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Abstract. Net primary production of the oceans contributes approximately half of the total global net pri-
mary production, and long-term observational records are required to assess any climate-driven changes.
The Ocean Colour Climate Change Initiative (OC-CCI) has proven to be robust whilst also being one
of the longest records of ocean colour. However, to date, only one primary production algorithm has
been applied to this data product, with other algorithms typically applied to single-sensor missions. The
data product presented here addresses this issue by applying five algorithms to the OC-CCI data prod-
uct, which allows the user to interrogate the range of distributions across multiple models and to iden-
tify consensus or outliers for their specific region of interest. Outputs are compared to single-sensor
data missions, highlighting good overall global agreement, with some small regional discrepancies. Inter-
model assessments address the source of these discrepancies, highlighting the choice of the mixed-layer
data product as a vital component for accurate primary production estimates. The datasets are published
in the Zenodo repository at https://doi.org/10.5281/zenodo.7849935, https://doi.org/10.5281/zenodo.7858590,
https://doi.org/10.5281/zenodo.7860491 and https://doi.org/10.5281/zenodo.7861158 (Ryan-Keogh et al.,
2023a, b, c, d).

1 Introduction

Phytoplankton primary production and associated spatial and
temporal variability play an important role in the carbon cy-
cle, being responsible for approximately 50 % of total global
net primary production (NPP) (Lurin, 1994; Longhurst et al.,
1995; Field et al., 1998; Carr et al., 2006; Buitenhuis et al.,
2013). Global NPP estimates are on the order of 50 GtCyr−1

(Longhurst et al., 1995; Field et al., 1998; Carr et al., 2006;
Buitenhuis et al., 2013; Antoine et al., 1996; Silsbe et al.,
2016; Johnson and Bif, 2021). When this organic carbon is
sequestered to the ocean interior via the biological carbon
pump (BCP), it offsets the flux of upwelled pre-industrial
dissolved inorganic carbon (DIC) (Mikaloff Fletcher et al.,
2007; Gruber et al., 2009), where DIC is the carbon source
for phytoplankton photosynthesis. In that sense, in the con-

temporary period, it does not play a significant role in the
ocean uptake of anthropogenic carbon dioxide (CO2). How-
ever, the magnitude of the BCP is predicted to change in re-
sponse to global climate change, which will alter the ocean’s
ability to store carbon and therefore impact atmospheric lev-
els of CO2 (Henson et al., 2011; Bopp et al., 2013; Boyd
et al., 2015; Tagliabue et al., 2021). Such changes are of
concern because alterations in the role that the BCP plays
in offsetting upwelled DIC will impact the net uptake of an-
thropogenic CO2 (Henson et al., 2011). As such, any nat-
ural or anthropogenic perturbations to the strength and ef-
ficiency of the BCP have the potential to drive important
feedbacks to global climate change and thus need to be con-
sidered for a comprehensive understanding of the trajectory
of the ocean carbon sink. Recent studies have estimated that
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global NPP is indeed changing, with declines ranging from
0.6 % to 13 % across equatorial and temperate regions (Gregg
and Rousseaux, 2019; Polovina et al., 2011; Chavez et al.,
2010; Behrenfeld et al., 2006) and increases of up to 2 %
at the Bermuda Atlantic Time Series and Hawaii Oceanic
Time Series (Saba et al., 2010). NPP also plays an impor-
tant role in supporting ecosystem function by sustaining bio-
diversity and the transfer of carbon, energy, and nutrients
through pelagic and benthic food webs. As such, any changes
to the amount of bulk carbon being produced are likely to
impact the amount of carbon available for transfer to higher
trophic levels via the marine food web, with implications for
ecosystem health and fishery success. It is the seasonal cycle
that sets much of the environmental variability in the fac-
tors that drive NPP, and it is the dominant mode of variabil-
ity that couples the physical mechanisms of climate forcing
to ecosystem response in production, diversity, and carbon
export (Monteiro et al., 2011). As such, understanding the
seasonal evolution of NPP can provide a sensitive index of
climate variability through its dependence on physical pro-
cesses that transport nutrients and control the exposure of
phytoplankton to sunlight (Summer and Lengfeller, 2008;
Henson et al., 2009). It is with this in mind that we seek to
provide a data product that can be used to understand the ex-
tent to which the seasonal characteristics of NPP are being
modified by environmental conditions over sufficiently long
time periods. NPP has already been highlighted as a better
indicator of environmental change and disturbances in com-
parison to chlorophyll a (Tilstone et al., 2023), with environ-
mental disturbances (i.e, changes in nutrient inputs) being
detected through changes in phytoplankton photosynthetic
rates and NPP (Boalch, 1987), highlighting its suitability for
ecosystem assessment of tipping points and abrupt change.

Phytoplankton NPP is strongly influenced by the physico-
chemical conditions of the ocean, including light, tempera-
ture, and nutrient availability. Climate change has already be-
gun to elicit widespread changes to these conditions; for ex-
ample, increases in temperature and heat content, increased
sea ice melt, and enhanced precipitation all contribute to al-
terations of oceanic density and the subsequent nutrient sup-
ply into the euphotic zone (IPCC, 2014; Rhein et al., 2013).
Being able to understand how these climate-driven changes
in the physico-chemical environment impact phytoplankton
NPP is key to addressing one of the most important scien-
tific and policy challenges of the 21st century, namely being
able to predict long-term trends in the ocean-carbon–climate
system. This challenge is exacerbated by the sparsity of NPP
data and a lack of continuous or regular in situ measurements
for long-enough periods to address multi-decadal changes as-
sociated with climate forcing (Johnson and Bif, 2021).

Satellite-based remote sensing of ocean colour is the only
observational capability that can provide synoptic views of
upper-ocean phytoplankton characteristics at high spatial and
temporal resolutions (∼ 1 km,∼ daily) and high temporal ex-
tents (global scales, years to decades). In many cases, these

are the only systematic observations available for chroni-
cally under-sampled marine systems such as the Southern
Ocean. Empirical expressions of estimating NPP are built
around long-recognized dependencies between phytoplank-
ton biomass and environmental conditions (e.g. temperature,
light, and nutrients), with a succinct review available in West-
berry et al. (2023). The vertically generalized production
model (VGPM) (Eppley, 1972; Behrenfeld and Falkowski,
1997) is a simpler satellite NPP model that relies on the
relationship between chlorophyll- and temperature-derived
growth rates with no explicit spectral, temporal, or vertical
resolution. The carbon-based production models (CbPMs;
Behrenfeld et al., 2005; Westberry et al., 2008) rely on par-
ticulate backscattering estimates of phytoplankton carbon as
a biomass indicator instead of chlorophyll. This approach al-
lows for some of the variability in chlorophyll to be attributed
to physiological adjustments to light and nutrients (e.g. pho-
toacclimation), independent of changes in NPP. The more
recent CAFE model (Silsbe et al., 2016) builds upon this
approach but in addition incorporates the influence of non-
algal absorption on the attenuation of the underwater light
field, which, if not accounted for, has a tendency to overesti-
mate NPP (notably in coastal waters). Recently, considerable
effort has been invested by the European Space Agency to
provide one of the longest records of ocean colour for de-
tecting climate variability by merging data from SeaWIFS,
MODIS, MERIS, VIIRS, Sentinel 3A OLCI, and Sentinel 3B
OLCI and by correcting inter-sensor biases from the multiple
ocean colour satellite sensors (Sathyendranath et al., 2019a);
this is known as the Ocean Colour Climate Change Initiative
(OC-CCI). This time series of 25 years (as of 2023) has al-
ready been utilized to provide estimates of trends in global
NPP (Kulk et al., 2020), with results showing that trends
in NPP were linked to trends in chlorophyll a and related
to changes in the physico-chemical conditions of the water
column from inter-annual and multi-decadal climate oscilla-
tions. However, this study only investigated one NPP algo-
rithm as opposed to using a suite of different algorithms with
varying sensitivities to specific processes, as is done for the
assessments of predicted change from Earth system models
in the coupled model intercomparison project (CMIP). It is
worth noting, however, that previous studies have performed
a series of statistical evaluations of a range of NPP mod-
els, known as the primary production algorithm round robin
(Campbell, et al., 2002; Carr et al., 2006; Friedrichs et al.,
2009; Saba et al., 2011; Lee et al., 2015), utilizing in situ
measurements and satellite matchups to assess their relative
performance, with the CAFE model most recently having the
lowest bias and error in comparison to all other algorithms
available at the time.

Given the importance of NPP for assessing carbon bud-
gets, ecosystem health, and environmental change, it is be-
coming increasingly clear that users require easy access to
appropriate data products. Unfortunately, the global NPP al-
gorithm applied to OC-CCI by Kulk et al. (Kulk et al., 2020)
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is not available for download on the OC-CCI server. Al-
though an NPP data product is available from Copernicus
Marine Services, this is only applied to the temporally lim-
ited GlobColour data product and similarly is only avail-
able for a single NPP algorithm (Antoine and Morel, 1996).
The most comprehensive suite of NPP algorithms is pro-
vided by the Ocean Productivity website (http://sites.science.
oregonstate.edu/ocean.productivity/custom.php, last access:
1 September 2023); however, these are also only applied to
single-sensor missions (SeaWIFS, MODIS, VIIRS), thus re-
stricting time periods of interest and preventing any longer-
term assessments of change. Furthermore, it is difficult for
the user to ascertain exactly which ancillary data products
(i.e. MLD criterion, nitracline) were used in the empirical
derivations of the single-sensor NPP products available for
download.

Here, we present a new ocean colour data product that
incorporates five NPP algorithms applied to the 25-year
merged-sensor OC-CCI time series. This multi-model data
product provides a range of estimates of global NPP from
1998 to 2022 at both 8 d and monthly resolutions and at a
spatial coverage of 25 km. The distributions of the models are
assessed across different oceanic biomes and long-term ob-
servatory sites to highlight either consensus or outliers. The
outputs of these algorithms are assessed for any biases or dif-
ferences in comparison to the original outputs from single-
sensor missions and for intra-algorithm differences for the
multi-sensor satellite record.

2 Materials and methods

A total of 25 years of ocean colour data from 1998–2022
were downloaded from the OC-CCI server (8 d, 4 km, v6.0;
Sathyendranath et al., 2019a), in which the latest version,
v6.0, includes an updated MERIS-4th reprocessing and Sen-
tinel 3B OLCI, drops MODIS and VIIRS data after 2019, and
uses the quasi-analytical algorithm (QAA) (Lee et al., 2002).
The data variables downloaded from OC-CCI v6.0 include
chlorophyll a concentration (Chl a, mgm−3), backscatter
at 443 nm (bbp, m−1), the diffuse attenuation coefficient at
490 nm (Kd 490, m−1), the phytoplankton absorption co-
efficient at 443 nm (aph, m−1), and the detrital absorption
coefficient at 443 nm (adg, m−1). As the spectral slope of
bbp (η, m−1 nm−1) is not a variable provided by the OC-
CCI project, it had to be calculated following Eq. (1) from
Pitarch et al. (2019) using remote sensing reflectance (Rrs)
at 443 and 560 nm. Daily integrated photosynthetically ac-
tive radiation (PAR, mol photons m−2 d−1) data were down-
loaded from Glob-Colour (http://www.globcolour.info/, last
access: 1 September 2023). Sea surface temperature (SST,
◦C) data were downloaded from the Group for High-
Resolution Sea Surface Temperature (GHRSST; https://
www.ghrsst.org/, last access: 1 September 2023). The Hadley
EN4.2.2 gridded temperature and salinity profiles (Good

et al., 2013) were converted to density (σ , kgm−3) to de-
rive mixed-layer depth (MLD, m) using the density thresh-
olds of 0.03 kgm−3 (de Boyer Montégut et al., 2004) and
0.125 kgm−3 (Suga et al., 2004). Additional data for MLD
were retrieved from HYCOM (https://www.hycom.org/data/
glba0pt08, last access: 1 September 2023) for both density
criteria (downloaded from http://sites.science.oregonstate.
edu/ocean.productivity/, last access: 1 September 2023).

For the primary analysis of the paper, the outputs using
the Hadley 1σ10 m= 0.030 kgm−3 MLD data product were
used (Ryan-Keogh et al., 2023d). The reason for this choice
was concerns around the accuracy of the HYCOM MLD data
product in best representing in situ conditions. A trend anal-
ysis performed on all MLD products and criteria (Fig. A1
in the Appendix) revealed distinct directional differences in
the trends of Hadley versus HYCOM, with the Hadley MLD
product being the only one to best represent the global MLD
trends as outlined in Sallée et al. (2021). However, the out-
puts using Hadley 1σ10 m= 0.125 kgm−3 (Ryan-Keogh et
al., 2023a), HYCOM 1σ10 m= 0.030 kgm−3 (Ryan-Keogh
et al., 2023b), and HYCOM 1σ10 m= 0.125 kgm−3 (Ryan-
Keogh et al., 2023c) are all available.

The nitracline depth was defined as the depth at which
nitrate and nitrite were equal to 0.5 µM (Westberry et al.,
2008) using the monthly climatology nitrate and nitrite pro-
file data from the World Ocean Atlas 2018 (WOA18; (Garcia
et al., 2019). The total backscattering of pure seawater (bbw,
m−1) was derived as a function of SST and salinity follow-
ing Zhang and Hu (2009) using monthly salinity data from
WOA18 averaged for the top 20 m.

All data were regridded onto a regular grid of 25 km spa-
tial resolution using bilinear interpolation using the xESMF
Python package (Zhuang et al., 2023) at 8 d temporal resolu-
tion. The remaining gaps were filled by applying a linear in-
terpolation scheme in sequential steps of longitude, latitude,
and time (Racault et al., 2014) using a three-point window.
If one of the points bordering the gap along the indicated
axis was invalid, it was omitted from the calculation, whilst
if two surrounding points were invalid, then the gap was not
filled. Finally, the data were smoothed by applying a moving-
average filter of the previous and next time steps. For more
details on this method, see Salgado-Hernanz et al. (2019).

NPP (mgCm−2 d−1) was calculated using five differ-
ent algorithms, namely the Eppley-VGPM model (Epp-
ley, 1972), the Behrenfeld-VGPM model (Behrenfeld and
Falkowski, 1997), the Behrenfeld-CbPM model (Behren-
feld et al., 2005), the Westberry-CbPM model (Westberry
et al., 2008), and the Silsbe-CAFE model (Silsbe et al.,
2016). Both Eppley-VGPM and Behrenfeld-VGPM models
are chlorophyll-based production models with a temperature-
dependent derivation of photosynthetic efficiencies. The
Behrenfeld-CbPM and Westberry-CbPM models are based
upon deriving carbon biomass from backscatter coefficients
and growth rates from chlorophyll-to-carbon ratios, with
the Westberry-CbPM being spectrally resolved across nine
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Table 1. Data variables, including chlorophyll a (Chl a, mgm−3), photosynthetically active radiation (PAR, mol photons m−2 d−1),
backscatter at 443 nm (bbp, m−1), phytoplankton absorption at 443 nm (aph, m−1), detrital absorption at 443 nm (adg, m−1), diffuse at-
tenuation coefficient at 490 nm (Kd, m−1), the spectral slope of backscatter (η, m−1 nm−1), the backscatter of pure water (bbw, m−1),
mixed-layer depth (MLD, m), sea surface temperature (SST, ◦C), nitracline depth (m), and sea surface salinity (SSS), used in the deriva-
tion of net primary production using five models, namely the Eppley-VGPM, Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-CbPM, and
Silsbe-CAFE.

Chl a PAR bbp aph adg Kd η bbw MLD SST Nitracline SSS

Eppley-VGPM × × × × × × × × ×

Behrenfeld-VGPM × × × × × × × × ×

Behrenfeld-CbPM × × × × × × ×

Westberry-CbPM × × × × × ×

Silsbe-CAFE ×

wavelengths. The Silsbe-CAFE model is an absorption-based
model that is spectrally resolved across 21 wavelengths
whilst also being resolved across the diel cycle from sunrise
to sunset. For more details on which parameters are required
for each model, please see Table 1.

For presentation purposes, the global data were sepa-
rated into biomes using the classification from Fay and
McKinley (2014), while long-term observatories were se-
lected to be the Bermuda Atlantic Time Series (30.7–
32.7◦ N, 59.2–61.2◦W), the Hawaii Oceanic Time Series
(21.8–23.8◦ N, 157–159◦W), the Southern Ocean Time Se-
ries (46.0–48.0◦ S, 139–141◦ E), and the Porcupine Abyssal
Plain observatory (48–50◦ N, 15.5–17.5◦W).

As an additional comparison to the OC-CCI outputs
presented here, monthly NPP data of Eppley-VGPM,
Behrenfeld-VGPM, Westberry-CbPM, and Silsbe-CAFE
were downloaded from the Ocean Productivity website
(http://sites.science.oregonstate.edu/ocean.productivity/, last
access: 1 September 2023) for SeaWIFS (1998–2007) and
MODIS (2003–2019). Unfortunately, the NPP data for the
Behrenfeld-CbPM are no longer available as they have
been superseded by the Westberry-CbPM NPP data. Pear-
son’s correlation coefficients (R2) were calculated between
the SeaWIFS- and MODIS-derived NPP and the OC-CCI-
derived NPP.

3 Results and discussion

Comparing intra-model climatological means

The climatological means of each NPP model show a large
degree of spatial heterogeneity, with higher values being
associated with western boundary currents and the Equa-
tor (Fig. 1). The temperature based Eppley-VGPM and
Behrenfeld-VGPM models (Fig. 1a and b) show good agree-
ment in terms of their ranges and means (Table 2), but there
are large differences, particularly in the North Atlantic and
the Arabian Sea and equatorial Pacific. The carbon-based
Behrenfeld-CbPM and Westberry-CbPM models (Fig. 1c
and d) show very good agreement in terms of their clima-

tological means, although discrepancies are nonetheless ev-
ident (e.g. higher NPP in the Southern Ocean and North
Atlantic in the Behrenfeld-CbPM and higher NPP in the
equatorial region in the Westberry-CbPM). The absorption-
based Silsbe-CAFE model (Fig. 1e) has a much smaller range
across the global ocean. A map of the coefficient of variation
(CV= σNPP/〈NPP〉; Fig. 2a) shows the highest values (de-
picting disagreement between models) in the high latitudes
and in coastal regions. Unlike the comparison in Westberry
et al. (2023) (which included Behrenfeld-VGPM, Westberry-
CbPM, and Silsbe-CAFE applied to MODIS data from 2003
to 2019), we do not find lower CV values to be specifically
associated with highly productive waters, nor do we find a
similar distribution for very high CV values. The Silsbe-
CAFE model has the most peaked probability distributions
(PDFs) of all the models (Fig. 2b) with a narrow range, which
is similar to that reported in Westberry et al. (2023). The
other models show a much lower peak and broader range,
with the two CbPM models centred around a lower median
distribution of NPP (more similar to that of Silsbe-CAFE)
than the slightly higher median NPP of the two VGPM mod-
els. When we examine the cumulative distributions (CDFs)
of each model (Fig. 2c), the medians were 1 order of mag-
nitude higher in the Eppley-VGPM (1019.5 mgCm−2 d−1)
and Behrenfeld-VGPM (1206.6 mgCm−2 d−1) in com-
parison to the Behrenfeld-CbPM (298.2 mgCm−2 d−1),
Westberry-CbPM (531.1 mgCm−2 d−1), and Silsbe-CAFE
(495.5 mgCm−2 d−1). Whilst the median values for both
Westberry-CbPM and Silsbe-CAFE are similar to those re-
ported in Westberry et al. (2023), the Behrenfeld-VGPM
values are much higher than what was previously reported
(332 mgCm−2 d−1), which is not necessarily surprising
when considering the fact that different SST, PAR, and Chl a
products are being used in this analysis.

Investigating the difference in climatological means be-
tween each model and the ensemble model mean highlights
the regional distribution of positive and negative biases rel-
ative to the ensemble model mean (Fig. A2). For example,
the two VGPM models show an opposite distribution in their
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Figure 1. Climatological means of net primary productivity (NPP) for the period of 1 January 1998 to 31 December 2022 for the (a) Eppley-
VGPM, (b) Behrenfeld-VGPM, (c) Behrenfeld-CbPM, (d) Westberry-CbPM, and (e) Silsbe-CAFE model and (f) the mean of all models.

relative differences, with Behrenfeld-VGPM being higher in
the North Atlantic, Arctic, and Antarctic Circumpolar Cur-
rent (ACC) regions, while Eppley-VGPM is higher in the
equatorial region. Both CbPM models show a tendency to
overestimate NPP compared to other models, except in the
Arctic, where the Westberry-CbPM is instead lower than the
ensemble model mean. Interestingly, although the climato-
logical mean of the Silsbe-CAFE appears to be lower than
that of all other models (Fig. 1), this is not globally consistent
when expressed as a difference, which instead highlights that
the Silsbe-CAFE overestimates NPP relative to other mod-
els in the oligotrophic gyres and ACC region. Finally, if we
compare global oceanic NPP from the models with previous
IPCC estimates of 50 PgCm−2 yr−1, all models have simi-
lar ranges (between 46.4–66.2 PgCm−2 yr−1) to those previ-
ously reported (32.0–70.7 PgCm−2 yr−1; Buitenhuis et al.,
2013; Sathyendranath et al., 2019b).

Interrogating spatio-temporal patterns of NPP data
products

Fay and McKinley (2014) classified the global ocean
into 17 biomes (Fig. 3) according to distinct biological
(Chl a concentrations) and physical characteristics (SST,
MLD, and ice fraction). Splitting the NPP data accord-
ing to these biomes allows a regional comparison of inter-
model differences and similarities. The annual model means

of each NPP product range from a minimum value of
212.15± 39.25 mgCm−2 d−1 in the Southern Ocean subpo-
lar seasonally stratified (SO SPSS) biomes (Fig. 3s) to a max-
imum value of 654.50± 141.18 mgCm−2 d−1 in the East
Pacific equatorial biome (PEQU E) biome (Fig. 3g). When
globally averaged (Fig. 3s), the models appear to agree very
well in their annual climatologies of NPP; however, when in-
terrogated on a per-biome basis, some discrepancies emerge.
For example, although there is particularly good agreement
in NPP in the oligotrophic gyres (Fig. 3e, h, l, and n), large
intra-model differences are particularly evident in the equa-
torial biomes (Fig. 3f, g, and m) and the high-latitude At-
lantic and Pacific (Fig. 3b, c, i, and j). In some biomes, there
is also a tendency for models to merge or diverge over time.
For example, there is a large inter-model spread in the early
2000s in the North Atlantic and Southern Ocean ICE biomes
(Fig. 3i and r), which narrows over time, while the opposite
is apparent in the North Atlantic subpolar seasonally strati-
fied biome (NA SPSS) biome (Fig. 3j). Also worth noting are
regions where all models agree except one, for example, the
comparatively lower NPP for the Behrenfeld-VGPM model
in the West Pacific equatorial biome (PEQU W) (Fig. 3f).

In the next model comparison, we combine biomes into
three regions, namely northern high latitude, equatorial,
and southern high latitude, to examine the seasonal cycle
in NPP across the five models. Here, inter-model differ-
ences become even more pronounced in terms of their min-
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Figure 2. The distribution of the model net primary production (NPP) values. (a) The coefficient of variation, calculated as the inter-model
standard deviation normalized to the inter-model mean. (b) Probability distributions (PDFs) of the climatological mean NPP for each of the
models. (c) Cumulative distributions (CDFs) of the climatological mean NPP for each of the models.

ima, maxima, and phenology of the seasonal cycle (Fig. 4).
In the Northern Hemisphere’s biomes (Fig. 4a; North Pa-
cific and North Atlantic ice, subpolar seasonally strati-
fied, and subtropical seasonally stratified biomes), there is
a large range of variability in maximum NPP, with the
Behrenfeld-VGPM and Behrenfeld-CbPM exhibiting the
highest peak values (963.08 and 984.36 mgCm−2 d−1, re-
spectively) and the Silsbe-CAFE model exhibiting the low-
est peak value (512.57 mgCm−2 d−1). The timings of the
peaks are also offset, with the earliest peak occurring in the
Eppley-VGPM, Behrenfeld-VGPM, and Silsbe-CAFE mod-
els at the start of June, while the Behrenfeld-CbPM and
Westberry-CbPM models put the timing of the peak a few
weeks later in mid-June. The Southern Hemisphere’s biomes
(Fig. 4c; Southern Ocean ice, subpolar seasonally stratified,
and subtropical seasonally stratified biomes) similarly ex-
press a large range in amplitude of the seasonal peak across
all models, with both CbPM models exhibiting the high-
est values (776.17 and 700.27 mgCm−2 d−1, respectively),

whereas the Eppley-VGPM exhibits the lowest peak value
(380.82 mgCm−2 d−1). The timing of the peak is similar
for Behrenfeld-CbPM, Westberry-CbPM, and Silsbe-CAFE
in January with the Eppley-VGPM and Behrenfeld-VGPM
models placing the bloom peak earlier in December. The
low-latitude and equatorial biomes (Fig. 4b; North South Pa-
cific subtropical permanently stratified, North South Atlantic
subtropical permanently stratified, Indian subtropical perma-
nently stratified, and Atlantic and Pacific equatorial biomes)
do not exhibit any clear seasonal cycle and have a lower
range of variability across all the models. The range of di-
vergence is more similar to that of the seasonal troughs of
NPP in the northern and southern high-latitude regions, al-
though rates of NPP are not as low (mean for all models for
the time series= 420.69± 75.06 mgCm−2 d−1).

We further examined the variability between models
by choosing four long-term observatory sites, namely the
Porcupine Abyssal Plain observatory (PAP; Fig. 5a), the
Bermuda Atlantic Time Series (BATS; Fig. 5b), the Hawaii
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Table 2. The climatological global minimum, maximum, mean± standard deviation, median, and interquartile range (IQR: 75th–25th) for
each net primary production model. Included is the sum of the global NPP (PgCm−2 yr−1) from each model (averaged for each year from
1998 to 2022, including the standard deviation), including the different MLD criteria used (where n/a means not applicable).

MLD criterion Min Max Mean±SD Median IQR Global NPP

Eppley-VGPM n/a 12.8 19274.4 459.3± 466.5 348.6 314.2 55.3± 1.7

Behrenfeld-VGPM n/a 12.0 17014.3 458.9± 471.1 351.6 321.3 52.2± 1.4

Behrenfeld-CbPM Hadley
1σ10 m= 0.03 kgm−3

1.2× 10−5 5734.2 578.7± 338.8 508.3 352.3 63.4± 1.6

Hadley
1σ10 m= 0.125 kgm−3

8.3× 10−10 5261.0 446.6± 276.2 380.6 297.7 53.1± 1.3

HYCOM
1σ10 m= 0.03 kgm−3

1.1× 10−12 7668.9 544.2± 303.9 474.9 319.7 60.8± 2.6

HYCOM
1σ10 m= 0.125 kgm−3

1.1× 10−12 7668.9 469.5± 288.7 399.0 301.2 53.9± 2.4

Westberry-CbPM Hadley
1σ10 m= 0.03 kgm−3

3.6× 10−12 6992.5 544.3± 289.5 476.3 329.9 66.2± 2.1

Hadley
1σ10 m= 0.125 kgm−3

3.9× 10−12 6641.2 456.8± 279.5 379.7 314.9 58.8± 2.0

HYCOM
1σ10 m= 0.03 kgm−3

5.9× 10−11 3834.4 519.3± 262.9 460.1 313.7 62.8± 2.6

HYCOM
1σ10 m= 0.125 kgm−3

2.1× 10−12 3853.0 466.0± 268.4 396.4 306.2 58.3± 2.5

Silsbe-CAFE Hadley
1σ10 m= 0.03 kgm−3

22.1 1230.7 389.8± 99.8 389.8 135.5 46.4± 3.0

Hadley
1σ10 m= 0.125 kgm−3

22.1 1230.7 384.4± 100.5 367.0 139.9 46.4± 3.0

HYCOM
1σ10 m= 0.03 kgm−3

22.3 1230.7 389.4± 100.5 373.9 139.6 46.5± 3.1

HYCOM
1σ10 m= 0.125 kgm−3

22.1 1230.7 386.3± 101.1 368.9 141.9 46.5± 3.0

Oceanic Time Series (HOTS; Fig. 5c), and the Southern
Ocean Time Series (SOTS; Fig. 5d). The BATS site has
the lowest range of NPP with the smallest inter-model dif-
ferences (310.11± 35.37 mgCm−2 d−1), while HOTS and
SOTS express a similar range in NPP (352.86± 73.46
345.79± 62.22 mg Cm−2 d−1, respectively), and the PAP
site has the highest range in NPP and the greatest inter-model
differences (632.00± 180.45 mgCm−2 d−1).

Comparison with MODIS- and SeaWIFS-derived NPP

When first designed, these NPP models were originally im-
plemented in both SeaWIFS and MODIS data products. As
such, we are able to compare the new OC-CCI-derived NPP
for all models presented here with the original NPP from
both SeaWIFS and MODIS that is downloadable from the
Ocean Productivity website (http://sites.science.oregonstate.
edu/ocean.productivity/, last access: 1 September 2023).
Spatial correlation maps were subsequently derived for the
Eppley-VGPM, Behrenfeld-VGPM, Westberry-CbPM, and
Silsbe-CAFE models using both SeaWIFS- and OC-CCI-

derived NPP for the period of 1 January 1998 to 31 De-
cember 2007 (Fig. A3) and the MODIS- and OC-CCI-
derived NPP for the period 1 January 2003 to 31 Decem-
ber 2019 (Fig. A4). Results show very good agreement for
Eppley-VGPM (Figs. A3a, b and A4a, b) and Behrenfeld-
VGPM (Figs. A3c, d and A4c, d) for both SeaWIFS (me-
dian R2

= 0.83 and 0.87, respectively) and MODIS (median
R2
= 0.85 and 0.90, respectively), with some lower R2 val-

ues evident in the equatorial region. Correlations were gen-
erally poor for the Westberry-CbPM model for both SeaW-
IFS (median R2

= 0.41) and MODIS (median R2
= 0.52).

Correlations against the Silsbe-CAFE model were good at
higher latitudes for both SeaWIFS and MODIS but poor
in the equatorial region, with the overall correlation be-
ing worse for MODIS (median R2

= 0.66) than for SeaW-
IFS (median R2

= 0.70). However, the NPP data products
generated from SeaWIFS and MODIS for these respective
time periods were derived using the HYCOM MLD data
product and not Hadley (as per the OC-CCI NPP prod-
uct), which may account for some of the observed variabil-
ity and poor correlations. For consistency, we can instead
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Figure 3. (a) Map of the mean biomes from Fay and McKinley (2014), where white areas represent regions which do not fit into any biome
classification. Annual means of net primary productivity (NPP, mgCm−2 d−1) from the Eppley-VGPM, Behrenfeld-VGPM, Behrenfeld-
CbPM, Westberry-CbPM, and Silsbe-CAFE models for the (b) North Pacific ice biome (NP ICE), (c) North Pacific subpolar seasonally
stratified biome (NP SPSS), (d) North Pacific subtropical seasonally stratified biome (NP STSS), (e) North Pacific subtropical permanently
stratified biome (NP STPS), (f) West Pacific equatorial biome (PEQU W), (g) East Pacific equatorial biome (PEQU E), (h) South Pacific
subtropical permanently stratified biome (SP STPS), (i) North Atlantic ice biome (NA ICE), (j) North Atlantic subpolar seasonally stratified
biome (NA SPSS), (k) North Atlantic subtropical seasonally stratified biome (NA STSS), (l) North Atlantic subtropical permanently stratified
biome (NA STPS), (m) equatorial Atlantic biome (AEQU), (n) South Atlantic subtropical permanently stratified biome (SA STPS), (o) Indian
subtropical permanently stratified biome (IND STPS), (p) South Ocean subtropical seasonally stratified biome (SO STSS), (q) Southern
Ocean subpolar seasonally stratified biome (SO SPSS), (r) Southern Ocean ice biome (SO ICE), and (s) the global ocean.

similarly use the HYCOM MLD with a density criterion of
1σ10 m= 0.030 kg m−3 (Fig. A5) to derive the OC-CCI NPP
product for comparison with SeaWIFS and MODIS products
for the Westberry-CbPM and Silsbe-CAFE models (which
both use MLD as input criteria, unlike the VGPM models)
(Ryan-Keogh et al., 2023b). Here, we see an overall improve-
ment in the spatial correlation maps and distribution of R2,
which, for Westberry-CbPM, increased in both SeaWIFS and
MODIS to R2

= 0.51 and 0.60, respectively, while for the

Silsbe-CAFE model the correlation increased to R2
= 0.76

and 0.70 (for SeaWIFS and MODIS, respectively).
The reasons for discrepancies between NPP products de-

rived from OC-CCI versus SeaWIFS and MODIS can cul-
minate from differences in the satellite products themselves
(which will not be investigated here) but also from addi-
tional sources of variability that stem primarily from dif-
ferences in the criteria of input variables. For instance, the
original Westberry-CbPM study used a mixed-layer defini-
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Figure 4. The seasonal cycle of net primary productivity
(NPP, mgCm−2 d−1) from the Eppley-VGPM, Behrenfeld-VGPM,
Behrenfeld-CbPM, Westberry-CbPM, and Silsbe-CAFE models for
(a) the northern high-latitude regions (NA ICE, NP ICE, NA SPSS,
NP SPSS, NA STSS, and NP STSS), (b) the equatorial and low-
latitude regions (AEQU, PEQU E, PEQU W, IND STPS, NA STPS,
SA STPS, NP STPS, and SP STPS), and (c) the southern high-
latitude regions (SO ICE, SO SPSS, and SO STSS). Data are av-
eraged across the time period 1998–2022. Please note that, for
panel (c), the data have been shifted for the peak to appear in the
centre of the plot. The circles represent the timing of the annual
maximum.

tion of 1T10 m= 0.5 ◦C, whereas the NPP products applied
here use a density criteria of 1σ10 m= 0.030 kgm−3. If we
instead derive NPP from an MLD that is defined with a den-
sity criteria of 1σ10 m= 0.125 kgm−3 (as per the alterna-
tive MLD criterion listed on the Ocean Productivity web-
site, http://sites.science.oregonstate.edu/ocean.productivity/,
last access: 1 September 2023) (Ryan-Keogh et al., 2023c),
we see a further improvement in the spatial correlation of
NPP for the Westberry-CbPM (Fig. A5a-d), for both SeaW-
IFS (R2

= 0.65) and MODIS time periods (R2
= 0.74), and

Figure 5. Annual means of net primary productivity (NPP,
mgCm−2 d−1) from the Eppley-VGPM, Behrenfeld-VGPM,
Behrenfeld-CbPM, Westberry-CbPM, and Silsbe-CAFE models for
(a) the Porcupine Abyssal Plain (PAP) observatory, (b) the Bermuda
Atlantic Time Series (BATS), (c) the Hawaii Oceanic Time Series
(HOTS), and (d) the Southern Ocean Time Series (SOTS).

for the Silsbe-CAFE model for both SeaWIFS (R2
= 0.83)

and MODIS (R2
= 0.77), with poor agreement still persist-

ing in the equatorial Atlantic and Arabian Sea.
Another potential source of variability for the Westberry-

CbPM model specifically lies in the data source used for de-
termining the nitracline depth. Westberry et al. (2008) orig-
inally used the WOA01 data product, whereas, here, we
have used the updated WOA18 product. As a brief inves-
tigation into the differences between datasets, we looked
at examples of the total number of nitrate data points in
WOA09 and WOA13 (1186280 and 3603293, respectively)
compared to WOA18 (4097914), representing increases of
203 % and 14 %, respectively. Further analysis investigated
differences in the nitracline depth if derived using WOA13
versus WOA18 (Fig. A7); results show that differences oc-
cupy the same spatial extent as the areas of poor spatial cor-
relation. Future versions of this product will need to incor-
porate updates to global nitrate climatologies, such as the
planned release of WOA23, which will greatly improve esti-
mates of the nitracline depth.

The remaining potential sources of variability, specific
to the Silsbe-CAFE model, are the choice of salinity data
for deriving the backscattering of pure water (bbw) and the
derivation of the spectral slope of bbp (η). In Silsbe et al.
(2016), they assumed a constant salinity of 32.5 for simplic-
ity, whereas, here, we have used monthly means of salin-
ity taken from WOA18. The difference between this refer-
ence value and the monthly means (Fig. A8) shows that ar-
eas such as the equatorial Pacific and Atlantic, which had
the lowest spatial correlations for the Silsbe-CAFE model,
have some of the biggest differences in salinity. A sensi-
tivity analysis of the Zhang and Hu (2009) derivation of
backscattering by pure water shows that the incorrect im-
plementation of salinity can have significant implications
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for the final value (Fig. A9). As such, we recommend the
use of monthly climatologies, but in the future, it will be-
come necessary to account for changing salinities, particu-
larly in polar regions where changes in sea ice extent are re-
sulting in freshening (Haumann et al., 2020). One potential
data product could be the climate change initiative satellite-
based sea surface salinity product (Boutin et al., 2021), which
has already shown strong promise for capturing variations
in salinity that match in situ measurements from both Argo
floats and ships. As OC-CCI does not release η as a stan-
dard product, we had to derive it using the Rrs data following
Eq. (1) from Pitarch et al. (2019). However, the wavelengths
required for this derivation are 443 and 555 nm, with OC-
CCI having only 560 nm. Nevertheless, we find good agree-
ment between MODIS-derived η and OC-CCI η across the
global ocean (Fig. A10), with only a few areas in the Arc-
tic that have very low agreement (median R2

= 0.78). The
differences highlighted here between η and the inherent op-
tical properties (IOPs), which are required for the derivation
of each NPP algorithm, can be explained by the use of dif-
ferent ocean colour algorithms. For example, OC-CCI uses
the QAA, which requires multiple Rrs bands (typically six or
more) and can account for variability in the spectral shape of
reflectance and the IOPs (i.e. bbp, aph, adg). This makes this
algorithm suitable for multiple water types, from the open
ocean to optically complex coastal waters. A different algo-
rithm which is typically used to process data from MODIS
is the Garvel–Siegel–Maritorena (GSM) (Garver and Siegel,
1997; Maritorena et al., 2002) algorithm, which only requires
three Rrs bands and therefore does take into account spec-
tral variability, meaning it is typically only suited for open-
ocean waters. Indeed, some studies have highlighted how the
GSM model can sometimes overestimate bbp (λ443) values
(Brewin et al., 2015), which would directly impact the NPP
algorithms here, which use this IOP to estimate phytoplank-
ton carbon.

4 Data availability

The primary paper data are available at
https://doi.org/10.5281/ZENODO.8314348 (Ryan-
Keogh et al., 2023d). The NPP products which used
Hadley 1σ10 m= 0.125 kgm−3 data are available at
https://doi.org/10.5281/ZENODO.8320875 (Ryan-
Keogh et al., 2023a). The NPP products which used
HYCOM 1σ10 m= 0.030 kgm−3 data are available at
https://doi.org/10.5281/zenodo.7860491 (Ryan-Keogh
et al., 2023b). The NPP products which used HY-
COM 1σ10 m= 0.125 kgm−3 data are available at
https://doi.org/10.5281/ZENODO.8320872 (Ryan-Keogh
et al., 2023c). OC-CCI data were downloaded from
https://www.oceancolour.org/ (Sathyendranath et al., 2019a).
SeaWIFS and MODIS NPP data products used for the com-
parison were downloaded from the Ocean Productivity web-

site (http://sites.science.oregonstate.edu/ocean.productivity/,
O’Malley, 2023). The Hadley gridded temperature and
salinity data were downloaded from https://www.metoffice.
gov.uk/hadobs/en4/ (Good et al., 2013). The HYCOM MLD
data were downloaded from the Ocean Productivity website
(http://sites.science.oregonstate.edu/ocean.productivity/,
O’Malley, 2023). PAR data were downloaded from
http://www.globcolour.info/ (ACRI-ST, 2023). Sea
surface temperature data were downloaded from
https://www.ghrsst.org/ (National Centers for Environ-
mental Information, 2023).

5 Conclusion

The data product presented here provides a continuous record
of global satellite-derived NPP at 8 d and monthly resolu-
tion using multiple algorithms applied to the OC-CCI prod-
uct as the longest continuing record of satellite ocean colour
(Sathyendranath et al., 2019a). The purpose is not to ad-
vocate for the suitability of one NPP model over another
as other studies have already highlighted the strengths and
weaknesses of different satellite NPP algorithms’ abilities to
capture the appropriate range of in situ NPP measurements
(Saba et al., 2011; Friedrichs et al., 2009; Carr et al., 2006;
Campbell et al., 2002). Rather, the strength in this multi-
model data product lies in its ability to offer a range of NPPs
across different algorithms, either as a climatology or as a
long-term climatic trend for a user’s specific region of in-
terest. Additionally, by providing multiple algorithms, the
user can interrogate the distribution of NPPs across differ-
ent models to identify consensus or outliers that can inform
decisions on whether or not to retain or reject specific algo-
rithms in their regional analysis. Flexibility also exists with
regard decisions around the mixed-layer depth, with two dif-
ferent density criteria (1σ10 m= 0.030 or 0.125 kgm−3) or
products (HYCOM versus Hadley) that can be altered to en-
sure that the MLD input best reflects the user’s region of in-
terest. Currently the OC-CCI is released on an annual basis,
with specific corrections and adjustments made based upon
assessments of previous single-sensor data streams and any
new data sources. The multi-model data product presented
here will be updated on the same regular basis as and when
OC-CCI data are updated, with backwards corrections simi-
larly applied to prevent the retention of erroneous values in
the data record. Future updates to this data product will sim-
ilarly incorporate not only updated climatological mean val-
ues (i.e. the planned release of WOA2023) but will also in-
corporate additional NPP algorithms (i.e. SABPM; Tao et al.,
2017) to provide the user with a wide range of options for as-
sessing climatological seasonal cycles, as well as trends and
trajectories of oceanic productivity.
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Appendix A

Figure A1. The annual mean trends of the different MLD data products HYCOM (a–f) and Hadley (g–l) for the different criteria of
1σ10 m= 0.030 kgm−3 (a–c, g–i) and 1σ10 m= 0.125 kgm−3 (d–f, j–l), averaged for the whole year (a, d, g, j), December to February (b,
e, h, k), and June to August (c, f, i, l). Trend analysis performed as described in Ryan-Keogh et al. (2023e).
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Figure A2. The difference in climatological mean [1998–2022] NPPs between the inter-model mean and (a) Eppley-VGPM, (b) Behrenfeld-
VGPM, (c) Behrenfeld-CbPM, (d) Westberry-CbPM, and (e) Silsbe-CAFE models.

Figure A3. Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between SeaWIFS and OC-CCI for the
period of 1 January 1998 to 31 December 2007 for (a, b) Eppley-VGPM, (c, d) Behrenfeld-VGPM, (e, f) Westberry-CbPM, and (g, h) Silsbe-
CAFE. Please note that for Westberry-CbPM and Silsbe-CAFE, the MLD product used for SeaWIFS is HYCOM, and the MLD product for
OC-CCI is Hadley, both using the 1σ10 m= 0.030 kgm−3 criterion.
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Figure A4. Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between MODIS and OC-CCI for the
period of 1 January 2003 to 31 December 2019 for (a, b) Eppley-VGPM, (c, d) Behrenfeld-VGPM, (e, f) Westberry-CbPM, and (g, h) Silsbe-
CAFE. Please note that, for Westberry-CbPM and Silsbe-CAFE, the MLD product used for SeaWIFS is HYCOM, and the MLD product for
OC-CCI is Hadley, both using the 1σ10 m= 0.030 kgm−3 criterion.

Figure A5. Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between SeaWIFS (a, b, e, f), MODIS (c,
d, g, h), and OC-CCI for (a–d) Westberry-CbPM and (e–h) Silsbe-CAFE. Please note that the MLD product used is HYCOM with the
1σ10 m= 0.030 kgm−3 criterion. Included in the histograms are the Pearson’s correlation coefficient R2 values using the Hadley MLD data
product (in black), as displayed in Figs. A3 and A4.
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Figure A6. Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values using the MLD criterion of
1σ10 m= 0.125 kgm−3 (in grey) for (a, b) Westberry-CbPM SeaWIFS vs. OC-CCI, (c, d) Westberry-CbPM MODIS vs. OC-CCI, (e,
f) Silsbe-CAFE SeaWIFS vs. OC-CCI, and (a, b) CAFE MODIS vs. OC-CCI. Included in the histograms are the Pearson’s correlation
coefficient R2 values using the MLD criterion of 1σ10 m= 0.030 kgm−3 (in black), as displayed in Figs. A3 and A4.
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Figure A7. Maps of the difference in nitracline depth, where the nitracline depth is calculated as the depth at which nitrate+ nitrite is equal
to 0.5 µM between monthly WOA2013 and WOA2018.

Figure A8. Maps of the difference in sea surface salinity (SSS) from the WOA18 monthly climatology and the reference SSS value used in
Silsbe et al. (2016) of 32.5 PSU.

https://doi.org/10.5194/essd-15-4829-2023 Earth Syst. Sci. Data, 15, 4829–4848, 2023



4844 T. J. Ryan-Keogh et al.: A new global oceanic multi-model net primary productivity data product

Figure A9. Sensitivity analysis of the calculation of the total backscattering of pure seawater (bsw, m−1) as a function of both (a) temperature
(◦C) (colour scale= salinity) and (b) salinity (colour scale= temperature, ◦C).

Figure A10. A spatial correlation map (a) and a histogram of Pearson’s correlation coefficient R2 values (b) between monthly MODIS- and
OC-CCI-derived spectral slope of bbp (η) for the period of 1 January 2003 to 31 December 2019.
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Lutz, V. A., Marañón, E., Raman, M., Richardson, K., Rozema,
P. D., Poll, W. H. van de, Segura, V., Tilstone, G. H., Uitz, J.,
Dongen-Vogels, V. V, Yoshikawa, T., and Sathyendranath, S.:
Primary Production, an Index of Climate Change in the Ocean:
Satellite-Based Estimates over Two Decades, Remote Sens., 12,
826, https://doi.org/10.3390/rs12050826, 2020.

Lee, Z., Carder, K. L., and Arnone, R. A.: Deriving inherent optical
properties from water color: a multiband quasi-analytical algo-
rithm for optically deep waters, Appl. Optics, 41, 5755–5772,
https://doi.org/10.1364/AO.41.005755, 2002.

Lee, Z., Marra, J., Perry, M. J., and Kahru, M.: Estimating
oceanic primary productivity from ocean color remote sens-
ing: A strategic assessment, J. Marine Syst., 149, 50–59,
https://doi.org/10.1016/j.jmarsys.2014.11.015, 2015.

Longhurst, A., Sathyendranath, S., Platt, T., and Caverhill, C.: An
Estimate of Global Primary Production in the Ocean from Satel-
lite Radiometer Data, J. Plankton Res., 17, 1245–1271, 1995.

Lurin, B.: Global terrestrial net primary production, Glob. Change
News I. (IGPB), 19, 6–8, 1994.

Maritorena, S., Siegel, D. A., and Peterson, A. R.: Op-
timization of a semianalytical ocean color model for
global-scale applications, Appl. Optics, 41, 2705–2714,
https://doi.org/10.1364/AO.41.002705, 2002.

Mikaloff Fletcher, S. E., Gruber, N., Jacobson, A. R., Gloor,
M., Doney, S. C., Dutkiewicz, S., Gerber, M., Follows,
M., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A.,
Müller, S. A., and Sarmiento, J. L.: Inverse estimates of the
oceanic sources and sinks of natural CO2 and the implied
oceanic carbon transport, Global Biogeochem. Cy., 21, GB1010,
https://doi.org/10.1029/2006GB002751, 2007.

Monteiro, P. M. S., Boyd, P., and Bellerby, R.: Role of the sea-
sonal cycle in coupling climate and carbon cycling in the
subantarctic zone, Eos T. Am. Geophys. Un., 92, 235–236,
https://doi.org/10.1029/2011EO280007, 2011.

National Centers for Environmental Information: Daily L4 Opti-
mally Interpolated SST (OISST) In situ and AVHRR Analysis,

Earth Syst. Sci. Data, 15, 4829–4848, 2023 https://doi.org/10.5194/essd-15-4829-2023

https://doi.org/10.1029/2004JC002378
https://doi.org/10.5194/essd-6-273-2014
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1016/j.jmarsys.2008.05.010
https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/
https://doi.org/10.1029/96JC03243
https://doi.org/10.1002/2013JC009067
https://doi.org/10.1088/1748-9326/ab4667
https://doi.org/10.1029/2008GB003349
https://doi.org/10.1029/2019AV000132
https://doi.org/10.1029/2008JC005139
https://doi.org/10.1029/2011GL046735
https://doi.org/10.1038/s41561-021-00807-z
https://doi.org/10.1038/s41561-021-00807-z
https://doi.org/10.3390/rs12050826
https://doi.org/10.1364/AO.41.005755
https://doi.org/10.1016/j.jmarsys.2014.11.015
https://doi.org/10.1364/AO.41.002705
https://doi.org/10.1029/2006GB002751
https://doi.org/10.1029/2011EO280007


T. J. Ryan-Keogh et al.: A new global oceanic multi-model net primary productivity data product 4847

Ver. 2.0., National Centers for Environmental Information [data
set], https://doi.org/10.5067/GHAAO-4BC02, 2023.

O’Malley, R.: Ocean Productivity – Oregon State University, http:
//orca.science.oregonstate.edu/npp_products.php, last access: 1
September 2023.

Pitarch, J., Bellacicco, M., Organelli, E., Volpe, G., Colella,
S., Vellucci, V., and Marullo, S.: Retrieval of Particulate
Backscattering Using Field and Satellite Radiometry: Assess-
ment of the QAA Algorithm, Remote Sens.-Basel, 12, 77,
https://doi.org/10.3390/rs12010077, 2019.

Polovina, J. J., Dunne, J. P., Woodworth, P. A., and Howell, E. A.:
Projected expansion of the subtropical biome and contraction
of the temperate and equatorial upwelling biomes in the North
Pacific under global warming, ICES J. Mar. Sci., 68, 986–995,
https://doi.org/10.1093/icesjms/fsq198, 2011.

Racault, M.-F., Sathyendranath, S., and Platt, T.: Impact of miss-
ing data on the estimation of ecological indicators from satel-
lite ocean-colour time-series, Remote Sens. Environ., 152, 15–
28, https://doi.org/10.1016/j.rse.2014.05.016, 2014.

Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D.,
Feely, R., Gulev, S., Johnson, G. C., Josey, S., and Kostianoy,
A.: Observations: Ocean, in: Climate Change 2013: The Phys-
ical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-
K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P. M., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, 255–316,
https://doi.org/10.1017/CBO9781107415324.010, 2013.

Ryan-Keogh, T., Thomalla, S., Chang, N., and Moalusi, T.: Net pri-
mary production from the Behrenfeld-CbPM, Westberry-CbPM
and Silsbe-CAFE algorithms – HADLEY MLD 0.125 Criterion,
Zenodo [data set], https://doi.org/10.5281/ZENODO.8320875,
2023a.

Ryan-Keogh, T., Thomalla, S., Chang, N., and Moalusi, T.: Net pri-
mary production from the Behrenfeld-CbPM, Westberry-CbPM
and Silsbe-CAFE algorithms – HYCOM MLD 0.030 Criterion,
Zenodo [data set], https://doi.org/10.5281/ZENODO.8320872,
2023b.

Ryan-Keogh, T., Thomalla, S., Chang, N., and Moalusi, T.: Net pri-
mary production from the Behrenfeld-CbPM, Westberry-CbPM
and Silsbe-CAFE algorithms – HYCOM MLD 0.125 Criterion,
Zenodo [data set], https://doi.org/10.5281/ZENODO.8318272,
2023c.

Ryan-Keogh, T., Thomalla, S., Chang, N., and Moalusi,
T.: Net primary production from the Eppley-VGPM,
Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-
CbPM and Silsbe-CAFE algorithms, Zenodo [data set],
https://doi.org/10.5281/ZENODO.8314348, 2023d.

Ryan-Keogh, T. J., Thomalla, S. J., Monteiro, P. M. S.,
and Tagliabue, A.: Multidecadal trend of increasing iron
stress in Southern Ocean phytoplankton, Science, 379,
https://doi.org/10.1126/science.abl5237, 2023.

Saba, V. S., Friedrichs, M. A. M., Carr, M.-E., Antoine, D., Arm-
strong, R. A., Asanuma, I., Aumont, O., Bates, N. R., Behren-
feld, M. J., Bennington, V., Bopp, L., Bruggeman, J., Buiten-
huis, E. T., Church, M. J., Ciotti, A. M., Doney, S. C., Dowell,
M., Dunne, J., Dutkiewicz, S., Gregg, W., Hoepffner, N., Hyde,
K. J. W., Ishizaka, J., Kameda, T., Karl, D. M., Lima, I., Lo-

mas, M. W., Marra, J., McKinley, G. A., Mélin, F., Moore, J.
K., Morel, A., O’Reilly, J., Salihoglu, B., Scardi, M., Smyth,
T. J., Tang, S., Tjiputra, J., Uitz, J., Vichi, M., Waters, K.,
Westberry, T. K., and Yool, A.: Challenges of modeling depth-
integrated marine primary productivity over multiple decades:
A case study at BATS and HOT, Global Biogeochem. Cy., 24,
GB3020, https://doi.org/10.1029/2009GB003655, 2010.

Saba, V. S., Friedrichs, M. A. M., Antoine, D., Armstrong, R.
A., Asanuma, I., Behrenfeld, M. J., Ciotti, A. M., Dowell, M.,
Hoepffner, N., Hyde, K. J. W., Ishizaka, J., Kameda, T., Marra,
J., Mélin, F., Morel, A., O’Reilly, J., Scardi, M., Smith Jr., W.
O., Smyth, T. J., Tang, S., Uitz, J., Waters, K., and Westberry,
T. K.: An evaluation of ocean color model estimates of marine
primary productivity in coastal and pelagic regions across the
globe, Biogeosciences, 8, 489–503, https://doi.org/10.5194/bg-
8-489-2011, 2011.

Salgado-Hernanz, P. M., Racault, M.-F., Font-Muñoz, J. S.,
and Basterretxea, G.: Trends in phytoplankton phenol-
ogy in the Mediterranean Sea based on ocean-colour
remote sensing, Remote Sens Environ, 221, 50–64,
https://doi.org/10.1016/j.rse.2018.10.036, 2019.

Sallée, J.-B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vi-
gnes, L., Schmidtko, S., Garabato, A. N., Sutherland, P.,
and Kuusela, M.: Summertime increases in upper-ocean
stratification and mixed-layer depth, Nature, 591, 592–598,
https://doi.org/10.1038/s41586-021-03303-x, 2021.

Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V.,
Calton, B., Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J.,
Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M.,
Groom, S., Horseman, A., Jackson, T., Krasemann, H., Laven-
der, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore,
T. S., Müller, D., Regner, P., Roy, S., Steele, C. J., Steinmetz,
F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Züh-
lke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A.,
Frouin, R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer,
S., Mitchell, B. G., Muller-Karger, F. E., Sosik, H. M., Voss,
K. J., Werdell, J., and Platt, T.: An Ocean-Colour Time Se-
ries for Use in Climate Studies: The Experience of the Ocean-
Colour Climate Change Initiative (OC-CCI), Sensors, 19, 4285,
https://doi.org/10.3390/s19194285, 2019a.

Sathyendranath, S., Platt, T., Brewin, R. J. W., and Jackson, T.: Pri-
mary Production Distribution?, in: Encyclopedia of Ocean Sci-
ences (Third Edition), edited by: Cochran, J. K., Bokuniewicz,
H. J., and Yager, P. L., Academic Press, Oxford, 635–640,
https://doi.org/10.1016/B978-0-12-409548-9.04304-9, 2019b.

Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J., and
Westberry, T. K.: The CAFE model: A net production model for
global ocean phytoplankton, Global Biogeochem. Cy., 30, 1756–
1777, https://doi.org/10.1002/2016GB005521, 2016.

Suga, T., Motoki, K., Aoki, Y., and Macdonald, A. M.: The North
Pacific Climatology of Winter Mixed Layer and Mode Wa-
ters, J. Phys. Oceanogr., 34, 3–22, https://doi.org/10.1175/1520-
0485(2004)034<0003:TNPCOW>2.0.CO;2, 2004.

Summer, U. and Lengfeller, K.: Climate change and the
timing, magnitude, and composition of the phytoplank-
ton spring bloom, Global Change Biol., 14, 1199–1208,
https://doi.org/10.1111/j.1365-2486.2008.01571.x, 2008.

Tagliabue, A., Kwiatkowski, L., Bopp, L., Butenschön, M., Che-
ung, W., Lengaigne, M., and Vialard, J.: Persistent Uncertainties

https://doi.org/10.5194/essd-15-4829-2023 Earth Syst. Sci. Data, 15, 4829–4848, 2023

https://doi.org/10.5067/GHAAO-4BC02
http://orca.science.oregonstate.edu/npp_products.php
http://orca.science.oregonstate.edu/npp_products.php
https://doi.org/10.3390/rs12010077
https://doi.org/10.1093/icesjms/fsq198
https://doi.org/10.1016/j.rse.2014.05.016
https://doi.org/10.1017/CBO9781107415324.010
https://doi.org/10.5281/ZENODO.8320875
https://doi.org/10.5281/ZENODO.8320872
https://doi.org/10.5281/ZENODO.8318272
https://doi.org/10.5281/ZENODO.8314348
https://doi.org/10.1126/science.abl5237
https://doi.org/10.1029/2009GB003655
https://doi.org/10.5194/bg-8-489-2011
https://doi.org/10.5194/bg-8-489-2011
https://doi.org/10.1016/j.rse.2018.10.036
https://doi.org/10.1038/s41586-021-03303-x
https://doi.org/10.3390/s19194285
https://doi.org/10.1016/B978-0-12-409548-9.04304-9
https://doi.org/10.1002/2016GB005521
https://doi.org/10.1175/1520-0485(2004)034<0003:TNPCOW>2.0.CO;2
https://doi.org/10.1175/1520-0485(2004)034<0003:TNPCOW>2.0.CO;2
https://doi.org/10.1111/j.1365-2486.2008.01571.x


4848 T. J. Ryan-Keogh et al.: A new global oceanic multi-model net primary productivity data product

in Ocean Net Primary Production Climate Change Projections
at Regional Scales Raise Challenges for Assessing Impacts on
Ecosystem Services, https://doi.org/10.3389/fclim.2021.738224,
2021.

Tao, Z., Wang, Y., Ma, S., Lv, T., and Zhou, X.: A Phyto-
plankton Class-Specific Marine Primary Productivity Model Us-
ing MODIS Data, IEEE J. Sel. Top. Appl., 10, 5519–5528,
https://doi.org/10.1109/JSTARS.2017.2747770, 2017.

Tilstone, G. H., Land, P. E., Pardo, S., Kerimoglu, O., and Van
der Zande, D.: Threshold indicators of primary production in the
north-east Atlantic for assessing environmental disturbances us-
ing 21 years of satellite ocean colour, Sci. Total Environ., 854,
158757, https://doi.org/10.1016/j.scitotenv.2022.158757, 2023.

Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss, E.:
Carbon-based primary productivity modeling with vertically re-
solved photoacclimation, Global Biogeochem. Cy., 22, GB2024,
https://doi.org/10.1029/2007GB003078, 2008.

Westberry, T. K., Silsbe, G. M., and Behrenfeld, M. J.: Gross
and net primary production in the global ocean: An ocean
color remote sensing perspective, Earth-Sci. Rev., 237, 104322,
https://doi.org/10.1016/j.earscirev.2023.104322, 2023.

Zhang, X. and Hu, L.: Estimating scattering of pure water from den-
sity fluctuation of the refractive index, Opt. Express, 17, 1671–
1678, https://doi.org/10.1364/OE.17.001671, 2009.

Zhuang, J., dussin, raphael, Huard, D., Bourgault, P., Bani-
hirwe, A., Raynaud, S., Malevich, B., Schupfner, M., Filipe,
Levang, S., Jüling, A., Almansi, M., RichardScottOZ, Ron-
deauG, Rasp, S., Smith, T. J., Stachelek, J., Plough, M., Pierre,
Bell, R., and Li, X.: pangeo-data/xESMF: v0.7.1, Zenodo [code],
https://doi.org/10.5281/ZENODO.7800141, 2023.

Earth Syst. Sci. Data, 15, 4829–4848, 2023 https://doi.org/10.5194/essd-15-4829-2023

https://doi.org/10.3389/fclim.2021.738224
https://doi.org/10.1109/JSTARS.2017.2747770
https://doi.org/10.1016/j.scitotenv.2022.158757
https://doi.org/10.1029/2007GB003078
https://doi.org/10.1016/j.earscirev.2023.104322
https://doi.org/10.1364/OE.17.001671
https://doi.org/10.5281/ZENODO.7800141

	Abstract
	Introduction
	Materials and methods
	Results and discussion
	Data availability
	Conclusion
	Appendix A
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

