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Abstract. Multi-temporal measurements quantifying the changes to the Earth’s surface are critical for under-
standing many natural, anthropogenic, and social processes. Researchers typically use remotely sensed Earth
observation data to quantify and characterize such changes in land use and land cover (LULC). However, such
data sources are limited in their availability prior to the 1980s. While an observational window of 40 to 50 years is
sufficient to study most recent LULC changes, processes such as urbanization, land development, and the evolu-
tion of urban and coupled nature–human systems often operate over longer time periods covering several decades
or even centuries. Thus, to quantify and better understand such processes, alternative historical–geospatial data
sources are required that extend farther back in time. However, such data are rare, and processing is labor-
intensive, often involving manual work. To overcome the resulting lack in quantitative knowledge of urban
systems and the built environment prior to the 1980s, we leverage cadastral data with rich thematic property at-
tribution, such as building usage and construction year. We scraped, harmonized, and processed over 12 000 000
building footprints including construction years to create a multi-faceted series of gridded surfaces, describing
the evolution of human settlements in Spain from 1900 to 2020, at 100 m spatial and 5-year temporal resolution.
These surfaces include measures of building density, built-up intensity, and built-up land use. We evaluated our
data against a variety of data sources including remotely sensed human settlement data and land cover data,
model-based historical land use depictions, and historical maps and historical aerial imagery and find high levels
of agreement. This new data product, the Historical Settlement Data Compilation for Spain (HISDAC-ES), is
publicly available (https://doi.org/10.6084/m9.figshare.22009643, Uhl et al., 2023a) and represents a rich source
for quantitative, long-term analyses of the built environment and related processes over large spatial and temporal
extents and at fine resolutions.
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1 Introduction

The built environment, encompassing cities, towns, villages,
and transportation infrastructure connecting them, represents
a fundamental component of our civilization. It determines
the social, environmental, economic, identity-related, per-
ceptual, and safety- and health-related aspects of human set-
tlements in urban and rural settings. The built environment
interacts with human life and society in various ways. For
example, the morphological structure and dimension of the
built environment and of cities in general affects the effi-
ciency and sustainability of cities and urban ecosystems, hu-
man health, economic development, and social inequality
(Alonso, 1964; Ewing and Rong, 2008; Saiz, 2010; Seto et
al., 2011).

Measuring the physical, functional, and socio-economic
characteristics of the built environment, as well as their evo-
lutionary trajectories, helps researchers to understand the de-
velopment of complex urban systems and enables informed
decision-making in urban and regional planning. Informa-
tion about different dimensions of the built environment
and the building stock can be obtained from a variety of
data sources, such as remote sensing data or volunteered
geographic information (VGI). In particular, detailed build-
ing data are critical for the development of long-term ur-
ban sustainability strategies (Hudson, 2018). Data sources
for contemporary studies or analyses covering the last 30 to
40 years include gridded data on impervious surfaces (e.g.,
Gong et al., 2020), built-up areas, building functions, build-
ing height and volume (Marconcini et al., 2020a; Haberl et
al., 2021; Pesaresi et al., 2021; Esch et al., 2022; Li et al.,
2022; Schiavina et al., 2022), urban fabric classification (De-
muzere et al., 2019), and mass and material of the build-
ing stock (Haberl et al., 2021). Moreover, building-level data
are available from industry-generated data sources, such as
Google (Sirko et al., 2021), Microsoft (https://github.com/
microsoft/GlobalMLBuildingFootprints, last access: 10 Oc-
tober 2023), and VGI (OpenCityModel (https://github.
com/opencitymodel/opencitymodel, last access: 10 Octo-
ber 2023), Atwal et al., 2022), and increasingly from cadas-
tral data sources, for parts of the United States (Uhl and Leyk,
2022a) or, recently, for large parts of Europe (EUBUCCO,
Milojevic-Dupont et al., 2023). In addition, (commercial)
property/real estate data can be obtained through large-scale,
data harmonization and dissemination efforts (e.g., ZTRAX
(https://www.zillow.com/research/ztrax/, last access: 10 Oc-
tober 2023), Regrid (https://regrid.com/, last access: 10 Octo-
ber 2023), ParcelAtlas (https://boundarysolutions.com/, last
access: 10 October 2023), and EuroGeographics (https://
www.mapsforeurope.org/datasets/cadastral-all, last access:
10 October 2023)). Such efforts have catalyzed the data-
driven study of environmental processes in general (Nolte et
al., 2023) and opened new avenues to increase our knowl-
edge of the human habitat and its interactions from a multi-
dimensional, quantitative perspective.

However, such multi-source, multi-modal data often suf-
fer from spatial, temporal, or semantic inconsistencies or in-
compatibilities, which impede the direct, quantitative anal-
yses of the built environment from a multi-dimensional per-
spective. Moreover, while data on the contemporary state and
recent history of the built environment are available for many
places in the world, analysis-ready geospatial vector or raster
data or systematically georeferenced historical information
for cities, towns, and villages prior to the 1980s is generally
scarce (Uhl and Leyk, 2022a).

We argue that cadastral data sources (i.e., parcel and build-
ing data including construction dates and other thematic in-
formation on building size, material, or function) allow these
two shortcomings to be mitigated and complement the tra-
ditional data sources (e.g., remote sensing data). Cadastral
data are increasingly available as open data (Von Meyer and
Jones, 2013; Haberl et al., 2021; Milojevic-Dupont et al.,
2023) and have been used in a variety of geographic, de-
mographic, and economic studies (e.g., Tapp, 2010; Leyk et
al., 2014; Zoraghein et al., 2016; Nolte, 2020; Sapena et al.,
2022; Domingo et al., 2023). In previous work, for exam-
ple, Uhl and Leyk (2022a) integrated cadastral parcel data
and building footprint data to generate multi-temporal build-
ing footprint data for some regions within the conterminous
United States (CONUS), which constitutes a valuable data
source for accuracy assessments of remote-sensing-derived
built-up surface data (Leyk et al., 2018; Uhl et al., 2018; Uhl
and Leyk, 2022b, c) and remote-sensing-based construction
year estimation (Uhl and Leyk, 2017, 2020). We also used
cadastral and property data sources to create accessible, geo-
historical data infrastructure on the built environment in the
United States (Leyk and Uhl, 2018; Uhl et al., 2021c; Mc-
Shane et al., 2022) and demonstrated the value of such data
for quantitative analyses of long-term urbanization and land
development (Leyk et al., 2020; Uhl et al., 2021b), road net-
work evolution (Burghardt et al., 2022a), long-term urban
scaling analyses (Burghardt et al., 2022b), and long-term set-
tlement trends in the context of natural hazards (Braswell et
al., 2022; Iglesias et al., 2021) and for assessments of histor-
ical neighborhood changes (Connor et al., 2020).

Specifically, in past work, the Zillow Transaction and
Assessment Dataset (ZTRAX) was employed, an industry-
generated property dataset covering over 150 000 000 prop-
erties in the United States, resulting from a large cadastral
data harmonization effort, to generate the Historical Settle-
ment Data Compilation for the United States (HISDAC-US).
HISDAC-US consists of gridded datasets that measure built-
up intensity and settlement age (Leyk and Uhl, 2018), as well
as building density from 1810 to 2015 (Uhl et al., 2021c) and
building function (McShane et al., 2022) from 1940 to 2015,
at 250 m spatial resolution. These datasets have widely been
used by researchers for various scientific studies (e.g., Mill-
houser, 2019; Balch et al., 2020; Mietkiewicz et al., 2020;
McDonald et al., 2021; Ferrara et al., 2021; Boeing, 2021;
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Li et al., 2021; Dornbierer et al., 2021; Millard-Ball, 2022;
Miranda, 2022; Wan et al., 2022).

A lack of comparable data outside of the United States has
impeded similar efforts for other regions of the world. How-
ever, the INSPIRE directive (“Infrastructure for Spatial Infor-
mation in Europe”) has paved the way for the availability of
open cadastral and building data for the member countries of
the European Union (EU). INSPIRE is the legal framework
to implement a European Spatial Data Infrastructure (SDI;
Bernard et al., 2005; Minghini et al., 2021), enabling har-
monized and searchable data resources across the EU. One
of the core components of INSPIRE are standardized meta-
data specifications (Cetl et al., 2017). Moreover, INSPIRE
provides a taxonomy of geospatial data into 34 data themes,
encompassing cadastral parcels, buildings, and land cover, as
well as population, environmental, and infrastructure-related
topics (Minghini et al., 2021). One of the data themes de-
fined in the INSPIRE data scheme is the building theme, rep-
resenting a set of data models for spatial vector data on the
geometric and thematic attributes of buildings, with a rich set
of thematic attributes describing the physical, functional, and
age-related characteristics of buildings. The INSPIRE build-
ing model can be implemented at different geometric and the-
matic levels of detail, specified in the “core 2d”, “extended
2d”, “core 3d”, and “extended 3d” profiles, accounting for
different levels of data availability across EU member coun-
tries (Gröger and Plümer, 2014).

Many member countries of the EU have made such data
publicly accessible (as regulated for instance in the EU PSI
directive; European Union, 2019), typically derived from
cadastral data records, at varying levels of geometric de-
tail and attribute completeness. We roughly compared the
building footprint data available for some European coun-
tries, in a non-systematic manner (including France, Spain,
the Netherlands, and Germany) and found that data from
Spain have high levels of data coverage and attribute com-
pleteness (for an in-depth study on building data availability
across Europe, see Milojevic-Dupont et al., 2023). However,
these building data are maintained by different institutions
within Spain, i.e., the chartered communities (diputaciones
forales) of Navarre and the provinces of the Basque Country,
as well as the national cadastral agency (Dirección General
del Catastro) for the remaining autonomous communities1,
and are available as large, distributed datasets in slightly dif-
ferent data models and data formats, impeding direct and
wide usage of these data for country-level analyses.

Spain is one of the two major countries that make up the
Iberian Peninsula. It has an area of 506 000 km2. In addi-
tion to the peninsular territory, it has two archipelagos, the
Canary Islands in the Atlantic Ocean and the Balearic Is-
lands in the Mediterranean Sea, and two exclaves in northern
Africa, the autonomous cities of Ceuta and Melilla. It is a de-
centralized state with autonomous communities, 17 in total,

1Herein, we refer to the autonomous communities as “regions”.

and the aforementioned autonomous cities. The autonomous
communities have a high degree of self-government, and sev-
eral of them are classified as “historic” due to their differen-
tial identity associated with their own language. This is the
case with Catalonia, Galicia, Valencia, the Balearic Islands,
the Basque Country, and Navarre. The latter two, located on
the northern coast of the Iberian Peninsula, also have their
own economic agreement and a different fiscal and tax col-
lection system from the rest of the territories. This is the
reason why their cadastral data differ from the rest of the
country. The administrative organization has four levels: the
national level, the autonomous communities (with powers
in territorial planning, education, healthcare, primary sector,
industry, commerce, and tourism), the provinces (50 in to-
tal with limited competencies, mainly coordination and as-
sistance to small municipalities), and over 8100 municipali-
ties, which have powers in urban planning and local services.
Spain has had two distinct settlement systems, increasingly
diluted, associated with its historical and climatic evolution.
In the northwest and the Cantabrian area (Galicia, Asturias,
Cantabria, Basque Country, northern Navarre, and part of
Catalonia), there has been a traditional dispersal of the rural
population in isolated houses and/or small settlements asso-
ciated with an Atlantic climate, with intensive agriculture and
livestock favored by the presence of abundant water. In con-
trast, the rest of the territory, with a Mediterranean climate,
has experienced concentrated settlements associated with ce-
real crops, vineyards, and olive groves, as well as extensive
livestock farming.

To increase the accessibility of cadastral data, we obtained
and harmonized INSPIRE-conforming building data from
the different cadastral systems in Spain to create an acces-
sible and consistent geospatial data resource enabling the
analysis of the built environment in Spain from a physical,
functional, and temporal perspective. More specifically, we
generated a set of fine-grained gridded surfaces describing
physical, functional, and temporal dimensions of the built en-
vironment in Spain. These surfaces encompass, for example,
the building area, the number of housing units, predominant
land use type, and building age statistics at a fine spatial res-
olution of 100 m× 100 m. Moreover, we used building age
information available in these building databases to estimate
and map historical building densities and built-up land from
1900 to 2020.

These gridded surfaces are intended to enable researchers
from various disciplines to carry out fine-scale, multi-
dimensional analyses of the built environment in Spain, con-
sistently enumerated in a common spatial grid, and to facil-
itate long-term studies of the evolution of the built environ-
ment within an observational window of up to 120 years. We
call this dataset the “Historical Settlement Data Compilation
for Spain” (HISDAC-ES) and make all data publicly avail-
able (https://doi.org/10.6084/m9.figshare.22009643; Uhl et
al., 2023a). This “Data description” paper presents our data
curation effort (Sect. 2); highlights the resulting gridded sur-
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faces (Sect. 3); includes a thorough evaluation of the created
data, encompassing several comparative analyses against a
variety of independent data sources on land use and built-
up land across both space and time (Sect. 4) and technical
notes on the published data and code (Sects. 5 and 6, re-
spectively); and concludes with some final remarks and an
outlook (Sect. 7).

2 Data and methods

Cadastral building footprint data for Spain are hosted by na-
tional, regional, or provincial authorities. The data process-
ing workflow consisted of the following steps: (1) we ac-
quired around 12 000 000 building footprints and attributes
as polygonal, geospatial vector data in Geographic Markup
Language (GML) format from official web resources using
automated and manual downloads (Sect. 2.1.1). (2) We har-
monized the data (Sect. 2.1.2). (3) We aggregated the data
into gridded surfaces and computed zonal statistics at the
municipality level (Sect. 2.1.3). Furthermore, we evaluated
the resulting gridded surfaces through comprehensive com-
parisons with a wide variety of independent spatial datasets
(Sects. 2.2 and 4).

2.1 INSPIRE building data processing

2.1.1 Data collection

For most parts of Spain, cadastral building data are avail-
able through an ATOM interface. The ATOM feed format is
an XML-based language that allows automated, web-based
content retrieval by providing a machine-readable web in-
terface (IBM, 2023). The ATOM XML files are organized
in a hierarchical manner (see Table 1 for examples) and al-
low the building data to be accessed in GML format, at
the municipality level. We created a Python script to au-
tomatically download these GML files (https://github.com/
johannesuhl/hisdac-es, last access: 10 October 2023). In
some cases (e.g., Basque Country, Navarre region, which
have their own cadastral systems) we manually downloaded
the data available as a Web Feature Service (WFS) (Ta-
ble 1). All downloaded data were projected in UTM zone
30N (EPSG:25830).

2.1.2 Data preprocessing

After downloading and gathering the building data for over
8100 municipalities, covering all regions of Spain, we first
calculated and attached the building footprint area (obtained
after reprojecting to EPSG:3035) and converted the polyg-
onal building footprint data to centroids, retaining all rel-
evant attributes, to reduce the computational effort for the
subsequent data processing. Despite the common INSPIRE
framework, attribute names and building function classes
differed slightly between the different data sources. Thus,

we harmonized the data by renaming columns, and by ap-
plying a common building function classification scheme,
including the six building function classes “residential”,
“commercial”, “industrial”, “agricultural”, “public services”,
and “office”. “Public services” is probably the broadest
of these categories, including governmental buildings, but
also health-related buildings and cultural institutions (e.g.,
churches or museums). Specifically, building function on-
tologies differed slightly for the data from the region of
Navarre and the province of Araba and were consistent
across the other regions/provinces. For example, commercial
buildings in Navarre are labeled “trade” instead of “com-
mercial”. The applied mapping scheme can be accessed
on the HISDAC-ES GitHub repository (https://github.com/
johannesuhl/hisdac-es/blob/main/landuse_mapping.csv, last
access: 10 October 2023).

The gridded surfaces of HISDAC-ES are provided in
three different spatial reference systems: (a) ETRS89 UTM
zone 30N (EPSG:25830) for the Spanish mainland, Balearic
Islands, and the exclaves Ceuta and Melilla located in
northern Africa; (b) REGCAN-95 (EPSG:4083) for the
Canary Islands; and (c) the reference grid of the European
Environmental Agency (EEA), which is based on the
ETRS89 Lambert azimuthal equal area projection (LAEA;
EPSG:3035) and is commonly used for pan-European
statistical mapping (e.g., CORINE Land Cover data), for
all Spanish territory. This way, users can refer to the data
in UTM/REGCAN for mapping purposes (north-oriented,
angle-preserving), while the datasets in area-preserving
LAEA projection can be used for statistical modeling and
integration with other datasets (e.g., gridded statistical
data from Eurostat (https://ec.europa.eu/eurostat/web/gisco/
geodata/reference-data/grids, last access: 10 October 2023)
or gridded Spanish census data (INE grid (https://www.ine.
es/censos2011_datos/cen11_datos_resultados_rejillas.htm,
last access: 10 October 2023)). Thus, we reprojected the
building centroids into these reference systems, yielding
two sets of harmonized building centroid data: (a) in
UTM/REGCAN and (b) in LAEA projection.

After an initial examination of the attribute coverage and
completeness, we decided to focus on six well-covered at-
tributes, measuring different aspects of the built environment,
including the construction year, building function, number
of dwellings, number of building units, building indoor area,
and building footprint area (Fig. 1). For clarity, the number
of dwellings describes the number of housing units in resi-
dential buildings, whereas the number of building units also
includes the number of units within non-residential buildings
(e.g., number of commercial businesses within a building
complex). Furthermore, the building indoor area represents
the attribute “official area” and measures the gross indoor
area (across all stories) within a building.
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Table 1. Source data overview.

Province/region Data format Online resource

Araba province (Basque Country) WFS https://geo.araba.eus/WFS_Katastroa?SERVICE=WFS&
VERSION=1.1.0&REQUEST=GetCapabilitiesa

Bizkaia province (Basque Country) ATOM/GML https://web.bizkaia.eus/es/inspirebizkaiaa

Gipuzkoa province (Basque Country) ATOM/GML https://b5m.gipuzkoa.eus/web5000/es/utilidades/inspire/
edificios/a

Navarre region WFS https://inspire.navarra.es/services/BU/wfsb

Other regions (country-level ATOM file) ATOM http://www.catastro.minhap.es/INSPIRE/buildings/ES.SDGC.
bu.atom.xmla

Other regions (regional-level ATOM example) ATOM http://www.catastro.minhap.es/INSPIRE/buildings/03/ES.
SDGC.bu.atom_03.xmla

Other regions (municipality-level example) GML http://www.catastro.minhap.es/INSPIRE/Buildings/03/
03004-AIGUES/A.ES.SDGC.BU.03004.zipa

a Last access: 10 October 2023. b Last access: 15 October 2021. In the meantime, the WFS has been replaced by a repository available at
https://filescartografia.navarra.es/2_CARTOGRAFIA_TEMATICA/2_7_CATASTRO/2_7_1_SHAPEFILE/ (last access: 10 October 2023).

2.1.3 Data aggregation

Based on the preprocessed, harmonized building data and the
six selected thematic attributes, we created a range of dif-
ferent aggregated representations of the data. These aggre-
gations include (a) spatial aggregation into grid cells within
regular spatial grids of 100 m× 100 m, (b) aggregation to the
municipality level by calculating zonal statistics per munici-
pality polygon, and (c) temporal aggregation by stratification
into different temporal classes. The combination of spatial
aggregation and temporal stratification applied to the differ-
ent thematic attributes yields a range of different sets of grid-
ded surfaces. For example, we calculated the sum and the
mean of the building units (BUNITS) and dwellings (DWEL)
over all buildings within a given grid cell, as well as both
the sum and mean building indoor area (BIA) and building
footprint area (BUFA), based on the building centroids lo-
cated within a grid cell. The resulting gridded surfaces repre-
sent physical features of the built environment. Similarly, we
calculated the minimum, maximum, mean, median, mode,
and the variety of construction years (COY) per grid cell,
which measures settlement age (heterogeneity) and quanti-
fies construction/remodeling activity within each grid cell.
Thus, COY statistics describe the age-related features of the
built environment.

We stratified the building records by their construction
year into temporal classes (epochs) based on 5-year inter-
vals (e.g., built-up before 1900, before 1905) and calculated
the number (or density) of buildings (BUDENS) and the total
building footprint area (BUFA) per grid cell in each of these
epochs from 1900 to 2020. We further binarized these grid
cells to measure developed area (DEVA) (i.e., grid cells con-
taining at least one building) and undeveloped areas in each
epoch. These gridded surfaces measure the physical evolu-

tion of the built environment in Spain. Similarly, we themat-
ically disaggregated the building count surfaces per epoch
based on the building function attribute of the buildings in
each grid cell and epoch, yielding time series of function-
specific building density layers, for six types of building
functions (i.e., residential, commercial, industrial, agricul-
tural, public services, and offices) as a proxy measure for
built-up land use evolution from 1900 to 2020. Table 2 pro-
vides an overview of the gridded surfaces and spatial vari-
ables generated by these data processing steps. These sur-
faces quantify, for example, the building density (i.e., num-
ber of buildings per grid cell, BUDENS), the built-up surface
density (i.e., building footprint area per grid cell, BUFA), or
the built-up intensity (i.e., the total building indoor floor area
per grid cell, BIA).

As mentioned before, all gridded surfaces are available
in UTM Zone 30N for the Iberian Peninsula, in REGCAN-
95 for the Canaries, and in Lambert azimuthal equal area
(LAEA) projection for the whole extent. For selected vari-
ables, we also provide a time series of zonal statistics, ag-
gregated to the municipality boundaries2 (see Sect. 3.5).
We created these zonal statistics based on (a) spatially
joining the municipality identifier and area to each build-
ing centroid of our harmonized building dataset (point-in-
polygon query) and (b) deriving statistics (sums, densi-
ties) for each municipality. All data processing, as well as
the evaluation experiments and data visualizations, was im-
plemented in Python 3.8, using libraries such as NumPy,
SciPy, GDAL, GeoPandas, pandas, Matplotlib, PIL, and
Esri ArcPy. The core component of our grid cell aggre-

2https://doi.org/10.7419/162.09.2020 (Centro Nacional de In-
formación Geográfica, 2023), dataset “Límites municipales, provin-
ciales y autonómicos” (August 2023)
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Figure 1. Input data: INSPIRE-conforming building footprint data provided by the Spanish authorities, including several attributes. (a) Year
built, (b) building use, (c) number of dwellings, (d) number of building units, (e) building indoor area, and (f) building footprint area. Data
shown for the city of Valencia.

gation procedure is the “binned statistic 2D” function in
SciPy (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.binned_statistic_2d.html, last access: 10 Octo-
ber 2023). The overall processing workflow from the build-
ing data to the spatial layers of the HISDAC-ES is shown in
Fig. 2.

2.2 Evaluation data and agreement assessments

As historical spatial data are generally scarce, the evaluation
of the produced historical data is difficult. In order to evaluate
the quality of the produced spatial layers in the HISDAC-ES
as thoroughly as possible, we employed a range of indepen-
dent datasets that exhibit coherence to the spatio-temporal
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Table 2. Overview of the gridded surfaces of the HISDAC-ES, measuring different components of the built environment, including the
underlying variables and statistics.

Component Variable Statistics per grid cell Measurement of Layer name

Physical Building indoor area

Sum, mean across buildings per grid cell
Settlement intensity, built-up surface density,
building density

BIA
Building footprint area BUFA
Building units BUNIT
Dwellings DWEL

Age Construction year Minimum, maximum, mean, median, mode, va-
riety per grid cell

Settlement age, building renewal, construction
activity, building age heterogeneity

COY

Physical evolution Building footprint area
Cumulative sum per 5-year time step T , per grid
cell

Land development, urban growth, settlement
expansion, (sub)urbanization, urban sprawl,
densification, infilling

BUFAT

Building density BUDENST

Developed area DEVAT

Land use evolution No. residential build-
ings

Cumulative sum per 5-year time step T , per grid
cell

Land use dynamics, land development stratified
by building function

LU_REST

No. commercial
buildings

LU_COMT

No. Industrial buildings LU_INDT

No. agricultural build-
ings

LU_AGRT

No. public buildings LU_PUBT

No. office buildings LU_OFFT

Residential only Residential building
Cumulative sum of all residential buildings per
grid cell, per 10-year time step T

Residential settlement intensity, residential
built-up surface density

RES_BUFAT

(part of physical footprint area
evolution) Residential building in-

door area
RES_BIAT

Figure 2. Data processing workflow to create the spatial data layers of the HISDAC-ES, measuring multiple dimensions of the built envi-
ronment in Spain from 1900 to 2020, obtained from cadastral building footprint data available via the INSPIRE Spatial Data Infrastructure
(SDI).

processes measured by HISDAC-ES and carried out differ-
ent evaluations and cross-comparisons. Specifically, we used
three types of spatial data for these experiments: (a) re-
cent, remote-sensing-derived datasets (i.e., the Global Hu-
man Settlement Layer (GHSL), CORINE Land Cover); (b)

spatial–historical land use models (i.e., History Database of
the Global Environment); and (c) historical cartographic data
(i.e., historical maps and urban atlases) and orthoimagery.
For most of these experiments, we implemented the follow-
ing strategy: (1) when comparing HISDAC-ES to other grid-

https://doi.org/10.5194/essd-15-4713-2023 Earth Syst. Sci. Data, 15, 4713–4747, 2023



4720 J. H. Uhl et al.: HISDAC-ES

ded datasets, we downsampled the dataset of higher resolu-
tion to the dataset of lower resolution. This way, additional
uncertainty introduced by resampling is kept to a minimum.
(2) We conducted agreement experiments at the grid cell
level, i.e., based on cell-by-cell map comparison or correla-
tion analysis. (3) From these cell-by-cell-level comparisons,
calculated agreement metrics within local or regional strata,
defined by administrative boundaries or other classifications,
are granular enough that we could assess regional variations
of agreement, and large enough to ensure statistical robust-
ness within each local stratum.

2.2.1 Global Human Settlement Layer (GHSL)

To evaluate the plausibility and reliability of the developed
area (DEVA) layers from 1975 to 2015, we used built-up ar-
eas from the Global Human Settlement Layer (GHS-BUILT
R2018, Florczyk et al., 2019) for comparison. The GHS-
BUILT surfaces are derived from multispectral remote sens-
ing data (Landsat sensors, Sentinel-2) and map built-up areas
globally from 1975 to 2014, at a spatial resolution of 30 m
(Fig. 3a, b). They are accompanied by a rural–urban classi-
fication (settlement model GHS-SMOD; Fig. 3c, d). GHS-
SMOD is available at a resolution of 1 km and classifies each
location on Earth into one of seven classes of urbanness,
ranging from sparse rural settlements to high-density urban
centers (Florczyk et al., 2019). While more recent versions of
GHS-BUILT are available at the time of writing, we decided
to use GHS-BUILT R2018A due to its fine spatial resolu-
tion and because a lot of work has been done and published
to quantify the accuracy of GHS-BUILT R2018A across the
rural–urban continuum and over time (e.g., Liu et al., 2020;
Uhl and Leyk, 2022b, c), whereas little information is avail-
able on the accuracy of newer, multi-temporal GHS-BUILT
datasets. For example, it has been reported that GHS-BUILT
R2018A yields an average Intersection over Union of around
0.35 in 1975, in rural areas, to around 0.65 in 2018, in ur-
ban areas, respectively, for selected study areas in the United
States (Uhl and Leyk, 2022b), and correlation coefficients of
built-up surface fraction >0.7, compared to reference data
for selected cities in China (Liu et al., 2020).

We resampled GHS-BUILT to the HISDAC-ES grid (i.e.,
upsampling from 30 to 100 m spatial resolution) for the
epochs 1975, 1990, 2000, and 2015 and, thus, obtained bi-
nary grid cells (i.e., built-up vs. not built-up) for each epoch.
To reduce spatial misalignment effects, we first upsampled
the 30 m GHS-BUILT data to a 10 m× 10 m grid, nesting
within the 100 m× 100 m HISDAC-ES grid, and then down-
sampled to the target grid, assigning 1 (built-up) if at least
one 10 m grid cell within the target cell was labeled as built-
up. We then quantified the agreement between the resampled,
binary GHS-BUILT and the DEVA layers using Precision,
Recall, and F1 score for each epoch and for each munici-
pality. Specifically, we overlaid the binary raster surfaces of
DEVA and GHSL and calculated the number of true posi-

tive (TP), false positive (FP), and false negative (FN) grid
cells within each municipality polygon. These zonal statis-
tics of binary agreement categories were then used to cal-
culate municipality-level Precision, Recall, and F1 score.
Moreover, we expected the agreement to vary across the
rural–urban gradient (see Leyk et al., 2018; Uhl and Leyk,
2022a, b). Hence, we calculated these agreement metrics for
each year, within each of the seven GHS-SMOD rural–urban
classes, based on the zonal counts of TP, FP, and FN per
SMOD class. Moreover, we generated a continuous rural–
urban index for each municipality based on the GHS-SMOD
layers, constructed from the weighted histogram of SMOD
class instances within each municipality polygon (see Uhl
et al., 2023c, for details), and assessed the municipality-
level agreement trends across this rural–urban continuum
(Sect. 4.1). Here, it is worth noting that we qualitatively com-
pared the built-up areas from GHS-BUILT to the World Set-
tlement Footprint (WSF) Evolution dataset (Marconcini et
al., 2020a) and found high levels of agreement between these
two datasets (Fig. A1). Thus, herein, we compared HISDAC-
ES to GHS-BUILT only.

2.2.2 CORINE Land Cover data

While the comparison of DEVA and GHS-BUILT evaluated
the presence/absence of buildings in the HISDAC-ES, we
also used CORINE Land Cover data (CLC; Büttner, 2014)
and compared them to the land use/building function layers
in HISDAC-ES. For most years in which CLC data are avail-
able, their estimated accuracy exceeds 85 % (Büttner et al.,
2021), while in the case of Spain, the accuracy of the CLC
versions 2000 and 2006 has an estimated overall accuracy
of >93 % (Diaz-Pacheco and Gutiérrez, 2014) in the Madrid
region. Herein, we obtained CLC data, available at a spa-
tial resolution of 100 m× 100 m for the earliest (1990) and
most recent (2018) available epoch (Fig. 3e, f, also Fig. A1).
As the grid underlying the HISDAC-ES LAEA version nests
with the reference grid of the EEA, it also nests with the
CLC grid. Thus, we overlaid the CLC surfaces with the land-
use-specific building count layers of the respective years and
cross-tabulated the building counts for each combination of
INSPIRE building function class and CLC class on a cell-by-
cell basis (Sect. 4.2).

2.2.3 History Database of the Global Environment
(HYDE)

While the remotely sensed data from the GHSL and CLC
allow for assessing the plausibility of the HISDAC-ES since
1975 and 1990, respectively, it does not provide any insight
into the plausibility of the long-term trends (1900–2020)
measured in the HISDAC-ES. To account for this, we
employed the History Database of the Global Environment
(HYDE V3.2; Klein Goldewijk et al., 2017), consisting
of a set of global, gridded land use layers from 10 000 BC
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Figure 3. Remote-sensing- and model-based evaluation data: built-up areas from GHS-BUILT R2018A in (a) 1975 and (b) 2014; GHS-
SMOD rural–urban classes in (c) 1975 and (d) 2014; CORINE Land Cover data in (e) 1990 and (f) 2018; and urban area fraction from the
HYDE v3.2 dataset in (g) 1900 and (h) 2015. Panels (a)–(f) show the city of Valencia, and panels (g) and (h) show mainland Spain and the
Balearic Islands.

to 2015, which are model-based and available at a spatial
resolution of 5′× 5′ (approx. 6 km× 9 km in Spain). While
the accuracy of built-up area estimates in the HYDE data is
difficult to quantify due to a lack of historical reference data
(Klein Goldewijk and Verburg, 2013), Uhl et al. (2021a) find
relatively high agreement of urban growth trends extracted
from HYDE and from the integrated processing of remote
sensing data and historical maps. Specifically, we used the
layer “urban area fraction” from HYDE for each decade
from 1900 to 2015 (Fig. 3g, h) and aggregated both the
building footprint area (BUFA) and developed area (DEVA)
from the HISDAC-ES to the HYDE grid cells. We then con-
ducted a correlation and regression analysis to quantify the
agreement between BUFA, DEVA, and the total urban area
as reported in HYDE, per grid cell. To account for potential
regional differences in the agreement, we stratified our
analyses into regions obtained from the NUTS-1 (Nomen-
clature of territorial units for statistics) administrative
dataset (https://ec.europa.eu/eurostat/web/gisco/geodata/
reference-data/administrative-units-statistical-units/nuts,
last access: 10 October 2023) (Sect. 4.3).

2.2.4 Historical maps and orthoimagery

While the evaluation approaches described in the previous
sections are based on measured or modeled data, they suffer
from measurement error, resampling errors, and other incom-
patibilities that may bias the comparative analyses. Thus, we

decided to include alternative, historical data sources in our
evaluation analyses, allowing for a more unbiased evalua-
tion of HISDAC-ES layers in early years. These data sources
include (a) historical planimetric maps (shown for the city
of Alicante in Fig. 4a), (b) aerial photographs from 1956
(Fig. 4b), and (c) an urban atlas (Remírez et al., 1998) de-
picting different urban development phases (Fig. 4c). While
no quantitative information on the accuracy of these data
sources is available, the underlying maps are handcrafted
and based on manual interpretation of orthophotos, topo-
graphic measurements, or local domain knowledge and can
be deemed to be relatively accurate. Specifically, we manu-
ally digitized the areas developed in different time periods
for the city of Alicante and Madrid and obtained a simi-
lar vector dataset, depicting different historical urban devel-
opment phases for the city of Valencia (courtesy of Car-
men Zornoza-Gallego, 2022a). We quantitatively assessed
the agreement between these historical urban extents and the
MINCOY/DEVA layers (Sect. 4.4). Moreover, we visually
compared the built-up areas depicted in planimetric topo-
graphic maps from around 19003 to the HISDAC-ES DEVA
layer for several urban and rural places (Sect. 4.4). Finally,
we manually delineated the approximate urban boundaries

3Maps from 1870–1950, predecessors of the Min-
utas catastrones (MTN50), scale 1 : 50000, available
at http://www.ign.es/wms/minutas-cartograficas?request=
GetCapabilities&service=WMS (last access: 10 October 2023).
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for the cities of Santiago de Compostela, Madrid, and Al-
icante based on aerial imagery from 19564 and compared
them qualitatively to the developed areas in HISDAC-ES in
the same year (Sect. 4.5).

2.2.5 Attribute completeness

In addition to the comparison to external datasets, we also
aimed to quantify internal uncertainties in the HISDAC-ES,
or the underlying INSPIRE building data, respectively, by as-
sessing the completeness and coverage of relevant building
attributes at the municipality level (Sect. 4.6).

3 Results

In this section, we present the different spatial layers con-
tained in HISDAC-ES, resulting from the spatial aggregation
and temporal stratification of the building data. This includes
the gridded surfaces related to the four thematic components
of HISDAC-ES (physical, age-related, physical, and land use
evolution; Sect. 3.1 to 3.4) and the municipality-level statis-
tics (Sect. 3.5).

3.1 Physical characteristics

Figure 5 displays the gridded surfaces measuring selected
contemporary, physical features (in the year 2020) of the
Spanish built environment, exemplarily shown for the city
of Valencia. Surfaces showing the sums of these features
exhibit interesting spatial patterns of the density of build-
ing indoor area (BIA) and footprint area (BUFA), decreasing
from the city center towards the outskirts, whereas the den-
sity of dwellings (i.e., housing units) is higher in the outskirts
than in the center part. The grid cell means of these vari-
ables are measures of (vertical/horizontal) building size and
exhibit different patterns, illustrating the presence of large
multi-apartment complexes in the outskirts and small, histor-
ical buildings in the center part of the city.

3.2 Age-related characteristics

Age-related statistics of the Spanish building stock are mea-
sured by different statistics calculated using the construction
year attribute of the buildings within each grid cell. For ex-
ample, the minimum construction year (MINCOY) impres-
sively shows the settlement age patterns in the metropolitan
area of Valencia (Fig. 6), depicting the historical city core, as
well as recently developed suburban areas in the urban fringe,
and older settlements in the surrounding villages. Similar
patterns can be observed in the mean (MEANCOY), median
(MEDCOY), and the most frequent (i.e., mode) construction

4Ortofotos AMS (B) 1956–1957 (IGN, Instituto Geográ-
fico Nacional), available at http://centrodedescargas.cnig.es/
CentroDescargas/catalogo.do?Serie=FPNOA (last access: 10 Octo-
ber 2023)

year (MODECOY). The maximum construction year (MAX-
COY) per grid cell measures the year of the last modification
of the building stock and, alongside the construction year
variety (i.e., the number of unique construction years per
grid cell, VARCOY), is a measure of construction activity,
highlighting areas characterized by heavy urban renewal pro-
cesses. Here it is worth noting that the construction year on
record may also represent the year of the last building refor-
mation, which introduces certain bias in the created surfaces
(see Discussion section).

3.3 Evolutionary characteristics

Grid-cell-level statistics (i.e., sums of BUFA, counts/densi-
ties of buildings, BUDENS) stratified by the construction
year attribute yield a time series of gridded surfaces mea-
suring the long-term evolution of cities, towns, and villages.
For example, the BUFA and BUDENS surfaces show how
the built-up intensity (as measured by built-up surface den-
sity and building density) has increased from 1900 to 2020
(Fig. 7). These gridded surfaces uniquely document the long-
term urban growth processes, measured at fine spatial gran-
ularity and over long time periods. The derived DEVA sur-
faces show developed/undeveloped land for each point in
time, facilitating quantitative, multi-temporal analysis of ur-
ban form, e.g., using landscape metrics (Uhl et al., 2021b).
The high temporal resolution (i.e., 5 years) of these multi-
temporal layers enables the measurement of the evolution of
urban extents and building density at fine spatial and tem-
poral detail, as illustrated in a complete time series for the
city of Valencia (Appendix Fig. B1). The additional strati-
fication of the BUDENS layers by building function disag-
gregates the building stock spatially, by age, and by function.
As an example shown in Fig. 7 (right column), industrial land
use has heavily increased in suburban areas, especially in the
northern suburbs (between 1900 and 1960) and later in the
southern suburbs (after 1960).

While the examples in Figs. 5–7 show the city of Valencia,
we would like to emphasize the country-wide coverage of
HISDAC-ES. For example, the minimum construction year
surface (MINCOY) reveals commonalities and differences
between settlement age patterns in different cities in Spain
(Fig. 8), including polycentric development (e.g., Barcelona,
Seville) and monocentric development (most other cities
shown). Moreover, HISDAC-ES not only measures urban
development across different cities, e.g., by means of the
MINCOY surface (Fig. 8), but also long-term land develop-
ment processes in rural areas, including towns, villages, and
scattered, unincorporated settlements, as exemplified by the
DEVA surfaces (Fig. 9). The DEVA layers reveal further de-
tail on the spatial configuration of cities in early years, allow-
ing, e.g., for the computation of historical, urban morpholog-
ical indicators (Appendix Fig. B2). We also provide several
supplementary animated data visualizations illustrating the
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Figure 4. Evaluation data based on historical cartography and orthoimagery: (a) Planimetría historical topographic map from 1910 (Minutas
catastrones at scale 1 : 50000; Instituto Nacional de Geografía, 2022), (b) historical aerial image from 1956 (Ortofotos AMS(B) 1956–1957),
and (c) historical urban atlas illustrating different urban development phases (Remírez et al., 1988), and (d) urban areas for different time
periods, manually digitized from (c). All datasets shown for the city of Alicante.

Figure 5. Examples of the created gridded surfaces of the HISDAC-ES, quantifying physical characteristics of the built environment: building
indoor area (BIA), building footprint area (BUFA), number of dwellings (DWEL), and number of building units (BUNITS). HISDAC-ES
contains the sum (top row) and the mean (bottom row) of these variables per grid cell. All datasets shown for the city of Valencia.
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Figure 6. Examples of the created gridded surfaces of the HISDAC-ES, describing building-age-related characteristics of the built environ-
ment: minimum construction year, maximum construction year, mean construction year, median construction year, mode (i.e., most frequent)
construction year, and the variety (i.e., number of unique construction years) per grid cell. All datasets shown for the city of Valencia.

value of HISDAC-ES for quantifying long-term urbanization
processes (see Video supplement).

3.4 Built-up land use surfaces

Lastly, we show the building density layers stratified by
building function, measuring the spatial distribution of dif-
ferent built-up land use classes (Fig. 10). These gridded sur-
faces not only highlight the dominance of residential land use
but also illustrate peri-urban clusters of industrial land use,
as well as spatial patterns of commercial land use, which has
a mixed clustered and scattered spatial pattern, or agricul-
tural land use, mostly occurring in peri-urban areas to the
northeast of Valencia. These surfaces, along with the corre-
sponding multi-temporal land use surfaces (Fig. 7d) enable
the quantitative assessment of land use specific evolution of
the built environment and add a unique thematic component
to the HISDAC-ES data layers. Besides the building den-
sity layers stratified per building function, we also provide
the total building indoor area and building footprint area per
grid, for residential buildings only (RES_BIA, RES_BUFA),
facilitating the integration with historical population data
and population disaggregation. We created RES_BIA and
RES_BUFA for each decade from 1900 to 2020 (approxi-
mately in line with the decennial census), and in the LAEA
grid only, as these layers are intended for statistical use.

3.5 Municipality-level statistics

We provide zonal statistics of building footprint data for over
8100 municipalities in Spain as tabular data and geospatial
vector data. These datasets contain the zonal sums of se-
lected variables (i.e., building counts, as well as BUFA, BIA,
DWEL, BUNITS, RES_BUFA, RES_BIA) as well as cor-
responding densities (per municipality area) and allow for
coarse-scale analyses, and for the joint analysis with histor-
ical population data, available at the municipality level. The
visualizations in Fig. 11 illustrate the usefulness of such ag-
gregated statistics to observe and quantitatively assess broad-
scale settlement and building stock age patterns. These pat-
terns can be interpreted in the context of historical settlement
development but also provide insight into the contemporary
building stock age and its spatial variation. As the absolute
counts per municipality may be affected by regional trends
of municipality area (Fig. 11, top row), we also provide these
statistics as densities normalized by the municipality area,
which show a different picture (Fig. 11, bottom row) (see
Video supplement).

4 Evaluation

We compared the layers from HISDAC-ES to a variety of
related but independent datasets to evaluate spatial, tempo-
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Figure 7. Examples of the created gridded surfaces of the HISDAC-ES, quantifying evolutionary characteristics of the built environment:
multi-temporal layers of developed area (DEVA), building footprint area (BUFA), and building density (BUDENS), as well as industrial land
use in 1900, 1960, and 2020 (as one exemplary land use class). All datasets shown for the city of Valencia.

ral, and thematic components of our data (Sect. 4.1–4.5).
The various comparisons carried out are of either quanti-
tative or qualitative nature and aim to evaluate the quality
of the information contained in HISDAC-ES. The chosen
evaluation datasets cover a range of data products of differ-
ent sources (e.g., remote sensing, model-based hindcasting,
historical cartographic sources) and different thematic do-
mains (e.g., land use/land cover, built-up areas, urban areas)
While none of the evaluation datasets are free from uncer-
tainty, in particular for early points in time, we believe that
demonstrating the coherence between the phenomena mea-
sured in HISDAC-ES and the respective evaluation datasets
will shed light on the quality of HISDAC-ES from various
perspectives. These evaluation efforts are summarized in Ta-
ble 3. Moreover, we assessed the attribute completeness of
the building data underlying HISDAC-ES (Sect. 4.6).

4.1 Multi-temporal built-up area evaluation (1975–2014)

The comparison of the developed area (DEVA) to built-up
areas from GHS-BUILT reveals several trends: (1) the agree-
ment between DEVA and GHS-BUILT changes from rural
to urban areas. Specifically, the precision of DEVA is high in
urban areas and low in rural areas (Fig. 12a). A low precision
in an agreement assessment would indicate high commission
errors, which in this case implies that DEVA labels much
more grid cells as built-up than GHS-BUILT. This is encour-

aging as previous work has shown that GHS-BUILT tends to
underreport built-up areas in rural regions (Leyk et al., 2018;
Uhl and Leyk, 2022b), and thus, the DEVA layers appear
to account for this shortcoming. Similarly, recall of DEVA
is slightly lower in urban areas such as the Madrid region
(Fig. 12a). As previous work revealed, GHS-BUILT tends
to overestimate built-up areas in urban settings (i.e., roads
are often classified as built-up). The DEVA layers are not
affected by this type of misclassification, resulting in lower
recall values. Hence, both low precision (rural settings) and
low recall (urban settings) imply high accuracy in the DEVA
layers, as the reference data (i.e., GHS-BUILT) suffer from
the described shortcomings. (2) We observe an increase of
precision over time (Fig. 12b), which is likely due to increas-
ing completeness of built-up areas in GHS-BUILT, particu-
larly in rural areas. Recall, however, shows a different trend
over time (Fig. 12b), maximizing, on average, across all mu-
nicipalities in 1990 and decreasing towards recent epochs.
This is likely a combined effect of (a) increasing incomplete-
ness in GHS-BUILT as we go back in time due to poorer
quality of underlying Landsat data and (b) increasing incom-
pleteness in DEVA as we go back in time due to a survivor-
ship bias in the INSPIRE building footprint data. Specifi-
cally, new buildings that replace an existing (old) building
will be attributed with the construction year of the replace-
ment, and the building that existed prior to the replacement
is not contained in our data. Thus, urban renewal causes this
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Figure 8. HISDAC-ES settlement age surfaces for 30 cities in Spain: minimum construction year (MINCOY) shown for a selection of 30
cities, arranged in an approximate, quasi-geographic space (upper right shows the northeast; lower left shows the southwest).

bias in our data, and this bias manifests in lower recall values
towards early points in time.

Looking at the agreement trends over time and across the
GHS-SMOD rural–urban classes (Fig. 12c), we observe a
sharp increase in agreement from rural to urban areas, and a
slight increase over time, implying that the reliability of the
DEVA layers is highest in urban centers. Lastly, the distribu-
tions of municipality-level agreement metrics across rural–
urban strata confirm this trend (Fig. 12d). The peaks in recall
in the low-density and rural cluster strata, across all years,
indicate that the effects of incompleteness in the reference

data (caused by omitting rural settlements) and in the DEVA
(caused by survivorship bias) are of similar magnitude and,
thus, cause higher levels of agreement. Here it is noteworthy
that the more recent GHS-BUILT v2022 is likely to perform
better in rural areas, and thus, precision of the HISDAC-ES is
expected to increase in such areas, and the agreement gradi-
ents across the rural–urban continuum are expected to be less
steep (Uhl and Leyk, 2023). However, as mentioned above,
we prefer to use GHS-BUILT R2018A because its accuracy
has been well studied and makes our interpretations more ro-
bust.
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Figure 9. HISDAC-ES multi-temporal surfaces of developed areas: DEVA layers for 1900 and 2020, shown (a) for Greater Barcelona,
(b) for the island of Mallorca, and (c) for the greater León area. Basemap: Esri, USGS, NOAA.

Table 3. Overview of the comparative evaluation efforts for HISDAC-ES.

HISDAC-ES variable Evaluation data product (+URL) Evaluated time period Evaluated area Section

DEVA GHS-BUILT, GHS-SMOD
(https://ghsl.jrc.ec.europa.eu/∗)

1975, 1990, 2000, 2014 Spain 4.1

Land use CORINE Land Cover
(https://land.copernicus.eu/pan-european/
corine-land-cover∗)

1990, 2018 Spain 4.2

BUFA, DEVA HYDE v3.2
(https://doi.org/10.17026/dans-25g-gez3, Klein
Goldewijk, 2017)

1900–2010
(decadal)+ 2015

Spain 4.3

MINCOY Historical urban extents
(Zornoza-Gallego 2022a; Remírez et al., 1988)

three to five epochs be-
tween
1900 and 2020

Alicante, Madrid,
Valencia

4.4

DEVA (qualitative) Historical maps
(Minutas catastrones, 1 : 50000)
(http://www.ign.es/wms/
minutas-cartograficas?request=
GetCapabilities&service=WMS∗)

1910 Several cities/villages 4.4

DEVA (qualitative) Historical orthophotos 1956–1957
(https://centrodedescargas.cnig.es/
CentroDescargas/catalogo.do?Serie=FPNOA∗)

1955 Alicante, Madrid,
Santiago de Compostela

4.5

∗ Last access: 10 October 2023.
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Figure 10. Gridded surfaces describing the spatial distributions of different building function classes or building-related land use classes,
shown for the city of Valencia in 2020.

Figure 11. Selected multi-temporal municipality-level statistics: building counts and built-up surface density per municipality in 1900, 1960,
and 2020. See Appendix Fig. C1 for corresponding maps of the Canary Islands.
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Figure 12. Evaluation of the HISDAC-ES developed area (DEVA) in comparison to built-up areas from the Global Human Settlement Layer
per municipality, over time, and across the rural–urban continuum, by means of map comparison. (a) Maps of municipality-level precision,
recall, and F1 score in 1975 and 2014; (b) overall temporal trends of municipality-level precision, recall, and F1 score; (c) temporal trends of
precision, recall, and F1 score calculated globally (i.e., at the country-level) within strata of the seven GHS-SMOD rural–urban classes; and
(d) distributions of municipality-level agreement metrics within strata of a GHS-SMOD-based rural–urban index calculated per municipality.
See Appendix Fig. D1 for corresponding maps of the Canary Islands. All agreement metrics are obtained by map comparison on a cell-by-cell
basis at a spatial resolution of 100 m× 100 m, calculated locally within municipality boundaries in (a), (b), and (d) and calculated globally
(i.e., overall metrics for the whole country) within areas delineated by GHS-SMOD classes in (c).

4.2 Land use evaluation 1990–2020

We cross-tabulated the land-use-specific building counts
from HISDAC-ES in 1990 and 2020, within the land cover
classes from CLC for the years 1990 and 2018 (Fig. 13). The
absolute building counts per land cover class in Fig. 13a in-
dicated that most buildings underlying the HISDAC-ES fall
into urban fabric, industrial, or commercial areas; agricultur-
ally used areas; and, to a lesser extent, areas characterized
by forest (Fig. 13a). When plotting the proportions of build-
ings per HISDAC-ES land use class (Fig. 13b) or per CLC
class (Fig. 13c), we observe more interesting patterns. For
example, most buildings of any land use (except agriculture)
are in areas of continuous urban fabric. Agriculturally used
buildings are mostly located in areas classified as “complex
cultivation patterns” in CLC. This indicates that the agricul-
tural land use as reported in the INSPIRE building data is
highly accurate. Moreover, in 2020, the proportion of build-
ings in “discontinuous urban fabric” has increased, as com-
pared to 1990, which may be an effect of suburbanization
and increasing low-density built-up areas. Finally, the cross-
tabulation relative to the CLC classes shows that residential
land use is the most dominant across all land cover classes,

with a few interesting exceptions: industrial land use also has
high proportions in CLC “industrial or commercial units”,
and buildings attributed as “public services” in the cadastral
data have a peak in “port areas” and “airport” CLC classes.
Agricultural buildings peak in CLC classes “rice fields”, “an-
nual crops”, and “agro-forestry areas”, which confirms the
high levels of coherence between the two datasets. The peak
of agricultural buildings in the “inland marshes” class may
indicate higher levels of confusion between CLC classes “in-
land marshes” and “rice fields”, which may be difficult to
differentiate. All these observations confirm that the land use
information from the cadastral building data and the derived
HISDAC-ES land use layers seems highly plausible. Note
that there is a slight temporal gap between the two datasets,
as the most recent CLC data are from 2018. However, we
expect this discrepancy to be of minor importance.

4.3 Long-term trajectory evaluation (1900–2015)

While the comparisons of HISDAC-ES to GHS-BUILT and
CORINE Land Cover data focus on recent decades, the com-
parison to HYDE’s urban fraction estimates examines the
long-term agreement with the BUFA and DEVA evolution
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Figure 13. Comparison of the HISDAC-ES land use data (columns) to land cover classes from CORINE Land Cover (rows) for the years
1990 and 2018. The heatmaps show the number of buildings (BUDENS) assigned to grid cells within each combination of HISDAC-ES land
use and CLC classes. These bidimensional frequency maps are shown in three variants showing (a) absolute building counts, (b) proportions
of buildings per HISDAC-ES land use class, and (c) proportion of buildings per CLC class. Note that the 2020 HISDAC-ES data were
compared to the 2018 CLC data.

layers. We observe that the correlation between urban area
fraction and BUFA is high after 1980 (i.e., >0.8 for most
regions) and decreases as we go back in time but is still at
around 0.6 in 1900, in most regions (Fig. 14a). This drop in
correlation could be explained by the previously mentioned
survivorship bias in HISDAC-ES but could also be attributed
to uncertainties in the model-based urban area fractions in
HYDE. The correlation to DEVA (Fig. 14b) shows a similar
trend but slightly lower levels of correlations. Interestingly,
correlations are highest in the southern region (i.e., Andalu-
cia), possibly due to low levels of building stock renewal and,
thus, a weaker effect of the survivorship bias in the HISDAC-
ES data. Interestingly, correlations reach an early peak for the
Madrid region (1960s for BUFA, 1930s for DEVA) and then
drop. Such a decreasing agreement towards recent epochs
could be related to heavy (peri-)urban renewal in the Madrid
region, which would be less well captured in HISDAC-ES
(cf. Sect. 4.5). Besides this comparison of quantitative mea-
sures per grid cell, we also compared the agreement between
developed and undeveloped grid cells in DEVA and HYDE,
as measured by the time series of F1 scores in Fig. 14c. We
observe extremely high agreement (>0.95) in recent decades
and just slightly lower F1 scores in the beginning of the 20th

century. These high levels of agreement of the HISDAC-ES
and model-based urban area estimations from HYDE under-
line the high quality of the HISDAC-ES evolutionary layers.
It is noteworthy that the high F1 scores may be an effect of
the relatively low spatial resolution of HYDE (5′× 5′ grid
cells).

4.4 Comparison to historical maps

The previous evaluations are based on either remotely sensed
data or model-based reference data. Thus, those datasets
are limited in their temporal coverage or suffer from uncer-
tainty themselves. Hence, we used multi-temporal urban ar-
eas manually digitized from historical maps, covering the
period from approximately 1900 to present, for the cities
of Alicante, Madrid, and Valencia (Fig. 15). These extents
were manually digitized for Alicante and Madrid from an ur-
ban atlas (Remírez et al., 1988; Valencia data are courtesy
of Carmen Zornoza-Gallego), resulting in increments of ur-
ban area newly added in a given time period (see Fig. 4a, b).
We rasterized the resulting vector data in the HISDAC-ES
grid, encoding the earlier year of each time period (Fig. 15a).
For each city, we reclassified the MINCOY surface to match
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Figure 14. Regionally stratified agreement analysis of HISDAC-ES developed area (DEVA) and building footprint area (BUFA) variables
against HYDE urban area estimates. (a) Time series of Pearson’s correlation coefficient of BUFA and HYDE, (b) time series of Pearson’s
correlation coefficient of DEVA and HYDE, and (c) time series of F1 scores based on developed vs. non-developed grid cells in the HISDAC-
ES and HYDE urban area fraction (5′× 5′ grid cells). Regional stratification was done based on the seven NUTS-1 regions (https://ec.europa.
eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts, last access: 10 October 2023).

the settlement age categories from the digitized urban areas
(Fig. 15b) and calculated agreement measures for each city,
based on both the cumulative urban area per point in time and
the newly added built-up area in each period (Table 4). As the
MINCOY surface only encodes the year of earliest settlement
per grid cell, disregarding the settlement density in that year,
we also used the BUDENS layers for the respective years
(shown for 1900 and 2015 in Fig. 15c, d), to weight each grid
cell by its building density. We did this because we assumed
that misclassifications are more likely in sparsely populated
areas, likely not contained in the urban extents from the his-
torical urban atlases due to generalization. Thus, agreement
metrics based on building counts rather than grid cell counts
would be more representative and realistic for a comparison
between these two datasets. Based on this evaluation strategy,
we observe the following:

1. Agreement levels are generally relatively low (F1 be-
tween 0.28 and 0.74). This may be attributed to the
survivorship bias in HISDAC-ES but also due to def-
initional differences; i.e., HISDAC-ES measures built-
up area, while the urban extents derived from histor-
ical atlases measure urban area and, thus, are already
a generalized representation of the developed land at a

given point in time. They are likely to omit low-density,
scattered, peri-urban settlements but include roads, im-
pervious surfaces, and intra-urban green spaces (e.g.,
parks and cemeteries), which are not directly measured
in HISDAC-ES, which is based on the presence of built
structures only.

2. Recall is higher than precision. Low precision indicates
high commission error (i.e., overestimation), likely be-
cause peri-urban, rural settlements are contained in
HISDAC-ES but not in the urban extents due to general-
ization and the (arbitrary) definition of the urban bound-
aries in the historical urban atlases, similar to what we
observed in the comparison to the GHSL (Sect. 4.1).

3. Agreement for cumulative urban extents is higher than
for incremental time slices. This effect is to be expected,
as the confusion between historical increments is irrel-
evant when comparing the total built-up/urban area at
each point in time. As the urban areas (and the incre-
ments) in early time periods can be small, misclassifica-
tion is more likely, also due to higher levels of survivor-
ship bias in HISDAC-ES for early time periods.
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4. Precision based on the number of buildings is higher
than precision based on the number of “occupied” grid
cells. This indicated that grid cells label ed as “built-up”
in HISDAC-ES but not in the historical urban areas tend
to have low building density, confirming our aforemen-
tioned assumption that low-density settlements are not
mapped in the historical urban extents.

5. For cumulative urban extents, precision and recall in-
crease over time. This is a direct effect of the survivor-
ship bias, manifesting in higher omission errors (and
thus lower recall) as we go back in time. Moreover, the
proportion of scattered low-density settlements (which
are not contained in the historical urban atlases) in re-
lation to dense, urban settlements was higher in early
than in recent epochs, resulting in an increase of preci-
sion over time.

Moreover, the agreement levels are relatively similar
across the three cities under study, implying that these ob-
servations are likely to be generalizable at least across the
larger cities in Spain. Despite the low absolute numbers
of the agreement metrics reported in Table 4, which are
likely due to definitional differences, the observed trends
are in line with theoretical expectations (e.g., survivorship
bias decreases over time) and with evaluation results of the
HISDAC-US (Uhl et al., 2021c), indicating similar character-
istics of the historical settlement layers derived from cadas-
tral/property data in the United States and in Spain. Confu-
sion matrices underlying the agreement metrics shown in Ta-
ble 4 can be found in the Appendix Fig. E1.

The qualitative comparison of the DEVA layers and plani-
metric historical maps (predecessors of the Minutas catas-
trones from 1870–1950, at scale 1 : 50000) confirms the pre-
viously made observations. As shown in Fig. 16, the DEVA
layer (for 1900) mimics the urban areas as depicted in the
maps quite well, with some omission errors mainly in peri-
urban areas, e.g., for Madrid, Seville, and Terrassa. This
could indicate that building replacements (causing survivor-
ship bias in the HISDAC-ES) tend to occur least in the me-
dieval city centers, which are subject to monument protec-
tion (assuming concentric growth patterns). Moreover, these
disagreement patterns may also be due to temporal incon-
sistencies between DEVA (1900) and the planimetric maps,
which may have slightly different temporal references. In
the small villages around Hornillos del Camino (Burgos)
(Fig. 16 right column) we rather observe over- than under-
estimation. This could indicate that in rural, economically
less prosperous areas, where less building remodeling oc-
curs, the original building stock is still dominating, and, thus,
the HISDAC-ES is less affected by survivorship bias. This
observation may imply higher levels of data quality in small,
rural places, a promising perspective for long-term settle-
ment modeling in the often under-studied rural settings. The
bottom row (Fig. 16c) shows the contemporary (i.e., 2020)

building densities, illustrating a positive association between
building density and settlement age.

4.5 Comparison to historical orthophotos from 1956

The urban extents manually digitized from historical or-
thophotos acquired in 1956 show the urban boundary in
those years in Alicante, Madrid, and Santiago de Compostela
(Fig. 17a, b, c). When we overlay these boundaries to the
built-up areas from HISDAC-ES in the same year, we ob-
serve varying levels of agreement: In Alicante the agreement
is relatively high (Fig. 17d), as well as in Santiago (Fig. 17f),
whereas we observe higher levels of disagreement in the
Madrid data (Fig. 17e), mainly occurring in suburban areas.
While some of the disagreement may be attributed to differ-
ences in definitions (i.e., the urban boundaries drawn in the
orthophotos only include dense, urban settlements), in the
Madrid case there are additional issues, related to notable ac-
tivities of urban renewal in previously informal settlements
(e.g., the Entrevías neighborhood; example 2 in Fig. 17e).
See Fig. F1 for a more detailed discussion of historical rea-
sons for these discrepancies.

4.6 Attribute completeness and coverage

Lastly, we report the INSPIRE building attribute complete-
ness at the municipality level, compared to the total number
of buildings available in each municipality (Fig. 18a). We
observe very high levels of completeness of the construction
year attribute (Fig. 18b). The building function attribute has a
high coverage, except in the Gipuzkoa and Bizkaia provinces
on the northern coast (Fig. 18c). Moreover, there is a build-
ing function attribute, “other”, that is only available in the
Navarre region, which we excluded from the HISDAC-ES
dataset (Fig. 18d). Thus, the uncertainty in the (historical)
land use layers in HISDAC-ES in Navarre is slightly higher,
as it is unknown what building function the “other” class en-
compasses. The indoor area, number of dwellings, and num-
ber of building units attributes also have lower levels of com-
pleteness in some areas of the Basque Country (Fig. 18e, f,
h).The completeness of “number of dwellings” is higher in
buildings labeled as “residential” (Fig. 18g) than across all
buildings (Fig. 18f), as this attribute is semantically linked to
(mostly) residentially used buildings. Conversely, informa-
tion on the number of floors is highly complete in the Navarre
region (Fig. 18j) but otherwise not covered in the remain-
ing provinces and, thus, has not been used in this version of
HISDAC-ES.

We also assessed the temporal coverage of construction
year information at the municipality level, in order to bet-
ter understand potential survivorship bias in the data. As
can be seen in Fig. 18k, most municipalities have the ear-
liest construction year on record <1850 or <1900. Only a
few regions have minimum construction years between 1900
and 1925 (e.g., regions around San Sebastián and Bilbao),
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Figure 15. Data used for the quantitative comparison of the HISDAC-ES to historical urban extents, derived from historical maps for the
cities of Alicante (top row), Madrid (middle row), and Valencia (bottom row): (a) historical urban areas digitized from historical maps after
rasterization, (b) the HISDAC-ES MINCOY layer, and the HISDAC-ES building density layers for (c) 1900 and (d) 2020. Data source
of the historical urban extents for Valencia: courtesy of Carmen Zornoza-Gallego. Figure in the lower left corner adapted from Zornoza-
Gallego (2022a).

whereas very few, scattered municipalities have earliest con-
struction years between 1925 and 1950. In these municipal-
ities, data users should be careful when conducting long-
term analyses, as survivorship bias may be high. Likewise,
we mapped out the maximum construction year per munic-
ipality (Fig. 18l), indicating the recentness of the cadastral
building data underlying HISDAC-ES, as in most municipal-
ities, the most recent construction year on record is between
2015 and 2020. Generally, these high levels of attribute com-
pleteness and temporal coverage are encouraging and indi-
cate that the layers derived from these attributes are expected
to be highly reliable at least for recent points in time. We

made these municipality-level attribute completeness statis-
tics available in the data repository.

5 Data availability

All datasets are available at https://doi.org/10.6084/m9.
figshare.22009643 (Uhl et al., 2023a). All raster datasets are
available in Lempel–Ziv–Welch (LZW)-compressed Geo-
TIFF format and have a spatial resolution of 100 m× 100 m.
All raster datasets are available in EPSG:3035 (LAEA,
all Spanish territory), EPSG:4083 (REGCAN, Canary
Islands), and EPSG:25830 (UTM30N, Iberian Peninsula)
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Table 4. Map comparison results of urban areas digitized from historical maps and HISDAC-ES settlement age surface (MINCOY), for both
increments (i.e., newly developed grid cells between two points in time) and cumulatively (i.e., for the total developed land at a given point
in time. Note that there is a slight temporal gap in the earliest Madrid epoch, where MINCOY from 1900 is compared to urban extents from
1892.

Incremental Cumulative

Cell-based Building-weighted Cell-based Building-weighted

Study area Time period Precision Recall F1 Precision Year Precision Recall F1 Precision

Alicante urban atlas 1900–1928 0.32 0.42 0.36 0.44 ≤ 1928 0.32 0.42 0.36 0.44
1928–1970 0.47 0.52 0.49 0.56 ≤ 1970 0.64 0.73 0.68 0.73
1970–1990 0.26 0.20 0.23 0.27 ≤ 1990 0.66 0.70 0.68 0.73

Madrid urban atlas ≤ 1900 0.44 0.40 0.42 0.53 ≤ 1900 0.44 0.40 0.42 0.53
1900–1932 0.40 0.54 0.46 0.44 ≤ 1932 0.44 0.56 0.50 0.51
1932–1962 0.25 0.40 0.31 0.33 ≤ 1962 0.50 0.71 0.59 0.53
1962–1970 0.35 0.23 0.28 0.39 ≤ 1970 0.59 0.68 0.64 0.61
1970–2020 0.31 0.22 0.26 0.33 ≤ 2020 0.65 0.67 0.66 0.66

Valencia urban extents ≤ 1902 0.34 0.46 0.39 0.59 ≤ 1902 0.34 0.46 0.39 0.59
1902–1944 0.26 0.54 0.35 0.38 ≤ 1944 0.44 0.74 0.55 0.65
1944–1980 0.32 0.51 0.4 0.50 ≤ 1980 0.53 0.87 0.66 0.74
1980–2011 0.46 0.25 0.33 0.52 ≤ 2011 0.68 0.80 0.74 0.88

Figure 16. Visual comparison of HISDAC-ES developed areas (i.e., DEVA layer in 1900) with historical maps. (a) “Planimetría” maps (b)
overlaid with DEVA in 1900 and (c) contemporary building density layer (BUDENS) in 2020), illustrating the change between 1900 and
2020. Each layer is shown for Madrid, Seville, Terrassa (Catalonia), and Hornillos del Camino (Burgos). Historical map source: Instituto
Nacional de Geografía (2022).
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Figure 17. Visual comparison of HISDAC-ES to aerial imagery from 1956. Aerial image overlaid with manually digitized urban extents
for (a) Alicante, (b) Madrid, and (c) Santiago de Compostela and (d)–(f) overlaid with the HISDAC-ES built-up grid cells after and prior to
1955. Dashed black boxes are selected areas of discrepancies (i.e., turquoise areas within the digitized urban boundaries or red areas without
the urban boundary), which are enlarged and discussed in the Appendix Fig. A6.

Figure 18. Attribute completeness and construction year coverage at the municipality level. See the Appendix Fig. G1 for corresponding
maps of the Canary Islands.
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Table 5. HISDAC-ES dataset overview.

Component Variable Layer name Data format File name (pattern)

Physical Building indoor area BIA GeoTIFF hisdac_es_phys_bia_<mean/sum>_v1_100.tif
Building footprint area BUFA GeoTIFF hisdac_es_phys_bufa_<mean/sum>_v1_100.tif
Building units BUNIT GeoTIFF hisdac_es_phys_bunits_<mean/sum>_v1_100.tif
Dwellings DWEL GeoTIFF hisdac_es_phys_dwel_<mean/sum>_v1_100.tif

Age Construction year COY GeoTIFF hisdac_es_temp_<statistic>coy_v1_100.tif

Physical evolution Building footprint area BUFAT GeoTIFF hisdac_es_evol_bufa _v1_100_<year>.tif
Building density BUDENST GeoTIFF hisdac_es_evol_budens _v1_100_<year>.tif
Developed area DEVAT GeoTIFF hisdac_es_evol_deva _v1_100_<year>.tif
Residential building
indoor area

RES_BIAT GeoTIFF hisdac_es_evol_ resbia_ v1_ 100_<year>_100.tif

Residential building
footprint area

RES_BUFAT GeoTIFF hisdac_es_evol_resbufa_v1_100_<year>_100.tif

Land use evolution No. residential build-
ings

LU_REST GeoTIFF hisdac_es_landuse_residential_v1_100_<year>.tif

No. commercial
buildings

LU_COMT GeoTIFF hisdac_es_landuse_commercial_v1_100_<year>.tif

No. industrial buildings LU_INDT GeoTIFF hisdac_es_landuse_industrial_v1_100_<year>.tif
No. agricultural build-
ings

LU_AGRT GeoTIFF hisdac_es_landuse_agriculture_v1_100_<year>.tif

No. public buildings LU_PUBT GeoTIFF hisdac_es_landuse_publicservices_v1_100_<year>.tif
No. office buildings LU_OFFT GeoTIFF hisdac_es_landuse_office_v1_100_<year>.tif

Municipality-level ag-
gregates

various Municipality-level vari-
ables

GeoPackage, .csv hisdac_es_municipality_stats_multitemporal_v1.gpkg/.csv

% complete Municipality-level
attribute completeness

GeoPackage, .csv hisdac_es_municipality_stats_completeness_v1.*

Building centroids Building locations – GeoPackage ES_building_centroids_merged_spatjoin.gpkg

projections. The raster datasets are organized in subfold-
ers as follows: they are grouped by geographic coverage
(all, can, ibe) and reference system (laea, regcan, utm)
and by theme (evolution, landuse, physical, temporal).
For example, “ibe_utm_age” contains the layers measur-
ing age-related characteristics of the built environment,
covering the Iberian Peninsula, referenced to the UTM
grid (see Table 5). In total, there are 743 GeoTIFF files.
Municipality-level aggregates and uncertainty measures
are available in CSV format and in GeoPackage (.gpkg)
format (EPSG:3035) including municipality bound-
aries, obtained from https://doi.org/10.7419/162.09.2020
(Centro Nacional de Información Geográfica, 2023)
(recintos_municipales_inspire_peninbal_etrs89.shp, recin-
tos_municipales_inspire_canarias_regcan95.shp). The data
in the repository are partitioned into four ZIP-compressed
archives, one for the raster data in each of the three spatial
reference systems and one for the municipality-level aggre-
gates. For reproducibility purposes, the building footprint
centroids derived from the cadastral data (downloaded in
June 2021) are also made available as geospatial vector data
in GeoPackage format.

6 Code availability

The Python code used to create HISDAC-ES (i.e., input vec-
tor data, raster data, municipality-level data) is publicly avail-

able at https://github.com/johannesuhl/hisdac-es (last access:
13 October 2023) (https://doi.org/10.5281/zenodo.8429118,
Uhl, 2023). R users can access the Spanish cadastral
data underlying HISDAC-ES using the CatastRo pack-
age, which is available at (https://ropenspain.github.
io/CatastRo/index.html, last access: 13 October 2023)
(https://doi.org/10.5281/zenodo.6044091, Delgado
Panadero and Hernangómez, 2023), as well as the
CatastRoNav package (for cadastral data from Navarre;
https://ropenspain.github.io/CatastRoNav/, last access:
11 October 2023; https://doi.org/10.5281/zenodo.6366407,
Hernangómez, 2023), and comprehensive instructions for
building age visualization in R can be found at https:
//dominicroye.github.io/en/2019/visualize-urban-growth/
(Royé, 2019).

7 Conclusions

In this “Data description” paper, we presented the creation
and characteristics of HISDAC-ES, a set of geospatial raster
and vector layers measuring the built environment in Spain
from different perspectives, including physical, temporal,
evolutionary, and functional aspects. HISDAC-ES aims to
(a) facilitate the access to and use of information derived
from cadastral building data by spatial, temporal, and seman-
tic aggregation; (b) provide empirically measured, historical
geospatial data, enabling contemporary but also long-term,
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historical analyses of urban growth, sprawl, and change; and
(c) demonstrate the usefulness of cadastral data for geo-
graphic applications in general and domains of social and
environmental sciences, more specifically. HISDAC-ES rep-
resents an extension of related work, recently conducted on
US property data (HISDAC-US; Leyk and Uhl, 2018; Uhl et
al., 2021c; McShane et al., 2022), and demonstrates the ben-
efit of open data policies and large-scale data harmonization
efforts for the scientific community and beyond.

HISDAC-ES provides a valuable data source for urban
analysts, regional planners, and policy makers, enabling or
upscaling the quantitative measurement and interpretation
of long-term urbanization and land development processes
(e.g., Arribas-Bel et al., 2011; Alvarez-Palau et al., 2019;
Sapena and Ruiz, 2019; Zornoza-Gallego 2022b; Domingo
et al., 2023). Together with the sister product HISDAC-US,
it will enable the comparative study of urban size, shape, and
morphology over long time periods, across different conti-
nents, and across historical as well as cultural settings.

We evaluated the agreement of HISDAC-ES with a range
of related datasets obtained from remote sensing data and
historical maps, identifying varying levels of agreement.
While the associations between datasets imply some level
of coherence and are generally promising, it is important
to point out that a rigorous quality assessment of historical
geospatial data is difficult. The main reasons are the gen-
eral lack of reliable, historical reference data but also differ-
ences in definitions and semantic discrepancies (ambiguity)
between the evaluation datasets and HISDAC-ES, as well as
vagueness in the evaluation datasets (e.g., arbitrarily defined
urban boundaries).

Nonetheless, there are a few shortcomings of HISDAC-ES
that need to be addressed in the future. The main issue is the
survivorship bias in the data: we infer settlement age based
on the construction year on record in the cadastral building
data. It remains unknown whether a construction date rep-
resents the first establishment of a building at a given loca-
tion or whether there was a built-up structure existing prior
to that. Similarly, buildings that existed in the past, but have
been demolished, are not contained in HISDAC-ES. Thus,
HISDAC-ES can only measure urban growth but not urban
shrinkage or urban renewal. Fortunately, the latter process is
rare. It is also unknown if the different attributes in the cadas-
tral building data underlying the HISDAC-ES were measured
at the same time. For example, the building function and in-
door area, etc., reflect the contemporary state of a building
(i.e., as of the year 2020), but these properties may have
changed since the construction year on record, which may
introduce additional uncertainty in the evolutionary layers in
HISDAC-ES. Moreover, missing attributes in the cadastral
data underlying HISDAC-ES could be estimated using spe-
cific data imputation strategies (e.g., Milojevic-Dupont et al.,
2020). The complementary nature of certain, related build-
ing attributes (such as building indoor area, building height,
number of floors, building volume, and average floor height)

could also be exploited for such data imputation efforts (see
Fig. 18).

Importantly, as the cadastral data used to create HISDAC-
ES originate from different cadastral systems, there may be
inconsistencies in the definition and in the measurement of
specific attributes. For example, the way that building indoor
area (BIA) is defined and measured could vary across the dif-
ferent cadastral systems, despite conforming to the specifica-
tions of the INSPIRE directive aiming to homogenize cadas-
tral data across the EU. Also, the definition and measurement
of building units or number of dwellings could be affected
by such inconsistencies, where the building footprint area
(the input data for the BUFA layers) can be expected to be
least affected by differences in cadastral systems. Thus, fu-
ture work needs to thoroughly assess (and account for) such
potential inconsistencies between the different cadastral sys-
tems. Similarly, the variables DWEL (number of dwellings)
and BUNITS (building units) need to be treated carefully,
due to their potential semantic overlap: for example, while
DWEL only contains residential units, BUNITS may con-
tain both residentially and non-residentially used building
units, for example, in the case of buildings of mixed use.
Generally, we advise to be cautious when employing the
HISDAC-ES data layers for demographic modeling applica-
tions, where the propagation of uncertainty from the input
data to the outputted products needs to be taken into account
(e.g., Goerlich-Gisbert and Cantarino-Marti, 2017). Finally,
the gridded surfaces in HISDAC-ES are based on discrete
point locations, rather than the actual building footprint ge-
ometries, in order to reduce computational processing effort.
Thus, large buildings extending across two or more grid cells
may not be represented correctly in HISDAC-US, introduc-
ing some positional uncertainty in the data. For this reason,
grid cell values in the BUFA layers (representing the built-up
area per cell) may exceed the grid cell area in some cases.

Future work should focus on validation of the HISDAC-
ES dataset, for example, by employing large-scale histori-
cal map collections (cf. Olazabal et al., 2019) or other his-
torical records. The integration of HISDAC-ES with histor-
ical population data in a dasymetric modeling framework
could be useful to create fine-grained, historical popula-
tion estimates (cf. Silveira et al., 2013; Burghardt et al.,
2022b). Moreover, other components of Spanish cadastral
building data could be used, such as sub-building-level in-
formation (e.g., building parts), to create fine-grained data
on building function at the sub-building level, and infor-
mation on building heights, which is available in a sepa-
rate data pool (https://www.catastro.minhap.es/webinspire/
documentos/Conjuntosdedatos.pdf, last access: 11 Octo-
ber 2023). Lastly, with the prospect of increasing availability
of INSPIRE-conforming cadastral building data, HISDAC-
related efforts will be expanded to other European countries
where cadastral building data are of similarly high complete-
ness, quality, and thematic richness.
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Appendix A: Comparison of HISDAC-ES with
remote-sensing-based settlement and land cover
data

Figure A1. Visual comparison of HISDAC-ES DEVA, WSF-Evolution, GHS-BUILT, and CORINE Land Cover, in 1990 and approximately
2015. For CORINE Land Cover, only the classes “continuous urban fabric”, “discontinuous urban fabric”, “industrial or commercial units”,
“sport and leisure facilities”, “construction sites”, and “port areas” are shown, which are loosely related to developed/built-up areas.

Earth Syst. Sci. Data, 15, 4713–4747, 2023 https://doi.org/10.5194/essd-15-4713-2023
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Appendix B: Visualizing urban development using
HISDAC-ES

Figure B1. Complete time series of the DEVA (developed area, a) and BUDENS (building density, b) raster time series in 5-year intervals
from 1900 to 2020. Data shown for the city of Valencia.

https://doi.org/10.5194/essd-15-4713-2023 Earth Syst. Sci. Data, 15, 4713–4747, 2023
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Figure B2. HISDAC-ES developed area layers (DEVA) for (a) 1920, (b) 1950, (c) 1980, and (d) 2020 for a selection of 30 cities in Spain.
Cities are arranged in an approximate, quasi-geographic space (San Sebastián in the upper right is located in the northeast, and Las Palmas
in the lower left is located in the southwest.

Earth Syst. Sci. Data, 15, 4713–4747, 2023 https://doi.org/10.5194/essd-15-4713-2023
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Appendix C: Municipality-level aggregates for the
Canary Islands

Figure C1. Exemplary municipality-level aggregates for the Canary Islands in 1900, 1960, and 2020.

Appendix D: Municipality-level agreement metrics
between HISDAC-ES and GHS-BUILT for the Canary
Islands

Figure D1. Municipality-level agreement of HISDAC-ES DEVA and GHS-BUILT R2018A for the Canary Islands.

https://doi.org/10.5194/essd-15-4713-2023 Earth Syst. Sci. Data, 15, 4713–4747, 2023
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Appendix E: Confusion matrices of historical urban
areas obtained from historical maps vs. HISDAC-ES

Figure E1. Confusion matrices underlying Table 4 from map comparison of the MINCOY and urban extents digitized from historical maps
for (a) Alicante, (b) Madrid, and (c) Valencia. While panels (a)–(c) cross-tabulate the grid cell counts in each category, panels (d)–(f) are
based on the number of buildings reported in HISDAC-ES within each category.

Appendix F: Aerial imagery from 1956 shown for
exemplary discrepant areas

1. Alicante: Alférez Rojas Navarrete Barracks. Even
though this military facility existed in 1955, it is not well
covered in the cadastral data underlying the HISDAC-
ES. Despite covering a large area, it is only represented
by one grid cell in the HISDAC-ES layers for 1955. It is
likely that military facilities were not mapped the same
way as regular residential neighborhoods, possibly for
security reasons.

2. Madrid: Housing colonies Entrevías (Vallecas II). This
large social housing colony was completely renewed
at a later point in time. This is an extreme example
of urban renewal, which cannot be measured by the
HISDAC-ES data.

3. Santiago de Compostela. This discrepancy between the
HISDAC-ES data and the manually drawn urban bound-
ary is due to a definitional problem. In the aerial im-
age of the Monte da Almáciga region, the large build-
ing complex is a college, surrounded by scattered set-
tlements, possibly of agricultural usage. In this case, we
excluded these areas from the “urban extent” due to the
low settlement density, even though these areas should
be considered “urban” due to their functional impor-
tance. This definitional mismatch causes this discrep-
ancy.

Earth Syst. Sci. Data, 15, 4713–4747, 2023 https://doi.org/10.5194/essd-15-4713-2023
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Figure F1. Examples of discrepancies between HISDAC-ES and the 1956 aerial imagery. Shown are three regions highlighted in Fig. 17.

Appendix G: Municipality-level attribute
completeness for the Canary Islands

Figure G1. Attribute completeness and temporal coverage at the municipality level for the Canary Islands.

https://doi.org/10.5194/essd-15-4713-2023 Earth Syst. Sci. Data, 15, 4713–4747, 2023
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Video supplement. We provide eight animated data visualiza-
tions (available at https://doi.org/10.6084/m9.figshare.22064798,
Uhl et al., 2023b), showcasing several data layers of the HISDAC-
ES, at the grid cell level and at the municipality level:

1. evolution of developed areas (DEVA) in 30 urban centers in
Spain (01_hisdac_es_developed_area_evolution.gif),

2. evolution of building density (BUDENS) in 30 urban centers
in Spain (02_hisdac_es_building_density_evolution.gif),

3. evolution of building footprint area (BUFA)
in 30 urban centers in Spain (03_his-
dac_es_building_footprint_area_evolution.gif),

4. evolution of residential land use in 30 urban centers in Spain
(04_hisdac_es_residential_landuse_evolution.gif),

5. evolution of commercial land use in 30 urban centers in Spain
(05_hisdac_es_commercial_landuse_evolution.gif),

6. evolution of industrial land use in 30 urban centers in Spain
(06_hisdac_es_industrial_landuse_evolution.gif),

7. evolution of building footprint area (BUFA) per municipality
(07_hisdac_es_municipality_bufa_density.gif),

8. evolution of building density (BUDENS) per municipality
(08_hisdac_es_municipality_building_density.gif).

Animations 1–3 are shown from 1920 to 2020. Animations 4–
6 are shown from 1950 to 2020. Note that for the land-use-related
animations (4–6), we binarized the building density layers strati-
fied by land use category (i.e., highlighting grid cells where at least
one building of the respective land use class exists). Major cities
where no land use information was available (i.e., San Sebastián
and Bilbao, shown in animations 1–3) were replaced by the cities
of Cadiz and Jaén in animations 4–6. Animations 7 and 8 show the
municipality-level aggregates, converted into densities (i.e., built-
up area per square kilometer and buildings per square kilometer),
shown in percentiles based on the data distributions across all years.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-4713-2023-supplement.
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