to estimate organic emis-
sions from three types of cooking activities, namely com-
mercial cooking, residential cooking, and canteen cooking,
essentially covering all dietary sources for people (Liang et
al., 2022). Notably, we focus solely on cooking fume emis-
sions, excluding emissions from cooking fuels, which were
included in the domestic combustion sources in our previ-
ous full-volatility inventory (Chang et al., 2022). We use
different calculation methods for the three sources accord-

ing to their characteristics and data availability, as shown in
Fig. 1. The most important, commercial cooking, is treated
as a point source, with detailed cuisine types and geographic
coordinates used to estimate the emissions of each individual
restaurant and pinpoint its location. Residential and canteen
cooking are estimated by province (Sect. 2.1). The data used
to calculate emissions are derived from multiple sources or
from our estimates (Sect. 2.2). The emissions are allocated to
spatial grids using the exact locations of commercial cooking
and using spatial proxies for residential cooking and canteen
cooking (Sect. 2.3). Finally, we analyze the uncertainty of the
inventory (Sect. 2.4) and quantify the contributions of differ-
ent drivers to emission changes through sensitivity analysis
(Sect. 2.5).

2.1 Emission calculation method

2.1.1 Emissions from commercial cooking

The commercial catering industry in China is varied and
complex, with its emissions influenced by the diversity of
cuisines and regional pollution control regulations (Lin et
al., 2021, 2022; Song et al., 2022; Amouei et al., 2017). Our
emission calculations, based on the point sources of cuisine-
specific restaurants and the installation status of purification
facilities driven by policy changes, fully consider these influ-
encing factors. We capture the geographic locations of nearly
all commercial restaurants (up to 7.70 million) nationwide
and identify their cuisine types. For each restaurant, we cal-
culate its activity data, i.e., the volume of cooking fumes,
and adopt the corresponding full-volatility EFs depending on
its cuisine type. Previous studies often simplistically applied
the controlled EFs to all restaurants when calculating cook-
ing emissions (Liang et al., 2022; Wang et al., 2018a; Lin et
al., 2022), overlooking the over 30 % of restaurants that do
not have fume purification facilities (Jin et al., 2021). Here,
we estimate the PFIP in each province to consider the excess
emissions from these restaurants without purification facili-
ties. Since it is challenging to know the installation situation
of the purification facilities for each restaurant, we use the
provincial-level PFIP to weigh the controlled EFs and un-
controlled EFs, forming a comprehensive EF for restaurants
of each cuisine within each province that is applicable to all
restaurants in that category. In this way, we can obtain an
overall emission for each type of restaurant that is closer to
reality as compared to the previous method of applying con-
trolled EFs to all restaurants. The emissions from commer-
cial cooking are estimated as shown in Eq. (1):

Ec,p,v =

Nc,p∑
n=1

Ac(n)[EFc,vyp+EFc,v
′(1− yp)], (1)

where the subscript c represents the cuisine type and the sub-
script p represents the province. The subscript v represents
the volatility bin, where each bin corresponds to a range of
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Figure 1. Schematic of the method and data used for developing a high-resolution cooking emission inventory. Three cooking emission
sectors are considered. The texts within the large horizontal arrows detail the emission quantification and spatial distribution methods and
data used for each sector. The color of each variable corresponds to the data sources of the same color indicated above. The right ends of the
arrows describe the calculated emission outputs with varying levels of precision.

saturation vapor concentrations (C∗) of organic compounds
at 300 K as defined by Chang et al. (2022). The lowest-
volatility bin represents the range where log10C∗ ≤ −2, and
the highest-volatility bin represents the range where log10C

∗.
Nc,p is the number of restaurants of each cuisine in each
province; Ac(n) is the annual fume gas volume of the nth
restaurant in m3 yr−1. EFc,v and EFc,v

′ are the controlled and
uncontrolled organic EFs for each cuisine in each volatility
bin, respectively, in µg m−3. yp is the PFIP for each province.
Details on data acquisition are provided in Sect. 2.2.

2.1.2 Emissions from residential cooking

Residential cooking refers to meal preparation at home for
individuals or families, where most dishes are cooked with
common oil, ingredients, and seasonings using simple cook-
ing methods (Liang et al., 2022). Moreover, the fumes emit-
ted during cooking in home kitchens are generally expelled
outdoors through range hoods, exhaust fans, or natural ven-
tilation (Qi et al., 2020). The main functions of range hoods
and exhaust fans are to reduce the concentration of pollu-
tants indoors, but they have almost no removal effect on the
organics in the fumes. Therefore, we use a uniform uncon-
trolled EF for residential cooking. Meanwhile, we use offi-
cial statistics (National Bureau of Statistics of China, 2022c)
of household edible oil consumption as activity data due to
its minimal uncertainty and strong correlation with cooking
emissions (Jin et al., 2021). The emission from residential
cooking is calculated by Eq. (2):

Ep,v = Ap×EFv , (2)

where Ap is the annual total household edible oil consump-
tion in each province in t yr−1; EFv is the organic emission
per unit mass of edible oil consumed in g kg−1.

2.1.3 Emissions from canteen cooking

Canteen cooking, often featuring simple, low-oil meals with
fixed ingredients, caters to students and employees in enter-
prises and institutions (Liang et al., 2022). Given the consis-
tent diners and dining regularity, we calculate canteen cook-
ing emissions based on the number of meals served and also
a uniform EF:

Ep,v = Ap×[EFv× yp
′
+EFv

′(1− yp
′)], (3)

where Ap is the annual total number of meals served in can-
teens in each province in meals yr−1; EFv and EFv

′ are the
organic emissions per meal in each volatility bin after and
before pollution control in g meal−1, respectively; yp

′ is the
PFIP for canteens in each province.

2.2 Data acquisition and processing

2.2.1 Activity data

For commercial cooking, we capture nearly all restaurants
nationwide and estimate their annual cooking fume volumes
(Ac) by gathering catering-related POI data on digital maps
and collecting multi-source statistical data. We extract POI
data from Amap, a digital map platform, via a web applica-
tion programming interface (API), following the method of
Wu et al. (2021). The information provided by POI data in-
cludes the names, labels, and longitudes and latitudes of mil-
lions of catering service venues across China. It offers broad
and timely coverage with high spatial resolution, outperform-
ing the population statistics, cooking oil consumption, and
meat consumption used in most previous inventory calcula-
tions (Li et al., 2019).

Identifying the cuisine type of each restaurant is crucial
for mapping it to the corresponding EFs and accurately esti-
mating its emissions. The three-level labels in the POI data

Earth Syst. Sci. Data, 15, 5017–5037, 2023 https://doi.org/10.5194/essd-15-5017-2023



Z. Li et al.: High-resolution emission inventory 5021

assist in categorizing restaurants, but they may not be precise
enough, as over 60 % of restaurants are simply labeled as
Chinese food restaurants. Therefore, we classify the restau-
rant cuisine by searching their names and labels for specific
terms related to certain cuisines (see Table S1 in the Sup-
plement). The specific terms are obtained through word fre-
quency analysis using the “jiebaR” package in the R statisti-
cal framework version 4.0.3 (R-4.0.3). The remaining restau-
rants without any specific terms in their names are catego-
rized as home-style cuisine. However, in some provinces,
such as Hunan and Guangdong, the home-style restaurants
are expected to have distinct regional characteristics and are
thus classified as local specialty cuisines. To explore the un-
certainty introduced by this categorization method of these
restaurants, we also calculated the emissions under the sce-
nario where these restaurants remain classified as home-style
cuisine instead of local specialty cuisines. Under this sce-
nario, because home-style cuisine has the lowest EF, the to-
tal cooking organic emissions of the nine provinces involved
(see Sect. S1 in the Supplement) would decrease by 8.61 %
to 30.4 %, and the national total cooking organic emissions
would decrease by 12.2 %. However, in reality, the EFs of
these restaurants are probably closer to those of local spe-
cialty cuisines rather than home-style cuisine, so the actual
deviation would be much less than these values. Additionally,
we excluded restaurants with “canteen” in their names. The
specific classification method is described in Sect. S1, and
the code for cuisine categorization can be accessed at https:
//github.com/lizeqi18/count_cooking_emission (last access:
25 October 2023).

We finally assign all restaurants to the nine cuisine types
(see Table S1 for their characteristics) supported by full-
volatility organic EFs: home-style cuisine, Chinese fast
food and snacks, hotpot, barbecue, Sichuan–Hunan cuisine,
Guangdong–Fujian cuisine, Jiangsu–Zhejiang cuisine, other
Chinese cuisines, and non-Chinese cuisines. Specifically,
home-style cuisine refers to simple everyday meals. Chinese
fast food and snacks offer quick and convenient meals like
noodles, dumplings, and buns. Sichuan cuisine and Hunan
cuisine, both known for their spiciness and heavy flavors,
were combined into one category; in fact, many restaurants
serve both cuisines. Cantonese cuisine and Fujian cuisine,
characterized by their light and fresh taste and their common
use of seafood, are also merged into one category. Jiangsu
cuisine and Zhejiang cuisine are both renowned for their rich
and slightly sweet flavors and are thus merged into one cat-
egory. Other Chinese cuisines include other local specialties
in China such as Shandong cuisine and Anhui cuisine, and
non-Chinese cuisines include cuisines from countries outside
China. Although these two broad categories comprise many
diverse sub-cuisines, the proportion of restaurants serving
these cuisines in China is relatively low, so we utilize these
two broad categories for classification. Notably, we’ve ex-
cluded catering services without fume emissions, such as tea
houses and coffee houses.

Next, we estimate the Ac of restaurants. According to na-
tional standards, restaurants can be divided into three sizes:
large, medium, and small (MEE, 2001), with different activ-
ity levels for each size. However, due to the lack of detailed
statistics on the size of each restaurant, we can only estimate
a scale-weighted average Ac for each cuisine type based on
existing data using the equation below. This average is then
used as the activity level of each restaurant belonging to that
cuisine type.

Ac(n)=
3∑

s=1
xc,sNc,sQsTs (4)

Here, the subscript c represents the cuisine type; s repre-
sents the restaurant scale. xs,c is the proportion of restaurants
of a particular scale; Nc,s is the average number of stoves
in a restaurant; Qs is the cooking fumes discharge rate of
each stove in m3 h−1; Ts is the annual total operating time of
restaurants in h yr−1. The values of the above parameters are
derived from multiple surveys and the literature (Lin et al.,
2022; Wang et al., 2018a, b; Yuan et al., 2023), as detailed in
Table S2. It should be noted that the values of xs,c and Nc,s
depend on cuisine type.

The activity data for residential cooking, the annual house-
hold edible oil consumption, is calculated by multiplying the
per capita oil consumption with the resident population de-
rived from the official statistical yearbooks (National Bureau
of Statistics of China, 2022b, c). Also, the activity data for
canteens is the annual total number of meals provided by
canteens, which is calculated by Eq. (5):

Ap =

6∑
l=1

np,lDlmlzl , (5)

where the subscript l represents six different populations, in-
cluding preschool and kindergarten students, primary school
students, junior high school students, high school students,
undergraduate and graduate students, and employees of state-
owned and collective enterprises and institutions. np,l is the
number of students or employees for a particular population
in a particular province. Dl is the average annual number of
days in school or at work for a particular population; ml is
the average number of meals per day in the canteen for a
particular population; zl is the proportion of people dining
in canteens for each type of diner. The values of the above
parameters are determined by official statistics (National Bu-
reau of Statistics of China, 2022c, a) and empirical estima-
tion, which are described in detail in Table S3.

2.2.2 Controlled and uncontrolled full-volatility emission
factors

Our main advances over traditional cooking inventories are
that we cover full-volatility organic emissions and we con-
sider differences in regional cuisines and variations in the
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installation of purification facilities. To accomplish this, we
provide a set of controlled and uncontrolled full-volatility or-
ganic EFs for nine different commercial cuisines as well as
residential and canteen cooking.

The full-volatility EFs for various commercial cuisines are
mainly derived from full-volatility measurements of gaseous
and particle-phase organics (Huang, 2023; Song et al., 2022;
Yu et al., 2022; Song et al., 2023) and are supplemented
by other cooking emission test results recorded in the lit-
erature (Xu et al., 2023; Wang et al., 2018a; Cheng et al.,
2016; Huang et al., 2020; Sun et al., 2022; Jiang et al.,
2021; He et al., 2020; Tong, 2019; Xu et al., 2017; Lin et
al., 2014, 2019; Li et al., 2020, 2021; Zhang et al., 2016;
Shu et al., 2014; Wang, 2013; Zhao et al., 2007; He et al.,
2004; Wang et al., 2018b; Pei et al., 2016). As most com-
mercial restaurants have installed purification facilities, the
existing full-volatility EFs of commercial cooking are all
measured after pollution control. Therefore, we first obtain a
set of controlled full-volatility EFs for all cuisines. Existing
full-volatility tests have covered commercial restaurants fea-
turing home-style cuisine, hotpot cuisine, barbecue cuisine,
Sichuan–Hunan cuisine, other Chinese cuisines, and non-
Chinese cuisines (Huang, 2023; Song et al., 2023), so we can
obtain the controlled full-volatility EFs for these cuisines.
However, not all of the nine cuisines mentioned in Sect. 2.2.1
have full-volatility tests for both gaseous and particle-phase
organics. Therefore, for the commercial cuisines lacking
full-volatility testing of gaseous or particle-phase organics,
we estimate and supplement the missing full-volatility EFs
based on the literature. Specifically, for cuisines lacking the
gaseous full-volatility EF, we adopt the average VOC EFs
from corresponding cuisines in previous studies (Xu et al.,
2017, 2023; Wang et al., 2018a; Cheng et al., 2016; Huang
et al., 2020; Sun et al., 2022; Jiang et al., 2021; He et al.,
2020; Tong, 2019) to determine organic emissions within
the VOC range (log10C

∗/(µg m−3)≥ 7), and then we propor-
tionally estimate EFs of gaseous organics in other volatility
bins based on the volatility distribution of gaseous organ-
ics emitted from similar cuisines. For cuisines lacking the
particle-phase full-volatility EF, we use the average primary
OA (POA) EFs from previous studies (Lin et al., 2014, 2019;
Zhang et al., 2016; Li et al., 2020, 2021; Shu et al., 2014;
Wang, 2013; Zhao et al., 2007; He et al., 2004; Wang et
al., 2018b, 2015; Pei et al., 2016) as the total particle-phase
organic EFs and distribute the total particle-phase EFs into
each volatility bin according to the volatility distribution of
particle-phase organics emitted from similar cuisines. The
data sources and methods that are used to estimate all full-
volatility EFs are described in detail in Tables S4 and S5.
POA EFs were rarely given directly in previous studies, but
they can be calculated from PM2.5 EFs. Given that the ma-
jority of particles emitted from cooking activities are PM2.5
(∼ 94.0% (Buonanno et al., 2009)) and the particles consist
primarily of organics (69.1 %–84 % (Pei et al., 2016; Zhao et
al., 2007), median at 76.6 %), we assume that the POA EFs

equate to 81.5 % (76.6 %/94.0 %) of the corresponding PM2.5
EFs. After determining both gaseous and particle-phase full-
volatility EFs, the total full-volatility EFs for each type of
cuisine are computed as the sum of these two components.

Next, we estimate the uncontrolled EFs for each commer-
cial cuisine based on the controlled EF and the removal ef-
ficiency of the corresponding cuisine. In the absence of re-
moval efficiencies for I/SVOCs, we assume that the removal
efficiencies for gaseous and particle-phase organics are equal
to those for VOCs and PM2.5, respectively, similar to our
previous study’s approach (Chang et al., 2022). Since most
(> 90%) purification devices in commercial restaurants are
electrostatic fume purifiers (Liang et al., 2022), we adopt a
uniform removal efficiency for the purification devices in all
restaurants of the same cuisine type. The removal efficiencies
of PM2.5 and VOCs for each cuisine type are determined by
comparing uncontrolled and controlled EFs in numerous pre-
vious studies, as shown in Table S6 and Fig. S1.

The full-volatility EFs for residential cooking also come
from full-volatility measurements of gaseous and particle-
phase organics (Song et al., 2023, 2022; Huang, 2023), as
specifically described in Table S4. Since the emissions from
residential cooking are generally exhausted through range
hoods or exhaust fans without any purification (Liang et al.,
2022; Qi et al., 2020), and the existing full-volatility mea-
surements are also conducted under uncontrolled conditions
(Song et al., 2023, 2022; Huang, 2023), we only need to
obtain uncontrolled EFs for residential cooking. The orig-
inal test data are provided in the form of emission rates
(µg min−1). To match the activity data used for emission cal-
culations, we convert the EFs for residential cooking into the
emissions per unit consumption of cooking oil (g kg oil−1)
according to the method detailed in Sect. S2.

The controlled and uncontrolled full-volatility EFs for
canteen cooking are determined using the same method as
for commercial cooking, based on a series of emission tests
listed in Table S4 (Huang, 2023; Liang et al., 2022; Wang
et al., 2018a; Zhao et al., 2020). To match the activity data
used for emission calculations, we convert the EFs for can-
teen cooking into the emissions per meal (g meal−1) accord-
ing to the method detailed in Sect. S2.

2.2.3 Fume purification facility installation proportion

The treatment of the PFIP has always been a weakness in
previous cooking emission inventories. Most studies simplis-
tically assume that all commercial restaurants have fume pu-
rification facilities (Liang et al., 2022; Wang et al., 2018a;
Cheng et al., 2022). While a few studies obtained citywide
PFIPs through door-to-door restaurant surveys (Jin et al.,
2021; Li, 2020), the time- and labor-intensive nature of these
surveys constrains their spatial and temporal coverage. So
far, PFIP survey results are only available for three cities.
To overcome this limitation, we gather multi-year policies
related to catering emission control in each province, and ex-
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trapolate the PFIPs from specific years in three cities to mul-
tiple years (2015–2021) in China’s 31 provinces based on the
assumption that the installation proportions correlate closely
with the stringency of local regulations. Specifically, we first
construct the relationship between the stringency of pollution
control policies and PFIP based on the situation for the three
cities (Heze, Linfen, Nanjing) with detailed PFIP survey data
(Jin et al., 2021; Li, 2020), as shown in Table 1. Notably, the
pollution control scenarios of these three cities include cases
of both strong and weak regulatory forces. When combined
with the optimal scenario (a PFIP reaching 100 %), they es-
sentially cover the various pollution control statuses across
different regions nationwide.

We divided the stringency of the control policies into dif-
ferent levels. Among the three cities, Heze is classified as
level C (partial regulation). In the year of the PFIP survey
in Heze, Heze’s catering control policy only included spot
checks on restaurants in busy food streets. Linfen and Nan-
jing are classified as level B (complete regulation). At the
time of the survey, their policy state was such that citywide
catering industry emission control policies had been imple-
mented for 3 years. The PFIP survey results for the three
cities are used for PFIPs of level B and level C. However,
although the introduction of citywide emission control poli-
cies can increase the PFIPs, it does not guarantee that all
restaurants will adopt the requisite purification facilities, as
evidenced by the PFIPs for level B. Further, the optimal level
A (full implementation) represents the target year in which
local standards or policies explicitly require all restaurants to
install the purification facility. It is easy to see that the cor-
responding PFIP for level A is 100 %. Since the policy may
not be implemented immediately after it is issued, we also
consider a transition period, i.e., the status corresponding to
A- and B- in Table 1. The transition period from the intro-
duction of a citywide control policy to the achievement of
level B is considered to be 3 years, based on the situation
for the two surveyed cities (Jin et al., 2021; Li, 2020). The
transition period from the announcement of the full imple-
mentation policy to the achievement of level A depends on
the target time specified in the policy. During the transition
period, the PFIP is considered to increase linearly. Also, if
no new policy is issued, the PFIPs will remain unchanged.

Next, we collate key policy milestones and implementa-
tion transition periods for catering pollution control policies
in each province to determine the level of control stringency
(see Sect. S3 for details) and thus obtain the corresponding
PFIP based on Table 1. Note that the PFIPs of restaurants of
different scales may vary. Therefore, for commercial restau-
rants, the PFIPs are taken as weighted averages calculated
according to the proportion of restaurants at each scale (see
Table S2). As for canteens, since they typically cater to large
numbers of students and employees, we approximate the can-
teens’ PFIPs as being consistent with those of large-scale
restaurants in the same regions.

2.3 Grid allocation

To examine regional emission variations, pinpoint hotspots,
and assess emission impacts on air quality, a grid inventory
for cooking emissions is necessary. Here we allocate cook-
ing emissions in China into grids with a 27 km×27 km spa-
tial resolution, utilizing catering-related POI data and the na-
tionwide population density data with a spatial resolution of
1 km×1 km. Gridded datasets with higher resolutions of up
to 1 km×1 km can be prepared with the same method. For
commercial catering, we have developed an emission inven-
tory with point-source accuracy. We simply aggregate the
emissions of restaurants located within each grid to obtain
the gridded inventory, with calculations performed in R-4.0.3
to handle the massive computational load. Also, emissions
for canteens and residences are allocated to the county level
based on the tertiary industry gross domestic product (GDP)
(National Bureau of Statistics, 2022c) and then distributed to
grids per population density.

2.4 Uncertainty analysis

We employ Monte Carlo simulations to estimate the uncer-
tainties in emissions by considering the probabilistic dis-
tributions of key parameters. Our approach to quantifying
the uncertainties of the parameters is generally consistent
with Chang et al. (2022). The activity data is assumed to
follow a normal distribution with coefficients of variation
(CVs) between 5 %–50 %, based on the standard proposed
by Li (2017). The EFs are assumed to fit a log-normal dis-
tribution, with the CV values based on Chang et al. (2022).
Since we make some estimations based on the raw data for
measured EFs, including using VOC or POA EFs to infer
the gaseous and particle-phase full-volatility EFs and using
PM2.5 EFs to infer POA emission factors, we also consider
the additional uncertainty introduced by these estimates. For
the former estimation, we add an additional 30 % to the orig-
inal range of uncertainty of the EFs; for instance, increasing
it from 50 % to 80 %. For the latter estimation, we added an
extra 20 % to the original range. Furthermore, the unit con-
version would add an additional 20 % to the uncertainty. Ad-
ditionally, the CVs for purification efficiencies and installa-
tion proportions of fume purification facilities are assumed to
be 20 % and 30 %, respectively (Li, 2017). Then, we conduct
10 000 iterations of the simulation, which yields results in the
form of statistical distributions. This enables us to ascertain
the uncertainty ranges for emissions from various sources at
the 95 % confidence level.

2.5 Sensitivity simulations

We conduct a series of sensitivity analyses to explore the
factors driving changes in cooking emissions during 2015–
2021. Direct influencing factors of cooking emission changes
include variations in the catering industry (specifically, the
changes in the total number of restaurants and the cuisine

https://doi.org/10.5194/essd-15-5017-2023 Earth Syst. Sci. Data, 15, 5017–5037, 2023



5024 Z. Li et al.: High-resolution emission inventory

Table 1. Grading standards for provincial catering emission control stringency and the PFIPs corresponding to each control stringency level.

Level Control stringency Detailed description Provincial PFIPs for
restaurants of different scales

Large Medium Small

A full implementation the target year when local standards or policies
explicitly require all restaurants to install purifi-
cation facilities and the subsequent time

100 % 100 % 100 %

A- transition to
full implementation

the period between the year of the release of
policies explicitly requiring 100 % PFIP and the
target year for meeting these requirements

the PFIPs linearly increase
from the B-level PFIPs to

A-level PFIPs

B complete regulation the third year after the release of a control policy
that covers all restaurants in the province

82.8 % 72.8 % 59.9 %

B- transition to
complete
regulation

the first and second years after the release of a
control policy that covers all restaurants in the
province

the PFIPs linearly increase
from the C-level PFIPs to

B-level PFIPs

C partial regulation the state where only certain areas or catering
services are controlled (e.g., the regulation only
applies in the provincial capital city, to barbecue
restaurants, or to large restaurants)

64.0 % 59.0 % 41.0 %

distribution), pollution control enhancement, changes in edi-
ble oil use, and changes in canteen diners. These factors are
also indirectly affected by changes in the external environ-
ment, such as economic growth, population migration, and
the COVID-19 pandemic. We use a brute-force method to
quantify the annual impact of the four factors from 2015 to
2021, in which we sequentially adjust the values of an indi-
vidual factor to their value the following year. The difference
between the emissions pre- and post-adjustment is seen as
that factor’s contribution to the emission change for that year.

3 Results and discussion

The database provided in this study includes emission calcu-
lation parameters and emission inventories. We provide a set
of full-volatility EFs applicable nationwide, high-resolution
activity data, and dynamically changing PFIPs (Sect. 3.1),
which are beneficial for calculating emission inventories for
different periods and regions. Concurrently, an analysis of
emission characteristics, including the volatility distribution
(Sect. 3.2), spatial distributions (Sect. 3.3), and temporal evo-
lution trends (Sect. 3.4), provides comprehensive insights
into cooking emissions.

3.1 Full-volatility emission factors, cooking activity data,
and purification facility installation proportions

In this study, we present a set of controlled and uncon-
trolled full-volatility organic EFs for cuisine-specific com-
mercial cooking as well as residential and canteen cook-
ing (Table 2 and Fig. 2). Commercial restaurants and can-

teen may or may not have purification facilities for pollu-
tant removal, while fumes from home kitchens are usually
expelled through range hoods or exhaust fans without pu-
rification (Liang et al., 2022; Qi et al., 2020). Therefore,
we provide both controlled and uncontrolled EFs for com-
mercial cooking and canteen cooking and uncontrolled EFs
for residential cooking. According to Fig. 2, the significant
variance in EFs across the nine commercial cuisines demon-
strates the necessity of distinguishing among cuisines when
quantifying commercial cooking emissions. Sichuan–Hunan
cuisine exhibits the highest controlled EF (11 498 µg m−3)
among the nine commercial cuisines, which is attributed to
its high oil consumption and the extensive use of spicy sea-
sonings such as chili and pepper. Barbecue ranks second in
controlled EF value (9430 µg m−3), largely due to the high
heat levels used (which facilitate complex chemical reac-
tions) and the extensive use of seasonings. Comparatively,
home-style cuisine and non-Chinese cuisines show the low-
est emissions (1555 and 1673 µg m−3), probably because of
their less frequent usage of high-emission cooking meth-
ods such as frying and grilling compared to other local spe-
cialty cuisines. Also, the residential cooking uncontrolled EF
is 20.3 g kg oil−1, and the canteen cooking controlled EF is
0.648 g meals−1. The volatility distribution of EFs is similar
for all cooking sources. VOCs dominate the cooking organic
emissions (∼ 55%), followed by SVOCs (17 %–33 %) and
IVOCs (11 %–36 %), while xLVOCs are negligible (< 2%).

The removal efficiencies of gaseous and particle-phase or-
ganics for different cuisines are listed in Table S6. Average
removal efficiencies are 57.2 % and 55.4 % for gaseous and
particle-phase organics, respectively. Currently, the national
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standard and most local standards lack regulations on the
removal efficiency for VOCs and particulate matter (PM),
let alone for full-volatility organics. Only the local standard
of Beijing (Beijing Environmental Protection Bureau, 2018)
mentions the removal efficiency requirements of related pol-
lutants, namely non-methane hydrocarbons (NMHCs) and
PM, as shown in Table S7. In contrast, the current average
removal efficiencies of gaseous and particle-phase organics
fall short of the efficiencies of NMHCs (68.7 %) and PM
(82.3 %) in the Beijing standard (Beijing Environmental Pro-
tection Bureau, 2018), possibly due to sub-optimal mainte-
nance and cleaning of fume purification facilities.

Figure 3 presents the trend in activity data for each emis-
sion source from 2015 to 2021, along with the contributions
of their respective subsectors averaged over these years. The
volume of fume gas produced by commercial restaurants is
largely associated with the number of restaurants. The total
number of restaurants increased from 5.61 million in 2015
to 7.70 million in 2021, reflecting the rapid expansion of
China’s catering industry. However, there was a dip in the
number of restaurants in 2020, potentially attributed to the
impact of the COVID-19 pandemic on catering. Figure S2
illustrates the proportion of each cuisine in each province
and across China during 2015–2021. It reveals that Chinese
fast food and snacks (28.3 %), home-style cuisine (20.7 %),
and Sichuan–Hunan cuisine (11.1 %) are the most popular
cuisines in China, while non-Chinese cuisine (3.21 %) and
barbecue (4.67 %) are the least common. However, given
that most Chinese fast food and snack restaurants are of a
small scale, their contribution to the total fume gas volume is
much less, accounting for only 11.6 %. The activity data for
residential cooking, the household edible oil consumption,
is essentially stable, with fluctuations in certain years. The
fluctuations are potentially attributed to less frequent home
cooking due to the rise of food delivery services and more
frequent home cooking during COVID-19 lockdowns. Ad-
ditionally, the meals provided by canteens have gradually in-
creased, likely due to China’s growing population and urban-
ization.

Notably, we obtain point-source precision activity data
for commercial cooking, including the geographic location
and cuisine type of each restaurant. This helps with the ac-
curate determination of the spatial distribution of commer-
cial cooking emissions and the identification of regional dif-
ferences. Figure 4 shows the geographic distribution of all
restaurants of various cuisine types across China. The spatial
distributions of different cuisines vary greatly. The restau-
rants serving local specialty cuisines, including Sichuan–
Hunan, Fujian–Cantonese, Jiangsu–Zhejiang, and other Chi-
nese cuisines (mainly composed of the famous Beijing cui-
sine, Shandong cuisine, Anhui cuisine, and Xinjiang cui-
sine), are clearly concentrated in certain provinces. Restau-
rants that serve home-style dishes typically offer common,
simple, traditional Chinese meals, similar to those prepared
in home kitchens, as opposed to the refined and complex

dishes found in larger upscale restaurants. They are not
distributed in some provinces, such as Sichuan, Hunan,
and Guangdong, because home-style restaurants in these
provinces have been classified as local specialty cuisine
restaurants due to their distinctive local characteristics (spe-
cific categorization principles are available in Sect. S1).
Other cuisines are mainly distributed in populous areas
throughout the country. Based on Fig. S1, we find that the
cuisine distributions are similar in most provinces across
China. However, in some provinces, such as Hunan, Guang-
dong, Zhejiang, and Beijing, the local specialty cuisines are
dominant.

Table 3 illustrates the PFIPs of 31 provinces in China
from 2015 to 2021. An overall improvement in pollution
control has been observed nationwide in recent years as the
importance of cooking emissions has been increasingly rec-
ognized. The national overall PFIP increased from 54.4 %
in 2015 to 73.9 % in 2021. Besides, the PFIP tends to in-
crease with restaurant scale, probably because larger restau-
rants face greater regulatory pressure or have more funding
for fume purification. The PFIP exhibits considerable varia-
tion across different provinces due to different levels of fo-
cus on pollution control in the catering industry. Provinces
such as Beijing, Liaoning, Shanghai, and Hainan were the
first to achieve PFIPs of 100 %, as they have long emphasized
the control of pollution emissions from cooking sources and
have issued explicit regulations requiring all restaurants to
install purification facilities. In contrast, the PFIPs in most
other provinces remain relatively low, as major efforts to
strengthen cooking source pollution control in these regions
were initiated mainly between 2015 and 2018.

3.2 Full-volatility organic emissions from cooking in
China

Figure 5 shows the national emission inventory of full-
volatility organic emissions from cooking in 2021 and the
uncertainty ranges of emissions. The xLVOC, SVOC, IVOC,
and VOC emissions in China in 2021 were 13.1 (7.36–
21.0, 95 % confidence level) kt yr−1, 176 (95.8–290) kt yr−1,
241 (135–374) kt yr−1, and 561 (317–891) kt yr−1, respec-
tively. The majority of those emissions were VOCs (56.4 %),
followed by IVOCs (24.6 %) and SVOCs (17.7 %), with
xLVOCs comprising only 1.32 %.

Among all cooking sources, commercial cooking had
the most prominent emissions, contributing 46.7 %, 68.5 %,
66.2 %, and 54.5 %, respectively, to the xLVOC, SVOC,
IVOC, and VOC emissions on average from 2015 to 2021.
Sichuan–Hunan cuisine contributed the most to emissions
among all commercial cuisines, accounting for 19.3 %–
30.6 % of cooking emissions from all cooking sources in the
four volatility ranges, despite Sichuan–Hunan cuisine not be-
ing the most common cuisine (it was cooked by only 11.1 %
of all restaurants). In contrast, the most common Chinese fast
food and snacks and home-style cuisine contributed less to

https://doi.org/10.5194/essd-15-5017-2023 Earth Syst. Sci. Data, 15, 5017–5037, 2023



5026 Z. Li et al.: High-resolution emission inventory

Table 2. Controlled and uncontrolled full-volatility EFs for different cooking sources.

log10C∗ (µg m−3)

Type of source ≤−2 −1 0 1 2 3 4 5 6 ≥7

Controlled EFs

home-style cuisine 8.84 12.9 62.0 393 102 102 61.4 59.5 199 554
Chinese fast food and snacks 8.22 11.6 62.0 557 65.2 65.3 84.1 54.5 309 1824
hotpot 20.5 14.3 108 195 107 142 106 123 524 1939

Commercial barbecue 81.1 26.8 196 201 668 336 397 314 1798 5412
cooking Sichuan–Hunan cuisine 76.4 61.2 423 1165 743 962 402 473 1907 5285
(µg m−3) Cantonese–Fujian cuisine 12.3 12.2 64.9 460 111 117 83.0 67.8 285 1377

Jiangsu–Zhejiang cuisine 12.8 12.7 67.7 482 115 121 86.7 70.5 298 1446
other Chinese cuisines 15.5 17.8 94.2 621 144 146 138 111 425 2169
non-Chinese cuisines 2.96 2.96 6.98 201 36.9 56.6 38.5 34.1 157 1136

Residential cooking (g kg oil−1) – – – – – – – – – –

Canteen cooking (g meal−1) 0.00423 0.00237 0.0142 0.0834 0.0353 0.0389 0.0212 0.0186 0.0711 0.359

Uncontrolled EFs

home-style cuisine 10.1 16.1 76.9 502 119 119 75.4 71.7 246 699
Chinese fast food and snacks 19.1 27.3 145 1312 151 150 197 127 725 4303
hotpot 45.5 31.8 247 437 238 315 239 273 1180 4444

Commercial barbecue 191 62.1 450 432 1227 649 874 669 4164 12840
cooking Sichuan–Hunan cuisine 176 145 1042 2669 1708 2183 999 1181 5129 14661
(µg m−3) Cantonese–Fujian cuisine 31.4 29.0 154 1025 289 305 195 167 657 2975

Jiangsu–Zhejiang cuisine 29.1 29.3 156 1125 261 274 200 162 692 3392
other Chinese cuisines 43.9 38.7 206 1129 423 443 276 255 837 3440
non-Chinese cuisines 24.2 21.6 48.0 1306 280 456 298 272 1132 7371

Residential cooking (g kg oil−1) 0.0989 0.295 0.452 1.12 0.874 0.946 0.528 0.674 1.80 13.5

Canteen cooking (g meal−1) 0.00961 0.00535 0.0322 0.192 0.0795 0.0877 0.0486 0.0421 0.163 0.838

Figure 2. Full-volatility EFs for different cooking sources. The colors represent volatility ranges: purple for xLVOCs, blue for SVOCs,
green for IVOCs, and yellow for VOCs. Darker colors in the same color group signify lower volatility. The controlled EFs for commercial
and canteen cooking are displayed here, as most full-volatility EFs are tested after pollution control facilities and most uncontrolled EFs
are inferred from the controlled EFs. The uncontrolled EFs for residential cooking are displayed here, considering the absence of pollution
control facilities in home kitchens.

the emissions (≤ 9.25%) in the four volatility ranges. This
further emphasizes the significant influence of variations in
EFs across different cuisines. Additionally, residential cook-
ing was also a notable source, contributing 47.1 %, 22.2 %,
25.9 %, and 37.5 % to xLVOC, SVOC, IVOC, and VOC

emissions, respectively, whereas canteens made a minor con-
tribution to the full-volatility organics (< 10%).

The uncertainty ranges (95 % confidence interval) of
the national cooking emissions are estimated as [−47.5%,
60.2 %] for commercial cooking, [−63.0%,−124%] for res-
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Figure 3. (a) National activity data for commercial, residential, and canteen cooking from 2015–2021 and (b) their subsectors’ contributions.

Figure 4. The geographical locations of all restaurants in China, categorized by cuisine.

idential cooking, [−91.0%, −213%] for canteen cooking,
and [−45.2%, +53.5%] for total cooking emissions. The
uncertainty in the total emissions is less due to offset ef-
fects across sectors. The relatively large uncertainty in can-
teen emissions arises from activity level estimates and EF

unit conversions. As canteen emissions are small, the uncer-
tainty in them has little impact on the uncertainty in the total
emissions. The residential emission uncertainty also largely
originates from EF unit conversions, while the smaller uncer-
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Figure 5. Full-volatility organic emissions from different cooking sources in China in 2021. The gray and black bars represent the residential
and canteen cooking emissions in each volatility bin, respectively. Other colors represent the emissions from different commercial cuisines.
Each error bar indicates the uncertainty range of emissions for the 95 % confidence level. The upper left corner displays the contributions of
various types of cooking sources to emissions across the four volatility ranges.

tainty in commercial cooking emissions is due to a greater
number of EF tests and better statistics.

Furthermore, we evaluate the importance of cooking or-
ganic emissions by combining our emission inventory in
2017 with the full-volatility emissions inventory in 2017 de-
veloped by Chang et al. (2022), which lacks cooking sources.
The results indicate that the cooking source contributes
1.03 %, 12.7 %, 5.53 %, and 1.83 % to the total xLVOC,
SVOC, IVOC, and VOC emissions, respectively. This re-
veals the significance of I/SVOC emissions from the cooking
source, suggesting that accounting for the previously missing
cooking source may be crucial for accurately identifying the
source of SOA. In fact, cooking activities are often concen-
trated in densely populated urban areas. Table 4 lists the con-
tributions of cooking emissions to the total emissions in the
four volatility ranges in the five most densely populated cities
in China. In these regions, the importance of organic emis-
sions from cooking, particularly I/SVOC emissions, is much
higher than the national average. The contributions to SVOC
emissions from cooking sources are all above 30 %, reach-
ing up to 61.7 % at maximum. The contribution of cooking
sources to IVOCs is also significant (9.34 %–21.7 %). Fur-
thermore, the close affinity of cooking activities with the hu-
man living environment renders its organic emissions a high
health risk. Therefore, obtaining accurate cooking emissions,
including their spatial distribution, is necessary for studies on
the causes and health impacts of air pollution in the human
living environment.

3.3 Spatial distributions of emissions

The comprehensive and cuisine-specific activity data in
our emission estimates, coupled with the provincial policy-
driven PFIPs, allow us to discern regional emission dispar-

Table 4. The contributions of cooking emissions to the total emis-
sions in the four volatility ranges in the five most densely populated
cities in China.

The contributions of organic cooking
emissions to the total emissions

City, province xLVOC SVOC IVOC VOC

Shenzhen, Guangdong 5.03 % 44.7 % 12.1 % 1.84 %
Dongguan, Guangdong 9.53 % 61.7 % 21.7 % 3.55 %
Shanghai, Shanghai 8.22 % 43.4 % 10.5 % 1.03 %
Xiamen, Fujian 2.23 % 31.3 % 9.34 % 2.03 %
Guangzhou, Guangdong 5.78 % 48.6 % 13.4 % 2.14 %

ities accurately. Figure 6 displays the provincial total and
per capita emissions from cooking sources in China in 2021.
The provincial total emissions are closely associated with
the population. The provinces with the highest populations
– Guangdong, Shandong, Henan, and Jiangsu – are at the
forefront of emissions, whereas those with the smallest pop-
ulations – Tibet, Qinghai, Ningxia, and Hainan – are at the
bottom. Surprisingly, per capita emissions show a threefold
difference among provinces, which is likely attributable to
different dietary preferences. For example, people in Sichuan
and Hunan prefer spicy and oil-rich food, increasing the aver-
age commercial cooking EFs and household edible oil con-
sumption in these regions. Therefore, the per capita emis-
sions in Hunan and Sichuan (1.35 and 1.19 kg/person, re-
spectively) are significantly higher than the national aver-
age (0.701 kg/person). Moreover, the importance of emission
sources varies by province, but the overall picture across all
provinces is that commercial cooking emissions are gener-
ally the most prominent, followed by domestic cooking, with
minimal emissions from canteen cooking.

https://doi.org/10.5194/essd-15-5017-2023 Earth Syst. Sci. Data, 15, 5017–5037, 2023
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Figure 6. Provincial total emissions and per capita emissions across China in 2021. The thick bars represent the total emissions for each
province. The blue, red, and green bars represent organic emissions from commercial cooking, home cooking, and canteen cooking sources,
respectively. Within the same color group, four different shades represent different volatility ranges of organic matter, namely xLVOC, SVOC,
IVOC, and VOC, with darker colors indicating lower volatility. The thin gray bars represent per capita organic emissions in each province.
The dashed gray line represents the national per capita organic emissions.

To identify high-emission areas and hotspots, we have
further allocated cooking emissions, including commercial
cooking emissions with point-source precision and resi-
dential and canteen cooking emissions, into grids with
27 km×27 km resolution (Fig. 7). As previously analyzed,
a high population density and specific dietary preferences
are two important features of high-emission areas. Repre-
sentative areas of high population density include the North
China Plain (NCP), Yangtze River Delta (YRD), and Pearl
River Delta (PRD), indicated by red circles. Capital cities in
central and eastern Chinese provinces also emerge as emis-
sion hotspots due to high population densities. The large
population in each of these areas fosters a flourishing com-
mercial catering industry and substantial residential cooking,
thereby producing significant emissions. High emissions are
also present in Sichuan (SC) and Hunan (HN), highlighted by

green circles. These regions not only have significant popula-
tions and prosperous catering industries that hold appeal for
people nationwide, but, more importantly, the spice-rich and
oily characteristic of the local food amplifies the emissions.

Figure S3 displays the spatial distribution of emissions
from three cooking subsectors in the four volatility ranges.
Commercial cooking emissions are more concentrated in
economically developed regions, such as provincial capitals,
while less developed regions have lower emission intensities.
In contrast, residential cooking emissions are correlated with
population density and are distributed across areas where
people live. The greater the population density, the larger
the emissions. The difference between the spatial distribution
of emissions from these two main cooking subsectors aligns
with our understanding that in economically more developed
areas, where people’s disposable income is higher, people
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Figure 7. Nationwide gridded cooking emissions in the four volatility ranges in 2021, with high-emission areas circled.

tend to dine out more frequently in commercial restaurants.
Also, canteen cooking emissions are much lower and are also
highly correlated with the population distribution.

3.4 Historical trends and drivers of emissions

Figure 8a displays cooking emissions from various sources
during 2015–2021. Overall, the total cooking organic emis-
sions slowly increased from 791 kt in 2015 to 990 kt in 2021.
This upward trend is mainly due to the overall growth in
commercial cooking emissions, which increased from 414 kt
in 2015 to 609 kt in 2021, while emissions from residential
and canteen cooking only fluctuated slightly. The percent-
ages of xLVOC, SVOC, IVOC, and VOC during these years
were generally stable, with an average of 1.32 %, 17.51 %,
24.2 %, and 56.9 %.

Figure 8b illustrates the contributions of four influencing
factors mentioned in Sect. 2.5 to the changes in organic emis-
sions from 2015 to 2021 (see Fig. S4 for the annual contri-
butions of different factors). The development of the cater-
ing industry drove the overall increase in cooking emissions,
leading to an average annual emission growth rate of 6.36 %
from 2015 to 2021. However, the case in 2020 was an ex-
ception, as the catering industry regressed and the cooking
emissions were reduced by 4.95 % due to the COVID-19
lockdown measure. The yearly increase in the installation

proportion of purification facilities also mitigated emissions;
it resulted in an average annual emission reduction rate of
2.25 % from 2015 to 2021. However, its effect was limited in
comparison to the rapid development of the catering indus-
try due to inadequate regulations for cooking emissions na-
tionwide. Furthermore, the overall impact of household ed-
ible oil consumption was minor in 2015–2021, but in years
with significant changes in dietary habits, it could cause no-
table shifts in emissions. For instance, in 2020, the change in
household edible oil consumption caused a 2.63 % increase
in total emissions due to an increase in household cooking
under the COVID-19 lockdown measures. Additionally, the
meals provided by canteens have gradually increased in re-
cent years, but the impact of this on overall emission changes
has been minimal due to the small scale of canteen emissions.

3.5 Comparison with other related emission inventories

Table 5 compares cooking emissions at different spatial
scales in our study with previous studies (Lin et al., 2022;
Liang et al., 2022; Qi et al., 2020; Jin et al., 2021; Wang
et al., 2018a; Yuan et al., 2023; Cheng et al., 2022). Previ-
ous inventories mainly considered pollutants such as VOCs,
PM2.5, and OC, all of which we convert to VOCs or POA for
comparison. In contrast, our inventory manages to cover full-
volatility organics, comprehensive cooking sources, a wide

https://doi.org/10.5194/essd-15-5017-2023 Earth Syst. Sci. Data, 15, 5017–5037, 2023
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Figure 8. (a) Organic emissions in the four volatility ranges from various cooking sources in 2015–2021, and (b) the contributions of
different drivers to the changes in organic emissions from 2015 to 2021.

time range, and various regional scales, which were difficult
to achieve in previous inventories.

At the national scale, our estimate of cooking emissions
is significantly higher than previous calculations (Lin et al.,
2022; Wang et al., 2018a; Yuan et al., 2023; Cheng et al.,
2022). This significant discrepancy is probably due to poten-
tial omissions from activity data and the biases introduced
by inaccurate EFs and PFIPs in previous studies. Specifi-
cally, Cheng et al.’s (2022) estimations based on meat con-
sumption were 98.4 % lower than our estimate. This is be-
cause cooking emissions are not only determined by meat
consumption but also involve the use of vegetables, cook-
ing oils, and condiments, so the underrepresented activity
data could introduce large errors. Commercial cooking emis-
sions estimated by Jin et al. (2021) are also 88.3 % lower
than our estimates, possibly because they used EFs that were
not based on measurements and applied uniform EFs across
China without distinguishing between cuisines, introducing
significant uncertainty. In comparison, the estimations from
Wang et al. (2018a) and Liang et al. (2022) differ less sig-
nificantly from our estimates, with their results being 69.4 %
and 57.1 % lower, respectively, possibly because they used
cuisine-specific EFs derived from measurements, thereby im-
proving the accuracy of the EFs. However, applying con-
trolled EFs in all restaurants, including those without pol-
lution control facilities, probably led to an underestimation
of their emissions.

At the city and district scales, the previous inventories (Lin
et al., 2022; Qi et al., 2020; Wang et al., 2018a; Yuan et al.,
2023) were calculated in a more refined way. Therefore, our
results are closer to previous estimates. However, differences
persist due to uncertainties in our calculations and those of
previous studies. Notably, our estimated emissions agree re-
markably well with the emission inventory based on the on-
line monitoring system in Shunde, as both inventories use
refined point-source data as activity data. Overall, our study

achieves broader coverage across multiple dimensions and
significantly rectifies the previous underestimations in na-
tional inventories.

4 Data availability

The full-volatility organic emissions dataset is available
at https://doi.org/10.6084/m9.figshare.23537673 (Li et al.,
2023). It includes multi-year provincial full-volatility emis-
sions from residential cooking, canteen cooking, and cuisine-
specific commercial cooking. For commercial cooking emis-
sions, we also provide full-volatility emissions with point-
source accuracy. Also, the dataset provides gridded emis-
sions in China for xLVOCs, SVOCs, IVOCs, and VOCs from
the three cooking sources at a resolution of 27 km×27 km.
Emission factors, PFIPs, and other calculated parameters
used for emission estimates are listed in the main text and
Supplement. The catering-related POI data were obtained
from the Amap map service (https://lbs.amap.com/, Amap,
2023). In addition, the required statistical data, including
provincial populations, the number of students at different
stages of education, the number of employees in state-owned
and collective enterprises and institutions, urban and rural
populations, and the per capita consumption of household
cooking oil by urban and rural residents, city population, and
city area, were obtained from the China Statistical Yearbook
and China Labour Statistical Yearbook at https://data.stats.
gov.cn/ (National Bureau of Statistics, 2022a, b).

5 Conclusions and implication

Previous cooking inventories rarely covered full-volatility or-
ganics and failed to achieve accurate emission estimates with
a high resolution at a national scale, preventing an accu-
rate understanding of the characteristics and health impacts
of cooking emissions. Our study fills this gap by develop-
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Table 5. Comparison of cooking emissions in this study with those in previous studies. Bolded values are from this study.

VOC emissions (kt) POA emissions (kt)

Region and year inventory studies commercial residential canteen commercial residential canteen
cooking cooking cooking cooking cooking cooking

China, 2015∗ this study 216 197 43.8 132 96.8 33.0

China, 2012 Wang et al. (2018a) 66.0

China, 2017 this study 290 196 42.1 180 96.1 31.8

China, 2017 Jin et al. (2021) 34.0

China, 2018 this study 317 183 40.3 195 89.5 30.4

China, 2018 Cheng et al. (2022) 2.31 2.22
(POA = 1.8OC (Huang, 2023))

China, 2019 this study 325 180 39.6 201 88.1 29.9

China, 2019 Liang et al. (2022) 93.8 94.8 45.1

Beijing, 2018 this study 6.15 2.13 0.699 4.01 1.04 0.528

Beijing, 2019 Lin et al. (2022) 3.60 1.43
(POA = 81.5% PM2.5)

Beijing, 2018 Qi et al. (2020) 0.45
(POA = 81.5% PM2.5)

Shanghai, 2015∗ this study 2.40 3.22 0.499

Shanghai, 2012 Wang et al. (2018a) 4.69 0.61 1.05

Shunde, 2018 this study 0.730 0.560 0.0812 0.660 0.270 0.0641

Shunde, 2018 Yuan et al. (2023) 1.26 1.18
(POA= 81.5% PM2.5)

∗ Due to data limitations, our inventory only covers emissions up to 2015, so the earliest available results from 2015 are used to compare with the 2012 results reported by
Wang et al. (2018a).

ing a high-resolution national inventory of full-volatility or-
ganic emissions from cooking in China. This state-of-the-art
inventory updates our understanding of the characteristics,
sources, and regional variations of cooking emissions across
China. The emissions of xLVOCs, SVOCs, IVOCs, and
VOCs from cooking in China in 2021 were 13.1 (7.36–21.0),
176 (95.8–290), 241 (135–374), and 561 (317–891) kt yr−1,
respectively. This reveals that the IVOCs and SVOCs emitted
from cooking sources are of great importance, especially in
densely populated cities, where they account for 9 %–21 %
and 31 %–62 % of the total IVOC and SVOC emissions from
all sources, thereby potentially greatly impacting SOA for-
mation and human health. Our inventory also comprehen-
sively includes emissions from home kitchens, canteens, and
restaurants with various cuisines, and it corrects significant
underestimations in previous emission calculations for these
sources due to the potential omission of activity data as well
as oversimplified EFs and PFIPs, which aids in the accu-
rate identification and effective control of emission sources.
We find that commercial and residential cooking are two im-

portant sources, contributing over 90 % of the total organic
emissions from cooking. Moreover, we find that local di-
etary habits significantly influence cooking emissions. For
example, in areas where spicy and oily foods are preferred,
the per capita organic emissions from cooking (1.19–1.35
kg/person) are much higher than the average (0.701 kg/per-
son). Such regional features would be obscured when using a
national uniform EF. Overall, our dataset provides meaning-
ful information for the precise regulation of organic cooking
emissions (including gaseous and particle-phase organics) in
China, and it provides the prerequisite for the accurate mod-
eling of SOA formation and evolution.

Based on the multi-year national cooking emission inven-
tory and sensitivity analyses, we discover that, despite annual
increases in PFIPs, they cannot offset the emission increases
caused by the rapid growth of the catering industry. Given the
significant health risks potentially posed by cooking emis-
sions, future efforts to reduce cooking emissions need to be
strengthened through multiple pathways. Considering that
the overall PFIP for restaurants nationwide in 2021 is only
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about 73.9 %, the continued promotion of purification facili-
ties remains a critical emission reduction strategy. Moreover,
it may be more important to ensure that the installed purifi-
cation facilities meet the removal efficiency requirements.
According to our estimates, total cooking emissions could
be reduced by about 30 % if the current removal efficiencies
for gaseous and particle-phase organics met the standards for
NMHCs and PM, respectively (Beijing Environmental Pro-
tection Bureau, 2018). Furthermore, residential cooking is
also an important emission source, but it currently lacks ded-
icated purification facilities, so it may have great emission
reduction potential. Consideration could be given to equip-
ping residential chimneys with uniform flue gas purifiers or
developing miniature fume purifiers that could be installed at
the back ends of home kitchen range hoods. Our methodol-
ogy and integrated parameters allow the emission inventories
to be extended to different locations and times, and they can
be used to predict the effect of emission reductions in fu-
ture control scenarios to evaluate the effectiveness of control
strategies.

We also acknowledge some limitations of our study. Due
to the potential inadequacy of earlier digital map construc-
tion, we can only guarantee reliable information on commer-
cial restaurants from 2015 onwards. While it is challenging
to retrospectively track high-resolution emissions using our
methodology, pre-2015 emissions could be estimated using
the data from 2015 to 2021 and previous statistical data. Ad-
ditionally, due to limited full-volatility tests and basic data
for the cooking activities, we have made some estimates and
used some supplements, which may introduce some uncer-
tainties. Nonetheless, as the first national inventory of full-
volatility organic cooking emissions, our dataset provides
many novel and meaningful insights within an acceptable un-
certainty range. In the future, further measurements of full-
volatility EFs and surveys of cooking habits and fume purifi-
cation facility installations may help reduce these uncertain-
ties.
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