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Text S1 Convolutional Neural Network (CNN) deep learning model (convolutional layer, loss 24 

function) 25 

Convolutional layer using partial convolution and mask update: The partial convolution operation and 26 

the mask update function are called the partial convolution layer (Liu et al., 2018). The partial 27 

convolution operation and the mask update function are called the partial convolution layer. The partial 28 

convolution at each position can be expressed as 29 

𝑥′ = {
𝑊𝑇 (𝑋⨀𝑀)

𝑠𝑢𝑚(1)

𝑠𝑢𝑚(𝑀)
+ 𝑏, 𝑖𝑓 𝑠𝑢𝑚(𝑀) > 0

0,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (S1) 

⨀ denotes element-by-element multiplication, where 1 and 𝑀 in the above equation have the same shape, 30 

and all elements in 1 are 1. Eq. (1) illustrates that our output value depends only on the valid input and 31 

that 
𝑠𝑢𝑚(1)

𝑠𝑢𝑚(𝑀)
 is used to adjust the amount of change in the valid value of the input. 32 

𝑚′ = {
1, 𝑖𝑓 𝑠𝑢𝑚(𝑀) > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (S2) 

After each partial convolution operation, use equation (2) to update the mask Eq. (2) indicates that we 33 

mark that position as valid whenever the convolution can adjust its output according to at least one valid 34 

value. In other words, marking 1 where there is a value and 0 for the default part is the so-called binary 35 

mask. This approach can be implemented in any deep learning structure as part of a forward delivery. 36 

With enough partial convolutions, the input values will all eventually become valid, i.e., any masks will 37 

all become 1. Partial convolution layers can be implemented by extending the existing standard Pytorch 38 

library. The most straightforward implementation is to define a binary mask of the shape C × H × W 39 

that is the same size as its associated image and feature values. And then, update the mask using a fixed 40 

convolutional layer of the same size and operation as the partial convolutional layer, with the same weight 41 

(weight of 1) and no bias. 42 

The model loss function is set for each pixel reconstruction accuracy and the transition smoothness of 43 

the repaired missing measurements to their surroundings. Let the input image be 𝐼𝑖 , the initial binary 44 

mask be 𝑀, the predicted value be 𝐼𝑜𝑢𝑡 , and the actual value be 𝐼𝑔𝑡 . Eq. (3) and Eq. (4) calculate the loss 45 

value for each pixel, where Eq. (3) calculates the default value portion of the loss value and Eq. (4) 46 

calculates the actual value portion of the loss value. 47 

ℒℎ𝑜𝑙𝑒 = ||(1 − 𝑀) ⊙ (𝐼𝑜𝑢𝑡 − 𝐼𝑔𝑡)||1  (S3) 
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ℒ𝑣𝑎𝑙𝑖𝑑 = ||𝑀 ⊙ (𝐼𝑜𝑢𝑡 − 𝐼𝑔𝑡)||1 (S4) 

Define the Perceptual Loss function (Eq. (5)) and the Style Loss function (Eq. (6) and (7). Where 48 

𝐼𝑐𝑜𝑚𝑝 denotes the original data, where the valid value is the true value and 𝐾𝑛 denotes the normalization 49 

factor. 50 

ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = ∑ ||Ψ𝑛(𝐼𝑜𝑢𝑡) − Ψ𝑛(𝐼𝑔𝑡)

𝑁−1

𝑛=0

||1 + ∑ ||Ψ𝑛(𝐼𝑐𝑜𝑚𝑝) − Ψ𝑛(𝐼𝑔𝑡)

𝑁−1

𝑛=0

||1 (S5) 

ℒ𝑠𝑡𝑦𝑙𝑒𝑜𝑢𝑡
= ∑ ||𝐾𝑛((Ψ𝑛(𝐼𝑜𝑢𝑡))𝑇(Ψ𝑛(𝐼𝑜𝑢𝑡)) − (Ψ𝑛(𝐼𝑔𝑡))𝑇 (Ψ𝑛(𝐼𝑔𝑡)))

𝑁−1

𝑛=0

||1 (S6) 

ℒ𝑠𝑡𝑦𝑙𝑒𝑐𝑜𝑚𝑝
= ∑ ||𝐾𝑛((Ψ𝑛(𝐼𝑐𝑜𝑚𝑝))𝑇(Ψ𝑛(𝐼𝑐𝑜𝑚𝑝) − (Ψ𝑛(𝐼𝑔𝑡))𝑇 (Ψ𝑛(𝐼𝑔𝑡)))

𝑁−1

𝑛=0

||1 (S7) 

Finally, the Total Variation Loss function is defined in equation (8). This loss function effectively 51 

smoothes the image, reducing the total variation of the signal and removing unwanted details while 52 

retaining essential details such as edges. 53 

ℒ𝑡𝑣 = ∑ ||𝐼𝑐𝑜𝑚𝑝
𝑖,𝑗+1

− 𝐼𝑐𝑜𝑚𝑝
𝑖,𝑗

||1 +
(𝑖,𝑗)∈𝑃,(𝑖,𝑗+1)∈𝑃

∑ ||𝐼𝑐𝑜𝑚𝑝
𝑖+1,𝑗

− 𝐼𝑐𝑜𝑚𝑝
𝑖,𝑗

||1

(𝑖,𝑗)∈𝑃,(𝑖+1,𝑗)∈𝑃

 (S8) 

First, we set the batch size to 16 in the first 500000 iterations and fine-tuned it to 18 in the last 54 

10000000 iterations, for a total of 1500000 iterations, to suppress the overfitting phenomenon generated 55 

during the training process, and validate the model every 10000 times and early stopping if the validation 56 

shows a decreasing trend, the final number of training times used is 1100000. Second, L2 regularization 57 

is also added to regulate the loss function. The initial hyper-parameters of the model are set as follows; 58 

learning rate of 2e-4 and learning finetune of 5e-5.  59 

The final loss function equation (9) is constructed by combining all the loss functions necessary for 60 

image restoration, and a validation set of 100 images confirms this equation's hyperparameters. 61 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑣𝑎𝑙𝑖𝑑 + 6ℒℎ𝑜𝑙𝑒 + 0.05ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 120 (ℒ𝑠𝑡𝑦𝑙𝑒𝑜𝑢𝑡
+ ℒ𝑠𝑡𝑦𝑙𝑒𝑐𝑜𝑚𝑝

)

+ 0.1ℒ𝑡𝑣 + 𝛼‖𝜔‖2
2 

(S9) 
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Table S1: CMIP6 numerical models for training the neural network. CMIP6 Historical monthly 

experiments between 1955 and 2014 are applied to train the CMIP6-AI. 

 Source ID N° Ensemble 

1 ACCESS-ESM1-5 40 r1i1p1f1-r40i1p1f1 

2 CNRM-CM6-1 30 r1i1p1f2-r30i1p1f2 

3 CNRM-ESM2-1 11 r1i1p1f2-r11i1p1f2 

4 EC-Earth3 22 
r1i1p1f1-r4i1p1f1; r6i1p1f1; r7i1p1f1; r9i1p1f1; 

r10i1p1f1-r19i1p1f1; r21i1p1f1-r25i1p1f1 

5 EC-Earth3-CC 10 r1i1p1f1; r4i1p1f1; r6i1p1f1-r13i1p1f1 

6 MRI-ESM2-0 12 r1i1p1f1-r10i1p1f1; r1i2p1f1; r1i1000p1f1 
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Table S3 Trends and their 95% confidence ranges in various data sources global SSR change (units: 64 

W/m2 per decade). * Indicate trends that are significant at the 5% level. 65 

Type 1955-1991 1991-2018 1955-2018 

SSRIgrid -1.995 ± 0.251* 0.999 ± 0.504* -0.494 ± 0.228* 

SSRIHgrid -1.776 ± 0.230* 0.851 ± 0.410* -0.554 ± 0.197* 

SSRIH20CR -1.276 ± 0.205* 0.697 ± 0.359* -0.434 ± 0.148* 

ERA5 -1.162 ± 0.319* 0.653 ± 0.350* -0.180 ± 0.176* 

  66 
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Table S4 Trends and their 95% confidence ranges in continental and hemispheric SSRIH20CR 67 

change (Units: W/m2 per decade). * Indicate trends that are significant at the 5% level. 68 

Continental Time period /Trend Time period /Trend 

North America 
1955-1973 1973-2018 

-3.588 ± 1.290* 1.074 ± 0.278* 

South America 
1955-1990 1990-2018 

-0.408 ± 0.619 0.049 ± 0.768 

Europe 
1963-1978 1978-2018 

-2.180 ± 1.866* 1.081 ± 0.312* 

Africa 
1955-1991 1991-2018 

-1.506 ± 0.496* 0.340 ± 0.998 

Asia 
1955-1990 1990-2018 

-1.633 ± 0.473* 0.435 ± 0.505 

North Hemisphere 
1955-1991 1991-2018 

-1.457 ± 0.246* 0.887 ± 0.415* 

South Hemisphere 
1955-1991 1991-2018 

-0.708 ± 0.330* -0.076 ± 0.656* 

  69 
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 70 
Figure S1-1 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 71 

the station SSR series after homogenization (SSRIHstation, red line).   72 
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 73 
Figure S1-2 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 74 

the station SSR series after homogenization (SSRIHstation, red line).   75 



9 
 

 76 
Figure S1-3 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 77 

the station SSR series after homogenization (SSRIHstation, red line).   78 
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 79 
Figure S1-4 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 80 

the station SSR series after homogenization (SSRIHstation, red line).   81 
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 82 
Figure S1-5 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 83 

the station SSR series after homogenization (SSRIHstation, red line).   84 
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 85 
Figure S1-6 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 86 

the station SSR series after homogenization (SSRIHstation, red line).   87 
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 88 
Figure S1-7 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 89 

the station SSR series after homogenization (SSRIHstation, red line).   90 



14 
 

 91 
Figure S1-8 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 92 

the station SSR series after homogenization (SSRIHstation, red line).   93 
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 94 
Figure S1-9 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 95 

the station SSR series after homogenization (SSRIHstation, red line).   96 
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 97 
Figure S1-10 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 98 

the station SSR series after homogenization (SSRIHstation, red line).   99 
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 100 
Figure S1-11 Annual variation of SSR calculated from the original station SSR series (SSRIstation, blue line), 101 

the station SSR series after homogenization (SSRIHstation, red line).   102 
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 103 
Figure S2: 20CR-AI (CMIP6-AI) reconstruction model evaluation. Figure S3 (a /b) and (c /d) show the 104 

correlation coefficient (CC) and root mean squared error (RMSE) of the 20crAI /CMIP6AI model 105 

reconstruction results with the validation set for the different number of iterations.  106 

  107 
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 108 
Figure S3: 20CR-AI reconstruction model evaluation. The left and right panels show the spatial distribution 109 

of the CC and the RMSE of the 20CR-AI model reconstruction results with the 20CR validation set for the 110 

different number of iterations, respectively. 111 

  112 
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 113 
Figure S4: same as Figure S3, but for CMIP6-AI. 114 

115 
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 116 

 117 

Figure S5: Time series of the annual global (a) /regional (b) SSR anomaly variations (relative to 1971-2000) 118 

before /after homogenization. The Grey /black solid line represents SSR before homogenization (SSRIgrid) 119 

/SSRIHgrid annual anomalies. The histograms represent the decadal trends of the SSRIgrid /SSRIHgrid (unit: 120 

W/m2 per decade) and their 95% uncertainty range during three periods 1955-1988, 1988-2018 and 1955-121 
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2018.   122 
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 123 

 124 

 125 

126 
Figure S6-1: Spatial distribution of SSRIHgrid (column 1) and the SSR of reconstruction based on the 20CR-127 

AI model (SSRIH20CR (column 2)) in typical years (1955-1958). 128 

 129 
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130 

 131 

 132 

133 
Figure S6-2: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1959-134 

1962). 135 

136 
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 137 

 138 

139 

140 
Figure S6-3: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1963-141 

1966). 142 

143 
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 144 

 145 

 146 

147 
Figure S6-4: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1967-148 

1970). 149 

  150 
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 151 

 152 

 153 

154 
Figure S6-5: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1971-155 

1974). 156 

 157 

158 
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 159 

 160 

 161 

162 
Figure S6-6: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1975-163 

1978). 164 

  165 
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 166 

 167 

 168 

169 
Figure S6-7: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1979-170 

1982). 171 
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 173 

 174 

 175 

176 
Figure S6-8: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1983-177 

1986). 178 

  179 
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 180 

 181 

 182 

 183 
Figure S6-9: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1987-184 

1990). 185 
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 187 

 188 

 189 

190 
Figure S6-10: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1991-191 

1994). 192 
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 194 

 195 

 196 

197 
Figure S6-11: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1995-198 

1998). 199 
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 202 

 203 

   204 
Figure S6-12: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (1999-205 

2002).   206 
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 208 

 209 

 210 
Figure S6-13: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (2003-211 

2006). 212 
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 214 

 215 

 216 

 217 
Figure S6-14: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (2007-218 

2010). 219 
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 221 

 222 

 223 

 224 
Figure S6-15: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (2011-225 

2014). 226 
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 228 

 229 

 230 

 231 
Figure S6-16: Spatial distribution of SSRIHgrid (column 1) and SSRIH20CR (column 2) in typical years (2015-232 

2018). 233 

  234 
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 235 

Figure S7: Global and regional (except for Antarctica) land annual SSR anomaly variations (relative to 236 

1971-2000) before /after reconstruction. The Black solid line represents the SSRIHgrid annual anomalies. 237 

The solid blue line represents the reduced SSRIH20CR annual anomalies. The histograms represent the 238 

decadal trends of the SSRIHgrid /SSRIH20CR (unit: W/m2 per decade) and their 95% uncertainty range from 239 

1955 to 1991, 1991-2018 and 1955-2018, and the SSRIH20CR is reduced to the grid boxes with in situ 240 

observations. 241 
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 242 

Figure S8: Global land (except for Antarctica) annual SSR anomaly variations (relative to 1971-2000) before 243 

/after reconstruction. The Black solid line represents the SSRIHgrid annual anomalies. The solid blue line 244 

represents the SSRIH20CR annual anomalies. The solid green line represents the ERA5 annual anomalies. The 245 

solid yellow line represents the CERES annual anomalies. The histograms represent the decadal trends of the 246 

SSRIHgrid /SSRIH20CR /ERA5 (unit: W/m2 per decade) and their 95% uncertainty range from 1955 to 1991, 247 

1991-2018 and 1955-2018.  248 
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 249 

Figure S9: Distribution of annual SSR homogenization adjustments.  250 

(The histogram is based on adjustments from all 66 stations adjusted in this paper)  251 
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