
Earth Syst. Sci. Data, 15, 4481–4518, 2023
https://doi.org/10.5194/essd-15-4481-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

GOBAI-O2: temporally and spatially resolved fields of
ocean interior dissolved oxygen over nearly 2 decades

Jonathan D. Sharp1,2, Andrea J. Fassbender2, Brendan R. Carter1,2, Gregory C. Johnson2,
Cristina Schultz3,4, and John P. Dunne3

1Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington,
Seattle, WA 98105, USA

2Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration,
Seattle, WA 98115, USA

3Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration,
Princeton, NJ 08540, USA

4Department of Geosciences, Princeton University,
Princeton, NJ 08540, USA

Correspondence: Jonathan D. Sharp (jonathan.sharp@noaa.gov)

Received: 1 September 2022 – Discussion started: 20 September 2022
Revised: 7 July 2023 – Accepted: 16 August 2023 – Published: 6 October 2023

Abstract. For about 2 decades, oceanographers have been installing oxygen sensors on Argo profiling floats to
be deployed throughout the world ocean, with the stated objective of better constraining trends and variability
in the ocean’s inventory of oxygen. Until now, measurements from these Argo-float-mounted oxygen sensors
have been mainly used for localized process studies on air–sea oxygen exchange, upper-ocean primary produc-
tion, biological pump efficiency, and oxygen minimum zone dynamics. Here, we present a new four-dimensional
gridded product of ocean interior oxygen, derived via machine learning algorithms trained on dissolved oxygen
observations from Argo-float-mounted sensors and discrete measurements from ship-based surveys and applied
to temperature and salinity fields constructed from the global Argo array. The data product is called GOBAI-O2,
which stands for Gridded Ocean Biogeochemistry from Artificial Intelligence – Oxygen (Sharp et al., 2022;
https://doi.org/10.25921/z72m-yz67); it covers 86 % of the global ocean area on a 1◦× 1◦ (latitude× longitude)
grid, spans the years 2004–2022 with a monthly resolution, and extends from the ocean surface to a depth of
2 km on 58 levels. Two types of machine learning algorithms – random forest regressions and feed-forward
neural networks – are used in the development of GOBAI-O2, and the performance of those algorithms is as-
sessed using real observations and simulated observations from Earth system model output. Machine learning
represents a relatively new method for gap filling ocean interior biogeochemical observations and should be ex-
plored along with statistical and interpolation-based techniques. GOBAI-O2 is evaluated through comparisons to
the oxygen climatology from the World Ocean Atlas, the mapped oxygen product from the Global Ocean Data
Analysis Project and to direct observations from large-scale hydrographic research cruises. Finally, potential
uses for GOBAI-O2 are demonstrated by presenting average oxygen fields on isobaric and isopycnal surfaces,
average oxygen fields across vertical–meridional sections, climatological seasonal cycles of oxygen averaged
over different pressure layers, and globally integrated time series of oxygen. GOBAI-O2 indicates a declining
trend in the oxygen inventory in the upper 2 km of the global ocean of 0.79± 0.04 % per decade between 2004
and 2022.
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1 Introduction

The inventory of dissolved oxygen in the global ocean has
been declining over recent decades and is projected to con-
tinue declining through the current century (Keeling et al.,
2010; Breitburg et al., 2018; Bindoff et al., 2019; Stramma
and Schmidtko, 2019; Limburg et al., 2020), leading to detri-
mental consequences for aerobic marine organisms (Pört-
ner and Farrell, 2008; Sampaio et al., 2021) and changes
in biogeochemical cycles, potentially triggering important
climatological feedbacks (Gruber, 2004; Berman-Frank et
al., 2008). Historical deoxygenation has been inferred from
analyses of globally distributed observations (Helm et al.,
2011; Schmidtko et al., 2017; Ito et al., 2017) and has been
reproduced in Earth system model (ESM) reconstructions
(Bopp et al., 2013; Frölicher et al., 2009; Kwiatkowski et al.,
2020). Global observational studies have generally indicated
a greater degree of deoxygenation than model studies over
recent decades, indicating that ESMs may misrepresent the
sensitivities of the physical and biological processes leading
to deoxygenation, which has implications for the reliability
of future projections (Oschlies et al., 2017, 2018; Stramma
and Schmidtko, 2021). Model studies, however, are based
on gridded output that is continuously resolved in space and
time, whereas observational studies rely on the interpolation
of measurements from discrete bottle samples and/or pro-
filing sensors. These observational datasets have significant
spatiotemporal gaps and may not robustly represent global
deoxygenation trends.

Discrete measurements of the dissolved oxygen concen-
tration ([O2]) are typically made using Winkler titrations
(Winkler, 1888; Carpenter, 1965; Langdon, 2010), which
are also used to calibrate measurements from electrode (or
more recently sometimes optical) dissolved oxygen sen-
sors mounted on conductivity–temperature–depth (CTD)
profilers. Globally distributed [O2] observations from dis-
crete measurements and CTD profilers have been provided
by hydrographic programs like the World Ocean Circula-
tion Experiment (WOCE); the Climate and Ocean Variabil-
ity, Predictability and Change (CLIVAR) program; and the
Global Ocean Ship-Based Hydrographic Investigations Pro-
gram (GO-SHIP). Data from these programs are publicly
available and are conveniently compiled into databases such
as the World Ocean Database (WOD; Boyer et al., 2018) and
the Global Ocean Data Analysis Project (GLODAP; Lau-
vset et al., 2022b). Although unprecedented spatial coverage
is provided by global hydrographic programs, the decadal-
scale temporal resolution of WOCE, CLIVAR, and GO-SHIP
data precludes robust analyses of year-to-year and/or sea-
sonal variability in [O2].

Since the mid-2000s, approximately 1800 Argo floats
equipped with oxygen sensors have been deployed. Argo
floats profile the upper ∼ 2000 m of the water column ev-
ery ∼ 10 d. Many oxygen-sensor-equipped Argo floats have
been deployed as part of regional arrays such as the South-

ern Ocean Carbon and Climate Observations and Modeling
(SOCCOM) project and the North Atlantic Aerosols and Ma-
rine Ecosystems Study (NAAMES). More recently, the push
for a global biogeochemical Argo array has spurred the de-
ployment of oxygen-sensor-equipped Argo floats into more
sparsely sampled ocean regions (Johnson and Claustre, 2016;
Claustre et al., 2020). As more floats have been deployed,
improvements have been made to sensor calibration, data
adjustments, and quality control. Notably, pre-deployment
drift corrections (D’Asaro and McNeil, 2013; Johnson et
al., 2015; Bittig and Körtzinger, 2015; Bushinsky et al.,
2016; Drucker and Riser, 2016; Nicholson and Feen, 2017),
climatology-based calibrations (Takeshita et al., 2013), cali-
brations via in-air oxygen measurements (Körtzinger et al.,
2005; Fiedler et al., 2013; Bittig and Körtzinger, 2015; John-
son et al., 2015; Bushinsky et al., 2016), post-deployment
drift corrections (Johnson et al., 2017; Bittig et al., 2018a),
and established procedures for delayed-mode quality control
(Maurer et al., 2021) have substantially reduced the uncer-
tainty and increased the reproducibility of optode-based [O2]
measurements on Argo floats.

From the time it began, the Argo-Oxygen program (now
oxygen is a measured variable under the Biogeochemical
Argo program) intended to document ocean deoxygenation,
predict and assess anoxic and hypoxic events, and determine
seasonal to interannual changes in export production (Gru-
ber et al., 2010). To date, these goals have been achieved pri-
marily on a regional scale. For example, [O2] measurements
from biogeochemical Argo floats have been used to examine
ventilation and air–sea exchange of oxygen in the Southern
Ocean (Bushinsky et al., 2017) and during deep water forma-
tion in the subpolar North Atlantic (Körtzinger et al., 2004;
Piron et al., 2016, 2017; Wolf et al., 2018); denitrification and
the spatial extent of the oxygen minimum zone (OMZ) in the
Bay of Bengal (Sarma and Udaya Bhaskar, 2018; Johnson et
al., 2019; Udaya Bhaskar et al., 2021); and carbon produc-
tion and export in the Pacific Ocean (Bushinsky and Emer-
son, 2015, 2018; Yang et al., 2017), Southern Ocean (Stukel
and Ducklow, 2017; Arteaga et al., 2019), and North Atlantic
Ocean (Alkire et al., 2012; Estapa et al., 2019). Recently, in
an early global-scale analysis of [O2] from the Argo array,
Johnson and Bif (2021) used the diel cycle of oxygen mea-
sured by the ocean-wide array of biogeochemical Argo floats
to constrain net primary production in the surface ocean.

With the work presented here, we seek to capitalize on
the collective efforts of global hydrographic programs, Bio-
geochemical Argo (BGC Argo), and Core Argo (Johnson et
al., 2022) to create a novel data product: a four-dimensional
monthly record of dissolved oxygen in the global ocean. We
combine autonomous observations of [O2] from BGC Argo
floats with discrete observations of [O2] from hydrographic
cruises in the GLODAP database to create a dataset with an
extensive spatial and temporal resolution. With this dataset,
we train machine learning algorithms on ocean interior pre-
dictor variables co-located with [O2] observations; evaluate
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those algorithms using real and simulated data; and apply
the algorithms to gridded ocean interior predictor variables
mapped from Core Argo to produce a gridded [O2] data prod-
uct at a monthly resolution from 2004 to 2022, on 58 pressure
levels in the upper 2 km of the ocean, and on a near-global
1◦× 1◦ (latitude× longitude) grid.

In this paper, we present the four-dimensional gridded
[O2] product, which we call GOBAI-O2: Gridded Ocean
Biogeochemistry from Artificial Intelligence – Oxygen
(Sharp et al., 2022; https://doi.org/10.25921/z72m-yz67).
Artificial intelligence (AI) is a broad term describing com-
puterized systems that are able to recognize patterns, make
decisions, and otherwise perform tasks previously reserved
only for humans; GOBAI-O2 is built using machine learn-
ing (ML), which is a subfield of AI that is focused on train-
ing, understanding, and applying algorithms that leverage
data to artificially learn and reproduce patterns. We intro-
duce GOBAI-O2 by analyzing spatial patterns, seasonal cy-
cles, and decadal variability. We also describe the process for
creating GOBAI-O2, show the results of evaluation exercises,
assess uncertainty in the gridded [O2] fields, and compare the
data product to other gridded datasets and discrete measure-
ments. GOBAI-O2 represents the first step in leveraging the
emerging global array of BGC Argo floats to produce spa-
tially resolved, time-varying snapshots of global ocean bio-
geochemical distributions in near-real time. It also empha-
sizes regions that are good candidates for new observational
assets; particularly where gaps in observational coverage co-
incide with high background variability in [O2]. Critically,
GOBAI-O2 can be used to address the goals of the Argo-
Oxygen program set by Gruber et al. (2010) over a decade
ago, providing regional and global insight into ocean de-
oxygenation and hypoxia on timescales ranging from a few
months to multiple years.

2 Methods

2.1 Data sources and processing

Hydrographic cruise data were obtained from the GLODAP
version 2022 data product (GLODAPv2.2022; Key et al.,
2015; Olsen et al., 2016; Lauvset et al., 2022a, b). GLO-
DAPv2.2022 provides quality-controlled data from through-
out the entire water column obtained via discrete analyses
of more than 1.4 million water samples collected on 1085
research cruises. Discrete Winkler titration data were cho-
sen rather than CTD oxygen profiles due to the issues with
the quality of calibration of a subset of CTD oxygen mea-
surements and the relatively coarse vertical resolution of the
final GOBAI-O2 product, which would not benefit from the
high vertical resolution of CTD profiles. Data from GLO-
DAP were chosen rather than data from the WOD or any
other database due to the high degree of quality control ap-
plied to GLODAP data. Dissolved oxygen is the most rep-
resented biogeochemical variable in GLODAPv2.2022, with

more than 1.2 million data points from 991 research cruises.
Data from GLODAPv2.2022 were filtered to retain only sam-
ples collected after 1 January 2004, from 0 to 2500 dbar
(decibars), and with a quality control flag of 1 (meaning the
data were manually inspected) and quality flags of 2 (good)
for both salinity and [O2]. Temperature is not assigned either
flag and is assumed to be of sufficient quality if it is reported
(Lauvset et al., 2022a). This filtering left 450 032 data points
from 21 513 unique profiles from 393 total cruises (red points
in Fig. 1).

Float data were obtained from synthetic profile (“Sprof”)
files (Bittig et al., 2022) stored in the Argo Global Data
Assembly Centres (GDACs) via the OneArgo-Mat toolbox
(Frenzel et al., 2022) for MATLAB (MathWorks). At the
time data were obtained (13 June 2023), the Argo GDACs
contained data from about 1800 floats equipped with [O2]
sensors. Float data were filtered to retain only delayed-mode-
adjusted data with quality flags of 1 (good), 2 (probably
good), or 8 (interpolated/extrapolated) for pressure, tem-
perature, salinity, and [O2]. This filtering step ensured that
float data had been manually reviewed by a data manager
and assigned an appropriate quality flag. This filtering left
27 832 192 data points from 138 180 unique profiles from
1022 total floats (blue points in Fig. 1). Of the float pro-
files, 51.4 % were quality-controlled by comparisons to cli-
matologies (World Ocean Atlas, WOA, or Commonwealth
Scientific and Industrial Research Organisation Atlas of Re-
gional Seas, CARS), 30.3 % were quality-controlled using
in-air oxygen measurements, 7.0 % were quality-controlled
by comparisons to subsurface measurements (WOD, OMZ
assumed to have zero oxygen, or CTD profile upon deploy-
ment), 5.3 % were quality-controlled using the in situ optode
calibration of Drucker and Riser (2016), 3.3 % were quality-
controlled via another method, 1.9 % were not categorized,
and the remaining 0.9 % were not adjusted.

The discrete temperature, salinity, and [O2] data
obtained from GLODAPv2.2022 and the Argo
GDACs are archived online (see Appendix C;
https://doi.org/10.5281/zenodo.7747237, Sharp, 2023b).
To ensure that the trained machine learning algorithms
were not biased toward BGC Argo float data, which (in
their native format) have a higher vertical resolution than
GLODAP data, each profile was interpolated to, at most,
58 standard pressure levels (the same pressure levels on
which the final GOBAI-O2 data product is provided).
Interpolated temperature, salinity, and [O2] data from
each source are also archived online (see Appendix C;
https://doi.org/10.5281/zenodo.7747237, Sharp, 2023b).
After interpolation, the total number of GLODAP data
points used for algorithm training increased to 1 096 324 and
the total number of Argo float data points used for algorithm
training decreased to 6 635 749. Co-located, interpolated
GLODAP and BGC Argo profiles that fell within the same
1◦× 1◦ monthly, depth-dependent grid cells were compared
for internal consistency. The float [O2] values were adjusted
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Figure 1. Discrete profile locations from oxygen-sensor-equipped Argo floats (blue) and GLODAPv2.2022 cruises (red) from 1 January
2004 to 13 June 2023. Data from these profiles were binned and used to train ML algorithms to estimate [O2] in each of seven regions:
the Atlantic Ocean (Atl.), Pacific Ocean (Pac.), Indian Ocean (Ind.), Arctic Ocean (Arc.), Mediterranean Sea (Med.), northern section of
the Southern Ocean (N. Sou.), and southern section of the Southern Ocean (S. Sou.). Overlapping areas between regions are shown in grey
(Ovrlp.), where [O2] estimates are made by taking distance-weighted averages of outputs from two regional ML algorithms. The regional
boundaries are presented in numerical form in Table B1.

according to the procedure in Appendix D to remove the
small global discrepancy between co-located ship and
float measurements in order to ensure internal consistency
between the two datasets.

BGC Argo float and GLODAP cruise data were combined
into a single dataset after this bias adjustment, which will
be referred to as the “combined dataset” from here on. The
combined dataset was grouped into seven overlapping re-
gions (Fig. 1, Table B1). This grouping was intended to ac-
count implicitly for similar physical–biogeochemical rela-
tionships within large ocean regions and to reduce the com-
putational burden of the machine learning (ML) algorithm
fits described below. The regions were initially chosen to im-
itate the biomes presented by Fay and McKinley (2014), and
they were then expanded to relatively large regions bound ei-
ther by land masses or by overlapping boundaries along con-
stant lines of latitude. The number of profiles made within
each 1◦× 1◦ box by either a discrete ship cast or Argo float
(Fig. A1) provides a measure of the temporal resolution of
the combined dataset in addition to the spatial distribution
shown in Fig. 1.

Gridded temperature and salinity data to which the trained
algorithms were applied were obtained from the latest ver-
sion of the Roemmich and Gilson (2009) (RG09) Argo Cli-
matology (https://sio-argo.ucsd.edu/RG_Climatology.html,
last access: 12 January 2023). The RG09 climatology is an
upper-ocean (0–2000 dbar) gridded temperature and salin-
ity product constructed exclusively from Argo observa-
tions. Long-term (2004–2018) mean fields of temperature
and salinity are provided on 58 pressure levels, along with

monthly anomaly fields on each of those pressure levels from
2004 to the present day. The most recent major update of
the RG09 climatology was made in 2019, and new monthly
anomaly fields are provided in near-real time between ma-
jor updates. Monthly gridded temperature and salinity were
calculated from the RG09 long-term mean and monthly
anomaly fields (Fig. A2), and they were then used for the
creation of the gridded [O2] product discussed below.

Output from the National Oceanic and Atmospheric Ad-
ministration (NOAA) Geophysical Fluid Dynamics Lab-
oratory’s Earth System Model Version 4 (GFDL-ESM4;
Dunne et al., 2020) was used to assess algorithm perfor-
mance. Model output was downloaded from the World Cli-
mate Research Programme database (https://esgf-node.llnl.
gov/projects/cmip6/, last access: 8 April 2022), which hosts
data from models participating in Phase 6 of the Coupled
Model Intercomparison Project (CMIP6). Potential temper-
ature, practical salinity, and [O2] were downloaded to co-
incide with available ocean interior observations (Fig. A3).
Historical outputs (2004–2014) and projected outputs under
Shared Socioeconomic Pathway (SSP) 2-4.5 (2015–2022)
were combined to cover the time period over which obser-
vations were available. A spatial mask was applied to retain
only GFDL-ESM4 grid cells with corresponding temperature
and salinity values in the RG09 climatology, because that is
the final grid on which GOBAI-O2 is produced.
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2.2 Algorithm training

The combined dataset was used to train ML algorithms for
each region to estimate [O2] from absolute salinity, con-
servative temperature, potential density anomaly, hydrostatic
pressure, bottom depth, and additional spatiotemporal infor-
mation to allow for geographic, seasonal, and interannual
variation (see Table 1). Although biology is not explicitly
accounted for in the ML algorithms, Giglio et al. (2018)
demonstrate that, with an appropriately distributed dataset,
the inclusion of spatiotemporal variables in algorithm train-
ing can implicitly accommodate biological processes.

Absolute salinity (SA) was calculated from practical salin-
ity (SP), hydrostatic pressure (P ), latitude, and longitude.
Conservative temperature (θ ) was calculated from in situ
temperature (T ), SA, and P . Potential density anomaly
(σθ ) was calculated from SA and θ . These calculations
were made using the Gibbs-SeaWater (GSW) Oceanographic
Toolbox for MATLAB (McDougall and Barker, 2011). As
was done by Carter et al. (2021), longitude was transformed
into two separate predictors: cos(Longitude− 20◦E) and
cos(Longitude− 110◦E). Cosine functions were applied to
maintain the cyclical nature of longitude as a predictor, and
offsets of 20 and 110◦ E were intended to shift regions where
the cosine function has minimum explanatory power over
landmasses. Bottom depth was determined by matching each
observational location with the corresponding bathymetry
from the ETOPO2v2 global relief model (NOAA National
Geophysical Data Center, 2006).

Two types of ML algorithms were trained: feed-forward
neural networks (FNNs; Beale et al., 2023) and random
forest regressions (RFRs; Breiman, 2001). Each algorithm
type was trained on the input variables given in Table 1 to
produce estimates of [O2] (Fig. A4). Three separate FNNs
were trained for each of the seven basins shown in Fig. 1,
with an average of the three taken to obtain one equally
weighted FNN result. The FNNs were constructed using the
“feedforwardnet” function and trained using the “train” func-
tion, both from Version 14.4 of the Deep Learning Tool-
box for MATLAB (R2022a). Each FNN was trained using a
Levenberg–Marquardt algorithm, with 15 % of the data re-
served for testing the network during training steps. Each
FNN had two hidden layers, with the following combina-
tions of neurons in the first and second layer, respectively: 20
and 10, 15 and 15, and 10 and 20. One RFR was trained for
each of the seven basins shown in Fig. 1. RFRs are ensem-
bles of decision trees, each created with a bootstrapped ver-
sion of the full dataset chosen randomly with replacement.
Each RFR consisted of 600 trees, a minimum leaf size of 10,
and 6 of the 11 predictors used for each decision split. These
parameters were chosen after some trial and error to strike a
balance between computational efficiency and algorithm per-
formance. The MATLAB “treebagger” function was used to
train RFRs.

In areas where two regions overlap (see Fig. 1), weighted
averages of [O2] estimates were calculated in overlapping
grid cells from each regional algorithm. These averages were
weighted by distance from the center latitude line of the
overlapping area (e.g., a point at 33◦ S in the overlapping
area between the N. Sou. region, whose northern border ex-
tends to 25◦ S, and the Atl. region, whose southern border ex-
tends to 35◦ S, would be calculated as [O2] = 0.8[O2]N.Sou.+

0.2[O2]Atl.). Overlapping areas were used to mitigate discon-
tinuities at the boundaries between regions in the final grid-
ded product.

The average of FNN and RFR estimates (ENS, for ensem-
ble average) was used as the [O2] estimate for a given set
of input data. This ensemble-averaging procedure was im-
plemented due to insights from previous work showing that
averaging the outputs of multiple ML algorithms or linear re-
gression models often outperforms the output from just one
approach on its own (Gregor et al., 2017, 2019; Bittig et al.,
2018b; Carter et al., 2021; Djeutchouang et al., 2022), likely
due to complementary strengths and weaknesses of each ap-
proach. For this work, any especially erroneous result from
either the FNN or RFR should be mitigated by better results
from the other algorithm.

2.3 Algorithm evaluation

We performed two exercises to evaluate the effectiveness
of the ML algorithms used to estimate [O2]. The first
exercise involved training separate evaluation algorithms
(RFRData-Eval and FNNData-Eval), as described in Sect. 2.2,
using a subset of the observational dataset for training while
reserving the remaining subset for assessment. For this exer-
cise, data were split randomly into training (80 %) and as-
sessment (20 %) groups; this split was made according to
measurement platform (cruise or float; see Fig. A5) to en-
sure that inherent correlations among the data points from a
single cruise or float did not contribute to the apparent effec-
tiveness of each ML algorithm. Then, [O2] values from the
subset of reserved assessment data were compared to esti-
mates of [O2] from RFRData-Eval, FNNData-Eval, and the en-
semble average of the two (ENSData-Eval). This exercise was
intended to evaluate the ability of the ML algorithms to re-
produce measured data that were not involved in algorithm
training (Sect. 3.1.1).

The second exercise involved training evaluation algo-
rithms (RFRESM4-Eval and FNNESM4-Eval) using synthetic
“profiles” extracted from gridded GFDL-ESM4 output at
the times and locations for which observational data were
available and then assessing the evaluation algorithms us-
ing spatially and temporally continuous monthly GFDL-
ESM4 output from 2004 through 2022. For this exercise, syn-
thetic profiles for algorithm training were defined by match-
ing the latitude, longitude, month, and year of each avail-
able grid cell from the binned observational dataset with the
corresponding GFDL-ESM4 output. This resulted in 75 879
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Table 1. Predictor variables used to train random forest regressions and feed-forward neural networks to predict [O2]. Unitless quantities are
denoted using “–”.

Predictor variable Abbreviation Unit Range (approx.)

Conservative temperature θ ◦C −2 to 32
Absolute salinity SA – 14 to 40
Potential density anomaly σθ kgm−3 9.3 to 29.3
Hydrostatic pressure P dbar 0 to 2000
Latitude lat ◦

−78 to 90
cos(Longitude− 20◦) longcos20 – −1 to 1
cos(Longitude− 110◦) longcos110 – −1 to 1
Bottom depth bot m 0 to 10 000
Year yr years 2004 to 2023
sin(2π ·Day of Year/365.25) doysin – −1 to 1
cos(2π ·Day of Year/365.25) doycos – −1 to 1

synthetic profiles for algorithm training. The RFRESM4-Eval
and FNNESM4-Eval algorithms were trained as described in
Sect. 2.2 with the synthetic training data and then used to
produce [O2] estimates for the complete model output. These
[O2] estimates from RFRESM4-Eval, FNNESM4-Eval, and an en-
semble average of the two (ENSESM4-Eval) were compared
to [O2] values from the full GFDL-ESM4 output fields at
the grid-cell level. This exercise was intended to evaluate the
ability of the ML algorithms to estimate [O2] in a spatiotem-
porally resolved Earth system model environment when lim-
ited to training data representative of the available collec-
tion of ocean oxygen observations (Sect. 3.1.2). The four-
dimensional field of [O2] from ENSESM4-Eval that represents
a reconstruction of the GFDL-ESM4 environment, which we
refer to as GOBAI-O2-ESM4, can also be used as an ana-
logue for how well GOBAI-O2 (trained on real observational
data; Sect. 2.4) might represent [O2] variability in the real-
world environment. For this reason, the four-dimensional
field of differences between GOBAI-O2-ESM4 and GFDL-
ESM4 output were used to inform the evaluation of GOBAI-
O2 uncertainty (Sects. 2.5 and 3.2.4). Additionally, we quan-
tified global means, seasonal-cycle amplitudes, long-term
trends, and interannual variabilities in [O2] across different
pressure layers of GOBAI-O2-ESM4. To evaluate the perfor-
mance of GOBAI-O2-ESM4 on a global scale, these metrics
are compared to the same metrics for the spatiotemporally
resolved GFDL-ESM4 output and subsampled grid cells in
GFDL-ESM4 corresponding to observational data coverage
(Sect. 3.1.2). Comparisons of global means from GOBAI-
O2-ESM4 to GFDL-ESM4 are also used to approximate un-
certainty in oxygen inventories for the assessment of trends
(Sect. 3.2.3).

2.4 Creation of GOBAI-O2

FNNs and RFRs for each of the seven regions shown in
Fig. 1 were trained with the full combined dataset, using
the predictor variables shown in Table 1, with [O2] as a

target variable. Then, the FNNs and RFRs were applied
to SA, θ , and σθ calculated from RG09 temperature and
salinity fields, along with spatiotemporal information from
RG09 grid cells. Weighted averages were calculated where
regions overlapped, and ensemble averages (ENS) were cal-
culated from the FNN and RFR estimates. One exception
occurred in the subsurface of the north Arabian Sea (above
21◦ N, between 900 and 1412.5 dbar), where erroneously
high ENS [O2] values caused by a clearly nonphysical fea-
ture in RFR [O2] values were replaced by FNN [O2] val-
ues only. This produced a monthly gridded [O2] product
in the upper 2 km of the ocean on a global grid from Jan-
uary 2004 to December 2022, i.e., GOBAI-O2 (Sharp et
al., 2022; https://doi.org/10.25921/z72m-yz67; Sect. 3.2.1–
3.2.3). GOBAI-O2 was compared to gridded climatological
oxygen fields from the 2018 World Ocean Atlas (WOA18;
Garcia et al., 2019; Sect. 3.2.5), the GLODAP mapped data
product (Lauvset et al., 2016; Sect. 3.2.5), and discrete mea-
surements of oxygen from select cruises between 2004 and
2022 (Sect. 3.2.6).

2.5 Uncertainty estimation

Similar to previous studies that have estimated uncertainty in
observation-based biogeochemical data products (e.g., Land-
schützer et al., 2014; Gregor and Gruber, 2021; Keppler et
al., 2020, 2023), we combine uncertainty from three separate
sources – measurement, gridding, and algorithm – to estimate
uncertainty in GOBAI-O2 (Sect. 3.2.4).

Measurement uncertainty (u([O2])meas.) is attributable to
the [O2] observations themselves. For this quantity, gridded
[O2] from GOBAI-O2 is multiplied by 3 %, which is an esti-
mate based on a few factors: the consistency of the GLO-
DAPv2.2022 dataset, the accuracy of BGC Argo observa-
tions, the relative proportion of each data source, and the
recognized issue of float oxygen sensor response time. The
nominal value for the consistency of the GLODAPv2.2022
cruise dataset is stated to be 1 % (Lauvset et al., 2022a). The
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approximate accuracy of BGC Argo float observations is es-
timated to be about 3 % of surface [O2], which is about 4 %
to 5 % of average ocean [O2], for floats quality-controlled
by climatological comparisons (Takeshita et al., 2013) and
about 3 µmolkg−1 (Johnson et al., 2017; Maurer et al., 2021),
which is about 2 % of average ocean [O2], for floats quality-
controlled by in-air measurements. We choose a value for
measurement uncertainty closer to the float accuracy es-
timates because float observations outweigh ship observa-
tions by about six to one in the dataset used to construct
GOBAI-O2. The estimates for the accuracy of float [O2] sen-
sors may be somewhat optimistic, especially when the floats
are crossing large vertical oxygen gradients (i.e., steep oxy-
clines). This is because the response time of oxygen optodes
is not instantaneous (Bittig et al., 2014, 2018a; Bittig and
Körtzinger, 2017). Without response-time corrections, which
are not widely applied to the BGC Argo oxygen dataset, there
is the potential for systematic biases where float profiles tra-
verse steep oxyclines, such as in the eastern tropical Pacific
Ocean and North Indian Ocean.

Gridding uncertainty (u([O2])grid.) is attributable to using
a single [O2] value to represent a four-dimensional box that
is coarser in time and space than the resolution of many pro-
cesses that influence [O2]. We estimate gridding uncertainty
by (1) binning the combined GLODAP and Argo observa-
tional dataset to grid cells equal in size to the RG09 grid cells;
(2) calculating the standard deviation among the observations
in cells with more than 10 observations (Fig. A6); (3) fitting
a multivariate polynomial regression relating those standard
deviations to pressure, potential density anomaly, and bottom
depth; and (4) applying that regression to the RG09 grid to
compute an estimated standard deviations (i.e., gridding un-
certainty) in each grid cell.

Algorithm uncertainty (u([O2])alg.) is attributable to the
ML algorithms that estimate [O2] on the RG09 grid. We esti-
mate algorithm uncertainty using the four-dimensional field
of absolute differences between [O2] from GFDL-ESM4
model output and GOBAI-O2-ESM4, determined from the
GFDL-ESM4 algorithm evaluation exercise described in
Sect. 2.3.

The three uncertainty sources were combined in quadra-
ture (assuming independence) to calculate a combined un-
certainty estimate for each gridded [O2] value in GOBAI-O2
(u([O2])tot.):

u([O2])tot. =

√
u([O2])2

meas.+ u([O2])2
grid.+ u([O2])2

alg.. (1)

3 Results and discussion

3.1 Algorithm evaluation

The evaluation exercises indicated that the ML algorithms
trained on the combined GLODAP and Argo observational
dataset were effective in their ability to estimate [O2] and
reconstruct seasonal to decadal variability in the global oxy-

gen inventory. Mean offsets (1[O2] = [O2]obs/mod− [O2]est)
and root-mean-square differences (RMSDs) between [O2]
from direct measurements ([O2]obs) or GFDL-ESM4 output
([O2]mod) and [O2] estimated from ML algorithms ([O2]est)
were determined as an assessment of the ability of the al-
gorithms to estimate [O2] at a grid-cell level (Tables 2, B2,
B3, B4; Fig. 2). Mean 1[O2] and RMSD determined us-
ing [O2]est from the ESPER-Mixed model (Carter et al.,
2021) – an average of predictions from a neural network
and moving window multiple linear regression trained on
GLODAPv2.2020 data – were also determined as a point of
comparison for the observational-data-based validation test
(Tables 2, B4; Fig. A7). In the case of the GFDL-ESM4-
based validation test, metrics to summarize means, ampli-
tudes, trends, and variability in integrated mean [O2] values
were determined to demonstrate the ability of the GOBAI-
O2 method to capture seasonal- to decadal-scale variability
in oxygen at the global scale (Table 3, Fig. 3). The results of
each evaluation exercise are discussed in more detail in the
following sections.

3.1.1 Test with withheld observational data

Estimates of [O2] using the ENSData-Eval algorithms tracked
closely with [O2]obs and showed no strong systematic bi-
ases with [O2]est or depth (Fig. 2a, b), although vari-
ability in 1[O2] was greatest from just below the sur-
face to about 500 dbar. Mean offsets were between −1.8
and 3.2 µmolkg−1 for the seven regions, with a global av-
erage of −0.2 µmolkg−1; RMSDs were between 7.1 and
11.0 µmolkg−1 for the seven regions, with a global average
of 8.8 µmolkg−1 (Table 2). The slightly negative global av-
erage offset suggests somewhat higher estimated than mea-
sured [O2] values, and some of the lowest RMSDs from the
ENSData-Eval algorithms were found in the Southern Ocean
regions (Table 2, Fig. 2c), likely because these regions have
a significant number of available training data (Fig. 1). How-
ever, this evaluation exercise is influenced by the incomplete
subset of data (20 %) used to test the ENSData-Eval algorithms.
A cross-fold validation (e.g., repeating this exercise with five
separate 20 % chunks of data withheld from algorithm train-
ing) was prohibitively computationally expensive. Therefore,
the associated 1[O2] and RMSD values alone are not as in-
structive as a comparison to the 1[O2] and RMSD values
obtained from the ESPER-Mixed model (Table 2).

Estimates of [O2] using ESPER-Mixed (Fig. A7) showed
average offsets between −3.9 and −1.4 µmolkg−1 for the
seven regions (with a global average of −2.6 µmolkg−1)
and RMSDs between 10.0 and 21.6 µmolkg−1 for the seven
basins (with a global average of 13.1 µmolkg−1) (Table 2).
Again, the negative global average offset suggests higher es-
timated than measured [O2] values. Compared with ESPER-
Mixed (Carter et al., 2021), the ENSData-Eval algorithms per-
formed better, both in terms of 1[O2] and RMSD in each
individual region and overall. This result is likely a reflec-
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Table 2. Regional and global error statistics (mean 1[O2] and RMSD) for evaluation exercises using the ensemble average (ENSData-Eval)
of the FNNData-Eval and RFRData-Eval algorithms trained on a subset of data from the combined GLODAP and Argo observational dataset
and tested with a separate subset of withheld data (left side of the table) or using the ensemble average (ENSESM4-Eval) of the FNNESM4-Eval
and RFRESM4-Eval algorithms trained on a subset of output from GFDL-ESM4 (corresponding to locations of available Argo and GLODAP
data) and tested using the full field of GFDL-ESM4 output (right side of the table). Error statistics calculated using the ESPER-Mixed model
are also shown for comparison to the data-based test. The numbers of data points used in the training and assessment of each algorithm are
shown.

Basin Evaluation exercise with observational data Evaluation exercise with GFDL-ESM4 output

ENSData-Eval ESPER-Mixed ENSESM4-Eval

Training Assessment Mean 1[O2] RMSD Mean 1[O2] RMSD Training Assessment Mean 1[O2] RMSD
data points data points (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) data points data points (µmolkg−1) (µmolkg−1)

Atl. 592 099 109 134 −1.8 9.2 −3.9 10.7 184 418 28 235 064 −1.3 9.6
Pac. 1 816 367 466 788 0.6 9.9 −3.3 15.6 533 208 69 369 456 0.0 7.4
Ind. 335 768 82 491 0.9 7.1 −3.0 11.6 86 060 20 736 144 0.2 7.2
Arc. 800 328 263 873 −1.4 9.1 −2.4 12.1 293 540 11 547 744 0.0 4.1
Med. 214 540 33 899 3.2 11.0 2.3 21.6 32 110 1 096 680 1.0 5.5
N. Sou. 2 236 153 480 846 0.2 7.2 −1.4 10.0 756 444 67 626 624 −0.1 4.4
S. Sou. 1 430 492 364 133 −0.7 8.2 −2.3 11.7 519 610 31 412 472 0.0 3.3

Global 7 425 747 1 801 164 −0.2 8.8 −2.6 13.1 2 405 390 230 024 184 −0.2 6.7

Figure 2. Two-dimensional histograms showing offsets of measured versus estimated oxygen (1[O2] = [O2]obs−[O2]est) for (a, b) withheld
observational data and (d, e) modeled versus estimated oxygen (1[O2] = [O2]mod− [O2]est) for GFDL-ESM4 model output as a function
of (a, d) [O2]est and (b, e) depth in the water column. Offsets are binned into cells that are 2.5 µmolkg−1 tall in terms of 1[O2] and
(a, d) 5 µmolkg−1 wide in terms of [O2]est or equivalent in width to (b) the interpolated pressure levels of the data or (e) the vertical
resolution of GFDL-ESM4 grid cells. The frequency of offsets that fall into a given bin is shown on a logarithmic scale, de-emphasizing
the significant clustering around 1[O2] = 0 in favor of showing the few outliers. Absolute 1[O2] values averaged over depth and time for
1◦× 1◦ (latitude× longitude) grid cells in the global ocean for (c) withheld observational data and (f) GFDL-ESM4 model output.

tion of the fact that the ENSData-Eval algorithms were trained
with more varied data than the ESPER-Mixed model (Argo
and GLODAP compared with just GLODAP) and that the
withheld data for which estimates were made also comprised
more varied data (both Argo and GLODAP as well). Im-
portantly, when estimates were made for just the GLODAP

dataset, the ENSData-Eval algorithms still performed better
than ESPER-Mixed (Table B4), suggesting that the season-
ally resolved float data supply important information to the
relationships established during algorithm training.
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Table 3. Statistics representing the mean values, seasonal-cycle amplitudes, long-term trends, and interannual variabilities in [O2] from
the GFDL-ESM4 model, a reconstruction of [O2] fields from GFDL-ESM4 using the approach of GOBAI-O2 (GOBAI-O2-ESM4), and
subsampled grid cells from GFDL-ESM4 when and where real observations are available. Global weighted means (µ) of grid-cell-level
values are shown, along with differences (1) of the fully resolved GFDL-ESM4 means versus GOBAI-O2-ESM4 and versus the subsampled
GFDL-ESM4 grid cells.

Metric Pressure layer GFDL-ESM4 GOBAI-O2-ESM4 Subsampled GFDL-ESM4

(dbar) µ µ 1 µ 1

Mean [O2] 0–200 214.02 214.31 −0.29 230.12 −16.11
(µmolkg−1) 200–1000 154.83 155.19 −0.36 173.54 −18.70

0–2000 155.59 155.82 −0.23 169.63 −14.03

Seasonal-cycle amplitude 0–200 12.04 10.22 1.82 12.20 −0.16
(µmolkg−1) 200–1000 3.37 2.06 1.31 5.99 −2.62

0–2000 2.60 1.84 0.75 3.94 −1.34

Long-term trend 0–200 −0.30 −0.13 −0.17 7.10 −7.40
(µmolkg−1 per decade) 200–1000 −0.48 −0.23 −0.26 5.22 −5.70

0–2000 −0.38 −0.18 −0.20 7.28 −7.66

Interannual variability 0–200 0.22 0.20 0.03 8.95 −8.73
(µmolkg−1) 200–1000 0.29 0.18 0.12 10.43 −10.13

0–2000 0.22 0.12 0.10 10.29 −10.07

Figure 3. Two-dimensional histograms showing grid-cell-level (a) climatological seasonal amplitudes in monthly mean [O2] (weighted
means according to the size of each pressure layer) from 0 to 200 dbar and (d) trends in annual mean [O2] from 200 to 1000 dbar between
GFDL-ESM4 and GOBAI-O2-ESM4. Pearson’s correlation coefficients between GFDL-ESM4 and GOBAI-O2-ESM4 for (b) monthly mean
[O2] from 0 to 200 dbar, showing coherence between the surface seasonal cycles, and (e) annual mean [O2] from 200 to 1000 dbar, showing
coherence between the subsurface trends. Absolute difference between GFDL-ESM4 and GOBAI-O2-ESM4 for (c) climatological seasonal
amplitudes in monthly mean [O2] from 0 to 200 dbar and (f) trends in annual mean [O2] from 200 to 1000 dbar. In panels (e) and (f), stippling
indicates grid cells in which the GFDL-ESM4 trend is not significantly different from zero.
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3.1.2 Test with GFDL-ESM4 output

As introduced in Sect. 2.3, we refer to the four-dimensional
field of [O2]est values calculated by applying ENSESM4-Eval
algorithms to GFDL-ESM4 output as GOBAI-O2-ESM4.
[O2]est values from GOBAI-O2-ESM4 tracked closely with
[O2]mod and showed no significant systematic biases with
[O2] or depth (Fig. 2d, e). Similar to the data-based test,
variability in 1[O2] was greatest from just below the sur-
face to about 500 m. Average offsets were between −1.3
and 1.0 µmolkg−1 for the seven regions (with a global av-
erage of−0.2 µmol kg−1) and RMSDs were between 3.3 and
9.6 µmolkg−1 for the seven basins (with a global average
of 6.7 µmolkg−1) (Table 2). The near-zero global average
offset suggests that [O2]est values from GOBAI-O2-ESM4
matched well with values from GFDL-ESM4 output. The
lowest RMSDs were found in the Southern Ocean and Arctic
regions (Table 2, Fig. 2f), again due to the high density of
training data in these regions.

In addition to direct comparisons of [O2] values, GOBAI-
O2-ESM4 effectively captured local decadal-scale and sea-
sonal variability in [O2] in the GFDL-ESM4 model envi-
ronment (Figs. 3, A8, A9, A10; Table 3). The average Pear-
son’s correlation coefficient between gridded monthly mean
[O2] integrated from 0 to 200 dbar from GFDL-ESM4 out-
put and GOBAI-O2-ESM4 was 0.92± 0.17 (Fig. 3b), and
the seasonal amplitudes differed in magnitude (GFDL-ESM4
minus GOBAI-O2-ESM4) by 1.8± 4.0 µmolkg−1 (Fig. 3c).
The average Pearson’s correlation coefficient between grid-
ded annual mean [O2] integrated from 200 to 1000 dbar from
GFDL-ESM4 output and GOBAI-O2-ESM4 was 0.66± 0.37
(Fig. 3e), and the trends differed in magnitude (GFDL-
ESM4 minus GOBAI-O2-ESM4) by −0.3± 2.1 µmolkg−1

per decade (Fig. 3f).
When considered on the global scale, mean values,

seasonal-cycle amplitudes, long-term trends, and interannual
variabilities in [O2] matched well between GFDL-ESM4 out-
put and GOBAI-O2-ESM4 (Table 3). In almost every case,
agreement was far better than it was when simply consider-
ing GFDL-ESM4 grid cells for which observations are avail-
able over this time period, with no spatiotemporal interpola-
tion. For example, the trend in monthly mean [O2] integrated
from 0 to 2000 dbar was −0.38 µmolkg−1 per decade for
GFDL-ESM4 output versus −0.18 µmolkg−1 per decade for
GOBAI-O2-ESM4 (Fig. A11). On the other hand, grid cells
where observations are available actually indicated an in-
crease in monthly mean [O2] integrated from 0 to 2000 dbar
of 7.3 µmolkg−1 per decade over this time period when no
spatiotemporal interpolation is applied.

Whether the internal variability in GFDL-ESM4 is truly
representative of the ocean or is biased in one or more di-
mensions, the success of GOBAI-O2-ESM4 in this evalua-
tion exercise demonstrates an ability for the ML algorithms
employed here to capture that variability using the current
distribution of available [O2] observations as training data.

This bodes well with respect to the ability of GOBAI-O2,
which is trained on actual observational data, to represent
decadal-scale and seasonal variability in global ocean oxy-
gen in the real world. However, the GFDL-ESM4 output has
undergone substantial spatial and temporal averaging and has
no observational uncertainties, and thus the assessed skill can
be thought of as an upper limit of the reconstruction skill
achievable with the currently available observations.

The results of the exercise with GFDL-ESM4 model out-
put are critical for evaluating the uncertainty in gridded oxy-
gen values in GOBAI-O2 (Sect. 3.2.4). Further, the spatial
distribution of 1[O2] (Fig. 2f) and the comparisons of re-
constructed to modeled decadal trends and seasonal variabil-
ity (Figs. 3b, c, e, and f and A8–A10) can help inform our
observing efforts (e.g., future cruise planning and BGC Argo
float deployments). For example, large 1[O2] values in the
eastern tropical Pacific and eastern tropical Atlantic, coupled
with some negative correlations in annual mean [O2] and dif-
ferences in annual trends and seasonal amplitudes, suggest
that more observations will be required for GOBAI-O2 (or
likely any observation-based gap-filled [O2] data product) to
fully capture variability in that region.

3.2 GOBAI-O2 product

3.2.1 Spatial oxygen distribution

The full GOBAI-O2 product is available at
https://doi.org/10.25921/z72m-yz67 (Sharp et al., 2022).
Vertical–meridional sections of oxygen (Figs. 4, 5) show that
surface oxygen concentrations are generally high, as these
waters tend to be near equilibrium with the atmosphere. This
is particularly true at high latitudes, where cold, dense waters
have a high capacity for dissolved oxygen. Southern Ocean
surface waters, however, are generally undersaturated with
respect to oxygen (Fig. A12), consistent with observations
from previous studies that suggest this undersaturation is
the result of O2-depleted thermocline water upwelling into
the mixed layer (Chierici et al., 2004; Reuer et al., 2007;
Jonsson et al., 2013) making the Southern Ocean on average
an oxygen sink (Gruber et al., 2001; Bushinsky et al., 2017).
This phenomenon can also be seen in the equatorial Pacific
(Fig. A12). Undersaturation in high-latitude regions that are
ice-covered during parts of the year can also be the result of
limited air–sea gas exchange when sea ice is present.

Isobaric maps, isopycnal maps, and vertical–meridional
sections with pressure and density vertical coordinates
(Figs. 4, 5) also reveal the [O2] signatures of distinct subsur-
face water masses. In each basin, well-ventilated Subtropical
Mode Water can be identified by relatively high [O2] at mid-
latitudes on the 300 dbar surface (Fig. 4a) and along dips in
isopycnals plotted against pressure and latitude (Fig. 4b, c, d)
or along sloping isobars plotted against density and latitude
(Fig. 5b, c, d) within the upper ∼ 500 dbar. Beneath mode
waters in the southern portions of each basin, Antarctic In-
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Figure 4. Long-term mean [O2] from GOBAI-O2 at (a) 300 dbar and from the surface to 2000 dbar in the (b) Pacific, (c) Indian, and
(d) Atlantic oceans. Dashed white lines in panel (a) show the locations of the sections in panels (b)–(d). White contour lines in panels
(b)–(d) are potential isopycnals (kgm−3).

termediate Water that originates in the Southern Ocean with
a relatively high [O2] signal is prevalent. Beneath mode wa-
ters in the northern portions of the Pacific and Indian basins,
respectively, relatively old and oxygen-poor North Pacific
Intermediate Water (NPIW) and Red Sea Overflow Water
(RSOW) can be observed (Talley et al., 2011). Beneath mode
waters in the northern portion of the Atlantic basin, interme-
diate waters are younger and more highly oxygenated. Near
the Equator, subsurface oxygen minima are visible in each
basin; this is a result of organic matter export from high pro-
duction in the surface ocean that fuels strong subsurface res-
piration and relatively poor ventilation (old waters) in this re-
gion. Finally, the signatures of higher-oxygen deep or bottom
waters can be observed near the bottom or at high latitudes
in each vertical–meridional section.

Oxygen concentrations at 300 dbar (Fig. 4a) are highest
in the North Atlantic and Southern oceans – where highly
oxygenated, newly formed deep and intermediate waters are
formed – and lowest in the northern and equatorial Pacific
Ocean and the North Indian Ocean – where the oxygen
content of subsurface waters has been greatly reduced by
heterotrophic respiration over time. The same can be said
for [O2] on the 27.0 kgm−3 σθ surface (Fig. 5a). Oxygen
concentrations are extremely low in the deep North Pacific
Ocean (Figs. 4b, 5b) and North Indian Ocean (Figs. 4c, 5c)

due to the accumulated effects of oxygen-depleting respira-
tion over the long lifespans of those water masses (i.e., long
time since gas exchange with the atmosphere).

3.2.2 Climatological seasonal oxygen cycles

Seasonal cycles in [O2] reflect a balance among physical and
biological processes (Wang et al., 2022). The climatological
hemispheric mean [O2] integrated over three pressure lay-
ers from GOBAI-O2 (Fig. 6) reveals that the magnitude of
the [O2] seasonal cycle is greatest near the surface and de-
creases with depth. The amplitude of the [O2] seasonal cycle
in a near-surface layer (0–100 dbar) is about 10.7 µmolkg−1

in the Northern Hemisphere and 8.9 µmolkg−1 in the South-
ern Hemisphere. Maximum [O2] in this pressure layer (April/
May in the Northern Hemisphere and October/November
in the Southern Hemisphere) lags about 2 months behind
the temperature minimum, suggesting an interaction between
a thermally driven increase in oxygen solubility and bio-
logically driven oxygen production. Minimum [O2] in the
near-surface layer (October in the Northern Hemisphere and
March/April in the Southern Hemisphere) is more coincident
with the temperature maximum, indicating primary control
by a thermally driven decrease in oxygen solubility. The am-
plitude of the [O2] seasonal cycle is about 2.4 µmolkg−1 in
the Northern Hemisphere and 2.6 µmolkg−1 in the South-
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Figure 5. Long-term mean [O2] from GOBAI-O2 at (a) σθ = 27kgm−3 and from σθ = 24 to 27.5 kgm−3 in the (b) Pacific, (c) Indian,
and (d) Atlantic oceans. Dashed white lines in panel (a) show the locations of the sections in panels (b)–(d). White contour lines in panels
(b)–(d) are constant isobars (dbar).

ern Hemisphere in the intermediate layer (100–600 dbar),
whereas it is about 0.2 µmolkg−1 in the Northern Hemi-
sphere and 0.1 µmol kg−1 in the Southern Hemisphere in the
deep layer (600–2000 dbar). The timing of maximum [O2]
values is similar between the near-surface layer and the inter-
mediate layer in both hemispheres, indicating the well-mixed
nature of the ocean in winter and early spring when [O2] is
high. On the other hand, minimum [O2] in the intermediate
layer lags behind that in the near-surface layer in both hemi-
spheres, possibly reflecting higher stratification in the upper
ocean when temperatures are warmer and/or the remineral-
ization of sinking organic matter after summer production.
Further analysis of climatological [O2] cycles from GOBAI-
O2 can provide insight into the physical and biological fac-
tors that control surface and subsurface oxygen on regional
and global scales.

3.2.3 Interannual oxygen trends and variability

Deoxygenation is evident in GOBAI-O2 over the past
2 decades, coincident with ocean warming (Fig. 7, Ta-
ble B5). The spatially weighted rate of deoxygenation in the
upper 2 km globally (along with a 95 % confidence interval)
is −1.19± 0.05 µmolkg−1 per decade (−0.79± 0.04 % per
decade). The rate of deoxygenation in GOBAI-O2 varies over

depth, with a near-surface-pressure-layer (0–100 dbar) trend
in [O2] of −1.10± 0.60 µmolkg−1 per decade (−0.49±
0.26 % per decade), an intermediate-
layer (100–600 dbar) trend in [O2] of
−1.38± 0.42 µmolkg−1 per decade (−0.86±
0.26 % per decade), and a deep-layer (600–2000 dbar) trend
in [O2] of −1.12± 0.54 µmolkg−1 per decade (−0.79±
0.38 % per decade). Interannual variability is greatest in the
near-surface layer: when the multiyear trends and seasonal
cycles are removed, the standard deviation of annual global
mean [O2] anomalies is 0.52 µmolkg−1 in the near-surface
layer compared with 0.26 µmolkg−1 in the intermediate
layer and 0.12 µmolkg−1 in the deep layer. Trends and
uncertainties were determined by fitting linear least-squares
models to spatially weighted monthly mean [O2] and
monthly oxygen inventories integrated over the specified
pressure layers, with uncertainties in monthly values deter-
mined by comparing GOBAI-O2-ESM4 to GFDL-ESM4;
more information on this is provided in Appendix E.

Ocean warming has a direct effect on oxygen concentra-
tions by lowering the solubility of O2 in ocean water (Garcia
and Gordon, 1992). Solubility changes explain about 56 % of
deoxygenation in the near-surface ocean layer (0–100 dbar),
20 % in the intermediate ocean layer (100–600 dbar), and
15 % in the deep ocean layer (600–2000 dbar) (Fig. 7c, f).
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Figure 6. Climatological seasonal cycles of [O2] anomalies (monthly [O2] minus long-term mean [O2]) integrated globally over three
pressure layers: 0–100, 100–600, and 600–2000 dbar. The dotted black line shows the climatological temperature anomaly integrated globally
over the 0–100 dbar layer. Shading indicates the standard deviation of the climatological seasonal cycle from 2004 to 2022. The dashed lines
show climatological seasonal cycles of [O2] anomalies from WOA18 over similar depth layers to GOBAI-O2: 0–100, 100–600, and 600–
1500 m.

Figure 7. Annual mean (a) [O2] anomalies from GOBAI-O2, (b) temperature anomalies from RG09, and (c) [O2]sat. anomalies calculated
from RG09 temperature and salinity fields, each integrated globally over three pressure layers: 0–100, 100–600, and 600–2000 dbar. In
panel (a), shading represents uncertainty determined as the average difference of mean [O2] from GOBAI-O2-ESM4 versus GFDL-ESM4
in each layer. Hovmöller diagrams showing annual mean (d) [O2] anomalies from GOBAI-O2, (e) temperature anomalies from RG09, and
(f) [O2]sat. anomalies calculated from RG09 temperature and salinity fields, each versus pressure in decibars and time from 2004 to 2022.
Anomalies in each parameter are calculated as annual mean values minus the long-term mean either (a–c) integrated over a pressure layer or
(d–f) on a given pressure level.

The remaining deoxygenation must then be caused by the
indirect consequences of ocean warming (such as increased
ocean stratification and, hence, decreased subsurface ventila-
tion) or other processes, including changes in oxygen utiliza-
tion and ocean ventilation variability (Oschlies et al., 2018),

the magnitudes of which this analysis does not attempt to
deconvolve. The RG09 temperature and salinity fields are
constructed such that they relax toward the climatological
means during periods of low data density. For this reason,
toward the beginning of the time series when fewer obser-
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vations are available, temperature is biased somewhat high
(Fig. 7b, e) and, therefore, O2 solubility is biased some-
what low (Fig. 7c, f). This artifact may influence GOBAI-O2
(Fig. 7a, d), as it was constructed using the RG09 tempera-
ture and salinity fields; however, its influence is partially mit-
igated because temporal information included in the training
and application of the GOBAI-O2 algorithms allows for the
trend inherent in the underlying oxygen data to be retained.

GOBAI-O2 trends can be viewed in the context of other
recent analyses that have explored long-term changes in
ocean oxygen. From the surface to 1000 dbar, the GOBAI-
O2 trend of −0.82± 0.11 % per decade from 2004 to
2022 is larger than that assessed by Bindoff et al. (2019)
of −0.48± 0.35 % per decade from 1970 to 2010 (sur-
face to 1000 m), which takes into account estimates from
Helm et al. (2011) (−0.44± 0.14 % per decade), Schmidtko
et al. (2017) (−0.34± 0.35 % per decade), and Ito et al.
(2017) (−0.68± 0.33 % per decade). In the surface layer
(0–100 dbar), the GOBAI-O2 trend of −0.49± 0.26 % per
decade can be compared to the Bindoff et al. (2019) assess-
ment of−0.28± 0.24 % per decade; in the intermediate layer
(100–600 dbar), the GOBAI-O2 trend of −0.86± 0.26 % per
decade can be compared to the Bindoff et al. (2019) assess-
ment of −0.52± 0.36 % per decade. Considering that these
comparisons represent different periods of time such that one
should not expect perfect agreement, we find the results en-
couraging. The somewhat more negative GOBAI-O2 trends
compared with previous estimates suggest a possible accel-
eration of ocean deoxygenation over the last decade or so,
which would be consistent with expectations (Kwiatkowski
et al., 2020). Further, agreement between GOBAI-O2 and
other observation-based studies provides additional support
for the notion that current ESMs, which exhibit weaker de-
oxygenation trends (see Sect. 3.1.2), may not fully capture
the sensitivities of physical and biological processes lead-
ing to deoxygenation (Oschlies et al., 2017, 2018; Stramma
and Schmidtko, 2021). This comparison not only places the
GOBAI-O2 trends in a longer-term context but suggests that
the enhanced observations and analysis result in a reduced
trend uncertainty despite the comparatively shorter 19-year
record (±0.04 % per decade) versus the longer but more
sparse 40-year records assessed by Bindoff et al. (2019)
(±0.14 to ±0.35 % per decade).

The trends presented here represent both natural and po-
tentially anthropogenic variability over the interval between
2004 and 2022 as well as uncertainties in the algorithm pre-
dictions (see Sect. 3.2.4). As such, these trends should not be
interpreted to be driven exclusively by ocean warming and
other associated impacts of anthropogenic climate change;
the period of time examined is relatively short, and the do-
main is not inclusive of the entire global ocean. Accordingly,
decadal-scale variability in ocean ventilation, interior circu-
lation, and biological oxygen utilization may exert signifi-
cant influence over these trends. This is especially true of the
regional trends. Finally, a sensitivity test indicated that in-

cluding versus withholding temporal predictors did not sig-
nificantly impact the global [O2] trend. However, a shift from
the relative dominance of shipboard observations during the
early portion of the GOBAI-O2 time span to the relative dom-
inance of float observations during the later portion cannot be
ignored as a potential contributor to a deoxygenation trend,
especially considering the potential for systematic biases in
the float [O2] dataset (see Sect. 2.5). This kind of shift in
measurement platforms has precedent for producing spurious
trends in oceanographic observational datasets (Rykaczewski
and Dunne, 2011).

3.2.4 Uncertainty

GOBAI-O2 uncertainty fields, which were estimated as de-
scribed in Sect. 2.5, can be used to assess confidence in
multiyear trends and seasonal cycles of [O2], both on a
global and regional scale. Time-averaged uncertainty fields
at 150 dbar (Fig. 8) suggest that the largest driver of geo-
graphic variability in uncertainty is the algorithm uncertainty.
Averaged globally over space and time, u([O2])meas. was
equal to 4.5 µmolkg−1 (5.6 µmolkg−1 on the 150 dbar level),
u([O2])grid. was equal to 3.1 µmolkg−1 (5.3 µmolkg−1 on the
150 dbar level), and u([O2])alg. was equal to 3.8 µmolkg−1

(6.3 µmolkg−1 on the 150 dbar level). Combined, u([O2])tot.
(Eq. 1) was equal to 7.6 µmolkg−1 (11.2 µmolkg−1 on the
150 dbar level), which can be compared to the global aver-
age RMSD of 8.8 µmolkg−1 determined independently by
withholding data from algorithm training (Table 2; Fig. 2a,
b, c).

Measurement uncertainty provides an estimate of con-
fidence in an [O2] value assigned to a water sample by
direct measurement, gridding uncertainty provides an esti-
mate of confidence that the [O2] value provided for a four-
dimensional grid cell might represent [O2] at any point in
time and space within that grid cell, and algorithm uncer-
tainty provides an estimate of confidence that the predicted
[O2] value for a given grid cell is appropriate as the average
value for that grid cell. Algorithm uncertainty, in particular,
depends upon the distribution of data available to train the
ML algorithms and the ability of the trained algorithms to
represent underlying variability in the system. On the isobar
shown in Fig. 8. (150 dbar), the underlying variability is rel-
atively high in [O2] minimum zones (e.g., near the Equator
and on the eastern boundaries of ocean basins), hence the el-
evated algorithm (and total) uncertainties in those regions.
Here, algorithm uncertainty was assessed via the exercise
with synthetic data from GFDL-ESM4 (see Sects. 2.3 and
3.1.2).

Algorithm uncertainty should generally decrease as the
spatiotemporal coverage of available training data increases.
Regionally, algorithm uncertainty depends upon the degree
to which the underlying variability in the system is captured
by the available training observations and the ability of the
ML algorithms to reconstruct that variability from concurrent
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Figure 8. Long-term means of the uncertainty contributors to GOBAI-O2 at 150 dbar, including (a) measurement uncertainty, (b) gridding
uncertainty, (c) algorithm uncertainty, and (d) total uncertainty.

Figure 9. The difference between the climatological mean [O2] from WOA18 and the long-term mean [O2] from GOBAI-O2 (1[O2] =
[O2]WOA− [O2]GOBAI) at (a) 300 m and from the surface to 1500 dbar in the (b) Pacific, (c) Indian, and (d) Atlantic oceans.
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measurements of other seawater properties. A comparison of
the 1[O2] map in Fig. 2f or the algorithm uncertainty map
in Fig. 8c to the data distribution map in Fig. 1 or Fig. A1
suggests that sparse sampling is primarily to blame for lim-
itations related to algorithm uncertainty. Detailed analysis
of GFDL-ESM4 water mass characteristics in the Califor-
nia Current system has also revealed that high uncertain-
ties occur where water masses with similar physical char-
acteristics but different oxygen signatures mix, underscoring
that the measurement of additional biogeochemical parame-
ters can supplement the [O2] estimates presented here, which
are based on physical properties and spatiotemporal infor-
mation. Overall, the significant influence of algorithm uncer-
tainty is consistent with uncertainty analyses conducted for
gap-filling methods applied to other ocean biogeochemical
variables (e.g., Landschützer et al., 2014; Gregor and Gru-
ber, 2021). For this reason, continued expansion of oxygen
observations in undersampled regions will be critical to re-
duce uncertainty in our gap filling, and ultimately our under-
standing, of global subsurface oxygen distributions and vari-
ability. Similarly, the significant influence of measurement
uncertainty underscores the importance of continued devel-
opment of oxygen sensor calibration (Bittig et al., 2018a) and
data quality control (Maurer et al., 2021) from the evolving
BGC Argo fleet.

Global mean depth profiles of uncertainty contributors
(Fig. A14) emphasize the general attenuation of uncertainty
away from the surface, with subsurface maxima of algorithm
uncertainty at 200 dbar and total uncertainty at 100 dbar. The
algorithm uncertainty maximum corresponds to pressures
at which vertical gradients in [O2] are relatively high (see
Fig. 4). Here, small variations in the depths of density sur-
faces can influence [O2] at a given pressure level; this vari-
ability is challenging to capture, even with potential density
as a predictor variable in the ML models (see Table 1). The
total uncertainty maximum represents this vertical gradient
effect balanced against relatively high measurement uncer-
tainty closer to the surface, associated with higher [O2].

3.2.5 Comparison to other gridded products

The long-term mean field of [O2] from GOBAI-O2 was com-
pared to the corresponding mean field of [O2] from the
WOA18 monthly climatology (Fig. 9) and the climatologi-
cal field of [O2] from the GLODAPv2.2016 mapped product
(Fig. 10). On average, the GOBAI-O2 oxygen concentration
is 1.4 µmolkg−1 lower than GLODAP and 9.6 µmolkg−1

lower than WOA18. This can be partly explained by the fact
that GOBAI-O2 is centered on the year 2012, whereas obser-
vations in GLODAPv2.2016 are centered around 2002 (Lau-
vset et al., 2016), WOA18 takes into account [O2] obser-
vations dating back to 1965, and global deoxygenation has
occurred in recent decades (Bindoff et al., 2019). Spatially,
the largest differences occur within and especially near the
boundaries of oxygen minimum zones (eastern tropical Pa-

cific, eastern Atlantic coastal, and northern Indian zones),
along σ ≈ 27.5 kgm−3 in the Southern Ocean, and along
σ ≈ 26.75 kgm−3 in the North Pacific. It is difficult to deter-
mine whether these differences are functions of data avail-
ability (ship data for WOA18 and GLODAP versus ship
and float data for GOBAI-O2), representative time period,
or mapping method (objective interpolation for WOA18 and
GLODAP versus machine learning algorithms for GOBAI-
O2). A future intercomparison exercise between mapping
methods using an identical starting dataset could be helpful
in diagnosing these differences among gridded products.

3.2.6 Comparison to synoptic in situ measurements

GOBAI-O2 was compared to direct observations from repeat
hydrography cruises, including meridional transects across
the Atlantic (A16 in 2013 and A20 in 2021), Pacific (P16
in 2005), and Indian (I08 and I09 in 2016) oceans, as well
as a zonal transect across the Pacific Ocean (P02 in 2012).
This exercise assessed how well monthly [O2] estimates from
GOBAI-O2 were able to represent high-quality [O2] mea-
surements at distinct points in time and space. Due to funda-
mental differences between gridded estimates and point ob-
servations, we do not expect every matchup to be perfect.
However, we would hope to see general coherence in mean
values across large-scale ocean sections and to see a pattern
of differences that make sense given our a priori expecta-
tions.

For the cruise datasets examined, GOBAI-O2 estimates
matched fairly well with discrete measurements in the mixed
layer and below ∼ 1000 dbar (Fig. 11). At intermediate
depths, however, large differences occasionally occur. These
large differences tended to cluster around areas with strong
vertical gradients in [O2] (thin contours in Fig. 11 repre-
sent increments of 50 µmol in [O2]). Comparison of Fig. 11
to Fig. A15 provides confidence in our uncertainty evalua-
tion: larger differences between discrete measurements and
GOBAI-O2 occur where u([O2])tot. is large. Median biases,
mean biases, and RMSDs between direct observations and
GOBAI-O2 are given in Table B6.

4 Data availability

GOBAI-O2 is available as a NetCDF file at
https://doi.org/10.25921/z72m-yz67 (Sharp et al.,
2022); additional information and animations can be
found at https://www.pmel.noaa.gov/gobai/ (last access:
28 September 2023). GLODAPv2.2022 is available
at https://doi.org/10.25921/1f4w-0t92 (Lauvset et al.,
2022b); the GLODAP database is updated annually and
is made available at https://www.glodap.info (last ac-
cess: 28 September 2023). GFDL-ESM4 model output is
available at https://doi.org/10.22033/ESGF/CMIP6.1407
(Krasting et al., 2018). Data from the 2018 World
Ocean Atlas are available at https://www.ncei.noaa.
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Figure 10. The difference between the 2002-centered mean [O2] from the GLODAPv2.2016 mapped product and the long-term mean [O2]
from GOBAI-O2 (1[O2] = [O2]GLODAP− [O2]GOBAI) at (a) 300 m and from the surface to 1500 dbar in the (b) Pacific, (c) Indian, and
(d) Atlantic oceans.

gov/archive/accession/NCEI-WOA18 (Garcia et al.,
2019; last access: 01 Oct. 2021). The OneArgo-
Mat toolbox used to download Argo float data is
available at https://doi.org/10.5281/zenodo.6588041
(Frenzel et al., 2022); the toolbox acquires data
from two global data assembly centers: Coriolis and
US GODAE (https://doi.org/10.17882/42182, Argo,
2000). The Roemmich and Gilson (2009) Argo-
based temperature and salinity product is available at
https://sio-argo.ucsd.edu/RG_Climatology.html (last access:
12 January 2023).

5 Conclusions

GOBAI-O2 is a major step toward the fulfillment of the pri-
mary goal set out by Gruber et al. (2010): “to determine, on a
global-scale, seasonal to decadal time-scale variations in dis-
solved oxygen concentrations throughout the upper ocean”.
Quantifying these variations is important for documenting
ocean deoxygenation, determining global net primary pro-
ductivity and carbon export, and facilitating studies of the
oceanic uptake of anthropogenic CO2. In addition, insights
into ocean biogeochemical dynamics, when observations are
unavailable, often come from ocean models, and GOBAI-O2
can bring value to modeling studies by providing fields of

[O2] to be used for boundary conditions and model initial-
ization. GOBAI-O2 can also be useful as a dynamic reference
check for new, sensor-based [O2] measurements that would
otherwise be compared to a static monthly climatology like
WOA18. Still, users should carefully consider the associ-
ated spatial uncertainty fields, especially when conducting
regional analyses. Spatial and temporal errors and disconti-
nuities may be significant when GOBAI-O2 is analyzed over
small areas, but they are mitigated when looking at broader
scales.

The uncertainty analysis conducted here confirms that
GOBAI-O2 remains limited, largely by sparse sampling and
inadequate representation of [O2] across strong gradients.
The most consequential actions to improve GOBAI-O2 fields
over the next decade will be the continued deployment of
Argo floats with oxygen optodes, emphasizing the impor-
tance of bolstering the biogeochemical Argo array and ex-
panding the international OneArgo network into high lat-
itudes, the deep ocean, and marginal seas (Roemmich et
al., 2019, 2021; Schofield et al., 2022); continued work to-
ward ensuring reliable measurements from those optodes;
and the continued collection of discrete dissolved oxygen
observations, primarily through the international GO-SHIP
program, both for use in [O2] mapping and for calibration/
validation of the Argo oxygen data.
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Figure 11. Section plots displaying comparisons between discrete observations of [O2] from repeat hydrography cruises and [O2] extracted
from corresponding grid cells in GOBAI-O2. The thick lines in each panel represent the mixed-layer depth calculated as the depth at which
the potential density anomaly increased to 0.03 kgm−3 greater than the potential density anomaly at 10 dbar. The thin lines are contours
representing increments of 50 µmolkg−1 in [O2].

Besides these actions, additional steps can be taken to im-
prove GOBAI-O2 fields. For one, more predictor variables
and ML algorithms can be tested. Different processes dom-
inate [O2] variability in different regions (Keeling et al.,
2010; Oschlies et al., 2018; Garcia-Soto et al., 2021), and
certain predictor variables will be better suited for capturing
these processes. Also, ML algorithms adapt to data sparse-
ness and modes of variability in different ways (Ritter et al.,
2017; Gregor et al., 2019), so estimates in a given region that
are worse using one algorithm may be better using another.
Therefore, regionally tuned predictors and more diverse en-
sembles of ML algorithms should lead to increased confi-
dence in estimates of ocean interior [O2]. Another action
that could result in improved fidelity of GOBAI-O2 fields is
the use of predictor variable fields with higher spatial and
temporal resolution across sharp biogeochemical gradients.
Ocean profiles of temperature and salinity tend to be rela-
tively smooth, so a depth resolution on the order of tens of
meters in the upper ocean increasing to hundreds of meters
at depth is sufficient for gridded products. Biogeochemical
parameters like oxygen, on the other hand, tend to be charac-
terized by profiles with sharp gradients and with distinct min-
ima and maxima in the water column (Sarmiento and Gruber,
2006). These minima and maxima can occur very near the

surface or hundreds of meters below it. For this reason, com-
parisons of GOBAI-O2 to direct measurements of [O2] can
be uniquely problematic in the∼ 100–1000 dbar range when
sharp gradients are present (Fig. 11). A complicating fac-
tor is the lack of response-time corrections applied to float
sensor data (Sect. 2.5), which contributes to uncertainty in
observation-based [O2] products like GOBAI-O2. Biogeo-
chemical gradients over horizontal space and time can also
be sharp, especially in highly dynamic coastal zones and in
the surface ocean where the residence time of oxygen is often
less than a month (Luz and Barkan, 2000). Recent work from
Lyman and Johnson (2023) uses Argo observations coupled
with machine learning to provide well-resolved (7d× 1/4◦

grid) ocean heat content maps, and continued development
toward maps of temperature and salinity could be helpful
for overcoming the issue of resolving sharp biogeochemical
gradients. Alternatively, [O2] estimates could be made using
temperature and salinity observations at their original reso-
lution and then mapped onto four-dimensional grids that are
uniquely suited in their spatial resolution for biogeochemi-
cal parameters. A necessary consideration of the latter option
would be computing resources: applying complex ML algo-
rithms to temperature and salinity measurements from Argo
floats at their original resolution may prove to be impracti-
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cal. Finally, observations from additional platforms could be
incorporated into approaches like this one to map [O2] in the
global ocean. Ocean gliders and moored profilers have long
been equipped with oxygen optodes. These platforms collect
data at unique spatiotemporal scales and could add predic-
tive information for [O2] that is not provided by Argo float
observations nor discrete shipboard measurements. To facil-
itate the incorporation of new data streams into the develop-
ment of gridded data products, accessible databases should
be created and maintained (Testor et al., 2019; Grégoire et
al., 2021).

The method used to develop GOBAI-O2 can be applied
in a similar way to other ocean chemical parameters. In
addition to dissolved oxygen, the BGC Argo program has
deployed floats with sensors for measuring dissolved ni-
trate, pH, chlorophyll-a, particle backscatter, and down-
welling irradiance. Machine learning methods have been
used to develop four-dimensional fields of optical properties,
i.e., chlorophyll-a and particle backscatter (Sauzède et al.,
2015, 2016), and continued refinement of those fields is on-
going (Sauzède et al., 2021). Chemical properties, i.e., ni-
trate and pH, that exhibit distributions more similar to [O2]
are good candidates for adoption into the GOBAI mapping
approach. Together with property estimation algorithms for
total alkalinity (Bittig et al., 2018b; Carter et al., 2021), a
mapped ocean interior pH product could be used to resolve
the entire ocean carbonate system in four dimensions in near-
real time.

Ultimately, global changes in the amount of dissolved
oxygen in ocean waters will have profound effects on the
metabolism of marine organisms (Pörtner and Farrell, 2008;
Sampaio et al., 2021) and the cycling of biogeochemically
important elements (Gruber, 2004; Berman-Frank et al.,
2008). Whereas ocean models agree that the ocean’s oxygen
inventory has been declining and will continue to decline,
disagreement remains as to regional patterns of this deoxy-
genation. Direct observations are critical for the confirma-
tion or contradiction of model trends. With this work, we
have turned to autonomous and discrete observations, with
the assistance of machine learning algorithms, to bridge the
model–observational gap. We produce and analyze a mul-
tiyear gridded product of ocean dissolved oxygen called
GOBAI-O2, independently confirming a phenomenon that
has been demonstrated previously: the ocean is losing dis-
solved oxygen at a rapid rate (0.79± 0.04 % per decade in
the upper 2 km according to GOBAI-O2). In addition, we
provide this valuable observation-based product for commu-
nity use. GOBAI-O2 can be turned to as a reference for [O2]
observations and model boundary conditions, compared with
new and existing observational and model-based reconstruc-
tions of ocean deoxygenation, and used for critical analyses
of seasonal to decadal and regional to global oxygen variabil-
ity.
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Appendix A

Figure A1. The number of profiles (either ship-based or Argo-float-based) from the combined dataset used to train machine learning algo-
rithms to produce GOBAI-O2 that are contained within each 1◦× 1◦ box in the global ocean.

Figure A2. Annual mean in situ (a) temperature and (b) salinity
from RG09 (2004–2022) at 20 dbar.
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Figure A3. Annual mean in situ (a) temperature, (b) salinity,
and (c) dissolved oxygen concentration from GFDL-ESM4 (2004–
2021) at 20 m.

Figure A4. A schematic for the random forest regressions (RFRs)
and feed-forward neural networks (FNNs). A random subset of the
predictors is used for each tree in the RFR, and a randomly chosen
predictor is used for each node split. The two hidden layers (H1 and
H2) in each of the three FNNs have 10 and 20, 15 and 15, and 20
and 10 nodes. Each machine learning algorithm is trained with input
data and [O2] observations and then used to predict [O2] from new
input data.

https://doi.org/10.5194/essd-15-4481-2023 Earth Syst. Sci. Data, 15, 4481–4518, 2023



4502 J. D. Sharp et al.: GOBAI-O2

Figure A5. The spatial distribution of profile data used to (a) train and (b) test the RFRData-Eval and FNNData-Eval algorithms.
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Figure A6. A comparison between the number of observations binned within a four-dimensional grid cell and the standard deviation in [O2]
among those observations. The horizontal black line shows the mean standard deviation (5.21 µmolkg−1).

Figure A7. For withheld Argo and GLODAP data, two-dimensional histograms showing offsets between measured and ESPER-Mixed-
calculated oxygen (1[O2] = [O2]meas−[O2]ESPER) as a function of (a) [O2]ESPER and (b) pressure in the water column. Offsets are binned
into cells that are 2.5 µmolkg−1 tall in terms of 1[O2] and 5 µmolkg−1 wide in terms of (a) [O2]ESPER or (b) equivalent in width to the
interpolated pressure levels of the data. (c) Absolute 1[O2] values averaged over depth and time for 1◦× 1◦ (latitude× longitude) grid cells
in the global ocean.
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Figure A8. Integrated from 0 to 200 dbar: (a, b) long-term mean [O2], (d, e) seasonal [O2] amplitudes, (g, h) trends in [O2], and (j,
k) interannual variability in [O2] for (a, d, g, j) GFDL-ESM4 and (b, e, h, k) GOBAI-O2-ESM4, along with (c, f, i, l) the difference between
the two.
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Figure A9. Integrated from 200 to 1000 dbar: (a, b) long-term mean [O2], (d, e) seasonal [O2] amplitudes, (g, h) trends in [O2], and (j,
k) interannual variability in [O2] for (a, d, g, j) GFDL-ESM4 and (b, e, h, k) GOBAI-O2-ESM4, along with (c, f, i, l) the difference between
the two.
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Figure A10. Integrated from 0 to 2000 dbar: (a, b) long-term mean [O2], (d, e) seasonal [O2] amplitudes, (g, h) trends in [O2], and (j, k)
interannual variability in [O2] for (a, d, g, j) GFDL-ESM4 and (b, e, h, k) GOBAI-O2-ESM4, along with (c, f, i, l) the difference between
the two.

Figure A11. Monthly area-weighted mean [O2] integrated globally from 0 to 2000 dbar from GFDL-ESM4 (blue) and GOBAI-O2-ESM4
(orange).
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Figure A12. Long-term mean oxygen saturation percentage on the uppermost pressure level in GOBAI-O2.

Figure A13. Monthly mean de-seasonalized (a) [O2] anomalies from GOBAI-O2, (b) temperature anomalies from RG09, and (c) [O2]sat.
anomalies calculated from RG09 temperature and salinity fields, each integrated globally over three pressure layers: 0–100, 100–600, and
600–2000 dbar. In panel (a), shading represents uncertainty determined as the average difference of mean [O2] from GOBAI-O2-ESM4
versus GFDL-ESM4 in each layer. Hovmöller diagrams showing monthly mean de-seasonalized (d) [O2] anomalies from GOBAI-O2, (e)
temperature anomalies from RG09, and (f) [O2]sat. anomalies calculated from RG09 temperature and salinity fields, each over depth in
decibars from 2004 to 2022. Anomalies in each parameter are calculated as monthly mean values with a seasonal cycle removed and minus
the long-term mean either (a–c) integrated over a pressure layer or (d–f) on a given pressure level.
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Figure A14. Global mean depth profiles of uncertainty contributors to GOBAI-O2, including (a) measurement uncertainty, (b) gridding
uncertainty, (c) algorithm uncertainty, and (d) total uncertainty. The shaded region represents variability in space and is calculated as the
standard deviation on each depth level of the mean uncertainties over time for each grid cell.

Figure A15. Section plots displaying total uncertainty estimates from GOBAI-O2 that correspond to discrete measurements of [O2] from
repeat hydrography cruises, to be compared to 1[O2] values in Fig. 11.
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Appendix B

Table B1. Boundaries for the seven large ocean regions used to fit machine learning algorithms.

Basin Polygon vertices: [longitude, latitude; . . .]

Atl. [−60, 0; −79, 9.4; −81, 8.4; −100, 22; −100, 45; −6, 45; −6, 35; 4, 15; 25, 0; 22, −35 ; −68, −35; −60, 0]
Pac.* [104, 0; 104, 70; 181, 70; 181, 0; 181, −35; 145, −35; 131, −30; 131, 0; 104, 0]

[−180, 0; −180, 70; −150, 70; −150, 67; −120, 67; −100, 22; −81, 8.4; −79, 9.4; −60, 0; −68, −35; −180,
−35; −180, 0]

Ind. [22, −35; 25, 10; 38, 35; 104, 35; 104, 0; 131, 0; 131, −30; 116, −35; 22, −35]
Arc. [−180, 64; −180, 90; 181, 90; 181, 67; 90, 67; 0, 50; 0, 40; −6, 40; −6, 35; −90, 35; −120, 64; −180, 64]
Med. [−6.5, 40; 0, 40; 0, 45; 20, 47; 38, 35; 34, 30; −5, 30; −6.5, 40]
N. Sou. [−180, −60; −180, −25; 181, −25; 181, −60; −180, −60]
S. Sou. [−180, −90; −180, −50; 181, −50; 181, −90; −180, −90]

* Two sets of boundaries are given for the Pacific to accommodate crossing the International Date Line.

Table B2. Error statistics (mean 1[O2] and RMSD) for tests using RFR and FNN algorithms trained on a subset of Argo and GLODAP
data and tested with a separate subset of withheld data. Also shown are error statistics corresponding to the ensemble average (ENS) of the
estimates from both algorithms.

Evaluation exercise with observational data

RFRData-Eval FNNData-Eval ENSData-Eval

Basin Training Assessment Mean 1[O2] RMSD Mean 1[O2] RMSD Mean 1[O2] RMSD
data points data points (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1)

Atl. 592 099 109 134 −2.0 10.9 −1.5 8.9 −1.8 9.2
Pac. 1 816 367 466 788 0.5 10.0 0.8 10.9 0.6 9.9
Ind. 335 768 82 491 0.3 7.1 1.5 7.9 0.9 7.1
Arc. 800 328 263 873 −1.1 9.1 −1.7 9.6 −1.4 9.1
Med. 214 540 33 899 3.8 10.8 2.6 12.0 3.2 11.0
N. Sou. 2 236 153 480 846 0.1 7.3 0.4 7.6 0.2 7.2
S. Sou. 1 430 492 364 133 −0.6 8.2 −0.8 8.6 −0.7 8.2

All 7 425 747 1 801 164 −0.2 9.0 −0.2 9.5 −0.2 8.8
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Table B3. Error statistics (mean1[O2] and RMSD) for tests using RFR and FNN algorithms trained on a subset of output from GFDL-ESM4
(corresponding to locations of available Argo and GLODAP data) and tested using a separate subset of withheld output from GFDL-ESM4.
Also shown are error statistics corresponding to the ensemble average (ENS) of the estimates from both algorithms.

Evaluation exercise with GFDL-ESM4 output

RFRESM4-Eval FNNESM4-Eval ENSESM4-Eval

Basin Training Assessment Mean 1[O2] RMSD Mean 1[O2] RMSD Mean 1[O2] RMSD
data points data points (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1)

Atl. 184 418 28 235 064 −2.1 12.8 −0.6 9.5 −1.3 9.6
Pac. 533 208 69 369 456 0.1 7.5 −0.1 8.5 0.0 7.4
Ind. 86 060 20 736 144 0.7 8.8 −0.3 7.3 0.2 7.2
Arc. 293 540 11 547 744 0.1 4.1 −0.1 4.6 0.0 4.1
Med. 32 110 1 096 680 0.8 4.8 1.3 7.5 1.0 5.5
N. Sou. 756 444 67 626 624 −0.1 4.4 −0.1 4.9 −0.1 4.4
S. Sou. 519 610 31 412 472 0.1 3.4 −0.1 3.6 0.0 3.3

All 2 405 390 230 024 184 −0.2 7.7 −0.2 7.3 −0.2 6.7

Table B4. Error statistics (mean1[O2] and RMSD) for tests using RFR and FNN algorithms trained on a subset of Argo and GLODAP data
and tested with all available GLODAP data. Also shown are error statistics corresponding to the ensemble average (ENS) of the estimates
from both algorithms and corresponding to the ESPER-Mixed model (Carter et al., 2021).

Evaluation exercise with observational data (tested with GLODAP data only)

RFRData-Eval FNNData-Eval ENSData-Eval ESPER-Mixed

Basin Training Assessment Mean 1[O2] RMSD Mean 1[O2] RMSD Mean 1[O2] RMSD Mean 1[O2] RMSD
data points data points (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1) (µmolkg−1)

Atl. 592 099 180 374 0.0 7.9 0.5 9.4 0.2 7.9 0.1 11.3
Pac. 1 816 367 495 035 0.6 6.1 1.2 9.3 0.9 7.2 −0.3 11.0
Ind. 335 768 42 460 0.6 4.2 1.1 7.2 0.9 5.4 −1.3 9.2
Arc. 800 328 227 905 0.0 5.5 −0.1 8.7 0.0 6.7 1.2 11.0
Med. 214 540 60 −3.6 8.0 0.0 4.3 −1.8 5.3 −5.5 7.7
N. Sou. 2 236 153 174 368 0.7 4.9 0.9 7.2 0.8 5.7 −0.7 8.4
S. Sou. 1 430 492 141 065 0.4 5.3 −0.2 7.9 0.1 6.2 −0.3 9.5

All 7 425 747 1 261 267 0.4 6.1 0.7 8.9 0.6 6.9 0.0 10.7

Earth Syst. Sci. Data, 15, 4481–4518, 2023 https://doi.org/10.5194/essd-15-4481-2023



J. D. Sharp et al.: GOBAI-O2 4511

Table B5. Estimated decadal trends and uncertainties in [O2] (µmolkg−1 per decade) and oxygen inventory (% per decade) in different pres-
sure layers of GOBAI-O2. Uncertainties are determined according to the procedure in Appendix E, both using the autocorrelation of residuals
to the linear least-squares model (Autocov.) and by incorporating estimated uncertainty in global mean GOBAI-O2 fields (u(ESM4)). The
value used to represent uncertainty in each trend (larger value) is in bold.

Pressure layer [O2] trend Trend uncertainty O2 inventory Trend uncertainty
(µmolkg−1 per decade) (µmolkg−1 per decade) trend (% per decade) (% per decade)

Autocov. u(ESM4) Autocov. u(ESM4)

0–100 dbar −1.10 0.60 0.53 −0.49 0.26 0.23
100–600 dbar −1.38 0.42 0.36 −0.86 0.26 0.22
600–2000 dbar −1.12 0.45 0.54 −0.79 0.32 0.38
0–1000 dbar −1.28 0.14 0.18 −0.82 0.09 0.11
0–2000 dbar −1.19 0.03 0.05 −0.79 0.02 0.04

Table B6. Summary error statistics between direct observations from repeat hydrography cruises and GOBAI-O2 and WOA18.

Cruise GOBAI-O2 WOA18

Mean 1[O2] RMSD Mean 1[O2] RMSD

A16 (2013) −0.2 9.2 0.2 12.0
P16 (2005) 0.1 14.9 0.2 14.5
P02 (2012) −1.3 9.9 −0.4 12.9
I08/I09 (2016) −2.3 10.9 −1.1 13.0
A20 (2021) −7.8 23.4 −2.2 21.4

Appendix C

As stated above, the original and vertically interpolated
observational datasets from the BGC Argo and GLO-
DAP databases that are used to develop GOBAI-O2
are archived online: https://doi.org/10.5281/zenodo.7747237
(Sharp, 2023b). The algorithms trained on vertically inter-
polated observational data that were applied to predictor
variables to produce GOBAI-O2 are also archived online:
https://doi.org/10.5281/zenodo.7747308 (Sharp, 2023a).
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Appendix D

A negative median bias (−1.18 µmolkg−1) in float [O2] mea-
surements compared with co-located ship [O2] measure-
ments (below 300 dbar, to avoid the impact of high-frequency
variability near the surface) was adjusted by fitting the differ-
ences (1[O2]) to a linear least-squares model as a function
of float [O2] and then adding that [O2]-dependent adjustment
back on to the float [O2] measurements. The1[O2] values as
a function of float [O2] before (Fig. D1a) and after (Fig. D1b)
this adjustment are shown. This resulted in a reduced median
1[O2] of 0.33 µmol kg−1.

Figure D1. Unadjusted (a) and adjusted (b) matchups between BGC Argo [O2] measurements (y axis) and GLODAP [O2] measurements
(x axis). The adjustment procedure does not mitigate the scatter between the matchups, but it does reduce the median error.

Earth Syst. Sci. Data, 15, 4481–4518, 2023 https://doi.org/10.5194/essd-15-4481-2023
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Appendix E

Trends and associated uncertainties in GOBAI-O2 were de-
termined via the four-step procedure outlined below.

1. Spatially weighted monthly mean [O2] values for the
entire GOBAI-O2 domain or within specified pressure
layers were calculated from gridded [O2], using relative
grid-cell volumes as weights.

2. A linear least-squares model with a trend, intercept, and
annual (12-month) and semiannual (6-month) harmon-
ics was fit to monthly mean [O2] values. The monthly
trend from the least-squares model was multiplied by
120 to obtain a decadal trend of weighted mean [O2].

3. Uncertainty in the decadal trends was assessed in two
different ways, and the largest of the two uncertainty es-
timates taken for each analyzed pressure layer, indicat-
ing that either (a) uncertainty in the linear least-squares
model or (b) uncertainty in the GOBAI-O2 fields was
driving uncertainty in the trend. In all cases, the uncer-
tainty estimate from the second method was chosen, in-
dicating that decadal trend uncertainty was controlled
primarily by uncertainty in the GOBAI-O2 fields. The
two different methods used to assess uncertainty are
outlined below.

a. Uncertainty was assessed using the autocovariance
of residuals from the linear least-squares model via
the following procedure:

i. the standard error on the trend was calculated
from the covariance matrix of the linear least-
squares model;

ii. the autocovariance of the residuals from the
least-squares model was examined to compute
the e-folding timescale, and the effective de-
grees of freedom were obtained by dividing the
number of monthly mean [O2] values by the e-
folding timescale and subtracting the number of
least-squares model parameters; and

iii. the standard error on the trend was scaled by
the effective degrees of freedom, multiplied by
2 to obtain a 95 % confidence interval, and mul-
tiplied by 120 to obtain an uncertainty on the
decadal trend of weighted mean [O2].

b. Uncertainty was assessed by incorporating esti-
mated uncertainty in global mean GOBAI-O2 fields
via the following procedure:

i. uncertainties in monthly mean [O2] values
were determined as the standard deviations
of monthly differences between GOBAI-O2-
ESM4 and GFDL-ESM4 (Sect. 3.1.2);

ii. these uncertainties were used to compute a
weight matrix for the linear least-squares fit,

and the effective degrees of freedom were ob-
tained as previously described; and

iii. the standard error on the trend was scaled by
the effective degrees of freedom, multiplied by
2 to obtain a 95 % confidence interval, and mul-
tiplied by 120 to obtain an uncertainty on the
decadal trend of weighted mean [O2].

4. The process was repeated for oxygen inventories for the
entire GOBAI-O2 domain or within each specified pres-
sure layer; inventories were determined from gridded
[O2], volumes of each grid cell, and densities of each
grid cell.
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