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Abstract. Evaporation (ET) is one of the crucial components of the water cycle, which serves as the nexus
between global water, energy, and carbon cycles. Accurate quantification of ET is, therefore, pivotal in under-
standing various earth system processes and subsequent societal applications. The prevailing approaches for ET
retrievals are either limited in spatiotemporal coverage or largely influenced by the choice of input data or sim-
plified model physics, or a combination thereof. Here, using an independent mass conservation approach, we
develop water-balance-based ET datasets (ET-WB) for the global land and the selected 168 major river basins.
We generate 4669 probabilistic unique combinations of the ET-WB leveraging multi-source datasets (23 pre-
cipitation, 29 runoff, and 7 storage change datasets) from satellite products, in situ measurements, reanalysis,
and hydrological simulations. We compare our results with the four auxiliary global ET datasets and previous
regional studies, followed by a rigorous discussion of the uncertainties, their possible sources, and potential
ways to constrain them. The seasonal cycle of global ET-WB possesses a unimodal distribution with the highest
(median value: 65.61 mm per month) and lowest (median value: 36.11 mm per month) values in July and Jan-
uary, respectively, with the spread range of roughly ± 10 mm per month from different subsets of the ensemble.
Auxiliary ET products illustrate similar intra-annual characteristics with some over- or underestimation, which
are completely within the range of the ET-WB ensemble. We found a gradual increase in global ET-WB from
2003 to 2010 and a subsequent decrease during 2010–2015, followed by a sharper reduction in the remaining
years primarily attributed to the varying precipitation. Multiple statistical metrics show reasonably good accu-
racy of monthly ET-WB (e.g., a relative bias of ±20 %) in most river basins, which ameliorates at annual scales.
The long-term mean annual ET-WB varies within 500–600 mm yr−1 and is consistent with the four auxiliary
ET products (543–569 mm yr−1). Observed trend estimates, though regionally divergent, are evidence of the in-
creasing ET in a warming climate. The current dataset will likely be useful for several scientific assessments
centering around water resources management to benefit society at large. The dataset is publicly available in
various formats (NetCDF, Mat, and Shapefile) at https://doi.org/10.5281/zenodo.8339655 (Xiong et al., 2023).
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1 Introduction

Land evaporation (ET), the total amount of water evaporating
from the land surface to the atmosphere, is a crucial compo-
nent of the terrestrial water cycle (Rodell et al., 2015; Wang
and Dickinson, 2012). It includes the water evaporating from
the bare soil, open water bodies, canopy-intercepted precip-
itation, sublimation, and transpiration from the plant stom-
ata (Miralles et al., 2020). Since the global ET returns about
two-thirds of the land precipitation back to the atmosphere,
it sustains the water cycle by providing the moisture supply
for precipitation and directly affects the partitioning of the
earth’s surface heat fluxes and subsequent heating and cool-
ing effects (Good et al., 2015; Koster et al., 2004; Oki and
Kanae, 2006). Thus, ET links the earth’s surface and the at-
mosphere and acts as the key element for the interconnected
global water, energy, and carbon cycles (Jung et al., 2011).
Accurate quantification of ET is, therefore, imperative for
studying the water cycle changes, freshwater availability and
demand, weather and climate dynamics, earth system pro-
cesses, and surface energy budget closures. However, ET is
poorly constrained, especially at large scales compared with
the other components of the water cycle (Syed et al., 2010;
Jasechko et al., 2013; Chandanpurkar et al., 2017), which
may become more uncertain with an intensifying hydrolog-
ical cycle under a warming climate. To this end, the trends
and variability of the global ET fluxes still remain contested
(Dong and Dai, 2017; Fisher et al., 2017; Pascolini-Campbell
et al., 2020).

Over the past few decades, ET-based science has advanced
significantly across scales from leaf to global scales (Fisher
et al., 2017). Several ET products derived from the data-
driven and data assimilation methods, satellite observations,
and simulations from the physically or empirically based
land surface models have been developed (Long et al., 2014;
Liu et al., 2016); a community effort that is still ongoing
(Miralles et al., 2016). These ET products are dedicated to
minimizing the existing shortcomings stemming from vary-
ing spatiotemporal scales and are tailored to specific forcing
variables (Miralles et al., 2016). For example, Moderate Res-
olution Imaging Spectroradiometer (MODIS) ET data pro-
vides regular 1 km2 land surface ET over 109.03 × 106 km2

of global vegetated land areas at 8 d, monthly, and annual in-
tervals (Mu et al., 2011). Also, recent deep learning-based
methods have shown an enhanced ability for global ET es-
timation when compared with proxy estimates from satel-
lite observations and sparse in situ data (Koppa et al., 2022).
Despite the large spatial and temporal scale ET retrievals,
all of these datasets inherently possess several uncertain-
ties originating either from the forcing datasets or propa-
gated (and amplified at times) uncertainty through the vary-
ing model structures, or a combination thereof. For example,
accurate estimations of ET utilizing the land surface tempera-

ture (LST) or other satellite optical and thermal observations
need clear skies and hence are limited in temporal coverage
due to the cloud cover issues (Long et al., 2014; Wang and
Dickinson, 2012; Yang and Shang, 2013). Similarly, the mis-
match between the spatial scales of the forcing data and the
vegetation data, in the case of the normalized difference veg-
etation index-based ET products, can result in large uncer-
tainties (Yang et al., 2013).

Owing to all these uncertainties associated with the dif-
ferent methodological approaches, model assumptions, and
scaling issues, the resulting observed ET estimates and their
future projections have huge variations from product to prod-
uct (Liu et al., 2016; Wang and Dickinson, 2012; Wang et al.,
2015). Such disparities generally impede selecting the most
appropriate ET data and even make it contentious, at times,
for their application in various hydrometeorological mod-
eling studies, management, and policymaking frameworks,
among others. Moreover, the traditional estimations and the
standards for the validation of ET solely from ground-based
measurements from, for example, lysimeters and eddy co-
variance flux towers, are also insufficient for larger basin-
scale evaluations because of the sparsely distributed net-
work (Pascolini-Campbell et al., 2020; Wang and Dickinson,
2012). Such limited point observations can further lead to
high spatiotemporal heterogeneity variability in the ET, suf-
fering mainly from the uncertainties arising from the data
gap filling and upscaling beyond their representative local
areas (Liu et al., 2016; Pascolini-Campbell et al., 2020).
Therefore, in the context of a changing climate and con-
tinually intensifying human activities, the paramount impor-
tance of ET in global and regional water cycles and associ-
ated land–atmosphere interactions fosters the need and un-
derscores the importance of independent, large-scale, and
better-constrained ET estimates.

Since the multi-faceted variable, ET, is difficult to mea-
sure from space or from in situ records directly, it has to be
derived through the physically driven models incorporating
a variety of controlling atmospheric, radiative, and vegeta-
tive factors (Fisher et al., 2017). However, among the re-
cent advancement in mapping the other components of the
water cycle, changes in the terrestrial water storage (TWS),
in particular, has enabled an alternate assessment of ET at
large basin scales, which often is the scale of interest in wa-
ter resources management (Pascolini-Campbell et al., 2020).
The Gravity Recovery And Climate Experiment (GRACE)
and its successor GRACE Follow-On (both jointly referred
to as GRACE hereafter) have provided the TWS (sum of all
of the water storage components within a land mass) vari-
ations with unprecedented accuracy since 2002 (Tapley et
al., 2004a; Sneeuw et al., 2014; Rodell et al., 2018). When
used in combination with the precipitation and runoff in a
water balance equation, the changes in TWS can be used
for an independent and mass conservation-based estimate of
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ET, which will be free from most of the above-mentioned
shortcomings in the modeled, upscaled, or in situ products
(Rodell et al., 2004; Bhattarai et al., 2019). Moreover, the
resulting ET will be better constrained since the GRACE-
inferred TWS contains the embedded signals of both the nat-
ural variability and the anthropogenic influences. The ma-
jor limitation with GRACE TWS variations is, however, its
coarse spatial resolution (Ramillien et al., 2006), which we
take the edge off by limiting our analysis to the global land
and major global basins.

Previous studies used the water balance approach that ei-
ther relies on single constituent datasets (e.g., precipitation
and/or runoff) (Gibson et al., 2019; Liu et al., 2016) or fo-
cuses on the regional scales (Castle et al., 2016; Pascolini-
Campbell et al., 2020; Rodell et al., 2004, 2011; Swann
and Koven, 2017; Wan et al., 2015). A few global studies
(e.g., Liu et al., 2016; Miralles et al., 2016; Ramillien et al.,
2006; Zeng et al., 2012; Lehmann et al., 2022) are limited
either in terms of the data used or in the temporal cover-
age. Here, we leverage a multitude of precipitation, runoff,
and TWS changes (23, 29, and 7, respectively) datasets and
employ the water balance approach to generate a total of
4669 subsets of ET during 2002–2021 for global land and the
168 major river basins. We rigorously assess the uncertainty
bounds of the resulting ET and also analyze the relation-
ship with various attributes such as the basin area, climate
(aridity index, AI), and human interventions (irrigation).
This water balance approach checks global and basin scale
ET given the spatial accumulation of errors in land surface
model (LSM)- or remote-sensing (RS)-based ET products
(Pascolini-Campbell et al., 2020). Given the ongoing con-
troversy over the reliability of existing ET products, while
in situ observation data are scarce (Douville et al., 2013),
the inter-comparison of mass-balance-derived monthly ET
ensemble estimates with several existing ET datasets pro-
vides a way to benchmark and improve the estimate of ET.
We expect our product will be relevant for various scien-
tific and societal applications, including the study of ex-
treme events, water and carbon cycles, agricultural manage-
ment, sea level budgeting, biodiversity assessments, global
and regional hydrological cycles, water resources manage-
ment, ecosystem resilience, and for improving weather pre-
dictions across scales.

2 Methods

2.1 Water balance equation

The terrestrial water balance method was used to produce the
ET-WB dataset. For a basin scale, it can be written as follows:

ET= P −1S−R±WD, (1)

where P is the basin-averaged precipitation and R is the river
flow or runoff going outside the basin. 1S is the monthly

storage change which is calculated as the backward differ-
ence of the terrestrial water storage (i.e., the changes in the
month of calculation and the previous month), while different
computation methods, such as the backward difference com-
bined with a 3 month running average, might produce sub-
tle differences (Long et al., 2014; Pascolini-Campbell et al.,
2020). WD denotes the diverted water volume in- or outside
the basin. All the water fluxes are on the monthly scale from
May 2002 to December 2021 and expressed in millimeters
per month of equivalent water depth. WD is not considered
in our study because the amplitude of the transferred water of
most projects is generally small relative to other water com-
ponents and/or directly flows outside the basin through the
river channels. Therefore, the WD influences on the water
balance ET estimations might be considered small, even for
the 14 major existing projects located across the 168 studied
basins from the Global Water Transfer Megaprojects depos-
itory (Table S1 in the Supplement) (Shumilova et al., 2018).
Although the terrestrial water balance method has been ex-
tensively applied in different river basins of the world (Rodell
et al., 2004; Long et al., 2014; Li et al., 2019), a global
database is still lacking, and the systematic uncertainty, vari-
ation, and distribution also remain unexplored from a global
perspective.

We performed the calculation over the 168 major river
basins of the world from the Global Runoff Data Centre
(GRDC, https://www.bafg.de/GRDC/EN/Home/homepage_
node.html, last access: 12 October 2023) and the global land
excluding Antarctica and Greenland (Fig. 1). These selected
basins cover a wide range of climate conditions and human
intervention with a minimum area of ∼ 64000 km2, which
is sufficiently large for the retrieval of TWSA from GRACE
solutions at basin scale at least in the hydrology community
(Vishwakarma et al., 2018). Apart from the terrestrial water
balance, the atmospheric water balance also offers an effec-
tive alternative framework to estimate ET as it is also an im-
portant factor in the atmospheric water cycle, i.e., the resid-
ual precipitation, the horizontal divergence of the vapor flux,
and the change in column water vapor. Although such an al-
ternative estimation of ET from the independent atmospheric
data can potentially supplement the water-balance-based ET
(referred to as “ET-WB” hereafter), this is outside the scope
of our study.

2.2 Evaluation metrics

The ET-WB dataset was compared with multiple global ET
products (see details in the Data section) at various temporal
and spatial scales. First, the comparisons were conducted at
the monthly and annual timescales over global land and the
selected 168 river basins to investigate the sensitivity of the
ET-WB performance using various evaluation metrics, in-
cluding Pearson correlation coefficient (CC), Nash–Sutcliffe
efficiency (NSE), root mean square error (RMSE), and rel-
ative bias (RB). They describe different aspects of ET-WB
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Figure 1. Location and attributes of the 168 studied river basins. The labeled numbers represent the basin ID. Further details are given
in Table S2. The irrigation information is obtained from the latest version of the Food and Agricultural Organization (FAO) Global Map
of Irrigated Areas (https://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-version/, last access: 12 Octo-
ber 2023). The aridity index information is collected from version 3 of the Global Aridity Index and Potential Evapotranspiration Database
(Zomer et al., 2022). The inserted pie chart indicates the percentage of irrigation area from different water sources to the basin area. The radii
are proportional to the total percentage of the equipped irrigation area, which has been rescaled using the natural logarithms after adding 10
to avoid negative (very small) values for better visualization.

performance; for example, CC [−1,1] measures the linear
correlation with auxiliary ET products and NSE (≤ 1) de-
termines the relative magnitude of residuals between obser-
vations and predictions relative to the variance of the former.
RMSE (≥ 0) quantifies the differences between ET-WB and
other existing ET products, while it is not normalized and
challenging to compare basins with different ET amplitudes.
As such, the metric RB (can be negative or positive) is used
to express the relative bias of ET-WB compared with other
ET datasets over the period. Mathematically, these metrics
are defined as follows:

CC=

∑(
ETG−ETG

)
·
(
ETWB−ETWB

)√∑(
ETG−ETG

)2
·

√∑(
ETWB−ETWB

)2 (2)

NSE= 1−
∑

(ETG−ETWB)2∑(
ETG−ETG

)2 (3)

RMSE=

√√√√(∑ (ETG−ETWB)2

n

)
(4)

RB=
∑

(ETWB−ETG)∑
ETG

· 100%, (5)

where ETG represents the auxiliary global ET products for
comparison with the ET-WB, i.e., ETWB in Eqs. (2)–(5).

Second, further comparisons were performed at the level of
long-term mean and trend, which were calculated using Sen’s
slope method (Sen, 1968). Sen’s slope method can overcome
the impacts of outliers on time series and can be more accu-
rate than the traditional linear regression, especially for the
heteroskedastic time series (Sen, 1968). Different temporal
coverage of the auxiliary global ET datasets is considered,
so only consistent periods with the ET-WB are used for cal-
culations.

2.3 Uncertainty estimation

Uncertainty in ET-WB and its contributing variables (e.g.,
P ) is quantified using different methods. Specifically, we
estimated the uncertainty in various TWSA datasets from
GRACE solutions and global hydrological model (GHM) as
the residual after removing the long-term trend, inter-annual
signals, and seasonal cycles based on the Seasonal and Trend
decomposition using the Loess (STL) method (Cleveland et
al., 1990). The STL method can robustly decompose the
TWSA monthly time series into long-term, seasonal, and
residual components, in which the long-term signal can be
further separated as a long-term trend and the non-linear
(inter-annual) signals (Cleveland et al., 1990; Scanlon et al.,
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2018; Vishwakarma et al., 2021) as

Stotal = Slong-term+ Sseasonal+ Sresidual, (6)

where Stotal is the original TWSA time series, Slong-term is
the long-term components of time series consisting of the
long-term trend and the remaining inter-annual components,
Sseasonal is the seasonal cycle time series of TWSA, and
Sresidual is the noise and/or other high-frequency (i.e., sub-
seasonal) signals. Furthermore, the uncertainty in 1S was
computed from the uncertainties in TWSA for back and for-
ward months added in quadrature, followed by the determi-
nations of the root mean squares (RMS) from different re-
sults (Long et al., 2014). However, a few studies also indi-
cate that this method might overestimate the actual uncer-
tainty as the residual temporal signals might contain real in-
formation (e.g., subseasonal signals) (Scanlon et al., 2018).
For other water components, including P and R, we assumed
the standard deviation (SD) across the ensemble as the un-
certainties since we do not have the formal error budget for
the multi-source global products from models, satellites, and
field monitoring networks. Uncertainty in the auxiliary ET
products used for comparison with ET-WB is also estimated
using the SD method. It should be noted that the SD esti-
mations may underestimate the actual uncertainty because of
the inadequate number of datasets considered in our study.
We took different strategies to estimate the uncertainty in 1S

and other variables because of the strong correlation of the
selected GRACE solutions, which can lead to a very low SD
among datasets. A similar situation can occur in R, where
23 out of 29 R datasets are from the G-RUN ensemble with
similar algorithms (but with different meteorological forcing
data). The SD of different auxiliary global ET products was
also calculated for comparison and can be written as

SD=

√∑(
X−X

)2
n

, (7)

where X is the hydrological time series of different variables.
Thus, we could estimate the uncertainty in the ET-WB by
propagating the above uncertainties in quadrature with the
assumption of independence and normal distribution among
different water fluxes (Rodell et al., 2004),

UET−WB =

√∑(
U2

P +U2
R +U2

1S

)2
, (8)

where UP , UR , and U1S are the estimated uncertainty for P ,
R, and 1S on the monthly scale, respectively. We utilized
the RMS to represent the average uncertainty over the whole
study period as

RMS=

√(∑
Y 2

n

)
, (9)

where Y denotes the monthly estimates of uncertainty in dif-
ferent variables (e.g., ET-WB). The relationships between

uncertainty in ET-WB and basin area, climate condition
(aridity), and human activities (irrigation) are also detected
to thoroughly investigate the influential factors on the perfor-
mance of ET-WB.

3 Data

Several criteria are applied to select the appropriate datasets
for the development of ET-WB: (1) only the publicly avail-
able global datasets are chosen to increase the transparency
and reproducibility of our study; (2) the temporal resolution
should be equal to or smaller than 1 month, spanning at least
from 2002 to 2014; (3) the spatial resolution should be finer
than 2° to constrain the uncertainties over small river basins
(∼ 64000 km2 for the minimum); and (4) the spatial cover-
age should be (quasi-)global to reach most river basins. Al-
ternative factors, such as the frequency of data updates (most
are near real time and a few are yearly), the recognition in
the community (some datasets not being widely used were
excluded), and the data types (try taking more categories
of datasets into account, e.g., satellite, modeling, reanalysis,
and products based in situ), are also considered. As such, we
used 23 P , 29 R, and 7 1S datasets to generate a total of
4669 subsets of ET-WB during May 2002–December 2021
over 168 river basins and global land, excluding Greenland
and Antarctica. We simultaneously selected the datasets be-
longing to the same series but with different versions, for ex-
ample, GLDAS-v1/v2 and NCER/CFSR, because the older
version (e.g., NCER/NCEP) is still updating and the im-
provements in the newer version might not be significant and
consistent over all the regions of the world (Qi et al., 2018,
2020). Despite this, it is acknowledged that it is impossible
to consider all the existing datasets meeting the above in-
clusion criteria because the development of global datasets
is advancing rapidly. All the selected datasets are provided
on a grid cell scale and converted into basin scale based
on the changing area of grid cells over latitude. Hence, the
varying spatial resolutions of datasets did not require the
up/down-scaling processes in our study. Moreover, most of
the products are on a monthly timescale, consistent with the
ET-WB estimations. A few daily datasets are aggregated into
monthly timescales by taking the sum from the first to the
last day of the certain month, which might cause some dis-
crepancies with the GRACE solutions because the time sam-
pling of GRACE products is not strictly distributed within
a month (Tapley et al., 2004b). As different datasets might
have varying temporal and spatial coverage (Fig. 2), the miss-
ing months in the recent 1 or 2 years due to update latency,
as well as the basins suffering from incomplete spatial cov-
erage, are set as NA values. Only the overlapping period be-
tween ET-WB and four auxiliary ET products are extracted
for comparisons, i.e., 2002–2014 for MODIS, 2002–2015 for
FLUXCOM, 2002–2021 for GLEAM, and 2002–2016 for
WaterGAP Global Hydrology Model (WGHM), respectively.
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(Detailed information on the datasets used in our study is
given in Table S3.) A more intuitive workflow for the gen-
eration of ET-WB and the related data processing flow are
presented in Fig. 2.

3.1 Precipitation

As summarized in Table S3, 23 precipitation datasets from
different sources were used as input for the water balance
equation (Eq. 1). Three global datasets based on in situ ob-
servations were collected, including the Climatic Research
Unit Time Series (CRU TS) database, the Global Precipi-
tation Climatology Centre (GPCC) project, and the unified
suite from NOAA Climate Prediction Center (CPC Unified).
They generally rely on the point-scale collections of rain
gauges worldwide to interpolate the gridded global prod-
ucts. Specifically, the CRU TS dataset has incorporated more
than 10 000 gauge stations to derive the monthly global grid-
ded data since 1901 based on the angular-distance weight-
ing method with an annual update (Harris et al., 2020). The
GPCC project contains the quality-controlled gauge mea-
surements from approximately 67 200 stations worldwide
with at least 10 uninterrupted years of available data and
then interpolates and superimposes them on the final grid-
ded product in the corresponding resolution (Schneider et al.,
2020). The CRU TS and GPCC datasets have almost identi-
cal temporal coverage and resolution and mainly rely on na-
tional meteorological agencies and related international insti-
tutions like WMO and FAO. The CPC Unified dataset is con-
structed from over 30 000 rain gauges from Global Telecom-
munication System (GTS), Cooperative Observer Network
(COOP), and other national and international institutions.
The daily analysis has been released on multiple spatial res-
olutions over the global domain from 1979 to the present
(Chen and Xie, 2008). The main advantages of these gauge-
based global datasets stem from their large historical records
dating back to the beginning of the 20th century, high ac-
curacy, and effective construction cost. However, they heav-
ily suffer from inhomogeneous spatial distribution and sub-
stantial maintenance efforts, especially in developing regions
with complicated topography like North Africa and Qinghai–
Tibetan Plateau. Therefore, the remote-sensing technique has
become a popular choice in learning global precipitation in-
formation in recent decades, which greatly improves precip-
itation measurement in ungauged and poorly gauged areas.

Six remote-sensing products have been collected to en-
rich our study, namely the Integrated Multi-Satellite Re-
trievals (IMERG) for Global Precipitation Measurement
(GPM), Global Precipitation Climatology Project (GPCP),
Precipitation Estimation from Remotely Sensed Informa-
tion using Artificial Neural Network-Climate Data Record
(PERSIANN-CDR), Tropical Rainfall Measuring Mission
with 3B43 algorithm (TRMM 3B43), Global Satellite Map-
ping of Precipitation (GSMaP), and Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS). The

TRMM 3B43 product algorithmically merges the microwave
observations from multiple sensors, including precipitation
radar and visible and infrared scanner (VIRS) loaded in
the TRMM, which is a joint space satellite between NASA
and Japan’s National Space Development Agency to moni-
tor tropical and subtropical precipitation from 1997 to 2015
(Huffman et al., 2007). Then, the successor GPM mission,
an international network of satellites carrying the first space-
borne Ku/Ka-band dual-frequency precipitation radar (DPR)
and a multi-channel GPM microwave imager (GMI), con-
tinued to provide the global precipitation data up to the
present (Huffman et al., 2019). The IMERG algorithm can
integrate all information from a satellite’s constellation at a
given time to estimate precipitation on the earth’s surface.
The satellite observations in the TRMM era were also re-
processed using the IMERG algorithm to create long-term
continuous records, but the production stopped at the end
of 2019. The GSMaP is a blended satellite-based precipi-
tation dataset from the passive microwave sensors in low
Earth orbit and infrared radiometers in geostationary Earth
orbit, which was developed by Japan Aerospace Exploration
Agency (JAXA) and became the Japanese GPM standard
product (Okamoto et al., 2005). The GSMaP product can dis-
tribute the global precipitation over the region from 60° N
to 60° S at a high spatial resolution of 0.1°× 0.1°. In addi-
tion, the CHIRPS dataset, building on the “smart” interpo-
lation techniques and high-resolution, long period of precip-
itation records from the infrared cold cloud duration mea-
surements, is developed by the USGS and Climate Hazards
Group at the University of California. It has supplied precipi-
tation estimates over global land within the range of 50° N to
50° S since 1981 (Funk et al., 2015). The PERSIANN prod-
uct applies the trained artificial neural network on GridSat-
B1 infrared satellite data of brightness temperature of cold
cloud pixels to produce the rain rate estimates in the lati-
tude band 60° S–60° N from 1983 to the (delayed) present
(Ashouri et al., 2015). The GPCP precipitation dataset dy-
namically merges various satellite-based information, such
as passive microwave and infrared data, along with the GPCC
gauge measurements, contributing to the monthly precipita-
tion estimates from 1979 to the present worldwide (Huffman
et al., 2022). To control the systematic bias of the satellite
sensors, bias correction based on gauge observations (e.g.,
GPCC) and satellite observations (e.g., GPCP) is necessary,
particularly over regions having poor gauge coverage such as
Africa and the oceans.

Although the remote-sensing technique is a robust op-
tion for global precipitation estimations, it still has some
drawbacks, like the relatively short lifetime, the complex-
ity of the retrieval algorithm, and the need for in situ ob-
servations for bias correction. Thus, global reanalysis prod-
ucts that synthesize multiple geophysical and climatologi-
cal data to produce high-resolution precipitation simulations
have been developed. We obtained nine reanalysis datasets,
including the fifth-generation reanalysis product of the Euro-
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Figure 2. Flowchart and the characteristics of the datasets in this study. (See the Data section for detailed descriptions of the various datasets.)
Numbers in parentheses denote the number of the particular datasets used in our study.

pean Centre for Medium-Range Weather Forecasts (ERA5),
the land component of ERA5 (ERA5-land), the 20th Cen-
tury Reanalysis by NOAA, the University of Colorado Boul-
der’s Cooperative Institute for Research in Environmental
Sciences, and the U.S. Department of Energy (NOAA CIRES
20th Century), the Japanese 55-year Reanalysis (JRA55), the
Modern-Era Retrospective analysis for Research and Appli-
cations (MERRA), the Reanalysis I project from the National
Centers for Environmental Prediction and the National Cen-
ter for Atmospheric Research (NCEP NCAR-Reanalysis 1),
the Reanalysis II project from the NCEP and DOE (NCEP
DOE-Reanalysis 2), the NCEP Climate Forecast System Re-
analysis (CFSR), and the WATCH Forcing Data methodol-
ogy applied to ERA-Interim reanalysis data (WFDEI). The
ERA5 reanalysis, as the latest global reanalysis following
ERA-14, ERA-40, and ERA-Interim, provides a comprehen-
sive field of the global atmosphere, land surface, and ocean
waves by assimilating numerous historical observations (e.g.,
satellite precipitation data from microwave imagery and few
gauge measurements) into the ECMWF Integrated Forecast-
ing System (IFS) Cy41r2 (Hersbach et al., 2020). The ERA5

reanalysis can simulate the global precipitation with a so-
phisticated spatial and temporal resolution with a total of 137
mode layers of 0.01 hPa from 1959 to near real time. ERA5-
land is a rerun of the land component of ERA5, which is
designed to provide a consistent view of land variables over
several decades but with a more enhanced resolution than
ERA5 (Muñoz-Sabater et al., 2021). The WFDEI meteoro-
logical forcing dataset, however, is generated based on the
ERA-Interim reanalysis after bias correction from gridded
observations (i.e., GPCC) and sequential elevation correc-
tion (Weedon et al., 2014). Several classic reanalyses from
NCEP were used in our study. NCEP NCAR-Reanalysis 1
project uses a state-of-the-art forecast system to perform data
assimilation during the period 1948 to the present, albeit with
a relatively coarse spatial resolution of ∼ 2° which might
cause some errors in small basins upon calculation of basin-
average precipitation (Kistler et al., 2001). We note the pre-
cipitation observations are not assimilated into the assimi-
lation system, so the precipitation from the reanalysis are
short-range model forecast accumulations (Janowiak et al.,
1998). The NCEP DOE-Reanalysis 2 is an improved ver-
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sion of the NCEP NCAR-Reanalysis 1, including an up-
dated model with more realistic physical parameterizations,
fixed data assimilation errors, and more digested data (Kana-
mitsu et al., 2002). The NCEP DOE-Reanalysis 2 replaces
the model precipitation at the land surface with observed data
from NCEP/CPC global precipitation analysis that merges
satellite and gauge measurements (Xie and Arkin, 1997).
Furthermore, as an important update from NCEP, the CFSR
uses a high-resolution model that is fully coupled with the at-
mospheric component at a resolution of 38 km with 64 verti-
cal levels from the land surface to 0.26 hPa between 1979 and
the present (Saha et al., 2010). Similarly, the CFSR reanaly-
sis applies the CMAP (Xie and Arkin, 1997) and CPC uni-
fied precipitation analysis to reduce the bias derived from the
modeled precipitation in the initial version of NCEP NCAR-
Reanalysis 1. Given most analyses only focus on the earth’s
status in the recent half-century, the NOAA CIRES 20th Cen-
tury project is the first ensemble of subdaily global atmo-
spheric conditions spanning over 100 years from 1836 to
2015, providing the best estimate of the weather at any place
and time based on the upgraded data assimilation method,
higher resolution, and larger datasets of observations than
the previous versions (Slivinski et al., 2019). We note the
NOAA CIRES 20th Century did not incorporate any precip-
itation observations, meaning the reanalysis of precipitation
is only from the predictions of models. Since the reanaly-
sis provides 80 ensemble members to constrain the uncer-
tainty fully, we take the ensemble mean as the final precipita-
tion estimate. The JRA55 reanalysis, managed by Japan Me-
teorological Agency (JMA), also derives precipitation from
remote-sensing products combing the model forecasts since
1958, attempting to provide comprehensive fields of atmo-
sphere to foster the applications in multi-decadal variability
and climate change (Kobayashi et al., 2015). The MERRA 2
analysis from the NASA Global Modeling and Assimilation
Office using the GEOS-5.12.4 system covers the period from
1980 to the present with a latency of weeks, with the output
resolution of 0.5° (latitude)× 0.625° (longitude). The pre-
cipitation from MERRA2 reanalysis follows the assimilation
strategy of CFSR, i.e., consider the CMAP and CPC Unified
from NOAA CPC for assimilation. The quality of MERRA2
precipitation has been evaluated in a previous study, and rel-
atively bad accuracy in high latitudes was reported (Reichle
et al., 2017).

We also consider several “combined products” that merge
the above-mentioned data sources (including gauges, satel-
lites, and reanalysis) to estimate precipitation, including the
Multi-Source Weighted-Ensemble Precipitation (MSWEP),
Princeton Global Forcings (PGF), and different versions
of Global Land Data Assimilation System (GLDAS). The
MSWEP dataset that is featured by full global coverage,
high spatial (0.1°) and temporal (i.e., every 3 h) resolu-
tions, and distributional bias corrections optimally merges
the precipitation records from gauge measurements (e.g.,
GPCC), satellite solutions (e.g., TRMM), and reanalysis

(e.g., JRA55), and achieve better performance than each of
the members during the period 1979 to the present (Beck et
al., 2019). The global and long-term PGF forcing dataset is
constructed using the NCEO NCAR-Reanalysis 1 and multi-
ple observation-based precipitation datasets such as TRMM,
GPCP, and CRU TS products to perform the temporal and
spatial downscaling, contributing to the high-resolution pre-
cipitation estimations from 1948 to 2016. The GLDAS forc-
ing dataset generally applies precipitation of different types
in different eras. Specifically, GLDAS (v1.0) switches from
ECMWF reanalysis during 1979–1993 to NCEP NCAR-
Reanalysis 1 during 1994–1999 and finally uses the CMAP
fields from 2001 to 2019 with the NOAA/GDAS atmospheric
applied in the year 2000 (Wang et al., 2016). However,
the GLDAS (v2.0) precipitation is from the PGF dataset
as the only source from 1948 to 2014. Differently, the
GLDAS (v2.1) simulations are forced with a combination
of GDAS, disaggregated daily GPCP precipitation, and Air
Force Weather Agency radiation datasets from 2000 to the
present. (Detailed information about the product version and
spatial/temporal resolution is given in Table S3.)

3.2 Runoff

Similar to the precipitation, we also collected R datasets
from different sources to feed the water balance equation.
First, we collected in situ discharge measured at the mouths
of the rivers from the dataset provided by Dai and Tren-
berth (2002), namely the Global River Flow and Continental
Discharge Dataset. This observational dataset was compiled
from many sources, including Bodo (2001), NCAR archive,
and R-ArcticNET dataset (http://www.R-ArcticNET.sr.unh.
edu, last access: 12 October 2023), and has undergone the
data quality controls during the compilation to avoid errata
and inconsistencies. It contains monthly mean volume ob-
servations in 925 major rivers of the world since the 1900s
(different rivers have varying lengths) and updates at an ir-
regular time step (last updated in May 2019). The estimate of
global continental freshwater discharge based on the dataset
compares well with alternative estimates and ECMWF re-
analysis, though there are some differences among the dis-
charge into the individual ocean basins. The water volume
is converted into the equivalent water depth by dividing
the drainage area of the station. About one-third of the se-
lected 168 river basins are included in this observational
dataset, and the missing months without observation (e.g.,
after 2019) are set as NA values in the water balance cal-
culation. Apart from this, most of the runoff datasets used
in our study are from a global runoff reconstruction named
Global RUNoff ENSEMBLE (G-RUN ENSEMBLE), which
provides a global runoff reanalysis of monthly runoff rates
covering decades to the recent century at a resolution of
0.5° (Ghiggi et al., 2021). The observation-based G-RUN
ENSEMBLE employs the random forest method to learn
the runoff generation using the gridded meteorological ob-
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servations (precipitation and temperature) with the calibra-
tion of the Global Streamflow Indices and Metadata Archive
(GSIM) (Do et al., 2018). The most significant improvement
of G-RUN ENSEMBLE compared with its previous version
(GRUN; Ghiggi et al., 2019) is that it considers the forc-
ing uncertainty by deriving a total of 23 subsets from mul-
tiple meteorological reanalysis and observations. Although
one of the 23 G-RUN ENSEMBLE members forced by WA-
Ter and global CHange (WATCH) Forcing Data (WFD) only
provides the global runoff data up to December 2001, we
still keep it in our study for consistency. It would not in-
fluence the water balance estimations of ET-WB as all the
missing months are taken as NA values during calculation.
We note an implicit assumption in the generation of G-RUN
ENSEMBLE is that the storage of river water loss can be
minimal such that the monthly river discharge of the river
mouth equals the average catchment runoff depth. Given that
the G-RUN ENSEMBLE is only calibrated from small catch-
ments with areas ranging from 10 to 2500 km2, this assump-
tion might not be strictly valid for large river basins, al-
though it has shown comparable performance with several
global runoff simulations and reconstructions like the Global
Drought and Flood Catalog (GDFC) (He et al., 2020) and
ERA5. Moreover, the human activities, including human wa-
ter use and reservoir management, lack a physical represen-
tation (but is implicitly considered during the model train-
ing) in the random forest machine-learning method, and the
apparent outliers caused by human activities (e.g., an abrupt
decrease in river discharge after dam construction) have been
removed. Therefore, we additionally compare the R datasets
used in our study (mainly from G-RUN ENSEMBLE) with
the streamflow records from the GRDC archive in 53 river
basins worldwide since they are the only regions where the
discharge observations are available with the spatial and tem-
poral consistency of our study (Table S4). A satisfactory per-
formance of the estimations in the levels of multi-mean and
long-term trends is found, which are the focus of our study
and the relevant future applications (Fig. S1 in the Supple-
ment). We also used a synthesized global gridded runoff
product that merges runoff estimates from different GHMs
constrained by hydrological observations using an optimal
weighting method during 1980–2012 (namely Linear Opti-
mal Runoff Aggregate, LORA), which works dynamically
based on the comparisons with in situ data when accounting
for the variance among members (Hobeichi et al., 2019). The
LORA product, with a consistent spatial resolution of 0.5°, is
also used as the benchmarking dataset for G-RUN ENSEM-
BLE and achieved similar performance. A similar limitation
is shared in these global gridded runoff reconstructions, i.e.,
the neglecting of river routing, which may lead to an over-
estimation in the computed uncertainties over large basins.
In addition, since the LORA is the merged result from eight
GHMs with different physical structures and model parame-
terization schemes, the representation of the basins with sig-
nificant anthropogenic activities should be taken with cau-

tion. For example, there is a low observed runoff of ∼ 0
across the regions having high irrigation areas and/or artifi-
cial surfaces. As an important member of the LORA dataset,
the WGHM, providing the global water resources dynamics
from 1901 to 2016 at a 0.5° resolution (Müller Schmied et
al., 2021), is also selected in our study for the computation
of ET-WB. The most recent version (2.2d) of the WaterGAP
framework consists of five water use models, including irri-
gation, livestock, domestic section, manufacturing, and ther-
mal power sections, the linking model that computes net ab-
stractions from groundwater and surface water, and the Wa-
terGAP Global Hydrology Model (Müller Schmied et al.,
2021). The discharge simulations are applied in the water
balance calculation, which was forced by WFDEI precipita-
tion during the study period and considered the human effects
such as dam management. The river routing schemes follow
Döll et al. (2014), where water is routed through the storages
depending on the fraction of surface water bodies. The state-
of-the-art global river discharge reanalysis, the Global Flood
Awareness System (GloFAS), serves as a significant supple-
ment to the R inputs in water balance. The GloFAS system
simulates the global discharge by coupling runoff simula-
tions from the specific model forced with the ERA5 reanaly-
sis and a channel routing model. The GloFAS product aims to
provide daily high-resolution (0.1°) gridded river discharge
forecasts from 1979 to near real time. Different versions of
GloFAS reanalysis were used in our study, where the main
differences are from the hydrological modeling scheme. For
example, the GloFAS (version 2.1) applies a combination
of the Hydrology Tiled ECMWF Scheme for Surface Ex-
changes over Land (HTESSEL) land surface model with the
LISFLOOD hydrological and channel routing model (Har-
rigan et al., 2020). The surface and subsurface runoff from
the HTESSEL are used as input for the LISFLOOD model
(Hirpa et al., 2018). For the newer versions like 3.0 and 3.1,
both the runoff generation and routing processes are based on
the full configuration of the LISFLOOD model, the former of
which is an offline version provided by Alfieri et al. (2020)
and the latter is an operational online version that was re-
leased in early 2020 with some changes in web and data ser-
vices. Despite this, we take both into consideration as they
are the only datasets providing near-real-time discharge in-
formation. All the versions of GloFAS used in our study have
been calibrated by more than 1200 gauge stations worldwide,
which greatly improves the performance over those with-
out any calibrations (Alfieri et al., 2020). Some procedures
are needed for discharge-type R datasets (i.e., WGHM and
GloFAS-family products) to find the grid cell coinciding with
the river mouth of the basin. For example, we find the certain
grid with the maximum drainage area within the basin based
on the static total upstream area file provided by GloFAS,
which is defined as the catchment area for each river segment
(i.e., the total area that contributes to water to the river at the
specific grid point). Then, the discharge forecast of that grid
point should be divided by the corresponding drainage area
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to be converted into equivalent water depth. For the global
land, the total freshwater flowing into the ocean is estimated
as the sum of the discharge of all the coastal grid cells based
on a mask at the corresponding resolution (e.g., 0.1° for Glo-
FAS). As such, the differences in the spatial resolution (e.g.,
0.5° for the WGHM and 0.1° for the GloFAS) can contribute
to some discrepancies in the final estimates of R. Finally, it
is worth mentioning that we manually set the R value as zero
for the 13 endorheic basins without runoff flowing into the
ocean, except for the Volga, Ural, and Kura river basins that
flow into the Caspian Sea (Fig. 1 and Table S2).

3.3 Terrestrial water storage

Seven global terrestrial water storage datasets are used to de-
rive 1S and input the water balance equation. Six of these
TWS datasets are GRACE solutions and one is from the
WGHM. The GRACE mission has been the preferable tool
to assess the large-scale variations in terrestrial water storage
at a near-monthly scale from 2002 to 2017, with the GRACE
Follow-On successor satellite launched in 2018 (Tapley et al.,
2004a; Kornfeld et al., 2019). There are generally two classes
of methods to retrieve TWS anomaly signals from GRACE
measurements: the spherical harmonic (SH) and the mass
concentration blocks (mascon) methods. The SH method is
a standard for the first decade of the GRACE era, which is
processed by parameterizing the global time-varying grav-
ity field using SH coefficients (Wahr et al., 1998). However,
such a method should undergo a series of post-processing
of the truncation of degree/order in SH coefficients, spatial
smoothing, de-correlation filtering, and replacement of low-
degree coefficients and so forth. Various background models,
such as glacial isostatic adjustment and de-aliasing, should
also be considered. Therefore, different methods have been
developed to restore the signal leakage and bias introduced
during the post-processing. These methods include additive
and multiplicative approaches, model-based scaling factors,
data-driven methods, and constrained and unconstrained for-
ward modeling methods (Long et al., 2015; Chen et al., 2019;
Vishwakarma et al., 2017). However, the mascon method
has provided another user-friendly option for the commu-
nity in recent years, one which functions by parameterizing
the earth’s gravity field with the regional mass concentra-
tion functions. This kind of method does not need substantial
post-processing techniques for signal restoration and can at-
tenuate the noise during the gravity inversion process through
regularization of the solution (Save et al., 2016; Xiong et al.,
2022a). So the increasing attention in the non-geophysical
community has been attracted by the mascon solution over
the years (Abhishek et al., 2021). However, it is notewor-
thy that different GRACE ground system institutions can per-
form the post-processing for the fundamental level 1 GRACE
data using different strategies, for example, the varying al-
gorithms to the effect of glacial isostatic adjustment and the
regularization or stabilization of the regional mass concentra-

tion functions may affect the hydrological analysis at smaller
scales (<∼ 3°) (Scanlon et al., 2018; Watkins et al., 2015;
Vishwakarma, 2020). In this case, we collected the latest-
release version 06 level 2 SH solutions from different offi-
cial GRACE processing agencies, including the University of
Texas Center for Space Research (CSR), NASA’s Jet Propul-
sion Laboratory (JPL), and GeoforschungsZentrum Potsdam
(GFZ), as well as three level 3 mascon solutions from CSR,
JPL, and NASA’s Goddard Space Flight Center (GSFC) dur-
ing the period April 2002–December 2021, which is the
longest time span that GRACE (and GRACE Follow-On) can
achieve at the present stage. The signal leakage and bias in
three SH solutions are corrected using the forward modeling
method, with the above-mentioned standard processing pro-
cedures performed (Swenson and Wahr, 2006). The mascon
JPL solution that employs a Coastal Resolution Improvement
(CRI) filter that reduces signal leakage errors across coast-
lines has undergone the adjustment from official scaling fac-
tors based on the CLM LSM (Wiese et al., 2016). As pre-
viously mentioned at the beginning of the Data section, the
inconsistent spatial resolution of different mascon solutions
will not impact the ET-WB calculations as we only perform
the water balance budget at the basin (and global) scale (Save
et al., 2016; Loomis et al., 2019). The 33 missing months
due to the data gap between two generations of GRACE mis-
sions and instrumental issues have been statistically interpo-
lated using a recently proposed method based on the singu-
lar spectrum analysis method (Yi and Sneeuw, 2021). This
method can infer missing data from long-term and oscilla-
tory changes extracted from available observations and does
not rely on any external forcing, thus avoiding the uncertainty
introduced by other datasets (e.g., precipitation).

Apart from the GRACE solutions, the simulations from the
WGHM model are also used to avoid the strong correlation
among GRACE solutions and provide a potential alternative
viewpoint. The WGHM simulations of TWS include most
of the key components in the land system, including canopy,
snow and ice, soil moisture, groundwater, and surface wa-
ter bodies (e.g., river, lake, wetlands, and reservoirs). How-
ever, the glacier water storage is not simulated in WGHM,
which might induce some errors in high-latitude cold regions
(Müller Schmied et al., 2021). The major human interven-
tions, such as dam management and human water use, which
have been reported to impact the regional terrestrial water
storage balance greatly (Rodell et al., 2009), are also con-
sidered. This is the main advantage of the selected WGHM
over other widely used GHMs/LSMs, such as GLDAS VIC
and Noah models. GRACE solutions generally provide the
anomalies of TWS relative to a long-term mean, but WGHM
simulates the actual value of TWS. However, this did not af-
fect our derivation for the 1S and the subsequent ET-WB
estimations.
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3.4 Evaporation

Benchmarking ET-WB against other global ET products is
crucial to evaluate its performance. With the principle of
“different types of datasets have their unique values” in
mind, four different categories of auxiliary ET products
have been chosen for comparison with ET-WB at multiple
time and space scales. These products include the MODIS
Global Evapotranspiration Project (MOD16A2), the FLUX-
COM ensemble dataset, the Global Land Evaporation Ams-
terdam Model (GLEAM), and the simulations from WGHM.
The MOD16A2 product estimates the terrestrial ET as the
sum of evaporation from soil and canopy layer and the tran-
spiration from plant leaves and stems (Mu et al., 2011). This
satellite-based dataset is estimated under the framework of
the Penman–Monteith equation with the effective surface re-
sistance to the evaporation from the land surface and tran-
spiration from plant canopy, which is estimated based on
the MODIS remotely sensed data including surface albedo,
land cover classification, and vegetation information. The
MOD16A2 dataset was originally produced at a spatial res-
olution of 1 km and a temporal resolution of 8 d from 2000
to 2014. However, we used the re-processed monthly 0.5°
product provided by the Numerical Terradynamic Simula-
tion Group (NTSG) at the University of Montana (http:
//files.ntsg.umt.edu/data/NTSG_Products/MOD16/, last ac-
cess: 12 October 2023). The FLUXCOM “remote-sensing”
database (“RS” setup) employs nine machine-learning al-
gorithms to integrate ∼ 20000 flux observations across the
globe with the satellite-based predictors from the MODIS
mission (Jung et al., 2019). Therefore, it is considered an
observation-driven product of three energy balance vari-
ables, namely, net radiation, latent energy, and sensible heat.
Nonetheless, the product is subject to uncertainty in the
choice of prediction models and is also limited in spa-
tial/temporal resolution (0.0833° every 8 d) and time cov-
erage (2001–2015) of the satellite inputs. Similarly, we used
the re-processed monthly version of the product with a res-
olution of 0.5° by spatial and temporal aggregation, which
is the median value of the ensemble members per grid cell
and month. A key difference between the FLUXCOM and
other ET datasets is that the former focuses only on the vege-
tated region because of the lack of eddy tower observations in
these regions, meaning the ET values in unvegetated (barren,
permanent snow or ice, water) areas was omitted. We convert
the latent energy data to ET by dividing it with the latent heat
of vaporization, a constant value of 2.45 MJ kg−1 (or multi-
plying 0.408 kg MJ−1) or 28.35 W m−2. We note the FLUX-
COM database also develops the “RS+METEO” setup that
uses daily meteorological data and mean seasonal cycles of
satellite data with three machine-learning approaches. Since
the differences between these two setups over global basins
are still unclear and beyond the scope of our study, only the
“RS” setup is chosen for comparison and demonstration with
ET-WB. It needs to be mentioned that we did not use the

in situ measurements from the regional FLUXNET eddy co-
variance towers because of the uneven and sparse distribution
from a global perspective, which is not consistent with the
spatial scale of ET-WB. In addition, the GLEAM model es-
timates the terrestrial ET separately, which comprises the in-
dividual components of transpiration, interception loss, bare
soil evaporation, snow sublimation, and open-water evapora-
tion (Martens et al., 2017). It first estimates the potential ET
using the Priestley–Taylor equation based on satellite obser-
vations of surface net radiation and near-surface air temper-
ature, then converts the potential ET to actual ET using the
evaporative stress factor, which is estimated from the remote-
sensing microwave vegetation (VOD) and predicted root-
zone soil moisture from a water balance model. The GLEAM
is more inclined to a “reanalysis” dataset as it does not use the
satellite observations directly (like MOD16A2) but indirectly
includes the satellite observations to estimate ET. Similarly
to the FLUXCOM dataset, the GLEAM product also has two
sub-versions, “a” and “b”, with the main difference being in
the time span (1981–2021 for “a” and 2003–2021 for “b”)
due to different inputs considered. We chose version 3.6a to
compare with ET-WB. Finally, the hydrological simulations
of ET from WGHM are also included for data consistency,
which was previously used to contribute to the runoff, terres-
trial water storage, and precipitation (WFDEI forcing) esti-
mations. Moreover, an alternative source (GHM) of ET can
also strengthen the justification upon the comparison with
derived ET-WB.

4 Results

4.1 Global evaluation of ET-WB

4.1.1 Monthly assessment

Comparison and analyses of ET-WB and auxiliary ET
datasets are carried out at various temporal scales to exam-
ine the reliability of ET-WB comprehensively. The long-term
average seasonal cycle of ET during the period 2002–2021 is
detected over global land (Fig. 3a). A clear unimodal distri-
bution is observed with the highest ET in July (median value:
65.61 mm/month (mm m−1)) and the lowest result in January
(median value: 36.11 mm m−1) based on ET-WB, with the
spread range of roughly ±10 mm m−1 from different sub-
sets of the ensemble. Furthermore, the seasonal cycle of other
ET products is generally within the range of the ET-WB en-
semble with similar intra-annual characteristics. All of the
GLEAM, MODIS, and WGHM data illustrate an overesti-
mation of ET from March to June and an underestimation be-
tween September and November compared with the median
values of ET-WB, but they are completely within the range
of the ET-WB ensemble. Nevertheless, the FLUXCOM prod-
uct tends to have higher ET than ET-WB due to the fact that
FLUXCOM only considers the ET in the vegetated regions,
and the unvegetated areas, such as those in the deserts of Sa-
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hara and the Qinghai–Tibetan Plateau, are masked (Jung et
al., 2019). This would subsequently influence our compar-
isons in basins with a certain proportion of unvegetated area
and the global land.

The seasonal pattern of ET-WB is highly consistent with
that of precipitation in both amplitude and periodicity, which
generally increase from the beginning to the middle of the
year, followed by a gradual decrease. This contemporaneous
relation between ET and P without time lag is also revealed
by Rodell et al. (2015). However, the spread range in P is
wider than ET-WB, meaning it is an important contributor
to the uncertainty of the ET-WB, especially in water-limited
months like February, April, and November (Fig. 3b). In ad-
dition, we found that the seasonal cycle of 1S presents a
larger reverse distribution than other water components (e.g.,
P and R), in which 1S decreases from positive to negative
in the first half of the year (January to June) and then slowly
rebound until the end of the year. In other words, the land
system is losing water from April to October and gaining
water until April of the next year, implying a significant time
lag between terrestrial water storage and P on a global scale
(Fig. 3c). The narrow spread range of 1S is attributed to
the high agreement between the six GRACE solutions used,
not showing the real uncertainty of TWSA (1S) estimates.
Counterintuitively, P lags R by 2 months, possibly related
to the snowpack immobilization and the strength of sum-
mer convective rainfall in high-latitude regions (Rodell et al.,
2015). Additionally, R demonstrates an interesting distribu-
tion with a constrained change range in all months with a few
overestimations. It should be stemming from the reduced un-
certainty in the choice of R datasets because we used the
23 (out of 29) G-RUN ENSEMBLE subsets that were gen-
erated using the same model but forced by different forcing,
together with the interventions from other datasets (e.g., Glo-
FAS reanalysis) (Fig. 3d).

Multiple statistical metrics are used to quantify the relative
performance of the ET-WB product, which are calculated us-
ing the ensemble median ET and other global ET datasets.
Global examinations of the relative bias (RB) based on differ-
ent auxiliary datasets on the monthly scale indicate an over-
all agreement with ET-WB, with most (74 %, 63 %, 57 %,
and 77 % for GLEAM, FLUXCOM, MODIS, and WGHM,
respectively) river basins having RB between −20 % and
20 % (Fig. 4). For the global land, the RB reaches 1.22 %,
−17.31 %, −3.68 %, and 2.96 % for the above four prod-
ucts, correspondingly, but with strong spatial heterogene-
ity among basins. Specifically, widespread overestimation of
ET-WB compared with other datasets are reported in Eastern
Europe, western Russia, South Asia, East Asia, and West-
ern Australia, with the maximum RB of nearly 300 % in the
Ashburton River basin (ID: 138) of Australia based on the
MODIS ET dataset. On the contrary, the consistent under-
estimation of ET-WB compared with other products is also
seen in western Europe, eastern Russia, and the southeast-
ern basins of Australia, where RB is mostly small. However,

divergent patterns of different ET datasets in parts of South
America, North America, Africa, and Central Asia highlight
inherent uncertainty in each product, and that it is impos-
sible to have a single best-performing ET dataset for the
whole globe. However, the RB values of ET-WB are within
the range of ±20 %, meaning the ET-WB is comparable to
these ET products and, therefore, can serve as an indepen-
dent benchmarking product (Fig. 4a, c, e, and g). Alterna-
tive metrics like CC and NSE provide additional insights.
Relatively better performance of ET-WB is apparent in the
humid basins of high-latitude Eurasia, North America, and
South China according to the comparably higher CC (> 0.8)
and NSE (> 0.4) than other regions like South America and
Africa (Figs. S2 and S3). This might be due to better sim-
ulation accuracy of, for example, reanalysis and GHMs in
humid zones than in arid regions. Though the reported NSE
value may not appeal as satisfactory in an absolute sense, it
only represents the median ET-WB. Distinctive choice of ET
subset over different regions may lead to improved results,
albeit without informing the full spread of the uncertainties.
Additionally, RMSE results further convey higher errors of
ET-WB in smaller regions than in larger ones (Fig. S4) be-
cause of the reduced retrieval errors of GRACE solutions
as the basin size increases (Scanlon et al., 2018). The no-
table exception is the Amazon River basin (ID: 1), which
shows inconsistency between ET-WB and different ancillary
products (e.g., GLEAM and MODIS). It is similar to a re-
cent regional study (Baker et al., 2021), although a strong
agreement between water balance ET and shortwave radia-
tion was observed. For all the 168 basins, the scatter plots
illustrate a reasonable agreement between ET-WB and mul-
tiple ET datasets (Fig. 4b, d, f, h). Despite the very small
RB (from 0.09 % of WGHM to −7.96 % of MODIS), the
skewed estimates are discovered in high-ET periods and re-
gions, while most points having small ET values are perfectly
located around the 1 : 1 line. Another discrepancy between
ET-WB and other datasets is the existence of negative values
of the former, primarily in high-ET regions/periods, which is
very likely resulting from the non-closure error among var-
ious water balance datasets (Pan et al., 2017; Rodell et al.,
2011; Lehman et al., 2022) along with their respective short-
comings (e.g., non-consideration of river routing in G-RUN
ENSEMBLE runoff data) and should be delved into in future
studies.

4.1.2 Annual assessment

Inter-annual variability of ET and related water balance com-
ponents are also examined over global land (Fig. 5). There
are generally three episodes shown in the ET-WB dataset.
These episodes include a gradual increase from 2003 to 2010
and a subsequent decrease during 2010–2015, followed by a
sharper reduction in the remaining years (Fig. 5a). A large
inter-ensemble range, which is aggravated during the recent
time periods, due to the propagation of errors in monthly es-
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Figure 3. Monthly average values of the ET-WB and multiple auxiliary ET products as well as other water components over global land
during the period 2002–2021. The shading shows the spread range among different datasets, with the central solid line indicating the ensemble
median value.

timations of water balance ET, is found. Other ET datasets,
despite the different time spans, still present a similar vari-
ability to ET-WB with the overestimations in MODIS and
FLUXCOM. As discussed above, the significant differences
from FLUXCOM can be attributed to the specific data gen-
eration method. Furthermore, the annual variations in ET are
typically explained by the changes in P , which experienced
an increasing trend during 2003–2010 followed by an abrupt
decrease between 2010 and 2015 (Fig. 5b). However, the
increase in P during 2015–2021 does not directly translate
to the enhancement of ET based on ET-WB results, though
the GLEAM shows a more “reasonable” increase under the
assumption of the limited influence of the human interven-
tions on the global ET on an annual scale. This inconsistent
phenomenon is because of the significant increase in R val-
ues since 2015 (particularly in 2020 and 2021), which are
mainly driven by GloFAS reanalysis data as the 23 G-RUN
ENSEMBLE subsets are not available from 2020 (Fig. 5d).
Therefore, the overestimation of R in GloFAS data can ex-
plain the abrupt change in ET-WB over recent years, imply-
ing that caution should be taken when interpolating the ET-
WB results after 2019 due to the availability of the limited
dataset. This is not only because of the controlling role of
specific water components in ET-WB (e.g., a wide range of
P similar to ET) but also the limited data availability due to
delayed updates (e.g., G-RUN ENSEMBLE). Moreover, 1S

does not play a crucial role on an annual scale because of the
relatively small amplitude and the confident estimations of
GRACE signals in such a large area (Fig. 5c).

Statistical metrics are reassessed on an annual scale to
evaluate the differing performance of ET-WB across tempo-
ral scales. A similar spatial pattern is revealed according to
the RB results but slightly degrades over most basins, which
is seemingly caused by error accumulation from water com-
ponents and the relatively short time span for calculation
(e.g., 19 years) (Fig. 6). For the global land, the RB reaches
−0.05 %, −18.07 %, −4.61 %, and 1.73 % for the GLEAM,
FLUXCOM, MODIS, and WGHM, respectively. Alternate

metrics, such as CC and NSE, also indicate deteriorating ac-
curacy of ET-WB after converting from monthly to the an-
nual timescale for the single basin, while RMSE is improved
if we use the same unit (Figs. S5–S7). However, the scat-
ter plots of annual ET in a total of 168 basins between ET-
WB and auxiliary datasets show significant improvements
to those on the monthly scale due to the offsets of nega-
tive ET values within a year and more benign fluctuations
of annual ET than the monthly series. For example, the fitted
slope of the regression between ET-WB and other datasets
is 0.92 (GLEAM), 1.03 (FLUXCOM), 0.93 (MODIS), and
1.01 (WGHM), respectively, with higher CC and NSE com-
pared with their monthly counterparts.

4.2 Spatiotemporal variation of ET-WB

Spatiotemporal variability of ET from the ET-WB and other
auxiliary ET products are assessed for comparison. The long-
term mean of annual ET based on the ET-WB illustrates
a clear spatial pattern, with relatively higher ET in humid
zones of South America, eastern North America, central
South Africa, and South Asia, and lower ET in arid regions
of the western United States, northern and southern Africa,
Central Asia, and Australia (Fig. 7a). Specifically, the Ka-
puas River basin (ID: 131) in Indonesia has the highest ET-
WB flux of 1565 mm yr−1 due to the hot and humid cli-
mate regionally (Hidayat et al., 2017). The endorheic Tarim
River basin (ID: 14) in northwestern China has the lowest
annual ET of 127 mm yr−1 among 168 study basins because
of the prevailing extremely dry climatic conditions. The ho-
mogeneous spatial patterns between ET-WB and GLEAM,
FLUXCOM, and MODIS products can further validate the
reliability of ET-WB (Fig. S8). In addition, WGHM reports
a slightly different distribution from the other three datasets
and ET-WB, which can result from modeling uncertainty due
to simplified model parameterization and the uncalibrated
ET simulations (Müller Schmied et al., 2021). Specifically,
we observe the consistent overestimations of ET-WB more
than in other datasets in Eastern Europe, western Russia,
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Figure 4. Comparisons between the ET-WB and multiple auxiliary ET products (a, b: GLEAM; c, d: FLUXCOM; e, f: MODIS; g, h:
WGHM) on a monthly scale during the period 2002–2021. The left column represents the global distribution of RB and the right column
represents the corresponding scatter plots. The color of the scatter points indicates the kernel density.
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Figure 5. Annual time series of ET-WB and multiple auxiliary ET products as well as other water components over global land during the
period 2003–2021. The ET in 2002 is excluded from the calculation because of the missing values from January to April 2002. The shading
shows the spread range among different datasets, with the central solid line indicating the ensemble median value.

South Asia, East Asia, and Western Australia, especially in
the wet areas like the Yangtze (ID: 13) and Mekong (ID: 31)
River basins. On the contrary, relative underestimations are
observed in western Europe, eastern Russia, and the south-
eastern basins of Australia (Fig. 7). The divergent patterns
between ET-WB and different datasets are seen in large-scale
regions of South America, North America, Africa, and Cen-
tral Asia. Nevertheless, the regional differences are mostly
within the range of ±100 mm yr−1, which is a relatively
small range for basins with higher ET values, unlike the dry
basins with relatively small ET (Fig. 7c–f). The spatial dis-
tributions of differences between ET-WB and other datasets
are similar to the RB results (Fig. 4), which manifests from
the homologous calculation formula (Eq. 5). For the global
land, the long-term mean annual ET estimates from ET-
WB are concentrated within the range of 500–600 mm yr−1

among ensemble members, with the median estimates of
549 mm yr−1 (Fig. 7b). This number is comparable to the re-
sult from GLEAM (543 mm yr−1), MODIS (569 mm yr−1),
and WGHM (534 mm yr−1). The relatively higher value of
global ET from FLUXCOM (663 mm yr−1) is attributable to
the exclusion of the unvegetated area in the global averaging,
and it has shown good agreement with several global prod-
ucts (e.g., GLEAM) in the vegetated area (Jung et al., 2019).

The annual trends of ET from various datasets during
2003–2014 are assessed. The calculation period is selected
to be consistent with the temporal span of different products,
which can cause some biases in determining trends due to
the relatively short computation period (i.e., 12 years). The
ensemble median results of the ET-WB ensemble reveal a
spatial distribution with the increasing ET detected in South
America (around the Amazon River basin), Europe, east-
ern Russia, South Asia, East Asia, southern Africa, North
Africa, and Australia. Over these regions, the Burdekin River
basin (ID: 94) in Australia has the most rapid growth rate of
31.4 mm yr−2, which is about 100 times the slowest increas-
ing slope (0.3 mm yr−2) in the Alazeya River basin (ID: 165)
of Russia (Fig. 8a). Significant depletion of ET is observed

in the central North American and African continents as well
as western Russia, with the lowest trend of−22.8 mm yr−2 in
the Moose River basin (ID: 107) of Canada. We also noticed
similar spatial patterns based on other auxiliary ET datasets
(Fig. S9), however, with differences in the magnitudes of
trends. Such differences are reasonable because the trend es-
timations contain uncertainty in a short 12-year period, let
alone the errors inherent to various products. Therefore, we
see an interesting spatial distribution in the differences be-
tween ET-WB and other datasets (Fig. 8c–f), where the re-
gional differences in trends are similar to the actual trend
summarized by the corresponding dataset (Fig. S9). In par-
ticular, ET-WB is prone to overestimate the trends for regions
with increasing ET, and the overestimations are larger if the
trends are larger (based on other ET datasets), and vice versa.
In a nutshell, unlike TWS/P -based evaluation (Held and So-
den, 2006; Xiong et al., 2022b), the “dry gets drier and wet
gets wetter” paradigm can be typically inferred from ET-WB
on a basin scale, which generally exaggerates the prevailing
increasing/decreasing ET tendencies in the basins (Yang et
al., 2019). On a global scale, the median value of trend es-
timates from ET-WB ensemble members is 1 mm yr−2, very
close to the results from GLEAM (0.8 mm yr−2) and WGHM
(0.8 mm yr−2). However, both FLUXCOM and MODIS re-
port small negative values of −0.3 and −0.1 mm yr−2, re-
spectively, which still fall within the spread range of the ET-
WB ensemble estimations (Fig. 8b).

4.3 Uncertainty in ET-WB

Quantification and attribution of uncertainty in the ET-WB
ensemble play important roles in the justification and po-
tential usages of the proposed dataset. Based on the meth-
ods described in Sect. 2.3, we present the global distribu-
tion of the RMS values of uncertainty in ET-WB and re-
lated water components as well as the auxiliary ET prod-
ucts (Fig. 9). We observe a clear spatial pattern of the un-
certainty, which generally increases along with the reduc-
tion in basin size. Several large-size basins, such as Ob (ID:
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Figure 6. Comparisons between the ET-WB and multiple auxiliary ET products (a, b: GLEAM; c, d: FLUXCOM; e, f: MODIS; g, h:
WGHM) on the annual scale during the period 2002–2021. The left column represents the global distribution of RB and the right column
represents the corresponding scatter plots. The color of the scatter points indicates the kernel density.
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Figure 7. Global distribution of (a) the long-term mean in annual ET-WB and (c–f) its difference with multiple auxiliary ET products during
2003–2021. The long-term mean is calculated as the sum of the long-term averages of ET in each month. Subplot (b) shows the histogram
and the probability density distribution of the ET-WB ensemble results over global land. The horizontal bars denote the standard deviation
of results from four auxiliary ET products.

5), Yenisey (ID: 7), and Lena (ID: 9) river basins, possess
a lower uncertainty (< 20 mm m−1) compared with those
medium-size basins like Mekong (ID: 31) and Ganges (ID:
22) river basins where uncertainties in ET-WB are between
40 and 80 mm m−1. However, the small-size basins suffer
from substantial uncertainties in ET-WB, even exceeding
100 mm m−1 in some regions of mainland Australia and Eu-
rope (Fig. 9). The worst phenomenon happens in the Esse-
quibo River basin (ID: 156), with the RMS of the uncertainty
of 267 mm m−1 primarily arising from the high uncertain-
ties in GRACE data (Fig. 9a). A seemingly more optimistic
situation is observed from the uncertainty of four auxiliary
ET products, where the low-latitude humid zones apparently
suffer from higher uncertainty than the high-latitude regions,
though they are essentially smaller than 30 mm m−1 with the
maximum of 65 mm m−1 in the Ogooue River basin (ID: 68)
of Gabon (Fig. 9c). It is not surprising because the uncer-
tainty in ET-WB is propagated from three water components,

including P , 1S, and R, but that in the auxiliary ET products
in our study is calculated as the standard deviation among
four datasets. Despite this, the performance of ET-WB over
large basins is still comparable to these ET datasets, whose
uncertainties share similar spatial distribution with P to a
certain degree. As an important input for GHM and some
other ET products (e.g., the “RS+METEO” setup of FLUX-
COM), P can determine the actual performance of the auxil-
iary ET products. It can even determine the uncertainty in R

datasets which subsequently contributes to the uncertainty of
ET-WB. One example is the G-RUN ENSEMBLE which is
the main data for our water balance forcing (Fig. 9d and f).
However, the “reduction-with-increasing-size” pattern of un-
certainty in ET-WB seems more relevant to the uncertainty
in 1S datasets, which are from six different GRACE so-
lutions and a set of simulations from WGHM. It has been
widely reported that the retrieval bias of GRACE missions
is higher in smaller regions due to the coarse spatial reso-
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Figure 8. Same as Fig. 7, but for the annual trends. The ET in 2002 and after 2014 are excluded from the calculation because of the missing
values of GRACE data in 2002 and the missing values of the MODIS product after 2014. The trend is calculated by using Sen’s slope method.
Subplot (b) shows the histogram and the probability density distribution of the ET-WB ensemble results over global land. The horizontal
bars in panel (b) denote the standard deviation of results from four auxiliary ET products.

lution and the pronounced signal leakage effects (Fig. 9e)
(Scanlon et al., 2018). This is contended to be the main rea-
son for the similar distribution and amplitudes of uncertainty
in 1S and ET-WB for smaller basins, while the uncertainty
in ET-WB over larger basins is mainly controlled by other
factors like P . However, over a global scale, the uncertainty
of ET-WB that roughly fluctuates below 15 mm m−1 (RMS:
9.7 mm m−1) is controlled by that of P (RMS: 8.3 mm m−1),
and the uncertainty in 1S is relatively small because of the
very large area (Fig. 9b). The sharp increase in uncertainty of
R from the year 2020 is caused by the unavailability of 23 G-
RUN ENSEMBLE datasets. Similarly, the abrupt decrease in
uncertainty in auxiliary ET products after 2015 is due to the
limited time coverage of FLUXCOM and MODIS products,
with an RMS of 5.3 mm m−1 over the whole period. They are
not involved in the calculation of uncertainty based on the
inter-member deviation since the year 2016. This different
behavior underscores the importance that potential users pay

attention to the number of datasets used to produce ET-WB.
In addition, ET-WB will be updated as the new/updated ver-
sions of these constituent datasets are released to constrain
such uncertainties.

To further investigate the influential factors to the uncer-
tainty in multiple variables, the relationship between the un-
certainty and basin size, climate conditions (represented as
the long-term mean AI), and human interventions (repre-
sented as the irrigation rate, which is defined as the equipped
irrigation area versus the basin area) were detected (Fig. 10).
As we described above, the obvious relationship between un-
certainty in 1S and basin size governs the increasing uncer-
tainty of ET-WB along with the enhancement of the basin
area, while the uncertainty in auxiliary ET products gener-
ally remains at a lower level of uncertainty similar to that of
P and R (Fig. 10a). Although other variables like P and R

do not show any pattern associated with the basin area, they
present favorable dependence upon the aridity of the basin,
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where they are inclined to have higher uncertainty in more
humid regions with higher AI (Fig. 10b). No clear pattern
between ET uncertainty and irrigation area can be appar-
ently deduced, whereas it is worth mentioning that the signif-
icant irrigation equipped for groundwater resources can lead
to significant short-term and long-term variations in, for ex-
ample, 1S and R, which is the case in some basins in north-
ern China (e.g., Haihe River basin, ID: 67) and northern In-
dia (e.g., Indus River basin, ID: 27) (Fig. 10c). The human-
induced inordinate fluctuations can influence the water bal-
ance and subsequently the quality of ET-WB by impacting
the accuracy of the specific forcing variable (e.g., impact R

through reservoir management). Finally, the uncertainty in
ET-WB can be further intensified for the small wet basins
with significant human disturbance, so extra caution should
be taken when drawing scientific conclusions using ET-WB
in those regions.

5 Discussion

5.1 Comparisons with previous regional studies

Although a global compilation of water balance estimations
of ET is still lacking, previous regional studies have demon-
strated the applicability of the water balance ET at differ-
ent basins of the world. Comparisons with such regional
studies are beneficial to the benchmark of ET-WB. Rodell
et al. (2004) initially proposed the plan to retrieve ET on
basin scales based on the water balance model and early
GRACE data and applied it in the Mississippi River basin
(ID: 4) from July 2002 to November 2003. By compar-
ing with model predictions of ET, the RMS differences be-
tween water balance ET and GLDAS, GRDS, and ECMWF-
based ET were found to be 0.83, 0.67, and 0.65 mm d−1

(equivalent to 24.9, 20.1, and 19.5 mm m−1), respectively
(Rodell et al., 2004), which are comparable to our RMSE
results on the monthly scale, i.e., 19.46 mm m−1 (GLEAM),
18.41 mm m−1 (FLUXCOM), 24.29 mm m−1 (MODIS), and
23.04 mm m−1 (WGHM). Given the significance of the wa-
ter balance method in ungauged regions, several studies have
tested its performance in the data-sparse Tibetan Plateau
(Xue et al., 2013; Li et al., 2014, 2019). For example, Xue
et al. (2013) compared four ET products, including GLDSA,
JRA, MODIS, and Zhang_ET (Zhang et al., 2010), against
the water balance ET in the upper Yellow (ID: 24) and the
Yangtze (ID: 13) river basins, revealing the overestimations
of GLEAM and MODIS relative to the water balance ET.
These comparisons are similar to the RB examinations in
our study based on ET-WB. As the largest river basin of
India that accounts for 26 % of the country’s landmass, the
Ganges River basin (ID: 22) shows a mean monthly average
ET of 63.2 mm m−1 (Syed et al., 2014), which is comparable
to 60.9 mm m−1 calculated in our study despite the differ-
ent study periods. A case study in the Volta River basin (ID:
46) of Africa reported the annual fluctuations of water bal-

ance ET ranging from 700 to 800 mm yr−1 during the period
2004–2011 (Andam-Akorful et al., 2015), relatively lower
than the long-term mean ET-WB of 830 mm yr−1. The rela-
tive accuracy of water balance ET in the exorheic river basins
of China has also been previously evaluated. For example,
Zhong et al. (2020) employed the water balance equation to
estimate regional ET and compared them with the GLEAM
and GLDAS products, concluding the uncertainty of monthly
ET to be 14.7 mm m−1 in the Yellow River basin (ID: 24) and
35.9 mm m−1 in the Pearl River basin (ID: 48), nearly half
of the estimates in our study, i.e., 27.0 and 71.7 mm m−1 in
these basins, respectively, primarily due to different datasets
and methods used. We note these regional studies generally
used observed and typically single-source water components
data like P and R, which can be the reason for the differences
with our results based on multi-source data-based calcula-
tions. Moreover, the difference in study region boundaries,
data processing algorithms, calculation scheme of the terres-
trial water storage change, and time period may reflect the
disparities in the estimates (Rodell et al., 2004).

A few global analyses can also provide an important ref-
erence for the ET-WB developed in our study. Specifically,
Zeng et al. (2012) collected in situ runoff, precipitation,
and GRACE data to estimate ET over 59 major river basins
during 2003–2009, highlighting the fact that 1S cannot be
neglected in the water balance computations. This finding
implies the importance of including GRACE TWSA (1S)
in the water balance closure at basin scales. Ramillien et
al. (2006) applied the GRACE samplings, GPCC precipi-
tation, and modeled runoff to estimate ET time series over
16 drainage basins of the world, in which the extreme errors
(1.8 mm d−1, 50 % relative error) as expected by the accuracy
of model runoff in the Amazon (ID: 1) River basin, is empha-
sized to influence the regional ET estimations. This well cor-
responds to the high uncertainty estimates of P , R, and there-
fore ET-WB in both long-term mean and annual trend levels
of our study. Similar to the examinations of long-term mean
and annual trends in our study, a previous global evaluation
of water balance ET estimates against nine ET products over
35 basins points out that water balance ET can reasonably
estimate the annual means (especially in dry zones with rel-
atively lower uncertainty) but substantially underestimated
the inter-annual variability in terms of annual trends and
mean annual standard deviation (Liu et al., 2016). Further-
more, the comprehensive uncertainty analysis for ET prod-
ucts from four LSMs in NLDAS, two remote-sensing-based
products including MODIS and AVHRR, and water balance
estimations show the highest uncertainty in the latter (20–
30 mm m−1) over the different climatic regions (from humid
to arid) in South Central United States (Long et al., 2014).
The finding confirms the pattern of obviously higher uncer-
tainty in ET-WB than auxiliary ET products in several arid
basins in the western United States in our study. A recently
published global ET product based on the three-temperature
model used the water balance ET in 34 catchments world-
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Figure 9. RMS of uncertainty in the ET-WB and different water components over global basins. Panel (b) shows the time series of uncertainty
in different variables over global land. The NA values in panel (f) R are resulting from the fact that the runoff is manually set as zero in these
regions. Please refer to the Data section for details.

wide as a benchmarking product, revealing the RB mostly
ranging from −25 % to 25 % on the annual scale, with the
underestimation of water balance ET at high latitudes (Yu
et al., 2022). The comparisons are quite relevant to the re-
sults of ET-WB, which also underestimates ET in eastern
Russia and northern North America by comparing with, for
example, GLEAM and MODIS products. Overall, the results
of our proposed ET-WB datasets are consistent with previ-
ous regional and global studies, and more importantly, they
cover the most recent time periods and provide observational
constraints to the global and regional ET leveraging huge
datasets of water balance components.

5.2 Implications, limitations, and future outlook

The production of ET-WB ensemble datasets can benefit the
future hydrological community in various ways. First of all,
the ET-WB can provide valuable information for the regional
ET variations, greatly enriching the existing ET datasets con-

sisting of the remote-sensing-based (e.g., MODIS), LSM-
predicted (e.g., GLDAS), GHM-predicted (e.g., WGHM),
observation-driven (e.g., FLUXCOM), in situ-based (e.g.,
eddy tower observations), and other diagnostic datasets (e.g.,
GLEAM) as well as the synthetic datasets. Given the non-
ignorable differences among the existing ET datasets and
an independent mass conservation-based ET-WB, it can not
only help to benchmark other datasets/models of ET but will
also contribute to the validation and calibration of hydrologi-
cal models across scales. This is particularly useful for poorly
gauged regions like the Qinghai–Tibetan Plateau, African
river basins, and high-latitude cold regions, where the in-
stallation and maintenance of the field observation network
are quite challenging (Li et al., 2019). In addition, the ET-
WB product will provide additional information for evalu-
ating water balance closure on the basin and global scales
(Lehmann et al., 2022). The ET-WB dataset that generates
ET based on the terrestrial water balance is also dedicated to
evaluating other water balance components like R by com-
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Figure 10. Relationship between RMS of uncertainty in the ET-WB, auxiliary ET products, different water balance components, and (a) size,
(b) aridity index, and (c) irrigation rate of the basins. Increasing basin ID (1 through 168) corresponds to the decreasing basin area where
basin ID of 1 is the largest basin, i.e., the Amazon River basin. Please also refer to Table S2 for salient features of the river basins.

bining them with the available hydrological records (e.g., P )
regionally or globally (Syed et al., 2010; Chandanpurkar et
al., 2017). Finally, the ET-WB product is conducive to de-
tecting human footprints in the regional water cycle. For ex-
ample, Pan et al. (2017) combined the water balance estima-
tions of actual ET and the modeling results without consid-
eration of human activities to estimate human-induced ET in
a highly developed region of China (Haihe River basin), im-
plying a 12 % increase in ET due to human activities such as
irrigation. Strong influences of anthropogenic changes to the
region ET were also reported in the Colorado River basin of
western United States (Castle et al., 2016). Overall, the de-
veloped ET-WB has the potential to support multi-discipline
applications in hydrology and climate fields.

However, the ET-WB also suffers from a few limitations
mainly related to the uncertainty, selection, and assump-
tions of datasets involved in water balance computations. As
shown in comparison with other ET datasets and the uncer-
tainty analysis, propagated uncertainty from different vari-
ables like 1S and P can greatly influence the quality of ET
estimations. For example, the relatively higher uncertainty of
GRACE signals in smaller basins increases after the deriva-
tion of 1S subsequently alters the estimations of ET. Biases
in P over humid zones can also play an important role in
the performance of regional ET. In terms of R, since only
1 of the 29 subsets is from the in situ discharge and most
are provided by the observation-driven machine-learning G-
RUN ENSEMBLE dataset with varying forcings, the ET es-
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timations for the basins without in situ observations might
be biased. Furthermore, the G-RUN ENSEMBLE, as a grid-
ded runoff rate product purely forced by meteorological data,
does not physically take human activities (e.g., dam manage-
ment) into consideration. Such simplicities might overesti-
mate or underestimate the actual runoff for the basins with
significant human intervention, with the underlying assump-
tion that the water loss in river channels can be neglected to
convert runoff into river streamflow on a monthly scale. An-
other potential source of uncertainty may arise from the re-
dundant and circulatory use of specific variables (e.g., in situ
runoff data used in our calculations are also used for par-
tially calibrating the GHM and LORA datasets) in the gener-
ation of ET-WB. Overall, the inherent uncertainties in mul-
tiple water cycle components (P , 1S, and R) can propagate
to the ET-WB product. Finally, due mainly to the availability
of most input data, ET-WB covers a specific period (2002–
2021) at a relatively coarse timescale (monthly). Higher fre-
quency and longer duration are our future objectives when
more data can be accessed.

To overcome the multi-source uncertainties, several sug-
gestions for future use and improvements are provided as fol-
lows: (1) appropriate consideration of human disturbances,
such as water diversion in water balance estimates of ET,
should be highlighted in specific regions (e.g., the South-to-
North Water Diversion Project across southern and northern
China); (2) considering the significant role of the forcing data
in determining the accuracy of ET-WB, careful justification
of different inputs (e.g., P ) that have better performance for
the regions of interest should be performed in combination of
regional in situ observations; (3) future efforts should incor-
porate in situ ET observations from regional eddy covariance
towers with calibration, assimilation, and correction proce-
dures to improve further the accuracy of ET-WB (Billah et
al., 2015); (4) integrated ET products that consider a hybrid
approach to integrate strengths of different categories of data,
including ET-WB and satellite products, are worthy of being
proposed to further constrain the uncertainties in regional ET
(Long et al., 2014).

6 Data availability

All the datasets used in our study are publicly available
online and have been introduced in the Data section. The
ET-WB dataset is also publicly available in various for-
mats (NetCDF, Mat, and Shapefile) (Xiong et al., 2023)
and can be freely downloaded on the Zenodo platform
(https://doi.org/10.5281/zenodo.8339655).

7 Conclusion

In the current study, a global monthly ET product (named
ET-WB) over 168 river basins that account for ∼ 60 % of
the earth’s land area, except for Greenland and Antarctic ice

sheets and global land during May 2002–December 2021, is
developed based on the water balance equation employing
23 precipitation, 29 runoff, and 7 1S datasets from satel-
lite products, in situ measurements, reanalysis, and hydro-
logical simulations. The performance of ET-WB has been
evaluated against four auxiliary global ET datasets compris-
ing the GLEAM, FLUXCOM, MODIS, and WGHM at vari-
ous timescales based on different statistical metrics (i.e., CC,
NSE, RMSE, and RB). The long-term mean and annual trend
of ET-WB and the above ET products are also assessed. Un-
certainty of ET-WB is quantified by propagating the errors in
different water components, and its relationships with basin
size, climate aridity, and human irrigation are also investi-
gated.

The seasonal cycles of the ET-WB ensemble, mainly dom-
inated by precipitation, generally agree with multiple ET
global products despite the overestimations/underestimations
in specific months compared with the median ET-WB re-
sults. Inter-annual variability of global land ET-WB presents
a gradual increase from 2003 to 2010 and a subsequent de-
crease during 2010–2015, followed by a sharper reduction in
the remaining years due to the varying P , similar to other ET
products. However, the increase in P during 2015–2021 does
not translate to the enhancement of ET because of the over-
estimated GloFAS reanalysis and the limited data availability
(e.g., G-RUN ENSEMBLE) in the period. Multiple statisti-
cal metrics show reasonably good accuracy of ET-WB, with
most river basins having RB between −20 % and 20 % on a
monthly scale. The performance improves on an annual scale
but with strong spatial heterogeneity among different basins.

The long-term mean annual ET estimates from ET-WB
are concentrated within the range of 500–600 mm yr−1

among ensemble members with the median estimates of
549 mm yr−1 for global land, comparable to the result
from GLEAM (543 mm yr−1), MODIS (569 mm yr−1), and
WGHM (534 mm yr−1). The relatively higher value from
FLUXCOM (663 mm yr−1) can be attributed to the non-
consideration of the unvegetated area. Regarding annual
trends, the “dry gets drier and wet gets wetter” paradigm can
be inferred from ET-WB, which generally exaggerates the
prevailing increasing/decreasing ET in basins. On a global
scale, the median value of trend estimates from ET-WB en-
semble members is 1 mm yr−2, close to the results from
GLEAM (0.8 mm yr−2) and WGHM (0.8 mm yr−2). How-
ever, both FLUXCOM and MODIS report small negative val-
ues of −0.3 and −0.1 mm yr−2, respectively, still within the
ET-WB ensemble spread range.

The uncertainty of ET-WB that roughly fluctuates below
15 mm m−1 (RMS: 9.7 mm m−1) is primarily controlled by
that of P (RMS: 8.3 mm m−1), which is relatively higher
than the auxiliary ET products (RMS: 5.3 mm m−1) over
global land. The inversely proportional relationship between
uncertainty in 1S and basin size governs the increasing un-
certainty of ET-WB along with the enhancement of basin
area. Other variables like P and R present relative depen-
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dence upon the basin’s aridity, where they are inclined to
have higher uncertainty in more humid regions with higher
AI. Moreover, the significant irrigation equipped for ground-
water resources can lead to significant short-term and long-
term variations in, for example, 1S and R, which is the case
with some basins in northern China (e.g., Haihe River basin
(ID: 67)) and northern India (e.g., Indus River basin (ID:
27)). The uncertainty in ET-WB can be further intensified for
the small wet basins with significant human disturbance, so
caution should be taken when drawing scientific conclusions
using ET-WB over those regions.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-4571-2023-supplement.
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