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Abstract. Evapotranspiration over crop growth period, also referred to as the consumptive water footprint of
crop production (WFCP), is an essential component of the hydrological cycle. However, the existing high-
resolution consumptive WFCP datasets do not distinguish between soil evaporation and crop transpiration
and disregard the impacts of different irrigation practices. This restricts the practical implementation of ex-
isting WFCP datasets for precise crop water productivity assessments, agricultural water-saving evaluations,
the development of sustainable irrigation techniques, cropping structure optimization, and crop-related inter-
regional virtual water trade analysis. This study establishes a 5-arcmin gridded dataset of monthly green and
blue WFCP, evaporation, transpiration, and associated unit WFCP benchmarks for 21 crops grown in China
during 2000–2018. The data simulation was based on calibrated AquaCrop modelling under furrow-, sprinkler-,
and micro-irrigated as well as rainfed conditions. Data quality was validated by comparing the current results
with multiple public datasets and remote sensing products. The improved gridded WFCP dataset is available
at https://doi.org/10.5281/zenodo.7756013 (Wang et al., 2023) and effectively compensated for the gaps in the
existing datasets through (i) revealing the intensity, structure, and spatiotemporal evolution of both productive
and non-productive blue and green water consumption on a monthly scale, and (ii) including crop-by-crop unit
WFCP benchmarks according to climatic zones.
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1 Introduction

The grain production potential of irrigated agriculture can
effectively cope with the pressure that population growth
places on the food supply (Wada et al., 2013; Haddeland
et al., 2014; Rosa et al., 2020; Puy et al., 2021; Wang et
al., 2021) and restrain the encroachment of cultivated land
on natural regions (Tilman et al., 2011; Brown and Pervez,
2014; Jägermeyr et al., 2017; Puy et al., 2020). Currently, ir-
rigation accounts for more than 70 % of worldwide blue wa-
ter withdrawals (FAO, 2020) and 90 % of global water con-
sumption (Döll, 2009). Irrigated cropland increases the soil
water content and releases water vapour into the atmosphere,
leading to an alteration in the hydrological cycle (Rodell et
al., 2009; Elliott et al., 2014; Leng et al., 2014). Meanwhile,
water scarcity is expected to increase in more than 80 %
of global farmlands, together with the increasingly serious
threats on sufficient agricultural water supply by the compe-
tition for water among sectors (Yin et al., 2017; Pastor et al.,
2019; Liu et al., 2022). Apparently, accurate assessment of
water consumption on irrigated and rainfed farmlands is cru-
cial for identifying water-use hotspots and ensuring a stable
food supply, particularly in the context of climate change.

The consumptive water footprint of crop production
(WFCP) measures the consumption of blue water (i.e. irri-
gation water extracted from surface and groundwater) and
green water (i.e. soil water directly from rainfall) during the
crop growth period (Hoekstra and Chapagain, 2008; Hoek-
stra et al., 2011; Hoekstra, 2013), permitting a unified eval-
uation of the water consumption of irrigated and rainfed
crops (Lovarelli et al., 2016). The most widely used WFCP
database is the WaterStat (Hoekstra and Mekonnen, 2012). It
covers the WFCP of a wide variety of crops, crop derivatives,
and biofuels, with data resolution at national, watershed, and
county spatial scales, but it only contains 10-year averages
for 1996–2005 (WFN, 2022). The CWASI database estab-
lished by Tamea et al. (2021) fills the resultant gap concern-
ing the interannual evolution of WFCP data through a fast-
track approach (Tuninetti et al., 2017) at the national scale,
suggesting that there is significant interannual variation in the
water footprint per unit mass of crop production (uWFCP),
which should be taken into account in analyses and appli-
cations. However, none of the aforementioned studies have
considered intra-annual variations or intra-national differ-
ences in agricultural water consumption. Considering that
disparities in space and time in the WFCP and uWFCP may
have various effects on the formulation of water management
measures, such changes must be evaluated to provide a refer-
ence for seasonal water shortages (Hoekstra, 2013; Zhuo et
al., 2016c).

Numerous studies have assessed the blue and green WFCP
of specific crops at finer spatial and temporal resolutions
using the agro-hydrological models including CROPWAT
(Mekonnen and Hoekstra, 2011; Tuninetti et al., 2015),
GEPIC (Liu et al., 2007), GCWM (Siebert and Döll, 2010),

LPJmL (Fader et al., 2011), and AquaCrop (Zhuo et al.,
2016b; Wang et al., 2019). Utilizing the WATNEEDs model,
Chiarelli et al. (2020) produced the first dataset to record
global monthly blue and green water requirements of pro-
ducing 23 crops at a 5 arcmin scale. They found that green
water accounts for 84 % of the considered global crop water
requirements. However, the actual water consumption during
crop production is frequently less than the predicted water
requirement owing to soil water deficit, insufficient precipi-
tation, and differences in field management (Long and Singh,
2013; Fisher et al., 2017). Furthermore, the aforementioned
datasets ignore the non-negligible differences between the
WFCP when using different water supply modes or irrigation
practices and do not distinguish between the blue and green
water consumption of two independent processes, namely
soil evaporation (that is, extravagant water consumption) and
crop transpiration. In summary, the limitations of existing
WFCP databases mean that they cannot be used to evalu-
ate the effect of implementing water-saving irrigation prac-
tices on the spatiotemporal distribution of agricultural water
consumption at a large regional scale (Wang et al., 2019).
Moreover, the lack of information on extravagant water con-
sumption of crops in terms of the water sources and the spa-
tiotemporal distribution hinders the precise implementation
of water-saving agricultural policies and technologies (Jung
et al., 2010; Lian et al., 2018).

To fill the abovementioned gaps in existing WFCP
datasets, we developed a gridded dataset comprising monthly
green and blue WFCP, evaporation and transpiration, and as-
sociated uWFCP benchmarks for 21 crops grown in China
during 2000–2018. A self-sufficiency-oriented food pol-
icy has fuelled the explosive growth of water-saving irri-
gated farmlands in China in recent decades (SCIO, 1996;
Ghose, 2014), with water-saving irrigated areas increasing
by 5698 kha from 2000 to 2018 (representing 12 % of the to-
tal irrigated area in 2018) (NBSC, 2022). The current study
followed the WFN accounting framework (Hoekstra et al.,
2011) and used the Food and Agriculture Organization (FAO)
AquaCrop Plug-In program v6.0 to simulate the monthly
WFCP at a resolution of 5 arcmin. The considered 21 crops
account for 83 % of national sown areas and 75 % of national
crop production in China (NBSC, 2022). The dataset differs
from the others in four aspects: (i) It evaluated the effects
of different water supply modes (irrigated or rainfed) and
irrigation practices (furrow, sprinkler, and micro-irrigation)
on water consumption throughout the crop growth period.
(ii) It distinguished between monthly blue and green water
consumption via soil evaporation and crop transpiration. (iii)
The dataset encompassed both the WFCP in m3 yr−1 and the
uWFCP in m3 t−1. (iv) It identified uWFCP benchmarks that
differentiated between various climatic zones and irrigation
practices. The data quality was verified through its compari-
son with available public databases and remote sensing prod-
ucts.
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2 Data and methods

Three main steps were followed to create and validate the
WFCP dataset under various water supply modes and irriga-
tion practices during 2000–2018 (Fig. 1).

– Step 1: data preparation. We collected, verified, and
inverted data on the yearly planting area of each crop
under various water supply modes and irrigation prac-
tices at a resolution of 5 arcmin. The AquaCrop simu-
lation required monthly precipitation, temperature, ref-
erence evapotranspiration (ET0), and CO2 datasets. The
calibrated crop parameters were obtained from the pub-
lished literature.

– Step 2: water footprint simulation. The AquaCrop
model was run with daily steps to simulate soil evap-
oration, crop transpiration, and crop yield during the
growth period of crops. The WFCP and uWFCP were
calculated for different water supply modes and irriga-
tion practices using a spatial resolution of 5 arcmin and
a temporal resolution of months (Zhuo et al., 2016c;
Wang et al., 2019).

– Step 3: data validation. The simulation results were
verified by comparing them with remote sensing prod-
ucts of actual evapotranspiration (Cheng et al., 2021)
and publicly accessible WFCP datasets (Mekonnen and
Hoekstra, 2011; Zhuo et al., 2016a; Chiarelli et al.,
2020).

2.1 Data sources

2.1.1 Crop planting area and production

The irrigated and rainfed areas of each crop from 2001
to 2018 were assigned at a resolution of 5 arcmin accord-
ing to the base map for the year 2000 obtained from the
MIRCA2000 dataset (Portmann et al., 2010) and interannual
changes per province extracted from the China Statistical
Yearbook (NBSC, 2022). At the provincial scale, irrigation
data from 2000–2018 were spatially divided into the propor-
tional areas in which furrow, sprinkler, and micro-irrigation
was used for each crop, retrieving data from the statisti-
cal yearbook (CAMIYC, 2022). Due to the lack of data in
this regard, all vegetables were assumed to be grown under
irrigation as based on agricultural practice. Further details
about the planting area data selection have been provided in
the data and methods in the Supplement. The national pro-
duction data for tomatoes and cabbage were derived from
the Food and Agriculture Organization dataset (FAO, 2022)
and was proportionally allocated to vegetable production by
provinces. Production data for the remaining crops were ob-
tained from the NBSC (2022).

2.1.2 Meteorological and soil data

The monthly data for precipitation, minimum and maximum
temperature, and reference evapotranspiration were obtained
from the Climatic Research Unit Time-Series 4.06 dataset
(Harris et al., 2020). All meteorological data were resam-
pled to a 5 arcmin spatial resolution using the ArcGIS map-
ping platform. Atmospheric CO2 concentration data were ac-
quired from the Mauna Loa Observatory in Hawaii (Tans and
Keeling, 2022). Soil texture data were obtained from the In-
ternational Soil Reference and Information Centre (ISRIC)
soil profile database (Dijkshoorn et al., 2008). Soil water
content data were obtained from the ISRIC World Inventory
of Soil Emission Potentials database (Batjes, 2012). Table 1
summarizes the data sources.

2.1.3 Crop characteristics

The characteristics of crops selected for this study are listed
in Table 2. Due to differences in their phenology, wheat,
maize, barley, and rapeseed had two sowing periods, whereas
rice had three sowing periods across the study’s time frame.
The growth period of all crops was divided into four stages
based on their growth characteristics (Allen et al., 1998;
Vanuytrecht et al., 2014): the initial (L1), crop development
(L2), mid-season (L3), and late-season (L4) growth stages.
Crop planting dates were retrieved from Chen et al. (1995).
The phenology selection procedure is delineated and the sen-
sitivity analysis of WFCP to phenology are performed within
the phenology selection of the data and methods in the Sup-
plement. The reference harvest index (HI0) is from Xie et
al. (2011) and Zhang and Zhu (1990), and the crop growth
stages and maximum root depth are from Allen et al. (1998)
and Hoekstra and Chapagain (2006).

2.2 Methods

2.2.1 Spin-up for the model

To establish the initial soil moisture content at the beginning
of the growing season, the method and assumptions proposed
by Siebert and Döll (2010) were adopted. Following their ap-
proach, the initial soil moisture content was generated uti-
lizing the maximum soil moisture content of rainfed fallow
land in the 2 years preceding the planting period. The initial
soil moisture at the start of the growing period is assumed as
green water. Such settings and assumptions have been exten-
sively applied with acceptable uncertainties (Chiarelli et al.,
2020; Hoogeveen et al., 2015).

2.2.2 Parameterization of perennial crop

In AquaCrop, the simulated annual crops are programmed to
die at the harvest stage, signifying the completion of their
life cycle, upon which their biomass is reduced to zero. This
stands in contrast to perennial plants, such as tea and apple
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Figure 1. The three main steps for quantifying the water footprint of crop production.
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Table 1. Inventory of data sources.

Variables Data source Spatial
resolution

Period Data link

Irrigated and rainfed
crop areas

MIRCA 2000 5 arcmin 2000–2018 https://www.uni-frankfurt.de/45218031/Data_
download_center_for_MIRCA2000∗

Crop production, yield,
and harvested areas

NBSC Provincial 2000–2018 https://data.stats.gov.cn/∗

Production of
vegetables

FAOSTAT National 2000–2018 https://www.fao.org/faostat/en/#data/QV∗

Area of different
irrigation techniques

CAMIY Provincial 2000–2018 https://data.cnki.net/yearBook/single?id=
N2022030117∗

Meteorological data CRU TS v. 4.03 30 arcmin 2000–2018 https://crudata.uea.ac.uk/cru/data/hrg/∗

CO2 concentration NOAA Average 2000–2018 https://gml.noaa.gov/ccgg/trends/data.html∗

Soil texture ISRIC 1 arcmin – https://data.isric.org/geonetwork/
srv/eng/catalog.search#/metadata/
2919b1e3-6a79-4162-9d3a-e640a1dc5aef∗

Initial soil moisture
content

ISRIC 5 arcmin – https://data.isric.org/geonetwork/
srv/eng/catalog.search#/metadata/
82f3d6b0-a045-4fe2-b960-6d05bc1f37c0∗

Dashes indicate constant values. ∗ Last access: 23 October 2023.

trees, where the harvest of fruits does not result in the com-
plete loss of the standing biomass. To accommodate the sim-
ulation of perennial crops in AquaCrop, the model is used
differently than the normal model set-up. We attempted to
simulate the perennial crops by simulating the foliage, twigs,
and stem of the plants following Poppe (2016). These com-
ponents are considered the annual portion of perennial crops
within the scope of this study. The remaining biomass, in-
cluding major branches, is assumed to remain constant once
the tree matures. Additionally, there will also be no root de-
velopment for the crop. Since yield is a direct function of
biomass and harvest index, adjustments are made to the har-
vest index to reflect its applicability to foliage, twigs, and
stem biomass, rather than the whole biomass. Similar to other
crops, the evapotranspiration of perennial crops is directly as-
sociated with the canopy cover.

2.2.3 Calculation of uWFCP

The blue and green uWFCP were obtained from the blue and
green components of the WFCP (evapotranspiration during
the crop growth period) in relation to the crop yield (Hoekstra
et al., 2011):

uWFCPb =
10×

∑gp
t=1ETb[t]

Y
, (1)

uWFCPg =
10×

∑gp
t=1ETg[t]

Y
, (2)

where uWFCPb and uWFCPg are the blue and green uWFCP,
respectively (m3 t−1); ETb and ETg are the blue and green
WFCP (that is, WFCPb and WFCPg), respectively (mm) (see
Eqs. 8 and 9); gp represents the days in the growing period;
10 is the unit conversion factor; Y (see Eq. 4 below) is the
crop yield (t ha−1); and t indicates a given day.

The daily aboveground biomass production (B) was ob-
tained as follows:

B =WP∗ ×
∑ Tr[t]

ET0[t]
, (3)

where WP∗ (t ha−1) expresses the aboveground dry matter
produced per unit land area per unit of transpired water,
which is governed by a combination of atmospheric CO2
concentration, crop type (C3 and C4 crops), and soil fertil-
ity. The WP∗ is multiplied with the ratio of crop transpira-
tion (Tr) to the reference evapotranspiration (ET0) for that
day. The goal of normalization is to make WP∗ applicable to
diverse locations and seasons, including future climate sce-
narios.

The crop yield (Y ) (t ha−1) was obtained by multiplying
the aboveground biomass (B) with an adjusted reference har-
vest index,

Y = fHIHI0B, (4)

where fHI is the calibration coefficient of the standardized
harvest index HI0, which is influenced by water stress and
temperature stress.
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Table 2. Crop characteristics for the 21 crops in China.

Crop class Crop code Planting date Length of crop development Root depth (m) WP∗ HI0
stage (day)

L1 L2 L3 L4 Irrigated Rainfed

Wheat 1
– Spring wheat 15 March 20 25 60 30 1 1.5 15 39
– Winter wheat 15 October 30 140 40 30 1.5 1.8 15 40

Maize 2
– Spring maize 15 April 30 40 50 30 1 1.7 33.7 44
– Summer maize 1 June 20 35 40 30 1 1.7 33.7 43

Rice 3
– Early rice 15 March 30 30 30 30 0.5 19 44
– Mid rice 15 April 30 30 60 30 0.5 19 44
– Late rice 15 July 30 30 70 40 0.5 19 44

Sorghum 4 1 May 20 35 45 30 1 2 33.7 39

Millet 5 15 April 15 55 40 20 1 1.5 32 47

Barley 6
– Spring barley 15 April 15 35 50 30 1 1.5 15 39
– Winter barley 25 October 20 110 40 35 1 1.5 15 39

Soybeans 7 1 June 20 40 60 30 0.6 1.3 15 44

Potatoes 8 1 May 25 30 45 30 0.4 0.6 18 69

Sweet potatoes 9 1 May 20 30 60 40 1 1.5 18 59

Cotton 10 1 April 30 50 55 45 1 1.7 15 38

Sugar cane 11 1 February 30 50 180 60 1.2 2 30 60

Sugar beets 12 15 April 50 40 50 40 0.7 1 17 71

Groundnuts 13 15 April 10 80 35 25 0.5 1 17 43

Rapeseed 14
– Spring rapeseed 15 April 6 69 20 36 0.8 1.5 17 32
– Winter rapeseed 30 September 6 148 20 36 0.8 1.5 17 32

Sunflower 15 15 April 25 35 45 25 0.8 1.5 18 31

Tomatoes 16 15 January 30 40 40 25 0.7 1.5 18 40

Apple 17 1 March 30 50 130 30 1 2 20 20

Tea 18 15 February 120 60 180 5 0.9 0.9 17 5

Tobacco 19 15 May 20 30 30 30 0.8 0.8 17 61

Cabbage 20 5 July 40 60 50 15 0.5 0.8 15 67

Grapes 21 1 April 30 60 40 80 1 2 17 2

2.2.4 Dynamic daily soil water balance

By tracking the daily incoming and outgoing water fluxes at
the root zone boundary, the dynamic daily soil water balance
was calculated as follows (Mekonnen and Hoekstra, 2010):

S[t] = S[t−1]+PR[t]+ IRR[t]+CR[t]−ET[t]−RO[t]−DP[t], (5)

where S is the soil water content (mm); PR is the precipi-
tation (mm); IRR is the irrigation water volume (mm); CR
is the capillary rise from groundwater, assumed to be zero
(mm); RO is the surface runoff (mm); DP is the deep soil per-
colation (mm); and ET is the actual evapotranspiration (mm),
consisting of soil evaporation (E) and crop transpiration (Tr),
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which were calculated as follows:

E = (KrKe)ET0, (6)
Tr=

(
KsKSTrKCTr

)
ET0, (7)

where Kr is the evaporation reduction coefficient, which is
less than 1 (dimensionless); Ke is the soil evaporation coeffi-
cient, which is proportional to the fraction of the soil surface
not covered by the canopy (dimensionless); Ks is the soil
water stress coefficient, which is smaller than 1 when there
is insufficient soil water to meet the evaporative demand of
the atmosphere (dimensionless); KSTr is the cold stress co-
efficient, which drops below 1 when the temperature is in-
sufficient for growth (dimensionless); and KCTr is the crop
transpiration coefficient, which is proportional to the green
canopy cover (dimensionless).

By tracking the proportional contribution of daily rainfall
and irrigation water to each element of the soil water balance,
ETb[t], ETg[t], Eb[t], Eg[t], Trb[t] and Trg[t] were extracted
(Zhuo et al., 2016c; Chukalla et al., 2015):

ETb[t] = IRR[t]+ Sb[t−1]− Sb[t]−RO[t]

(
IRR[t]

PR[t]+ IRR[t]

)
−DP[t]

(
Sb[t−1]

S[t−1]

)
, (8)

ETg[t] = PR[t]+ Sg[t−1]− Sg[t]−RO[t]

(
PR[t]

PR[t]+ IRR[t]

)
−DP[t]

(
Sg[t−1]

S[t−1]

)
, (9)

Eb[t] = E[t]

(
Sb[t−1]

S[t−1]

)
, (10)

Eg[t] = E[t]

(
Sg[t−1]

S[t−1]

)
, (11)

Trb[t] = Tr[t]

(
Sb[t−1]

S[t−1]

)
, (12)

Trg[t] = Tr[t]

(
Sg[t−1]

S[t−1]

)
, (13)

where Sb[t] and Sg[t] are the blue and green soil water content
(mm) for a crop, respectively, at the end of day t . Following
Zhuo et al. (2016c), the green water value was used as the
initial soil water content in each calculation cell.

2.2.5 Irrigation practices module

Different irrigation practices indirectly affect water con-
sumption during the growth period due to differences in
the fraction of the surface wetted (fw) by each method
(Raes et al., 2018). The soil evaporation coefficient (Ke)
was multiplied by the fw value to account for partial wet-
ness when only a portion of any soil surface was irrigated.
This irrigation-practices-differentiation approach commonly
has been used before (Pereira et al., 2015; Wang et al., 2019;
Chibarabada et al., 2020; Li et al., 2022; Yue et al., 2022).

We employed a supplementary irrigation strategy whereby
irrigation is applied when soil moisture falls below the plant
wilting point to bring it up to field capacity. Owing to spe-
cial environmental restrictions, furrow irrigation was used
for rice planting in this study. Specific irrigation conditions
were divided into either sufficient or water-demanding sub-
types (irrigation to field capacity when the soil water content
reached the wilting point):

Ke = fw
(
1−CC∗

)
Kex , (14)(

1−CC∗
)
= 1− 1.72CC+CC2

− 0.3CC3
≥ 0, (15)

where the fw values used for furrow, sprinkler, and micro-
irrigation were 80 %, 100 %, and 40%, respectively; (1 –
CC∗) is the dimensionless adjusted fraction of the non-
covered soil surface (dimensionless); CC is canopy cover
(m2 m−2); and Kex is the maximum soil evaporation coef-
ficient (dimensionless) for fully wet and non-shaded soil sur-
faces.

2.2.6 Benchmarks for uWFCP

In contrast to variables such as rainfed and irrigated crop-
lands, wet and dry years, warm and cold years, different soil
types, climate zone was evidenced to be the key factor in-
fluencing regional uWFCP benchmarks (Zhuo et al., 2016b).
Therefore, we classified China’s climatic regions based on
the aridity index (Middleton and Thomas, 1997) (AI; defined
as the ratio of rainfall to reference evapotranspiration) and
set up regional uWFCP benchmarks for humid (AI >0.5) and
arid (AI <0.5) zones. The uWFCP of each grid in the same
climate zone was ranked from lowest to highest, and the
uWFCP corresponding to a cumulative crop production of
10 %, 20 %, and 25 % of the total production were recorded
as the regional uWFCP benchmarks (Mekonnen and Hoek-
stra, 2014; Zhuo et al., 2016b; Wang et al., 2019; Yue et al.,
2022).

2.3 Calibration and validation

2.3.1 Production calibration

Given the data accessibility, the current study utilized provin-
cial statistics to validate the simulated production by scaling
each grid-based simulated result using provincial calibration
coefficients (R), rather than forcing the simulated produc-
tion of all grids within a province to a constant value (Mia-
lyk et al., 2022; Yue et al., 2022; Zhuo et al., 2016a). This
approach maintained the spatial variability of simulated pro-
duction within each province:

R =
P_Psta∑4

i=1P_Gi,sim
, (16)

P_Gi,act = P_Gi,sim ·R, (17)

where P_PNBSC is the statistical (sta) provincial crop pro-
duction (t yr−1), i represents the water supply modes and ir-
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rigation practices, P_Gi,sim is the simulated (sim) grid crop
production value (t yr−1) according to i, and P_Gi,act is the
actual (act) grid crop production value (t yr−1) according to
i.

It should be noted that although provincial yearbooks in-
clude some city-level crop production data, considering the
numerous crop types involved in this study and the divi-
sion of certain crops by harvest periods (e.g. winter wheat,
spring wheat, early rice, mid rice, and late rice), there are
indeed many instances of missing and incomplete data at
the city scale. The meteorological and soil factors are crit-
ical factors affecting the estimation of WFCP (Zhuo et al.,
2014; Tuninetti et al., 2015). Consequently, the simulated
outcomes can exhibit spatial heterogeneity after integrating
high-resolution soil texture, precipitation, temperature, and
other model inputs, even with provincial production calibra-
tion.

2.3.2 Remote sensing validation

Because of the spatially fragmented nature of crop culti-
vation, the water consumption results of the current study
were validated against the dual-source (PML-V2(China))
and single-source (SEBAL) remote sensing products over
screened grids to reduce the interference of non-agricultural
land with the validation results. According to Chinese Agri-
cultural Cropping System (IGSNRR, 2022), we selected
grids in which the sum of planted areas was greater than
5 kha (>50 % of a single grid) and greater than 10 kha
(>100 % of a single grid) for single- and multi-crop regions,
respectively. In terms of the time span, 19 of the 21 crops
studied experienced growth periods from April to August;
therefore, these 5 months were set as the validation interval
in terms of total evapotranspiration. The PML-V2 (He et al.,
2022) and SEBAL (Cheng et al., 2021) products had spa-
tial resolutions of 500 m and 1 km, respectively, with a tem-
poral resolution of 1 d. Bilinear was implemented to resam-
ple the data to 5 arcmin. Notably, the SEBAL products solely
comprised aggregate evapotranspiration figures, whereas the
PML-V2 separated land surface evapotranspiration into veg-
etation transpiration (Ec), soil evaporation (Es), evaporation
of intercepted precipitation (Ei), and water body evaporation
(Ew). In this study, Ec+Es, Ec, and Es were compared
with the generated ET, E and Tr data, respectively.

2.3.3 Publications comparison

The present dataset was compared with published studies that
included temporal and spatial data overlaps. The comparison
included the crop planting area at the grid scale (IFPRI, 2019;
Grogan et al., 2022), and the WFCP and uWFCP values at
the grid and national scales (Mekonnen and Hoekstra, 2011;
Zhuo et al., 2016a; Chiarelli et al., 2020; Cheng et al., 2021).

2.3.4 Accuracy assessment

The linear regression coefficient (R2) was used to measure
the consistency between the statistical data, remote sens-
ing data, and simulated results. The root mean square error
(RMSE) metric was utilized to evaluate model performance.
Mathematically, the R2 and RMSE can be expressed as

R2
=

(
∑n

i=1(xi − xi)× (refi − refi))2∑n
i=1(xi − xi)2×

∑n
i=1(refi − refi)2

, (18)

RMSE=

√
1
n

∑n

i=1
(xi − refi)2, (19)

where n indicates the number of samples; xi and refi rep-
resent the simulated and statistical values (remote sensing
data), respectively; and xi and refi are the mean values of
the simulated and statistical values (remote sensing data), re-
spectively.

3 Results

3.1 Water footprint of crop production

During the study period, the WFCP of 21 crops in China
increased by 13 % to 690 Gm3 yr−1 in 2018, with WFCPb
and WFCPg accounting for 29 % and 71 % of this in-
crease, respectively. The WFCPb and WFCPg varied greatly
across crops, time, and space. Table 3 presents the WFCP
of the 21 crops under different water supply modes and
irrigation practices in 2018. Maize (165 Gm3 yr−1), rice
(143 Gm3 yr−1), and wheat (125 Gm3 yr−1) had the high-
est annual average WFCP, accounting for 67 % of the
total WFCP. The WFCP of grapes (177 %) and maize
(94 Gm3 yr−1) showed the greatest growth rate, with their
planting areas expanding by 156 % and 82 %, respectively
(NBSC, 2022).

In addition, the annual average proportions of WFCP at-
tributable to furrow irrigation and rainfed conditions reached
53 % and 44 %, respectively (Fig. S1 in the Supplement).
Nevertheless, the WFCP of sprinkler and micro-irrigation ex-
panded by 11 and 19 Gm3 yr−1, respectively, increasing their
proportional contribution to the total WFCP by respective
factors of 1.6 and 23. Over the same period, WFCP under
furrow irrigation decreased by 5 %. Considering the positive
correlation between WFCP and the cultivated area under dif-
ferent water supply and irrigation practices, the above results
reflect that sprinkler and micro-irrigation planting modes are
being deployed more often on existing and freshly reclaimed
farmland in China (NBSC, 2022). Given the large scale of
crop cultivation in China, such a significant shift in irriga-
tion practices will have important implications: (i) it will af-
fect the quantification of national crop water consumption
and (ii) it will create market opportunities while concurrently
propelling technological innovation in the irrigation infras-
tructure. In conclusion, when quantifying and evaluating the
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Table 3. WFCP and planting area under different water supply modes and irrigation practices for 21 crops in 2018.

Crop Furrow irrigation Micro-irrigation Sprinkler irrigation Rainfed

WFCPb WFCPg Area WFCPb WFCPg Area WFCPb WFCPg Area WFCPg Area
M m3 M m3 k ha M m3 M m3 k ha M m3 M m3 k ha M m3 k ha

(4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)

Wheat 40 595 35 702 13 157 4384 2369 1357 2170 1583 625 41 046 9127
(−22 %) (−9 %) (−18 %) (1936 %) (1650 %) (1964 %) (−26 %) (−10 %) (−20 %) (5 %) (−6 %)

Maize 31 023 40 092 13 122 5581 3604 1611 4351 4413 1538 120 279 25 859
(3 %) (18 %) (12 %) (4577 %) (2950 %) (3413 %) (67 %) (107 %) (95 %) (162 %) (147 %)

Rice 81 847 58 979 28 306 – – – 4629 5540 1883 – –
(4 %) (1 %) (−4 %) – – – (329 %) (404 %) (366 %) – –

Sorghum 346 457 157 57 46 21 53 53 20 1757 424
(−36 %) (−20 %) (−27 %) (3124 %) (2259 %) (2583 %) (34 %) (85 %) (66 %) (−35 %) (−36 %)

Millet 346 388 137 43 32 16 46 42 16 2652 609
(−27 %) (−10 %) (−20 %) (2176 %) (1786 %) (2032 %) (10 %) (41 %) (28 %) (−38 %) (−43 %)

Barley 91 133 67 14 12 7 6 7 3 768 235
(−48 %) (−48 %) (−52 %) (4024 %) (3355 %) (2902 %) (−3 %) (3 %) (−13 %) (−67 %) (−65 %)

Soybeans 3936 6751 1963 413 375 144 389 609 193 27 319 6113
(−22 %) (−16 %) (−19 %) (2315 %) (1871 %) (2031 %) (35 %) (102 %) (88 %) (−7 %) (−10 %)

Potatoes 721 966 377 140 78 39 91 88 34 16 171 4440
(−20 %) (11 %) (14 %) (3694 %) (2962 %) (3256 %) (50 %) (121 %) (106 %) (8 %) (1 %)

Sweet potatoes 873 1653 427 37 57 16 37 59 16 10 276 1921
(−64 %) (−55 %) (−57 %) (429 %) (561 %) (513 %) (−67 %) (−44 %) (−51 %) (−60 %) (−60 %)

Cotton 2195 2268 625 788 217 134 85 82 23 9824 2573
(−54 %) (−45 %) (−52 %) (4353 %) (1770 %) (3006 %) (−59 %) (−37 %) (−49 %) (−27 %) (−5 %)

Sugar cane 258 589 98 9 20 3 8 17 3 10 924 1302
(−36 %) (−37 %) (−40 %) (1309 %) (1196 %) (1145 %) (163 %) (170 %) (150 %) (32 %) (28 %)

Sugar beets 0.096 0.029 0.021 0.145 0.043 0.056 0.003 0.001 0.002 812 216
(−78 %) (−78 %) (−72 %) (5530 %) (5859 %) (12331 %) (−85 %) (−85 %) (−61 %) (−34 %) (−34 %)

Groundnuts 3500 4842 1435 209 178 66 210 223 72 14 441 3046
(−6 %) (4 %) (−3 %) (1776 %) (1596 %) (1587 %) (11 %) (62 %) (42 %) (−6 %) (−8 %)

Rapeseed 0.0159 0.0539 0.0147 0.0001 0.0002 0.0001 0.0001 0.0005 0.0001 19 053 6551
(256 %) (37 %) (67 %) (3336 %) (1653 %) (1800 %) (2660 %) (965 %) (1194 %) (3 %) (−13 %)

Sunflower 262 202 87 137 49 33 34 21 10 2913 792
(−35 %) (−16 %) (−26 %) (8591 %) (5601 %) (6626 %) (−1 %) (22 %) (10 %) (−25 %) (−28 %)

Tomatoes 1365 1581 949 74 57 44 74 69 47 – –
(48 %) (60 %) (45 %) (2379 %) (2463 %) (2270 %) (109 %) (198 %) (144 %) – –

Apple 2366 2223 568 352 226 85 166 134 36 7551 1250
(−47 %) (−32 %) (−41 %) (1638 %) (1236 %) (1452 %) (−53 %) (−37 %) (−44 %) (11 %) (2 %)

Tea 2218 3200 550 51 86 15 68 92 16 13 803 1730
(65 %) (46 %) (43 %) (1690 %) (1622 %) (1464 %) (427 %) (453 %) (404 %) (242 %) (252 %)

Tobacco 308 673 201 13 39 12 14 26 8 3819 836
(−30 %) (−12 %) (−18 %) (1181 %) (1800 %) (1848 %) (−34 %) (21 %) (4 %) (−28 %) (−29 %)

Cabbage 1523 2642 897 72 96 42 76 124 45 – –
(−18 %) (−19 %) (−24 %) (1183 %) (1033 %) (1136 %) (15 %) (47 %) (28 %) – –

Grapes 0.013 0.006 0.003 0.033 0.015 0.008 0.0004 0.0002 0.0001 3869 725
(−58 %) (−59 %) (−58 %) (17 901 %) (17 826 %) (18 248 %) (−71 %) (−71 %) (−71 %) (177 %) (156 %)

Note: “4” refers to the rate of change from 2000 to 2018. Dashes indicate that no crops were grown.
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WFCP, it is vital to consider the influence of various water
supply modes and irrigation practices (Wang et al., 2019).

The water source accessed for crop production varied
cyclically across years (Fig. 2). The WFCPb peaked annu-
ally in May, with an average annual value of 16 Gm3 per
month; water usage by rice and maize crops was responsible
for 40 % and 37% of this value, respectively. In January and
February of each year, the WFCPg comprised almost 75 %
of the monthly WFCP. The annual peak of the WFCPg alter-
nated between June and July, with an average annual value
of 83 Gm3 per month, 40 % of which was attributable to wa-
ter consumption by maize crops. The monthly WFCP val-
ues revealed that the peaks of evaporation (average annual
value of 45 Gm3 per month) and transpiration (average an-
nual value of 56 Gm3 per month) for the 21 crops occurred
in May and July, respectively (Figs. S2 and S3). The monthly
WFCP fluctuated within each crop; nevertheless, the relative
contributions of evapotranspiration and transpiration to total
water consumption during the same growth period varied less
from year to year. The above analysis allowed us to identify
the quantity, type, and periods of water consumption by each
crop.

The grid-scale spatial distributions of the monthly WFCP,
WFCPb, and WFCPg values are shown in Fig. 3. The
months with large grid WFCP (WFCP >50 mm per month,
WFCPb>10 mm per month, and WFCPg>30 mm per month)
mainly comprised April to August. The northeast plain, north
plain, and Sichuan basin contained the regions with the high-
est grid WFCP. The grid WFCP varied considerably among
the 21 crops, but its spatial distribution was consistent within
the planted area of each crop. In addition, the regional dis-
tribution of grid WFCPb and WFCPg values of each crop
exhibited significant spatial heterogeneity (Figs. S4 and S5).
The grid WFCP, WFCPb, and WFCPg of sprinkler irrigation
at the monthly and annual scales were significantly higher
than those of the other two irrigation practices, and high-
value regions were concentrated in the northeast, southwest,
and south of China (Figs. S6–S10). This is attributable to the
substantially higher surface wetting fraction achieved with
sprinkler irrigation relative to furrow and micro-irrigation,
which augments crop water consumption per unit cultivated
area during the growing period by affecting the soil evapo-
ration coefficient (Eqs. 6, 7, and 14). The relative blue and
green water consumption via evaporation and transpiration
depended on the natural conditions prevailing at the time and
in the space where the 21 crops were grown, as well as the
water supply modes and irrigation practices (Figs. S11–S14).

3.2 Water footprint per unit of crop production

Tea (8372 m3 t−1), cotton (3974 m3 t−1), and tobacco
(2242 m3 t−1) had comparatively large uWFCP, whereas
fruits and vegetables had a uWFCP of less than 500 m3 t−1.
Among the grain crops, wheat and maize had a uWFCP of
1110 and 883 m3 t−1, respectively. Late rice (826 m3 t−1) had

a slightly greater uWFCP than early (654 m3 t−1) and mid
(732 m3 t−1) rice. The uWFCP, uWFCPb, and uWFCPg for
all 21 crops showed a trend of fluctuating decline during
the study period as yield grew (Fig. 4). The uWFCP of cot-
ton (51 %), sugar beets (52 %), and apples (55 %) showed
the greatest reduction. The uWFCP of wheat and maize de-
creased by more than 25 %, because the yield increased by
45 % and 33 %, respectively.

The uWFCP of the 21 crops was relatively high un-
der rainfed conditions (Table 4, Fig. S15). Additionally, the
uWFCPb, uWFCPg, and yield of each crop responded differ-
ently to the three irrigation treatments. These variations were
caused by the fact that the proportions of blue and green wa-
ter consumption via soil evaporation and crop transpiration
differed between crops and irrigation practices (Fig. S16).
For example, blue water consumption via crop transpiration
in furrow and sprinkler irrigation accounted for 45 % and
51 % of the total crop water consumption, respectively, which
was much lower than that of micro-irrigation (62 %). There-
fore, the effects of different water supply modes and irriga-
tion practices should be considered in the quantification of
uWFCP over a long time series.

The spatial distribution of the gridded uWFCP showed sig-
nificant heterogeneity (Figs. 5, S17, and S18). There were
many regions with high-gridded uWFCP values for potatoes,
which were concentrated in northern China. The crop with
the densest distribution of high-gridded uWFCPb values was
tea, which was commonly dispersed throughout the southern
regions. Soybean and millet possessed more uWFCPg high-
value areas, mainly in the northern regions. By comparing
the relative changes in the average grid uWFCP from the pe-
riod of 2000–2009 to that of 2010–2018, it was determined
that the uWFCP of all 21 crops exhibited a spatially signifi-
cant decreasing trend (Figs. S19–S21). It is essential to em-
phasize that the dominant factors governing this decrease in
uWFCP varied among crops. For example, the decline ob-
served in the uWFCP of apples was attributable to a substan-
tially larger decrease in uWFCPg than the corresponding rise
in uWFCPb, whereas that observed for tea was caused by a
considerable decrease in uWFCPb.

For most crops, rainfed ones had more regions of high
uWFCP than irrigated ones, and the geographical distribu-
tion of uWFCP for the same crop was generally consistent,
regardless of irrigation practices. The variation in uWFCPb
and uWFCPg for the same water supply mode and irrigation
practice in a crop was considerable owing to regional water
consumption and yield differences (Figs. S22 and S23). Ad-
ditionally, the temporal evolution of uWFCPb and uWFCPg
under various water supply modes and irrigation practices
was analysed, and rainfed crops demonstrated a more rapid
and wider reduction in uWFCP than irrigated crops.
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Figure 2. Total national monthly WFCPg and WFCPb of 21 crops in China over 2000–2018.
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Figure 3. Gridded monthly total WFCP (a), WFCPb (b), and WFCPg (c) of 21 crops in China by 2017.
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Figure 4. Interannual variation in uWFCPb, uWFCPg, and yield of 21 crops in China over 2000–2018.

3.3 Benchmarks for uWFCP

Annual uWFCP benchmarks were calculated using the dif-
ferent production percentiles for each of the 21 crops under
various water supply modes and irrigation practices. Signif-
icant interannual differences existed between these uWFCP
benchmarks; therefore, we reassessed these benchmarks us-
ing whole time series measurements to reduce the impact
of anomalous values resulting from extreme climate events.
The crops uWFCP benchmarks in Table S1 in the Supple-
ment can be selected as a reference for future analysis like
that by Yue et al. (2022). Results show that benchmarks for

the uWFCP of different crops responded differently to cli-
matic zone. Crops such as millet, soybeans, and groundnuts
had higher benchmarks for uWFCP in arid zones than in
humid zones due to differences in production percentiles;
the reverse was true for maize, cotton, and sunflower. Two
factors contribute to these results: first, crops cultivated in
arid zones are more irrigation reliant due to scarce precip-
itation and undergo greater evapotranspiration, resulting in
higher uWFCP versus humid zones. Second, certain crops
like cotton possess higher benchmarks in humid zones since
their yields are markedly lower than those extensively grown
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Table 4. The uWFCPb, uWFCPg, and yield of 21 crops under different water supply modes and irrigation practices in 2018.

Crop Furrow irrigation Micro-irrigation Sprinkler irrigation Rainfed

Blue Green Yield Blue Green Yield Blue Green Yield Green Yield
uWFCP m3 t−1 uWFCP m3 t−1 t ha−1 uWFCP m3 t−1 uWFCP m3 t−1 t ha−1 uWFCP m3 t−1 uWFCP m3 t−1 t ha−1 uWFCP m3 t−1 t ha−1

(4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)

Wheat 508 447 6.1 628 340 5.1 636 464 5.5 999 4.5
(−30 %) (−18 %) (36 %) (−18 %) (−29 %) (20 %) (−31 %) (−16 %) (35 %) (−38 %) (80 %)

Maize 369 477 6.4 369 238 9.4 390 396 7.3 820 5.7
(−26 %) (−15 %) (25 %) (−26 %) (−52 %) (80 %) (−38 %) (−24 %) (39 %) (−26 %) (43 %)

Early rice 231 406 0.2 – – – 332 305 172.6 – –
(4 %) (−6 %) (463 %) – – – (4 %) (−12 %) (−79 %) – –

Mid rice 349 382 0.6 – – – 420 291 91.7 – –
(−24 %) (−4 %) (361 %) – – – (−5 %) (−2 %) (−73 %) – –

Late rice 237 540 0.2 – – – 454 322 156.6 – –
(8 %) (−2 %) (526 %) – – – (−3 %) (−2 %) (−81 %) – –

Sorghum 601 793 3.7 713 567 3.8 693 696 3.9 805 5.2
(−43 %) (−29 %) (54 %) (−21 %) (−42 %) (52 %) (−56 %) (−39 %) (82 %) (−39 %) (67 %)

Millet 719 807 3.5 705 531 3.8 712 652 4.0 1528 2.8
(−45 %) (−32 %) (65 %) (−36 %) (−47 %) (68 %) (−51 %) (−38 %) (76 %) (−38 %) (75 %)

Barley 369 536 3.7 660 558 2.9 1038 1069 2.1 1,051 3.1
(15 %) (15 %) (−7 %) (86 %) (55 %) (−26 %) (117 %) (130 %) (−48 %) (25 %) (−24 %)

Soybeans 915 1569 2.2 1359 1236 2.1 1006 1575 2.0 2489 1.8
(−14 %) (−8 %) (12 %) (−1 %) (−19 %) (14 %) (−29 %) (6 %) (2 %) (−11 %) (16 %)

Potatoes 192 258 9.9 188 105 19.0 156 150 17.0 1253 2.9
(−10 %) (25 %) (−22 %) (−14 %) (−30 %) (31 %) (−3 %) (42 %) (−24 %) (−28 %) (47 %)

Sweet potatoes 403 762 5.1 485 751 4.9 457 721 5.2 1231 4.3
(−26 %) (−7 %) (14 %) (−22 %) (−3 %) (11 %) (−38 %) (4 %) (9 %) (−8 %) (10 %)

Cotton 2539 2623 1.4 1,306 360 4.5 2,807 2704 1.3 2133 1.8
(−18 %) (−3 %) (17 %) (−53 %) (−80 %) (208 %) (−22 %) (20 %) (3 %) (−55 %) (71 %)

Sugar cane 16 37 164.9 13 29 200.7 19 41 146.1 120 69.8
(−31 %) (−32 %) (56 %) (−10 %) (−17 %) (26 %) (−43 %) (−41 %) (83 %) (−26 %) (40 %)

Sugar beets 8 2 752.3 7 2 786.0 10 4 520.9 72 52.2
(−35 %) (−36 %) (54 %) (−35 %) (−32 %) (49 %) (−26 %) (−23 %) (30 %) (−53 %) (114 %)

Groundnuts 440 608 5.5 633 540 5.0 534 567 5.5 1669 2.8
(−35 %) (−29 %) (50 %) (0 %) (−10 %) (11 %) (−41 %) (−14 %) (32 %) (−5 %) (8 %)

Rapeseed 181 611 6.0 116 676 6.0 181 611 6.0 1435 2.0
(35 %) (−48 %) (58 %) (19 %) (−39 %) (52 %) (35 %) (−48 %) (58 %) (−12 %) (34 %)

Sunflower 829 639 3.6 694 250 6.0 794 485 4.5 1504 2.4
(−27 %) (−6 %) (21 %) (−42 %) (−62 %) (121 %) (−30 %) (−13 %) (28 %) (−39 %) (72 %)

Tomatoes 25 28 58.6 28 22 58.7 27 25 58.6 – –
(−43 %) (−38 %) (77 %) (−41 %) (−39 %) (77 %) (−52 %) (−31 %) (77 %) – –

Apple 159 150 26.1 200 128 20.9 219 177 21.1 345 17.5
(−65 %) (−56 %) (159 %) (−40 %) (−54 %) (87 %) (−66 %) (−55 %) (151 %) (−48 %) (111 %)

Tea 1769 2552 2.3 1546 2601 2.2 1620 2218 2.6 10 769 0.7
(−52 %) (−57 %) (138 %) (−64 %) (−66 %) (221 %) (−65 %) (−63 %) (198 %) (−17 %) (17 %)

Tobacco 596 1303 2.6 486 1436 2.2 622 1110 2.9 2281 2.0
(−25 %) (−5 %) (13 %) (−24 %) (13 %) (−14 %) (−40 %) (9 %) (6 %) (−15 %) (20 %)

Cabbage 49 85 34.7 53 71 32.7 48 79 35.0 – –
(4 %) (2 %) (4 %) (6 %) (−7 %) (−2 %) (−14 %) (9 %) (5 %) – –

Grapes 135 63 33.8 115 54 33.8 148 64 33.8 283 18.8
(−44 %) (−45 %) (80 %) (−45 %) (−46 %) (80 %) (−44 %) (−45 %) (80 %) (−34 %) (63 %)

Note: “4” refers to the rate of change from 2000 to 2018. Dashes indicate that no crops were grown.

in arid regions. Overall, the uWFCP benchmarks for rain-
fed crops were higher than those for irrigated crops. The
uWFCP benchmarks for each irrigation practice varied by
crop species.

Figures 6 and S26–S28 present the uWFCP benchmarks
according to different production percentiles in humid and
arid zones and as obtained for various water supply modes
and irrigation practices. Except for vegetables (tomatoes and
cabbage), the majority of crops were cultivated in regions

with a uWFCP benchmark that exceeded the 25 % production
percentile. Under furrow and sprinkler irrigation, the areas
that fell below the uWFCP benchmark at the 25 % produc-
tion percentile were predominantly distributed in the humid
zone. In the arid zone, a greater proportion of micro-irrigated
regions fell below the uWFCP benchmark at the 25 % pro-
duction percentile. The results indicate that governing bodies
need to consider the influence of climatic zones as well as
water supply modes and irrigation practices when quantify-
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Figure 5. Gridded uWFCP of 21 crops in China at annual average level for 2000–2018.

ing uWFCP benchmarks to identify hotspots for water-saving
potential. Specific water-use policies need to be formulated
both for crop varieties and irrigation practices.

3.4 Results comparison

Using publicly available datasets, we compared the water
use of 15 crops with the WATNEEDS dataset (Chiarelli
et al., 2020) that overlapped in time (in 2000) and space

(137 956 grids). As illustrated in Fig. 7, the results showed
that R2>0.60 (p<0.01) among 12 of the crops. However,
large deviations were present in the comparisons of data for
barley, sunflower, and potatoes. The following two factors
were responsible for this disparity: first, the current study
aimed to quantify the actual water consumption during crop
growth, whereas the WATNEEDS dataset concentrated on
theoretical crop water requirements. Second, this study di-
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Figure 6. Benchmarks for uWFCP at different production percentiles under furrow irrigation in China by 2018.
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vided irrigation into furrow, sprinkler, and micro-irrigation
categories at the grid scale. In reality, sprinkler irrigation
covers a much larger area than micro-irrigation and also pos-
sesses the highest fw of our three irrigation categories, which
is ultimately reflected in a higher water consumption in our
data. Overall, our dataset displayed a high level of reliability.
The comparison of our WFCP data with the WATNEEDS
dataset (Chiarelli et al., 2020) on a national scale is shown in
Table 5. Except for rice, the variability of WFCP and WFCPb
between the two datasets was under 25 % and 20%, respec-
tively, demonstrating high consistency. Large differences in
the WFCPg between the two datasets can be attributed to two
factors, namely, the different quantification methods used
(including model mechanisms and green water definitions)
and the different sources of precipitation data used for model
input, leading to variations in green water simulations. With
regards to the variability observed in rice data, some of our
grids contained information for two to three seasons of rice
cultivation (combined with the actual regional cultivation)
and all these instances were assumed to receive irrigation
in this study; this may have resulted in a comparatively low
WFCPg value.

In a comparison of the uWFCP obtained for 21 crops in
our dataset with figures reported by Mekonnen and Hoek-
stra (2011) and Zhuo et al. (2016a), the variability of data
for 18 crops was under 30 %, which was attributed to the un-
certainty imposed by model simulation (Table 5). Although
crop acreage remains consistent at the national scale, sets of
crop distribution data must be matched with different sets of
input variables (such as precipitation, temperature, and soil
moisture content), which has a significant impact on the sim-
ulated values. The differences in the uWFCP of potato, sweet
potato, and cotton resulted from the large discrepancies in
production data, with simulated values for these three crops
by Mekonnen and Hoekstra (2011) and Zhuo et al. (2016a)
being 80 %, 81 %, and 67 % higher than those in the statisti-
cal yearbook.

4 Discussion

4.1 Data validation

We compared our 5 arcmin resolution of major crop areas,
as calculated by the proportional invariant method, with the
GAEZ+ (Grogan et al., 2022) and SPAM (IFPRI, 2019) data
products in the same year (Fig. 8). Linear regression results
for data on wheat, maize, and rice coverage showed that R2

was greater than 0.50 (p<0.01) at the raster scale and greater
than 0.80 (p<0.01) at the provincial scale, and the overall
variability at the national scale was under 8 %. We further
compared planting areas of other crops in SPAM and our
data provincially and in grids (Figs. S29 and S30). It is evi-
dent that there is a high R2 at the provincial scale. The differ-
ences at the grid scale can be attributed to discrepancies in the
identification of gridded land use between the MIRCA2000

and SPAM. According to Figs. S31 and S32, the planting
area data for sorghum, millet, barley, and sugar beets in the
GAEZ+ exhibit significant deviations from this study, both
at the provincial and grid scales. However, we emphasize that
all crop planting area data in this study have been calibrated
against statistical data at the provincial scale, implying an
underestimation of the planting area for the mentioned crops
in the GAEZ+. Overall, comparisons with existing products
validated the accuracy of the gridded representation of crop
land coverage as obtained in this study.

Based on data from dual-source (PML-V2(China)) and
single-source (SEBAL) remote sensing products, we vali-
dated our evapotranspiration, evaporation, and transpiration
results specifically over the major cropping period from
April to August by following the selection process out-
lined in Sect. 2.3.2. Comparative analysis in Figs. 9 and
S33 revealed stronger agreement between the simulated
evapotranspiration and the PML-V2 products (R2

= 0.49–
0.85, RMSE= 5.82–12.12 Mm3) than those with the SE-
BAL products (R2

= 0.44–0.75, RMSE= 8.51–15.82 Mm3),
although both comparisons demonstrated robust overall
consistency. The validation results of soil evaporation
(E) are presented in Fig. S34. The simulated E were
marginally lower than the PML-V2 products (R2

= 0.22–
0.70, RMSE= 3.25–6.65 Mm3), owing to the current study
calculating E exclusively for the planted regions of 21 crops,
whereas the PML-V2 disregarded land use types during E

estimation. Comparative analysis of crop transpiration in
Fig. S35 indicated that our simulated values were higher than
those of the PML-V2 products which deducted canopy evap-
oration (R2

= 0.38–0.69, RMSE= 6.04–10.35 Mm3). Over-
all, considering the differences in basic input data, spatiotem-
poral resolution and calculation methods, the evapotranspi-
ration, evaporation, and transpiration data products produced
in this study showed acceptable results when compared with
various remote sensing products, given the discrepancies ex-
hibited.

4.2 Sensitivity and uncertainty analysis

To clarify the sensitivity of a WFCP assessment to the
main parameters in a simulation, a previous study by the
present authors applied the one-at-a-time and sensitivity in-
dex methods to quantitatively evaluate a WFCP calculation
by AquaCrop (Li et al., 2022). The results indicated that crop
water consumption and production were extremely sensitive
to the reference evapotranspiration, planting date (PD), and
the crop transpiration coefficient (KcTr). The effect of PD
differed for each crop, and advancing or delaying it exposed
crops to completely different rain and heat conditions. Minor
shifts in PD forward or backward have relatively small in-
fluences on WFCP since crop water consumption is primar-
ily concentrated in crop development and mid-season stages
(Fig. S36; Table S4). Moreover, yield and WFCP exhibited
minimal sensitivity to changes in crop PD when preserving
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Figure 7. Comparison of WFCP with WATNEEDS dataset.

constant growing degree days (Zhuo et al., 2014). In the an-
nex of the reference manual for the AquaCrop (Raes et al.,
2018), default values of crop parameters for the crops cov-
ered in the current study are given, including crop transpira-
tion, biomass production and yield formation, and stresses,
totalling 41 parameters. Furthermore, these parameters are
further classified based on crop sensitivity as conservative
generally applicable (including KcTr), conservative for a
given species but can or may be cultivar specific, dependent
on environment and/or management, and cultivar specific.
The conservative parameters are generally applicable and re-
main unchanged across a wide spectrum of conditions, in-
cluding different climatic and geographic locations, crop cul-
tivars and genotypes, as well as variable soil moisture stress
statuses. Once calibrated, these identical parameters would

be utilized without further modification. Importantly, the ac-
curacy of all model studies (including those using AquaCrop)
is dependent on both the model mechanism and the input
data. AquaCrop’s accuracy in simulating crop water con-
sumption and production for various climates, soils, and field
management practices has been extensively validated (Zhuo
et al., 2016a; Pirmoradian and Davatgar, 2019; Wang et al.,
2019; Chibarabada et al., 2020).

At the outset of the simulation used in this study, we rig-
orously screened the input data according to the principles of
accuracy and representativeness. However, there was a de-
gree of bias in the model set-up and input data. For instance,
the current study focused on the effect of water stress on
crop growth and worked from the assumption that all nu-
trients required for crops were provided. First, AquaCrop,

Earth Syst. Sci. Data, 15, 4803–4827, 2023 https://doi.org/10.5194/essd-15-4803-2023



W. Wang et al.: The CWFETB–China dataset 4821

Table 5. Comparison of WFCP and uWFCP in overlapping time and space with published results.

Crop WFCP (M m3 yr−1) (period: 2000) uWFCP (m3 t−1) (period: 2000–2005) uWFCP (m3 t−1) (period: 2000–2009)

Current study Chiarelli et al. (2020) (4) Current study Mekonnen and Hoekstra (2011) (4) Current study Zhuo et al. (2016a) (4)

Blue Green Blue Green Blue Green Blue Green Blue Green Blue Green

Wheat 80 55 79 22 (14 %) 800 501 821 466 (1 %) 754 472 1135 392 (11 %)
Maize 82 33 78 24 (6 %) 744 264 791 74 (8 %) 728 239 747 56 (9 %)
Rice 59 80 255 97 (43 %) 328 432 549 246 (2 %) 323 437 987 395 (29 %)
Sorghum 3 1 3 0 (4 %) 1002 178 952 42 (9 %) 1059 186 695 58 (25 %)
Millet 5 1 4 0 (11 %) 2092 224 1600 40 (17 %) 2145 242 1418 141 (21 %)
Barley 3 0 4 0 (21 %) 804 50 556 28 (19 %) 843 58 560 120 (14 %)
Soybeans 38 5 33 5 (5 %) 2337 326 2549 249 (2 %) 2418 317 2336 316 (2 %)
Potatoes 16 1 16 1 (0 %) 1163 62 215 7 (69 %) 1154 64 183 9 (73 %)
Sweet potatoes 29 3 1184 105 242 4 (68 %) 1211 108 63 22 (88 %)
Cotton 18 5 23 3 (8 %) 4236 951 1440 247 (51 %) 3781 847 1117 281 (54 %)
Sugar cane 9 0 12 1 (17 %) 122 5 169 6 (16 %) 118 4 124 1 (1 %)
Sugar beets 1 0 1 0 (2 %) 130 0 148 0 (6 %) 117 0 104 0 (6 %)
Groundnuts 20 4 19 3 (5 %) 1412 257 1383 85 (6 %) 1347 260 1399 219 (0 %)
Rapeseed 18 0 12 0 (22 %) 1713 0 1387 0 (11 %) 1623 0 1754 0 (4 %)
Sunflower 4 0 3 0 (9 %) 2154 232 2254 341 (4 %) 1991 237 1025 163 (30 %)
Tomatoes 1 1 46 43 182 3 (35 %) 42 39 81 2 (2 %)
Apple 10 5 443 186 796 30 (14 %) 389 154 372 46 (13 %)
Tea 6 1 8440 1970 9277 798 (2 %) 7860 1792 9055 122 (3 %)
Tobacco 6 0 2273 174 2007 253 (4 %) 2162 167 1771 18 (13 %)
Cabbage 3 2 82 53 237 4 (28 %) 82 53 122 8 (2 %)
Grapes 1 0 1 0 (7 %) 407 0 357 0 (7 %) 364 0 349 123 (13 %)

Note: “4” means calculated as the ratio of the study difference to the study mean.

Figure 8. Comparison of the current gridded area representing land coverage by major crops with the GAEZ+ and SPAM datasets.

as a water-driven model, simulates crop growth comprehen-
sively by establishing the responsive link between effective
soil water usage and crop yield (Raes et al., 2018). Sec-
ond, AquaCrop adopts a semi-quantitative method to eval-
uate fertilizer stress, that is, it cannot directly simulate crop
response to fertilizer based on plant nutritional demand and
soil nutrient content (Akumaga et al., 2017). Research shows
AquaCrop performs better without fertilizer stress versus
with stress (Adeboye et al., 2021; Wu et al., 2022). In fact,
there is a serious over-application of chemical fertilizers in

Chinese farmlands (Chen et al., 2014; Cui and Shoemaker,
2018). The impact of fertilization on crop production was in-
directly reflected through calibration against statistical data.
Third, gridded data is deficient regarding fertilizer varieties
and application quantities, and more so for crop-specific data,
so like past AquaCrop global (Mialyk et al., 2022) and na-
tional (Wang et al., 2019) studies, nutrient stress is not con-
sidered in simulations. Certainly, the above assumption has
limitations. Establishing high-resolution fertilizer applica-
tion databases is vital for future crop production research.
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Figure 9. Validation of the evapotranspiration at croplands for the period April to August with PML-V2(China) datasets.

Furthermore, the parameters we used for fraction of the
surface wetted in either furrow, sprinkler, or micro-irrigation
remained consistent across regions owing to the absence
of any data related to possible variance as mentioned in
Sect. 2.2.5. In other words, we downplayed regional vari-
ations within the same irrigation practice. Taking micro-
irrigation as an example, the difference between different
micro-irrigation products mostly lies in the transport and dis-
tribution pipe networks and irrigator, which have little im-
pact on the fraction of the surface wetted in the crop root
zone. In terms of crop parameters, strict regional differences
were considered during the initial screening of the 21 crops’
parameters. According to the regional classification results
in Table S3, these key parameters like plant dating, refer-
ence harvest index, crop growth stages, and maximum root
depth for this study are obtained by referring to the studies

described in Sect. 2.1.3. These data have been validated to
be reliable and applicable in large-scale studies (Cao et al.,
2014; Zhuo et al., 2016a; Wang et al., 2019). Due to data lim-
itations, the remaining parameters, such as maximum canopy
cover, canopy cover decline coefficient, and canopy growth
coefficient, were assigned the mean values within the refer-
ence range provided in the annex of the reference manual for
the AquaCrop. Although this approach may overlook certain
potential variations, the use of mean values generally cap-
tures the central tendency of the data.

Unlike small-scale studies at site level that empha-
size region-specific measured parameters for model sim-
ulation, large regional-scale studies often adopt literature-
recommended parameter values during data collection, with
greater focus on regional variability and wide adaptability
of the parameters. (Hoekstra and Wiedmann 2014; Davis et
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al., 2017; Mekonnen and Hoekstra, 2020; Lutz et al., 2022;
Halpern et al., 2022; Liu et al., 2022; Chiarelli et al., 2022;
Demay et al., 2023). It was neither practical nor feasible to
calibrate crop parameters individually for each grid given
the constraints of the available data. Nevertheless, we have
made every effort to ensure the reliability of the model input
parameters within the existing limitations. Consequently, in
future research, attention to the collection and organization
of basic data can play a positive role in the improvement of
the model mechanism and accuracy of the output (Mekonnen
and Hoekstra, 2010, 2011).

In general, despite the uncertainties in the input data, the
calculated WFCP and uWFCP were in good agreement with
existing studies at both the grid and national scales, and the
dataset in the long time series was compatible with remote
sensing products. The above analysis demonstrated that the
findings of our current study correctly reflected water con-
sumption during the crop growth period under various water
supply modes and irrigation practices.

5 Data availability

All data used in this study are freely available with
the links given in Sect. 2. The dataset presented in
this article are available from the Zenodo repository at
https://doi.org/10.5281/zenodo.7756013 (Wang et al., 2023).
Both gridded consumptive water footprints, evaporation,
transpiration, and associate benchmarks of crop production
are provided.

6 Conclusions

The current study constructed a gridded WFCP database for
21 crops in China for 2000–2018 to reflect different water
supply modes and irrigation practices, thereby addressing
monthly blue and green water consumption in soil evapo-
ration and crop transpiration. Additionally, we established
uWFCP benchmarks for various climatic zones, water sup-
ply modes, and irrigation practices. The current dataset was
thoroughly validated. The results highlighted the necessity
to explore the influences of different field management prac-
tices on WFCP quantification and benchmarking in future
research.

The WFCP is a crucial indicator used for evaluating wa-
ter consumption by crops and a key component to solving
the problems associated with the environmental “footprint
family” and “planetary boundary” (Galli et al., 2012; Hoek-
stra and Wiedmann, 2014; Steffen et al., 2015). The cur-
rent dataset is able to support for precise crop water pro-
ductivity assessments, agricultural water-saving evaluations,
the development of sustainable irrigation techniques, crop-
ping structure optimization, and crop-related interregional
virtual water trade analysis. The dataset can furthermore be
applied to develop dynamic water management policies by

virtue of its analysis of the spatial and temporal fluctuations
in crop water consumption. The methodological framework
for batch quantification of the WFCP can facilitate the updat-
ing of relative dataset and scale conversion studies.
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