

Supplement of

A global 5 km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model

Shanlei Sun et al.

Correspondence to: Shanlei Sun (sun.s@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

S1. Computation for net radiation (R_n)

S1.1. The MSWX-Past R_n

For comprehensively utilizing radiation variables [e.g., downward shortwave radiation (R_{ds} , W/m²), and downward longwave radiation (R_{dl} , W/m²)], the MSWX-Past R_n (W/m²) can be expressed as:

$$\begin{cases} \alpha = \alpha_m - (\alpha_m - \alpha_s) \exp(-0.56LAI) \\ R_{nl} = \varepsilon R_{dl} - \varepsilon \frac{5.67}{10000000} (T_{mean} + 273.16)^4 \end{cases}$$
(S1c)

where α is land surface albedo (unitless), which is related to the albedo of the "closed" canopy (i.e., α_m , unitless) and the bare soil (α_s , unitless; Uchijima, 1976); R_{nl} is net longwave radiation (W/m²); T_{mean} is mean air temperature at 2 m height (°C); ε denotes land surface emissivity (unitless). Considering the major focus of PET in this study, α_s is set to 0.1 to represent the albedo of the wet bare soil (Shuttleworth, 1993). α_m is collected from the literature and varies among land use/land cover (LULC) types (Table S1; Zhou et al., 2006).

S1.2. The ERA5 and MERRA-2 R_n

The ERA5 and MERRA-2 provide net shortwave radiation (R_{ns} , W/m²) and R_{nl} , and therefore the corresponding R_n can be obtained using the equation below:

$$R_n = R_{ns} + R_{nl} \tag{S2}$$

S1.3. The CRU TS4.06 Rn

Due to lack of R_{ds} within the CRU TS4.06, the CERES satellite-based R_{ds} will be used to estimate the 1982–2015 R_{ds} time series based on the physical relationship between R_{ds} and cloud cover (*Cld*, unitless). In this study, the cloud-based R_{ds} algorithm of Reddy (1974) is used, and the major equations and the detailed procedures are shown below.

$$\binom{R_{ds} = [a_s + b_s(1 - Cld)]R_e}{1666.67}$$
(S3a)

$$R_e = \frac{1000.07}{\pi} G_{sc} d_r [\omega_s \sin(\phi) \sin(\delta) + \cos(\phi) \cos(\delta) \sin(\omega_s)]$$
(S3b)

$$dr = 1 + 0.033 \cos(\frac{2\pi}{365}J) \tag{S3c}$$

$$\delta = 0.0409 \sin(\frac{2\pi}{365}J - 1.39) \tag{S3d}$$

$$\begin{bmatrix}
 R_{nl} = \sigma \frac{T_{min,K}^{+} + T_{max,K}^{+}}{2} \left[0.34 - 0.14\sqrt{ea} \right] \left(1.35 \frac{R_{ds}}{R_{s0}} - 0.35 \right) \\
 R_{s0} = (a_s + b_s)R_a
 (S3f)$$

where R_e (W/m²) and G_{sc} (= 1366.67 W/m²) are extraterrestrial radiation and solar constant, respectively; d_r denotes inverse relative distance Earth-Sun; ω_s (rad), φ (rad) and δ (rad) denotes sunset hour angle, latitude and solar decimation of a given weather site, respectively; *J* represents the number of the day in the year between 1 (i.e., 1 January) and 365 or 366 (i.e., 31 December); a_s is regression constant, expressing the fraction of R_e reaching the Earth on overcast days (i.e., *Cld*=1); and a_s+b_s represents fraction of R_e reaching the earth on clear days (i.e., *Cld*=0); σ is Stefan-Boltzmann constant; $T_{max,K}$ (K) and $T_{min,K}$ (K) denote maximum and minimum absolute temperature, respectively.

Despite that the reference values for a_s (=0.25) and b_s (=0.50) are given in Allen et al. (1998), their spatio-temporal differences may impact the accuracy of the estimated R_{ds} . Thus, we firstly resampled the CERES R_{ds} into $0.5^\circ \times 0.5^\circ$ for meeting the CRU TS4.06 *Cld* resolution, and used the linear regression to fit a_s and b_s of EQ. S6a in each month at each CRU TS4.06 grid with the CERES R_{ds} and the *Cld* in 2001–2015 and the least square method. Subsequently, these coefficients were be employed to calculate monthly R_{ds} at each grid during 1982–2015 based on the CRU *Cld* data. In this study, we would like to follow the computation procedures from Allen et al. (1998) to calculate R_{nl} (i.e. EQs. S6e and S6f). At last, R_n can be calculated based on EQ. S4a.

S2. Computation for vapour deficit pressure (D)

S2.1. The MSWX-Past D

$$\begin{cases} e_s = \frac{0.6108 \exp\left(\frac{17.27T_{max}}{237.3 + T_{max}}\right) + 0.6108 \exp\left(\frac{17.27T_{min}}{237.3 + T_{min}}\right)}{2} \\ D = e_s(1 - Rh) \end{cases}$$
(S4a)
(S4b)

where e_s is the saturated vapour pressure (kPa); Rh is the relative humidity (%); T_{min} and T_{max} is the minimum and maximum air temperatures (°C).

S2.2. The CRU TS4.06 D

 $D = e_s - e_a \tag{S5}$

where e_s is estimated based on EQ. S4a and the CRU TS4.06 minimum and maximum air temperatures; e_a is the actual vapour pressure (kPa).

S2.3. The ERA-5 D

$$D = e_s - 0.6108 \exp\left(\frac{17.27d_{2m}}{237.3 + d_{2m}}\right)$$
(S6)

where e_s is estimated based on EQ. S7a and the ERA-5 minimum and maximum air temperatures; d_{2m} is the dewpoint temperature (°C).

S2.4. The MERRA-2 D

$$D = e_s - Pres \frac{Sh}{0.622} \tag{S7}$$

where e_s is estimated based on EQ. S7a and the MERRA-2 minimum and maximum air temperatures; *Pres* is the atmospheric pressure (kPa); *Sh* is the specific humidity (kg/kg).

S3. Computation for soil heat flux (*G*)

The soil heat flux $(G, W/m^2)$ is computed according to the equation of Allen et al. (1998):

$$G = 0.81 (T_{mean,+1} - T_{mean,-1})$$
(S8)

where $T_{mean,-1}$ and $T_{mean,+1}$ are the mean air temperatures in pervious and next months (°C), respectively.

S4. Computations for aerodynamic resistance (r_a^a) and soil boundary layer resistance (r_a^s)

In this study, the formulation of Shuttleworth and Gurney (1990) is used to compute r_a^a and r_a^s . Their equations are

shown as:

(2.306 + 0.194h)

$$\left(r_{a}^{a} = \frac{1}{ku_{*}}\ln(\frac{z_{a} - d_{0}}{h - d_{0}}) + \frac{h}{nK_{h}}\left\{\exp\left[n\frac{1 - (Z_{0} + d_{p})}{h}\right] - 1\right\}$$
(S9a)

$$\left\{ r_a^s = \frac{h\exp(n)}{nK_h} \times \left\{ \exp\left(-\frac{nz_{0g}}{h}\right) - \exp\left[-\frac{n(Z_0 + d_p)}{h}\right] \right\}$$
(S9b)

where h is the vegetation height (m); n is the eddy diffusivity decay constant of the vegetation (unitless); K_h is the eddy diffusion coefficient at the top of canopy (m^2/s) ; z_{0g} indicates the roughness length of ground (m), and varies with the vegetation type (Table S1); Z_0 is the "preferred" roughness length (m), equaling to 0.13h; d_p denotes the "preferred" zero plane displacement (m), and is set to 0.63*h*; k = 0.41 is von Karman's constant; u_* is the friction velocity (m/s); z_a is the reference height (m) and equals to 2+h; d_0 is the zero plane displacement of canopy (m). All terms within EQ. S1 are parameterized according to Monteith (1973), Choudhury and Monteith (1988), Shuttleworth and Gurney (1990), Federer et al. (1996), and Allen et al. (1998), such as,

$$\begin{pmatrix} K_h = ku_*(h - d_0) \\ K_h = ku_*(h - d_0) \end{pmatrix}$$
(S10a)

$$u_{*} = ku_{a} / \ln \left[\frac{z_{a} - u_{0}}{z_{0}} \right]$$
(S10b)

$$u_a = u_m \frac{\ln(67.8z_a - 5.42)}{\ln(67.8h_m - 5.42)} \tag{S10c}$$

$$d_0 = \begin{cases} h - z_{0c}/0.3, & \text{(Closed canopy: LAI \ge 4)} \\ 1.1h \ln[1 + (c_d \text{LAI})^{0.25}], & \text{(Sparse growing vegetation: LAI < 4)} \end{cases}$$
(S10d)

$$z_0 = \min \left[0.3(h - d_0), \quad z_{0g} + 0.3h(c_d \text{LAI})^{0.5} \right]$$
 (S10e)

$$z_{0c} = \begin{cases} 0.13h, & \text{Short vegetation: } h \le 1\\ 0.05h, & \text{Tall vegetation: } h \ge 10\\ 0.120h & 0.000h^2 & \text{Otherw: } 1 \le h \le 10 \end{cases}$$
(S10f)

$$\begin{cases}
c_d = \begin{cases}
1.4 \times 10^{-3}, & h = 0 \\
[-1 + \exp(0.909 - 3.03z_{0c}/h)]^4/4, & h > 0 \\
n = \begin{cases}
2.5, & \text{Short vegetation: } h \le 1 \\
4.25, & \text{Tall vegetation: } h \ge 10 \\
2.306 + 0.194h, & \text{Others: } 1 \le h \le 10
\end{cases}$$
(S10g)
(S10g)
(S10h)

Others: 1 < *h* < 10

where u_a and u_m represent the wind speed at the reference height and the height of measurement above ground surface, respectively (m/s); h_m is the height of measurement above ground surface (m); z_0 is the roughness length of canopy (m), however z_{0c} is that for a "closed" canopy (m); c_d is the mean drag coefficient for individual leaves (unitless).

S5. Computation for vegetation boundary layer resistance (r_a^c)

According to Shuttleworth and Wallace (1985), Shuttleworth and Gurney (1990), and Brisson et al. (1998), all leaf boundary layers are in parallel and then the r_a^c can be expressed as:

$$\begin{cases} r_a^c = \frac{\left(\frac{100}{n}\right) \left(\frac{w}{u_h}\right)^{\frac{1}{2}} \left[1 - \exp\left(-\frac{n}{2}\right)\right]^{-1}}{2\text{LAI}} \\ w = \begin{cases} w_{max}, & \text{for perennial vegetation} \\ w_{max}[1 - \exp(-0.6\text{LAI})] & \text{for annual vegetation} \end{cases}$$
(S11a)

where w denotes canopy characteristic leaf width (m), while w_{max} is maximum vegetation leaf width (m; Table S1); u_h is the wind speed at the top of canopy (m/s).

S6. Computation for soil surface resistance (r_s^s)

In this study, the parameter of r_s^s is estimated based on Villagarcía et al. (2010), and can be written as:

$$r_s^s = x\theta_{sat}^{\gamma} \tag{S12}$$

where θ_{sat} is saturated water content in soil (cm³/cm³), while *x* and *y* are the fitting coefficients for this equation. Considering differences in r_s^s under different vegetation coverage conditions, the coefficients of *x* (*y*) are set to 111.86 (-0.58) for plant position but 36.821 (-1.42) for bare soil position. The global θ_{sat} at the first soil layer (i.e., 0–0.0451 m) is used here, and collected from http://globalchange.bnu.edu.cn/research/soil5.jsp (Dai et al., 2019a, 2019b).

Figure S1: Monthly validation result for net shortwave radiation estimated based on the CERES satellite-based observations and the CRU TS4.06 cloud cover data. The outer edges of the boxes and the horizontal lines within the boxes indicate the 25th, 75th, and 50th percentiles of the validation metrics.

Figure S2: Monthly validation result for CO₂ concentration estimated based on the Global CO₂ Distribution product from Japan Meteorological Agency. The outer edges of the boxes and the horizontal lines within the boxes indicate the 25th, 75th, and 50th percentiles of the validation metrics.

Figure S3: Spatial distribution of the reconstructed canopy height in 1982 across the globe.

Figure S4: Comparison of the monthly PET estimates based on the daily and monthly meteorological variables. The outer edges of the boxes and the horizontal lines within the boxes indicate the 25th, 75th, and 50th percentiles of the validation metrics.

Figure S5: Validation results for the calibrated SW model by the observations at all of 96 sites. (a): Comparison for daily PET at all of 96 sites. (b-e): Comparison for daily PET for each LULC. (f): Comparison for site mean PET at all of 96 sites. (g-j): Comparison site mean PET for each LULC. (k-n) Boxplots of the validation metrics of daily PET simulations for each LULC. The whiskers represent the minimum and maximum values of the model performance metrics. The outer edges of the boxes and the horizontal lines within the boxes indicate the 25th, 75th, and 50th percentiles of the validation metrics.

Figure S6: The calibrated r_{smin} based on all data and data without gap-filling.

at all of 96 sites. (b-e): Comparison for daily PET for each LULC. (f): Comparison for site mean PET at all of 96 sites. (g-j): Comparison site mean PET for each LULC.

Table S1: Some typical PET models

Proposed by	Equation	Timescale
Dalton (1802) ^a	$PET = (0.3648 + 0.07223u)(e_s - e_a)$	Monthly
Thornthwaite (1948) ^b	$PET = 16N_m(10T_{mean})$	Monthly
Turc (1961) ^c	$PET = 0.013[N_{mean}/(T_{mean} + 15)](R_n + 50)$	Daily/Monthly
Hargreaves and Samani (1985) ^c	$PET = 0.0145 K_{RS} R_e (T_a + 17.8) T_d^{0.5}$	Daily/Monthly/Yearly
Penman (1948) ^d	$PET = \frac{\Delta H + \gamma(e_s - e_a)f(u)}{\Delta + \gamma}$	Daily
Monteith (1965) ^d	$PET = \frac{\Delta(R_n - G) + \left[\rho c_p (e_s - e_a)\right]/r_a}{\Delta + \gamma (1 + r_s/r_a)}$	Daily
Allen et al. (1998) (FAO-56	$PET = \frac{0.408\Delta(R_n - G) + \gamma u(e_s - e_a)[900/(T_{mean} + 273)]}{\Delta + \gamma (1 + 0.34u)}$	Hourly/Daily/Monthly
Penman-Monteith) ^d		

Note: ^a, ^b, ^c and ^d represent mass-transfer-based, temperature-based, radiation-based, and combination PET models, respectively. T_d is differences in the maximum (T_{max}) and the minimum (T_{min}) temperatures, i.e., $T_d = T_{max} - T_{min}$. K_{RS} is empirical coefficient fitted to R_{ds}/R_e versus T_d data. f(u) is a function of wind speed. r_s represents surface or canopy resistance, while and r_a represents aerodynamic resistance.

IGBP LULC	Nomos	Latitude	Logtitude	Altitude	Country	Data	Unstressed
type	mannes	(°)	(°)	(m)	Country	Date	days
	US-SP1 ^{a,}	29.74	-82.22	50	USA	2005/1/1-12/31	8
	US-SP2 ^a	29.76	-82.24	50	USA	2000/1/1-2004/12/31	36
	CA-Qcu ^a	49.27	-74.04	392	Canada	2002/1/1-2006/12/31	10
	DE-Bay ^a	50.14	11.87	/	Germany	1997/1/1—1999/12/31	11
	DE-Lkb ^{b,e}	49.10	13.30	1308	Germany	2009/1/1-2013/12/31	8
	CA-SF2 ^{b,e}	54.25	-105.88	536	Canada	2001/1/1-2005/12/31	13
	CA-SF1 ^{b,e}	54.49	-105.82	520	Canada	2003/1/1-2006/12/31	13
	FI-Hyy ^{b,e}	61.85	24.29	181	Finland	1996/1/1-2014/12/31	11
	IT-SRo ^{b,e}	43.73	10.28	6	Italy	1999/1/1-2012/12/31	18
Evergreen	IT-Ren ^{b,e}	46.59	11.43	1730	Italy	1998/1/1-2013/12/31	14
Needle Forest	DE-Obe ^{b,e}	50.79	13.72	735	Germany	2008/1/1-2014/12/31	13
(ENF)	CA-TP1 ^{b,e}	42.66	-80.56	265	Canada	2002/1/1-2014/12/31	27
	CA-Qfo ^{b,e}	49.69	-74.34	382	Canada	2003/1/1-2010/12/31	18
	RU-Fyo ^{b,e}	56.46	32.92	265	Russia	1998/1/1-2014/12/31	16
	IT-Lav ^{b,e}	45.96	11.28	1353	Italy	2003/1/1-2014/12/31	31
	US-Blo ^{b,e}	38.90	-120.63	1315	USA	1997/1/1—2007/12/31	46
	NI Loobé	50.17	5 74	25	The	1006/1/1 2014/12/21	38
	INL-LOO"	52.17	5.74	25	Netherlands	1990/1/1-2014/12/31	
	DE-Tha ^{b,e}	50.96	13.57	380	Germany	1996/1/1-2014/12/31	52
	US-Me2 ^{b,e}	44.45	-121.56	1253	USA	2002/1/1-2014/12/31	43
	US-NR1 ^{b,e}	40.03	-105.55	3050	USA	1998/1/1-2014/12/31	79
	AU-Cow ^c	-16.24	145.43	86	Australia	2010/1/1-2015/12/31	17
	AU-Ctr ^c	-16.10	145.45	66	Australia	2010/1/1-2017/12/31	8
Evergreen	US-SP3 ^a	29.75	-82.16	50	USA	1999/1/1-2004/12/31	23
Broadleaf	AU-Rob ^{b,e}	-17.12	145.63	710	Australia	2014/1/1—12/31	9
Forest (EBF)	BR-Sa3 ^{b,e}	-3.02	-54.97	100	Brazil	2000/1/1-2004/12/31	13
	AU-Wom ^{b,e}	-37.42	144.09	705	Australia	2010/1/1-2014/12/31	15
	FR-Pue ^{b,e}	43.74	3.60	270	France	2000/1/1-2014/12/31	37

	AU-Tum ^{b,e}	-35.66	148.15	1200	Australia	2001/1/1-2014/12/31	46
Deciduous	FHK ^{d,e}	35.44	138.76	1100	Japan	2006/1/1-2013/12/31	17
Needle Forest (DNF)	TMK ^{d,e,f}	42.74	141.52	140	Japan	2001/1/1—2004/12/31	13
	AU-Lox ^{b,e}	-34.47	140.66	/	Australia	2008/1/1-2009/12/31	11
	IT-PT1 ^{b,e}	45.20	9.06	60	Italy	2002/1/1-2004/12/31	12
	CA-TPD ^{b,e}	42.64	-80.56	260	Canada	2012/1/1-2014/12/31	12
Deciduous	DK-Sor ^{b,e}	55.49	11.64	40	Denmark	1996/1/1—2014/12/31	10
Broadleaf	IT-Ro2 ^{b,e}	42.39	11.92	160	Italy	2002/1/1-2012/12/31	20
Forest (DBF)	IT-Col ^{b,e}	41.85	13.59	1560	Italy	1996/1/1—2014/12/31	16
	DE-Hai ^{b,e}	51.08	10.45	430	Germany	2000/1/1-2012/12/31	27
	US-MOz ^a	38.74	-92.20	219	USA	2005/1/1-2006/12/31	13
	FR-Hes ^a	48.67	7.07	/	France	1997/1/1—2006/12/31	39
	US-Syv ^{b,e}	46.24	-89.35	540	USA	2001/1/1-2014/12/31	21
	CA-Gro ^{b,e}	48.22	-82.16	340	Canada	2003/1/1-2014/12/31	21
Mixed Forest	BE-Vie ^{b,e}	50.30	6.00	493	Belgium	1996/1/1—2014/12/31	17
(MF)	manda	45.04		-		2001/8/1-2002/12/31;	27
	TSE ^{u,e}	45.06	142.11	70	Japan	2004/1/1-2012/12/31	
	GDK ^{d,e}	37.75	127.15	252	Korea	2004/1/1-2008/12/31	10
Closed	US-KS2 ^{b,e}	28.61	-80.67	3	USA	2003/1/1-2006/12/31	18
Shrubland	TT DI ha	40.61	0.15	25		2004/1/1-2014/12/31	25
(CSH)	II-Noe ^{b,e}	40.61	8.15	25	Italy		
Open	CA-SF3 ^{b,e}	54.09	-106.01	540	Canada	2001/1/1-2006/12/31	17
Shrubland		26.02	2.25	1000		2007/1/1-2012/12/31	
(OSH)	ES-Amo ^{b,e}	36.83	-2.25	1200	Espain		34
Woody	AU-RDF ^{b,e}	-14.56	132.48	171	Australia	2011/1/1—2013/12/31	15
Savannah	tra m ba	a a ka				2001/1/1-2014/12/31	
(WSA)	US-Ton ^{v,e}	38.43	-120.97	177	USA		57
	BW-Ma1 ^a	-19.92	23.56	~930	Botswana	2000/1/1—12/31	13
Savannah	ES-LMa ^a	39.94	-5.77	265	Spain	2004/1/1-2006/12/31	9
(SAV)	SD-Dem ^{b,e}	13.28	30.48	500	Sudan	2005/1/1-2009/12/31	16

	AU-Dry ^{b,e}	-15.26	132.37	180	Australia	2008/1/1-2014/12/31	20
	AU-DaS ^{b,e}	-14.16	131.39	53	Australia	2008/1/1-2014/12/31	29
	AU-Cpr ^{b,e}	-34.00	140.59	53	Australia	2010/1/1-2014/12/31	36
	AU-Sam ^c	-27.39	152.88	87	Australia	2011/1/1—2017/12/31	45
	US-Aud ^a	31.59	-110.51	1469	USA	2003/1/1-2005/12/31	24
	PT-Mi2 ^a	38.48	-8.02	~240	Portugal	2005/1/1-2006/12/31	9
	ES-VDA ^a	42.15	1.45	/	Spain	2004/1/12004/12/31	10
	HU-Bug ^a	46.69	19.60	/	Hungary	2003/1/1-2006/12/31	12
	US-FPe ^a	48.31	-105.10	634	USA	2000/1/1-2006/12/31	30
	CN-Du2 ^{b,e}	42.05	116.28	/	China	2006/1/1-2008/12/31	12
	CN-Du3 ^{b,e}	42.06	116.28	/	China	2009/1/1-2010/12/31	12
	RU-Ha1 ^{b,e}	54.73	90.00	446	Russia	2002/1/1-2004/12/31	13
	US-ARb ^{b,e}	35.55	-98.04	424	USA	2005/1/1-2006/12/31	16
	US-ARc ^{b,e}	35.55	-98.04	424	USA	2005/1/1-2006/12/31	16
	CN-HaM ^{b,e}	37.37	101.18	/	China	2002/1/1-2004/12/31	15
	IT-Tor ^{b,e}	45.84	7.58	2160	Italy	2008/1/1-2014/12/31	23
Grassland	US-LWW ^{b,e}	34.96	-97.98	365	USA	1997/1/1—1998/12/31	19
(GRA)	AT-Neu ^{b,e}	47.12	11.32	970	Austria	2002/1/1-2012/12/31	13
	AU-TTE ^{b,e}	-22.29	133.64	553	Australia	2012/1/1-2014/12/31	18
	AU-Rig ^{b,e}	-36.65	145.58	162	Australia	2011/1/1-2014/12/31	17
	AU-Emr ^{b,e}	-23.86	148.47	/	Australia	2011/1/1-2013/12/31	23
	US-AR2 ^{b,e}	36.64	-99.60	646	USA	2009/1/1-2012/12/31	27
	CN-Cng ^{b,e}	44.59	123.51	/	China	2007/1/1-2010/12/31	20
	US-Goo ^{b,e}	34.25	-89.87	87	USA	2002/1/1-2006/12/31	32
	US-AR1 ^{b,e}	36.43	-99.42	611	USA	2009/1/1-2012/12/31	31
	DE-Gri ^{b,e}	50.95	13.51	385	Germany	2004/1/1-2014/12/31	37
	AU-Stp ^{b,e}	-17.15	133.35	225	Australia	2008/1/1-2014/12/31	39
	US-SRG ^{b,e}	31.79	-110.83	1291	USA	2008/1/1-2014/12/31	70
	US-Wkg ^{b,e}	31.74	-109.94	1531	USA	2004/1/1-2014/12/31	80
	US-Var ^{b,e}	38.41	-120.95	129	USA	2000/1/1-2014/12/31	126
Cropland	US-Bo1 ^a	40.01	-88.29	219	USA	1997/1/1—2006/12/31	65

(CRO)	IT-CA2 ^{b,e}	42.38	12.03	200	Italy	2011/1/1-2014/12/31	11
	US-CRT ^{b,e}	41.63	-83.35	180	USA	2011/1/1-2013/12/31	13
	US-Twt ^{b,e}	38.11	-121.65	-7	USA	2009/1/1-2014/12/31	10
	BE-Lon ^{b,e}	50.55	4.75	167	Belgium	2004/1/1-2014/12/31	13
	DE-Kli ^{b,e}	50.89	13.52	478	Germany	2004/1/1-2014/12/31	19
	FR-Gri ^{b,e}	48.84	1.95	125	France	2004/1/1-2014/12/31	9
	US-ARM ^{b,e}	36.61	-97.49	314	USA	2003/1/1-2012/12/31	46
	DE-Geb ^{b,e}	51.10	10.91	162	Germany	2001/1/1-2014/12/31	56
	US-Ne1 ^{b,e}	41.17	-96.48	361	USA	2001/1/1-2013/12/31	87
	US-Ne2 ^{b,e}	41.16	-96.47	362	USA	2001/1/1-2013/12/31	95
	US-Ne3 ^{b,e}	41.18	-96.44	363	USA	2001/1/1-2013/12/31	92
	MSE ^{d,e}	36.05	140.03	13	Japan	2001/1/1-2006/12/31	22

Note: ^a, ^b, ^c and ^d represent that the sites are from LaThuile (https://fluxnet.org/data/la-thuile-dataset/), FLUXNET2015 Tier-2 (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/), OzFlux (https://data.ozflux.org.au/portal/home.jspx), and AsiaFlux (http://asiaflux.net/?page_id=23), respectively. ^e (^f) suggests that LAI (CO₂ concentration) is not measured at this site and the GLASS LAI product (CO₂ concentration at Mauna Loa) will be used instead.

Table S3:	Typical	height for	the 5	CSCS-based	GRA gi	roups
-----------	---------	------------	-------	------------	--------	-------

CSCS-based GRA group	Height (m)	Sources or references of the used EC sites
Tundra and alpine steppe GRA	0.32	CN-HaM ^a , GL-ZaH ^a , QHB ^b , and DK-ZaH ^a
Semi desert GRA	0.39	Shapotou ^c , CN-Sw2 ^a , Xiziwang Banner ^c , US-Cop ^a , AU-Ync ^a , US-SRG ^a , US-
		Aud ^d , and AU-Sam ^e
Savanna	0.78	US-Wkg ^d , AU-Emr ^a , AU-Stp ^a , AU-DaP ^a
Steppe GRA	0.28	US-FPe ^d , KBU ^b , AU-Rig ^a , US-AR1 ^d , US-AR2 ^d , US-Var ^d , PT-Mi2 ^a
Temperate zonal humid GRA	0.43	Inner Mongolia ^c , Xilinhot ^c , CN-Du3 ^a , DK-Eng ^a , IT-MBo, CN-Du2 ^a , DK-Lva ^a ,
		US-Bkg ^d , Duolun ^c , Hulun Buir ^c
Temperate zonal forest steppe GRA	0.52	CN-Cng ^a , HU-Bug ^a , LSH ^b , YCS ^b , Ansai ^b , AT-Neu ^a , CN-Dan ^a , IT-Tor ^a , RU-
		Ha1 ^a , SE-Deg ^a , HBG ^b , Arou ^e , CH-Cha ^a , CH-Fru ^a , CH-Oe1 ^a , CZ-BK2 ^a , DE-
		RuR ^a , DE-Gri ^a , FR-Lq1 ^a , FR-Lq2 ^a , IT-Mala, ES-VDA ^a , IE-Dria, NL-Hor ^a , US-
		IB2 ^a , IT-Amp ^a , and NL-Ca1 ^a
Sub-tropical zonal forest steppe GRA	0.46	US-Arb ^d , US-Arc ^d , US-LWW ^d , AU-Sam ^a , US-Goo ^d , and HFK ^b
Frigid desert GRA	0.33	Yin et al., (2019)
Warm desert GRA	0.50	White (1983), Suttie et al. (2005), Kadeba et al. (2015)
Tropical zonal forest steppe GRA	0.60	Prakash et al., (2020)

Note: ^a, ^b, ^c and ^d represent that the sites are from FLUXNET (http://fluxnet.fluxdata.org/), AsiaFlux (http://asiaflux.net/), ChinaFLUX (http://www.chinaflux.org/), AmeriFlux (https://ameriflux.lbl.gov/), HiWATER (https://data.tpdc.ac.cn/zh-hans/special/heihe/), and OzFlux (https://data.ozflux.org.au/portal/home.jspx), respectively.

Cropland types	Height (m)	Cropland types	Height (m)	Cropland types	Height (m)
Arabica coffee	2.50	Other fibre crops	1.35	Small millet	1.50
Banana	3.50	Oilpalm	8.00	Sorghum	2.25
Barley	1.00	Other oil crops	0.55	Soybean	0.75
Bean	0.40	Other pulses	0.80	Sugarbeet	0.45
Cassava	1.25	Other roots	0.50	Sugarcane	3.00
Chickpea	0.40	Pigeonpea	0.50	Sunflower	2.00
Coconut	8.00	Plantain	5.00	Sweet potato	0.40
Cocoa	3.00	Pearl millet	2.00	Tea	1.75
Cotton	1.35	Potato	0.60	Temperate fruit	3.92
Cowpea	0.40	Rapeseed	0.60	Tobacco	1.35
Groundnut	0.40	Robusta coffee	6.00	Tropical fruit	0.90
Lentil	0.50	Rest of crops	0.98	Vegetables	0.43
Maize	1.75	Rice	1.00	Wheat	1.00
Other cereals	1.00	Sesameseed	1.00	Yams	1.60

Table S4: Cropland height (Allen et al., 1998)

Table S5: k_{ex} , w, z_{0g} and α_m values for various LULC types

LULC types	CRO	FR	GRA	SHRB	Tundra	Barren land	Snow/Ice
k_{ex}^{a} (unitless)	0.62	0.47	0.50	0.56	0.55	0	0
$w_{max}^{b}(\mathbf{m})$	0.01	0.034	0.01	0.01	0.01	/	/
$z_{0g}^{b}(\mathbf{m})$	0.005	0.02	0.01	0.02	0.01	0.001	0.001
α_m^b (unitless)	0.20	0.17	0.23	0.18	0.23	0.15	0.70
$\Delta g_{1,CO2}^{c}$ (%)	0.36	0.23	0.25	0.40	0.36	/	/

Note: ^a represents this parameter is from Zhang et al. (2014) and van der Kolk et al. (2016), while ^b indicates this parameter comes from Zhou et al. (2006). ^b indicates that this parameter is obtained from Morison and Gifford (1984), Field et al. (1995), Saxe et al. (1998), Neitsch et al. (2002), Eckhardt and Ulbrich (2003), and Wu et al. (2017).

Table S6: The calibrated values of *r_{smin}* for each GLASS-GLC type

GLASS-GLC types	$r_{smin}~{ m (s/m)}$
CRO	52.96
FR	104.91
GRA	115.94
SHRB	115.56
Tundra	80.00 ^a
Barren land	120.00ª
Snow/Ice	0 ^a

Note: ^a represents that r_{smin} is from Zhou et al. (2006).

References

Allen, R., Pereira, L., Raes, D. and Smith, M.: Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations, 1998.

Brisson, N., Itier, B., L'Hotel, J. C. and Lorendeau, J. Y.: Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models. Ecological Modelling, 107, 159–169, 1998.

Choudhury, B. J. and Monteith, J. L.: A four-layer model for the heat budget of homogeneous land surfaces. Quarterly Journal of the Royal Meteorological Society, 114, 373–398, 1988.

Dai, Y., Wei, N., Yuan, H., Zhang, S., Shangguan, W., Liu, S., Lu, X. and Xin, Y.: Evaluation of soil thermal conductivity schemes for use in land surface modelling. Journal of Advances in Modeling Earth Systems, 11(11), 3454–3473, 2019a.

Dai, Y., Xin, Q., Wei, N., Zhang, Y., Shangguan, W., Yuan, H., Zhang, S., Liu, S. and Lu, X.: (2019b), A global high-resolution dataset of soil hydraulic and thermal properties for land surface modeling. Journal of Advances in Modeling Earth Systems, 11(9), 2996–3023, 2019b.

Dalton, J.: Experimental essays on the constitution of mixed gases: on the force of steam or vapour from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat. Memoirs, Literary, and Philosophical Society of Manchester, 5, 536–602, 1802.

Eckhardt, K. and Ulbrich, U.: Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 284(1–4), 244–252, 2003.

Federer, C. A., Vorosmarty, C. J. and Fekete, B.: Intercomparison of methods for potential evapotranspiration in regional or global water balance models. Water Resources Research, 32, 2315–2321, 1996.

Field, C. B., Jackson, R. B. and Mooney, H. A.: Stomatal responses to increased CO₂: implications from the plant to the global scale. Plant, Cell & Environment, 18(10), 1214–1225, 1995.

Hargreaves, G. H. and Samani, Z. A.: Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, Proceedings of the American Society of Civils Engineers, 108, 225–230, 1983.

Kadeba, A., Nacoulma, B. M. I., Ouédraogo, A., Bachmann, Y., Thiombiano, A., Schmidt, M. and Boussim, I. J.: Land cover change and plants diversity in the Sahel: a case study from northern Burkina Faso. Annals of Forest Research, 58(1), 109–123, 2015.

Monteith, J. L.: Evaporation and environment, Symposia of the society for experimental biology, Cambridge University Press, Cambridge, 1965.

Monteith, J. L.: Principles of Environmental Physics. Edward Arnold, London, pp. 214, 1973.

Morison, J. I. L. and Gifford, R. M.: Plant growth and water use with limited water supply in high CO₂ concentrations. I. Leaf area, water use and transpiration. Functional Plant Biology, 11(5), 361–374, 1984.

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R. and King, K. W.: Soil and Water Assessment Tool Theo-retical

Documentation, Version 2000. Soil and Water Research Laboratory and Blackland Research Center, Grassland, 2002.

Penman, H. L.: Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A: Mathematical and physical sciences, 1032, 120–145, 1948.

Prakash, V., Bera, T., Pradhan, S. and Acharya, S. K.: Potential of *Syngonanthus nitens* fiber as a reinforcement in epoxy composite and its mechanical characterization. Journal of the Indian Academy of Wood Science, 17, 73–81, 2020.

Reddy, S. J.: An empirical method for estimating sunshine from total cloud amount. Solar Energy, 15(4), 281–285, 1974.

Saxe, H., Ellsworth, D. and Heath, J.: Tree and forest functioning in an enriched CO₂ atmosphere. New Phytologist, 139(3), 395–436, 1998.

Shuttleworth, W. J.: Evaporation. In: Maidment, D. R. (Ed.), Handbook of Hydrology. McGraw-Hill, New York, pp. 4.1–4.53, 1993.

Shuttleworth, W. J. and Wallace, J. S.: Evaporation from sparse crops – an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111, 839–855, 1985.

Shuttleworth, W. J. and Gurney, R. J.: The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Quarterly Journal of the Royal Meteorological Society, 116, 497–519, 1990.

Suttie, J. M., Reynolds, S. G. and Batello, C.: Grasslands of the World. Plant Production and Protection Series No. 34. Rome: Food and Agriculture Organization of the United Nations, 2005.

Thornthwaite, C. W.: An approach toward a rational classification of climate. Geographical Review, 38, 55–94, 1948.

Turc, L.: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annales Agronomiques, 12, 13–49, 1961.

Uchijima, Z.: Maize and rice. In: Monteith, J. L. (Ed.), Vegetation and the Atmosphere, vol. 2. Academic Press, New York, pp. 33–64, 1976.

van der Kolk, H. -J., Heijmans, M. M. P. D., van Huissteden, J., Pullens, J. W. M. and Berendse, F.: Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences, 13, 6229–6245, 2016.

Villagarcía, L., Were, A., Garcíac, M. and Domingo, F.: Sensitivity of a clumped model of evapotranspiration to surface resistance parameterizations: Application in a semi-arid environment. Agricultural and Forest Meteorology, 150, 1065–1078, 2010.

White, F.: The vegetation of Africa. Paris: UNESCO, 1983

Wu, L., Min, L. L., Shen, Y. J., Zhou, X. X. and Liu, F. G.: Simulation of maize evapotranspiration at different growth stages using revised dual-layered model in arid Northwest China. Chinese Journal of Eco-Agriculture, 25(5), 634–646, 2017. (in Chinese with English Abstract) Yin, J., Feng, Q., Liang, T., Meng, B., Yang, S., Gao, J., Ge, J., Hou, M., Liu, J., Wang, W., Yu, H. and Liu, B: Estimation of grassland height based on the random forest algorithm and remote sensing in the Tibetan Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 178–186, 2019.

Zhang, B., Kang, S., Li, F. and Zhang, L.: Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agricultural and Forest Meteorology, 148(10), 1629–1640, 2008.

Zhang, L., Hu, Z., Fan, J., Zhou, D. and Tang, F.: A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Frontiers of Earth Science, 8, 599–609.

Zhou, M. C., Ishidaira, H., Hapuarachchi, H. P., Magome, J., Kiem, A. S. and Takeuchi, K.: Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. Journal of Hydrology, 327, 151–173, 2006.