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Abstract. With the booming big data techniques, large-sample hydrological analysis on streamflow regime is
becoming feasible, which could derive robust conclusions on hydrological processes from a big-picture perspec-
tive. However, there is a lack of a comprehensive global large-sample dataset for components of the streamflow
regime yet. This paper presents a new time series dataset on global streamflow indices calculated from daily
streamflow records after data quality control. The dataset contains 79 indices over seven major components
of streamflow regime (i.e., magnitude, frequency, duration, changing rate, timing, variability, and recession) of
41 263 river reaches globally on yearly and multiyear scales. Streamflow indices values until 2022 are covered
in the dataset. Time span of the time series dataset is from 1806 to 2022 with an average length of 36 years.
Compared to existing global datasets, this global dataset covers more stations and more indices, especially those
characterizing the frequency, duration, changing rate, and recession of streamflow regime. With the dataset, re-
search on streamflow regime will become easier without spending time handling raw streamflow records. This
comprehensive dataset will be a valuable resource to the hydrology community to facilitate a wide range of
studies, such as studies of hydrological behaviour of a catchment, streamflow regime prediction in data-scarce
regions, as well as variations in streamflow regime from a global perspective. The dataset can be accessed at
https://doi.org/10.57760/sciencedb.07227 (Chen et al., 2023a).

1 Introduction

Streamflow regime plays a vital role not only in human life
and activities but also in native biodiversity, ecosystem in-
tegrity, and biogeochemical cycles (Poff et al., 1997; Paine,
2019; Palmer and Ruhi, 2019). Because of the effects of an-
thropogenic activities and climate change especially in the
last decades, streamflow regimes of many rivers worldwide
have been changing, threatening the water security (Torabi
Haghighi et al., 2021; Tonkin et al., 2018; Chen et al., 2023b,
2021). Numerous studies have been undertaken to reveal

the streamflow regime shifts, their causes and consequences
(Worku et al., 2014; Brouziyne et al., 2021; Sauquet et al.,
2021; Lane and Kay, 2021; Yin et al., 2018). Palmer and
Ruhi (2019) found that the dam construction, diversion or
abstraction of water, clearing of land, and climate change
increasingly degraded the river ecosystems by altering their
streamflow regimes. Barichivich et al. (2018) indicated that
the streamflow regime shifts over the Amazon basin in mag-
nitude and frequency, which has caused major human suffer-
ing and disturbance to the rainforest ecosystems, are driven
by strengthened Walker circulation.
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In order to analyse the streamflow regime shifts, the crit-
ical components of the streamflow regime, i.e., magnitude,
frequency, duration, timing, and rate of change, were pro-
posed to characterize the entire range of streamflow regime
and specific hydrologic phenomena (Poff and Ward, 1989;
Poff et al., 1997; Richter et al., 1996). By using indices of
these components, features of streamflow regime can be con-
sidered explicitly, and therefore indices of components have
been widely used (Olden and Poff, 2003; Worku et al., 2014;
Palmer and Ruhi, 2019; Shih et al., 2022; Jacobson et al.,
2022; Harmon et al., 2022; Wasko et al., 2020). In the past
decades, more and more indices and components have been
proposed to represent different aspects of streamflow regime
(Clausen and Biggs, 2000; Baker et al., 2004; Clark et al.,
2009; Botter et al., 2013; Mcmillan et al., 2017; Gnann et al.,
2021a). However, except for several basic indices of mag-
nitude and frequency like the annual maximum streamflow
(Do et al., 2017; Barichivich et al., 2018), there are few
large-sample and global studies on other components such
as timing, variability, and rate of change. Gudmundsson et
al. (2018) found that there was no any study analysing time
series of the variability (e.g., standard deviation, coefficient
of variation, Gini coefficient, and the inter quartile range) and
timing (e.g., the timing of annual minimum flow, day of min-
imum 7 d mean streamflow, and day of maximum 7 d mean
streamflow) of daily streamflow on a global scale.

Large-sample hydrology is a way to go beyond individual
case studies and to draw robust conclusions on hydrologi-
cal processes from a big-picture perspective (Gupta et al.,
2014; Addor et al., 2020). Currently, due to the increasing
availability of large-sample hydrology datasets, as well as the
booming big data techniques, more and more large-sample
hydrological studies have been appearing, significantly ad-
vancing the hydrology science (Sun et al., 2021; Troin et al.,
2022; Lane et al., 2022; Goeking and Tarboton, 2022; Near-
ing et al., 2021; Gnann et al., 2021a; Gudmundsson et al.,
2021). To perform large-sample hydrological analysis, large-
sample hydrological datasets based on gauged records are
mostly needed. Addor et al. (2017) presented the CAMELS
(Catchment Attributes and MEteorology for Large-sample
Studies) dataset, which synthesized various datasets (includ-
ing meteorological forcing and gauged daily streamflow time
series) to describe attributes of catchments and catchment
behaviours in the contiguous United States. Afterwards, di-
verse versions of CAMELS or CAMELS-like datasets were
presented for different countries, such as the Great Britain
(Coxon et al., 2020), Chile (Alvarez-Garreton et al., 2018),
Brazil (Chagas et al., 2020), Australia (Fowler et al., 2021),
Central Europe (Klingler et al., 2021), France (Delaigue
et al., 2022), and Germany (Ebeling et al., 2022). Indices
datasets of streamflow regime have also been developed on
both the regional scale (like ADHI by Tramblay et al., 2021)
and the global scale (like GSIM by Do et al., 2018, and Gud-
mundsson et al., 2018).

GSIM covers time series indices of more than 30 000 sta-
tions worldwide, which represents the water balance, the sea-
sonal cycle, low flows, and floods, with the latest stream-
flow indices values until 2016. It is one of the most popu-
lar datasets which facilitate large-sample research on global
streamflow. However, GSIM only includes the streamflow
regime components that characterize the magnitude, timing,
and variability without including components characteriz-
ing the frequency, duration, changing rate, and recession of
streamflow regime. In fact, these components are very useful
for fully characterizing the streamflow regime, understand-
ing its functions, and analysing its variations. The frequency
and duration of streamflow regime are crucial to studies on
various flow events. Gehrke et al. (1995) discovered that in
the Murray-Darling river system, the altered frequencies of
high- and low-flow events have a significant impact on the
species diversity of fish communities. Colls et al. (2019) ex-
amined the frequency and duration of zero flow events over
33 Mediterranean streams and found that longer duration of
zero flow events significantly decreases gross primary pro-
duction by promoting heterotrophy. Changing rate is an im-
portant factor affecting the lives of aquatic species. For ex-
ample, rapid changes in the river stage caused by hydro-
electric facilities will damage downstream aquatic species by
wash-out and stranding (Cushman, 1985). In addition, the in-
crease in the changing rate during storms will result in ele-
vated concentrations of pollutants, which is harmful to the
lives of aquatic species (Palmer and Ruhi, 2019). The re-
cession of streamflow reflects the low-flow behaviour of a
catchment and plays a vital role in both flow-biota-ecosystem
processes nexus and water management. For instance, Rood
et al. (1995) indicated that the accelerated flood recession
had resulted in the failure of seedling establishment and the
decline in riparian cottonwoods along the St. Mary River.
The importance of analysing flood recession has also been
emphasized to mitigate flood risks and optimize water uti-
lization in the Huaihe River Basin (Cheng et al., 2021).
In this regard, a more comprehensive indices dataset than
GSIM is needed. Actually, Tramblay et al. (2021) presented
the African Database of Hydrometric Indices (ADHI, 1950–
2018) with a more comprehensive streamflow indices, but
it is geographically limited to Africa. There is a lack of a
comprehensive global large-sample dataset of components
of streamflow regime, which hinders research on streamflow
regime, especially on a global scale.

In this paper, we collected and merged daily streamflow
records from 9 data sources into one collection, and then per-
formed a data quality control on the collection. After that, a
new global streamflow indices time series dataset was devel-
oped. The spatiotemporal coverage, quality, metadata, and
sample values of the dataset are also shown in the following
sections.
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2 Data compilation

2.1 Data collection

The daily streamflow records used for the establishment of
a global streamflow indices time series dataset were col-
lected from 9 data sources, i.e., Global River Discharge Cen-
tre (GRDC), U.S. Geological Survey (USGS) National Wa-
ter Information System, National Water Data Archive of
Canada (HYDAT), National Water Agency of Brazil (ANA),
the Chilean Centre for Climate and Resilience Research (CC-
CRR), Arctic Great Rivers Observatory (ArcticGRO), China
Hydrological Yearbooks (CHY), India Water Resources In-
formation System (WRIS), and Australia Water Data from
Australian Bureau of Meteorology (BOM) (see Table 1 for
details). These data sources are all publicly available except
the CHY. The original records of streamflow in CHY are
restricted-access and hard to collect, and thus only stream-
flow data of some typical river basins were collected includ-
ing 30 stations in the seven largest river basins in China.
Among these data sources, USGS, HYDAT, ArcticGRO, and
BOM provide quality flags of records.

GRDC and ArcticGRO are international datasets having
multiple countries’ records, and some records may overlap
with records from other national datasets. The duplicated
data can to some extent interfere with users’ utilization of
the data. We calculated the distances between each station
in the international datasets and each station in the national
datasets. When this distance was less than 60 m (approxi-
mately 0.0005◦ on the equator), these two stations were con-
sidered the potential identical station. After that, a further in-
spection was performed to verify whether these two stations
were the same station according to the name of river and sta-
tion. A total of 1895 duplicated stations were found including
8 stations in ArcticGRO, 321 stations in ANA, 324 stations
in BOM, 68 stations in CCCRR, 2 stations in CHY, 439 sta-
tions in HYDAT, and 733 stations in USGS. We retained sta-
tions with longer record length and removed duplicate sta-
tions with shorter record length. A total of 41 263 stations
were retained and then merged into a streamflow records col-
lection.

Apart from the streamflow records, there are metadata of
each station in every data source. However, the fields of
metadata vary among different data sources. Some metadata
have many fields while the others only have basic fields. For
the purpose of standardization, fields of metadata of our col-
lection include station ID, data source, river name, station
number, country, latitude, longitude, contributing area, alti-
tude, start year, end year, years, days, and missing ratio.

The Americas and Europe witness extensive streamflow
records with high spatial coverage density and long record
length (Fig. 1a). In contrast, there are relatively few records
in Asia and Africa. Around 20 000 stations (50 %) have
streamflow records with lengths more than 30 years (Fig. 1b),
and more than 2000 stations’ (5 %) record lengths are larger

than 100 years. The stations with recording lengths of more
than 100 years are mainly in North America and Europe. As
for the availability of streamflow records in different years,
the number of stations with available records increases from
1900 to 1978 at a peak of around 18 000, and then keeps fluc-
tuating but relatively stable from 1979 to 2015, followed by
a decrease from 2016 to 2022 at a bottom of 12 000 (Fig. 1c).
Overall, the streamflow records collection has 41 263 stations
with an average record length of 36 years. The time span of
the collections is from 1806 to 2022.

2.2 Data quality

2.2.1 Quality flag of records

Data quality control is necessary before the use of data as
poor-quality data are misleading. Some data providers have
inspected the data before publication and attached data qual-
ity flags to the published data, while the others have not. Data
quality flags represents data quality and thus are important to
quality control. The flags vary among different data providers
(Table 1). For the purpose of standardization, the original
flags were translated into four flags in our streamflow records
collection, i.e., reliable, suspect, no flag, and missing (see
Table 2 for the rules). As for the databases without quality
flags, available records were flagged as no flag while miss-
ing records were flagged as missing. For records with poor-
quality flag or no flag, some studies, like Gudmundsson et
al. (2018), performed automatic detection methods to iden-
tify and remove unreasonable streamflow values, including
consecutive equal values and outliers. However, the criteria
for judging whether data is unreasonable primarily rely on
subjective assumptions. To the best of our knowledge, the ap-
plicability and possible impacts of such criteria have not been
assessed yet. It is still disputable whether and how many cor-
rect values are erroneously flagged as incorrect and removed
(Crochemore et al., 2020; Tramblay et al., 2021). The mis-
takes will diminish the utility of the data. For example, some
extreme flood events may be flagged as outliers and removed,
resulting in an underestimation of flood. Therefore, we did
not perform disputable automatic detection methods. A reli-
able automatic detection method was applied as follows.

Considering possible mistakes made by instruments and
humans, negative daily streamflow values may occur in the
streamflow records collection, which are undoubtedly wrong
values. If a daily streamflow value is a negative number, this
value will be removed and flagged as missing. In addition,
if quality flags are initially absent in time series where there
are negative values, the whole time series will be flagged as
suspect. A total of 40 842 negative streamflow values were
detected and removed.

In addition to each record, quality flags were also attached
to each station according to the criteria in Table 3. There
are 235 million records (43 %) showing reliable, 221 mil-
lion records (41 %) showing no flag, 6.9 million records
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Table 1. Summary of nine measured streamflow data sources.

Database Spatial cov-
erage

Time span Included
catch-
ments

Data access Quality flag

Global River Discharge
Centre (GRDC)

Globe 1806–2022 8458 https://www.bafg.de/GRDC/EN/Home/
homepage_node.html

–

U.S. Geological
Survey (USGS) Na-
tional Water Informa-
tion System

US and
Canada

1857–2022 19 269 https://waterdata.usgs.gov/nwis? A: value has been validated
to be published
A:e: value was estimated
and validated to be pub-
lished
P and P:e: provisional data

National Water Data
Archive (HYDAT)

Canada 1860–2022 5786 https://www.canada.ca/en/
environment-climate-change/services/
water-overview/quantity/monitoring/survey/
data-products-services/national-archive-hydat.
html

A: partial day (numeric
value 1)
B: ice conditions (numeric
value 2)
D: dry (numeric value 3)
E: estimated (numeric value
4)
S: sample(s) collected this
day (numeric value 5)

National Water Agency
(ANA)

Brazil 1901–2022 3691 https://www.ufrgs.br/lsh/products/
ana-data-acquisition/

–

the Chilean Center for
Climate and Resilience
Research (CCCRR)

Chile 1913–2018 767 https://www.cr2.cl/datos-de-caudales/ –

Arctic Great Rivers Ob-
servatory (ArcticGRO)

The largest
Arctic
rivers

1927–2022 17 https://arcticgreatrivers.org/ A: certified data
P: provisional data

China Hydrological
Yearbooks (CHY)

China 1947–2020 30 No public access –

India Water Resources
Information System
(WRIS)

India 1960–2021 161 https://indiawris.gov.in/wris/ –

Australia Water Data
Online, Australian Bu-
reau of Meteorology
(BOM)

Australia 1881–2022 4977 http://www.bom.gov.au/waterdata/ A (flag 10): best available
B (flag 90): compromised
to represent the parameter
C (flag 110): estimated
value
E (flag 140): quality is not
known
F (flag 210): poor quality or
missing
Flag “−1” also presents to
indicate missing value

Last access: 30 September 2023

(1 %) showing suspect, and 79 million records (15 %) show-
ing missing (Fig. 2a). The numbers of stations with flags
A, B, C, D, E are 6952 (17 %), 7094 (17 %), 8772 (21 %),
6571 (16 %), and 11 874 (29 %) respectively (Fig. 2b). Qual-
ity flags of records were used to assess the quality of indices
that were calculated based on the records in the following
text. Quality flags of stations were designed to allow users to
pick appropriate stations whose records’ quality meets users’
quality control requirements.

2.2.2 Temporal coverage and missing ratio

In the streamflow records collection, more than 6000 stations
have a record length of 32 years from 1990 to 2022 with
missing ratios less than 5 %, and around 800 stations have a
record length of 102 years from 1920 to 2022 with missing
ratios less than 5 % (Fig. 3a). As for the year of the latest
record, the records of approximately 12 000 stations end in
2022, while the records of around 17 000 stations are absent
after 2000 (Fig. 3b). Figure 3c shows the number of stations
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Figure 1. A summary of the streamflow records collection. (a) shows the spatial distribution and record lengths of daily streamflow records.
(b) illustrates number of stations with different record lengths. (c) shows number of stations with records for every year from 1900 to 2022.
Refer to https://doi.org/10.57760/sciencedb.07227 (Chen et al., 2023a) for vector graphic that shows all the stations clearly without overlap
since the vector graphic can be zoomed in infinitely without losing any detail.

Table 2. Translation of quality control flags of the original databases to flags of the streamflow records collection.

Data Source Original Quality Flag Reliable Suspect No Flag Missing

USGS A: validated data A, A:e P, P:e
A:e: estimated and validated data
P and P:e: provisional data

HYDAT A: partial day B, D, S A, E
B: ice conditions
D: dry
E: estimated
S: sample(s) collected this day

ArcticGRO A: certified data A P
P: provisional data

BOM A: best available A, B C E F, −1
B: compromised to represent the parameter
C: estimated value
E: quality is not known
F: poor quality or missing
−1: missing value
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Table 3. Criteria for quality control flags of stations. Note that when one station’s records meet multiple criteria simultaneously, the highest-
level flag is applied.

Flag Criterion

A (or numeric value 1) More than 95 % of record flags are reliable
B (or numeric value 2) More than 95 % of record flags are reliable or no flag
C (or numeric value 3) Less than 10 % of record flags are missing
D (or numeric value 4) Less than 20 % of record flags are missing
E (or numeric value 5) At least 20 % of record flags are missing

Figure 2. Numbers of (a) records and (b) stations with each quality flag.

for every year from 1900 to 2022 with different missing ra-
tios of records. All curves show similar trends. The number
of stations gradually rises from 1900 to its peak in around
1978, and then keeps fluctuating but relatively stable from
1979 to 2013, followed by a decrease from 2014 to 2022.
More than 80 % of stations with records have no missing
records for every year from 1900 to 2022 (Fig. 3c). Further-
more, more than 50 % of stations have a record length of
more than 30 years and have no missing records for every
year from 1900 to 2022. There are around 15 000 stations
having no missing records for every year from 1975 to 2018.

3 Streamflow indices

3.1 Indices definition and calculation

Table 4 describes 79 streamflow indices that characterize
seven components of streamflow regime, i.e., magnitude,
frequency, duration, changing rate, timing, variability, and
recession on yearly and multi-year scales. These indices
were calculated based on the streamflow records collection,
and most of them were computed with the Toolbox for
Streamflow Signatures in Hydrology (TOSSH, available at
the address: https://github.com/TOSSHtoolbox/TOSSH, last
access: 30 September 2023) (Gnann et al., 2021b).

The magnitude of streamflow regime reflects the amount
of streamflow from various perspectives. Corresponding in-

dices include: (i) maximums of consecutive 1, 3, 7, and 30 d
streamflow averages and their percentages, which indicate
the magnitude and concentration of high flows and floods;
(ii) minimums of consecutive 1, 7, and 30 d streamflow av-
erages, which indicate the magnitude of low flows; (iii) vari-
ous percentiles of streamflow; (iv) monthly and annual mean
flow, which are usually used for water resources analysis;
(v) high- and low-flow event threshold (Clausen and Biggs,
2000; Olden and Poff, 2003); (vi) runoff and baseflow mag-
nitude (Horner, 2020), which indicate the magnitude of dif-
ference between the maximum and the minimum of runoff
and baseflow.

The frequency of streamflow regime is how often a flow
of specific magnitude recurs over some specified time inter-
vals (Poff et al., 1997). The corresponding indices include
the ratios of days with streamflow reaching specific thresh-
olds to the total days and the numbers of streamflow events
(floods, high flows, low flows, etc.) with various thresholds.
The duration is the period of time during which a streamflow
event lasts. Annual mean durations of streamflow events are
calculated as indices.

The changing rate, or flashiness, means how fast and fre-
quently streamflow alters from one magnitude to another
(Poff et al., 1997; Baker et al., 2004). A flashy river basin
has a very quick and sensitive response to incoming wa-
ter like precipitation with rapidly rising and falling hydro-
graphs. The Richards–Baker flashiness index (Baker et al.,

Earth Syst. Sci. Data, 15, 4463–4479, 2023 https://doi.org/10.5194/essd-15-4463-2023

https://github.com/TOSSHtoolbox/TOSSH


X. Chen et al.: A global streamflow indices time series dataset 4469

Figure 3. Temporal coverage and missing ratio of streamflow records. (a) shows the cumulative number of stations corresponding to different
missing ratios of records in different time spans. (b) shows the cumulative number of stations corresponding to different years of the latest
streamflow record. (c) presents number of stations for every year from 1900 to 2022 with different missing ratios of records.

2004), and the mean and median of all positive/negative dif-
ferences between consecutive daily streamflow values (The
Nature Conservancy, 2009) are used to quantify the flashi-
ness of streamflow. Rising limb density is an index that de-
scribes the flashiness of the catchment response; for exam-
ple, a low value means a smooth hydrograph (Sawicz et al.,
2011).

The timing of streamflow regime is the temporal distribu-
tion of streamflow in a year (Court, 1962), which is char-
acterized by the start date of flood season, half flow date,
half flow interval, momentary maximum date, and minimum
consecutive 7 d flow date in the indices dataset. To calculate
the half flow date and half flow interval, the start of the wa-
ter year is needed (Court, 1962). Although 1 October in the
Northern Hemisphere and 1 July in the Southern Hemisphere
are widely used as the start of the water year, the actual starts
vary greatly even in different river basins of one hemisphere
because of different geographical features, climates, etc. In
the indices dataset, we use the start date of flood season as
the start of the water year. The start date of the flood season
for a specific station is the median of start dates of consecu-
tive 180 d, of which the streamflow average is the biggest in
one calendar year.

The indices of variability characterize the variability in
streamflow regime from different perspectives (Gudmunds-
son et al., 2018). (i) Variance of streamflow time series
provides information on the total variability in streamflow.
(ii) Coefficient of variation of streamflow provides a rela-
tive measure of variability that is independent of the mean
flow. (iii) Quartile-based coefficient of variation of stream-
flow time series provides information about the width of the
distribution centre and is less sensitive to outliers. (iv) Ratio
of the maximum to median of streamflow quantifies the de-
viation of maximum. (v) The Gini coefficient is an index to
measure the inequality among values of flow duration curve.
(vi) Slope of flow duration curve is an index of the variabil-
ity in the seasonal water balance, which shows the difference
between high and low flows (Mcmillan et al., 2017). In addi-
tion, it is also sensitive to vertical redistribution of soil water
between quick flow and slow flow. (vii) Slope of distribution
of peaks is an index for measuring the differences between
peak discharges (Euser et al., 2013). (viii) Variability index
was a measure for variability among values of flow duration
curve (Lane and Lei, 1950). Rivers with a higher variability
index tend to have higher percentages of surface runoff and
less water storage (Estrany et al., 2010).
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Figure 4. Example streamflow indices time series for seven components of the streamflow regime of Nashwaak River at Durham Bridge,
Canada, on a yearly scale. Refer to Table 4 for the definitions and units of indices.

Recession is a component of streamflow regime which
characterizes the recession of streamflow. The smoothed
minima baseflow separation method of the UK Institute of
Hydrology (UKIH) (1980) is used for baseflow separation
required in the calculation of recession indices. Recession
indices include baseflow index and baseflow recession con-
stant. Generally, a river with a low baseflow index value has
a great number of floods and low flows, and its streamflow
regime is highly variable (Singh et al., 2019). Baseflow in-
dex has been commonly used in regional low-flow studies,
impacts of climate change on groundwater resources, and
flood responses of river basins to storm events. Baseflow re-
cession constant is a proxy for drainage efficiency of base-
flow after being recharged, which is related to the water-

shed hydraulic conductivity, soil porosity, and hydraulic gra-
dient (Safeeq et al., 2013). According to Safeeq et al. (2013),
a river basin with a high baseflow recession constant has
a shallow subsurface flow-dominated fast draining system,
whereas a river basin with low baseflow recession constant
has a groundwater-dominated slow draining system.

3.2 Quality flags of yearly indices

According to the quality of streamflow records used for in-
dices calculation, every yearly index value is accompanied
by a quality flag for quality control. The purpose that we de-
fine the flags is to provide a space for individuals with dif-
ferent research objectives to have a free choice. They can

Earth Syst. Sci. Data, 15, 4463–4479, 2023 https://doi.org/10.5194/essd-15-4463-2023
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Table 4. Streamflow indices for seven components of the streamflow regime. Index name means the variable name used in the indices time
series dataset. There are two temporal resolutions. Y (yearly) means one value for 1 year of the time series, and MY (multi-year) means one
value for the whole time series.

Category Index name Units Resolution Definition

Magnitude

Qmax1, Qmax3,
Qmax7, Qmax30

m3 s−1 Y, MY Maximums of consecutive 1, 3, 7, and 30 d streamflow
averages. For example, Qmax7 means the maximum
of consecutive 7 d streamflow averages (Olden and Poff,
2003).

Qmax1p, Qmax3p,
Qmax7p, Qmax30p

– Y percentages of the maximum of consecutive 1, 3, 7, and
30 d streamflow accumulation amounts, which are the
maximums divided by the annual streamflow accumu-
lation amounts and then multiplied by 100.

Qmin1, Qmin7,
Qmin30

m3 s−1 Y, MY Minimums of consecutive 1, 7, and 30 d streamflow av-
erages (Olden and Poff, 2003).

Q1st, Q5th, Q10th,
Q25th, Q50th, Q75th,
Q90th, Q95th, Q99th

m3 s−1 Y, MY The 1st, 5th, 10th, 25th, 50th 75th, 90th, 95th, and
99th percentiles of daily streamflow (The Nature Con-
servancy, 2009; Olden and Poff, 2003). For example,
Q50th means the median of streamflow time series.

Qmean1, Qmean2,
Qmean3, Qmean4,
Qmean5, Qmean6,
Qmean7, Qmean8,
Qmean9, Qmean10,
Qmean11, Qmean12,
Qmean

m3 s−1 Y, MY Monthly and annual mean flows. For example, Qmean6
means the mean flow of June; Qmean is the annual
mean flow.

Qhigh, Qlow m3 s−1 MY High- and low-flow event thresholds. QHigh equals 9
times Q50th (Clausen and Biggs, 2000); Qlow equals
0.2 times Qmean (Olden and Poff, 2003).

RM, BM m3 s−1 Y Runoff magnitude and baseflow magnitude. RM and
BM are the differences between the maximum and min-
imum of streamflow and baseflow respectively (Horner,
2020).

Frequency

FreH, FreL, FreZ – Y Frequencies of high-flow (FreH), low-flow (FreL), and
zero-flow (FreZ) days. FreH is the ratio of days with
streamflow bigger than Qhigh to the total days; FreL is
the ratio of days with streamflow less than Qlow to the
total days; FreZ is the ratio of days with zero streamflow
to the total days (Addor et al., 2018).

Fre1st, Fre5th, Fre95th,
Fre99th

– Y Frequencies of days with streamflow bigger than or
smaller than thresholds of the 1st, 5th, 95th, and 99th
streamflow percentiles. Fre1st / Fre5th is the ratio of
days in 1 year with streamflow of less than the 1st / 5th
percentile of the whole multiyear streamflow time se-
ries to the days of one year; Fre95th / Fre99th is the ra-
tio of days in 1 year with streamflow bigger than the
95th / 99th percentile of the whole multiyear streamflow
time series to the days of one year.

NumH, NumL, NumZ – Y Numbers of streamflow events with thresholds of
Qhigh, Qlow, and zero (Olden and Poff, 2003).

Num1st, Num5th,
Num95th, Num99th

– Y Numbers of streamflow events with thresholds of the
1st, 5th, 95th, and 99th percentile of the whole multi-
year streamflow time series (Olden and Poff, 2003).
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Table 4. Continued.

Category Index name Units Resolution Definition

Duration
DurH,
DurL,
DurZ,

days Y Mean duration of streamflow events with thresholds
of Qhigh, Qlow, and zero (Westerberg and Mcmillan,
2015).

Dur1st,
Dur5th,
Dur95th,
Dur99th

days Y Mean duration of streamflow events with thresholds of
the 1st, 5th, 95th, and 99th percentiles of the whole mul-
tiyear streamflow time series.

Changing rate
RBFI – Y, MY Richards–Baker flashiness index (Baker et al., 2004).

RLD – Y, MY Rising limb density (RLD) is a ratio of the number of
rising limbs to the number of rising hydrograph (Sawicz
et al., 2011).

RRmean,
RRmedian,
FRmean,
FRmedian

m3 s−1 Y RRmean and RRmedian are the mean and median of all
positive differences between consecutive daily stream-
flow values in a year; FRmean and FRmedian are the
mean and median of all negative differences between
consecutive daily streamflow values in a year (The Na-
ture Conservancy, 2009).

Timing

FSS days
since
1 Jan-
uary

Y, MY FSS is the start date of flood season, which is defined
as the start date of the consecutive 180 d whose stream-
flow average is the biggest in specific calendar year. It
is calculated as the following: calculate a sliding aver-
age streamflow time series by applying sliding average
method to the whole streamflow time series with a slid-
ing window of 180 d; found the maximums of every cal-
endar year in the averaged streamflow time series; start
dates of corresponding sliding windows are FSSs of ev-
ery calendar year.

HFD days Y, MY Half flow date (HFD) is the date on which half of a wa-
ter year’s total streamflow has passed since start of the
water year (Court, 1962).

HFI days Y, MY Half flow interval (HFI) is the time span between the
date on which a quarter of a water year’s total stream-
flow has passed since start of the water year and the date
on which three-quarters of a water year’s total stream-
flow has passed since start of the water year (Court,
1962).

MMD days
since
1 Jan-
uary

Y, MY Momentary maximum date (MMD) is the date when the
maximum streamflow occurs (Court, 1962).

MC7FD days
since
1 Jan-
uary

Y, MY Minimum consecutive 7 d flow date (MC7FD) is the
date when the minimum of consecutive 7 d flow aver-
ages occurs (Gudmundsson et al., 2018).
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Table 4. Continued.

Category Index name Units Resolution Definition

Variability

VY – Y, MY Variance of daily streamflow (Clausen and Biggs,
2000).

COVY – Y, MY Coefficient of variation of daily streamflow (Clausen
and Biggs, 2000).

QCV – Y, MY QCV means quartile-based coefficient of variation
of daily streamflow, which is calculated as (Q75th–
Q25th)/Q50th.

RMM – Y, MY Ratio of Qmax1 to Q50th.

GNC – Y, MY Gini coefficient (Gudmundsson et al., 2018).

SFDC – Y, MY Slope of flow duration curve (SFDC) is the slope of
flow duration curve between 33rd and 66th percentiles
of streamflow (Mcmillan et al., 2017).

SDP – MY SDP is the slope of distribution of peaks, which is the
slope between the 10th and 50th of a flow duration
curve constructed by only including hydrograph peaks
(Euser et al., 2013).

VI – Y, MY Variability index (VI) is the standard deviation of the
common logarithms of streamflow determined at 10 %
intervals from 10 % to 90 % of the flow duration curve
(Lane and Lei, 1950; Estrany et al., 2010).

Recession
BFI – Y, MY Baseflow index (BFI) is the ratio of baseflow volume to

streamflow volume over a specific time period (Singh et
al., 2019).

BRC – Y, MY BRC is baseflow recession constant. Hydrograph reces-
sion assuming exponential recession behaviour is given
by Qt =Q0e−kt , where Qt is the streamflow at time
t (day), Q0 is the streamflow at the beginning of the
recession, and k is the BRC (Safeeq et al., 2013). The
master recession curve, which combines individual re-
cession segments, is constructed by using the adapted
matching strip method and then used for the calculation
of BRC (Posavec et al., 2006).

Note: for most indices, the calculation on multi-year scale is using the same algorithm as the calculation on yearly scale except that the used time
series is the whole multi-year time series rather than one year’s segment. For indices including FSS, HFD, HFI, MMD, and MC7FD, the multi-year
values are the medians of yearly values.

use only the highest-quality indices values out of caution, or
they can take some risks and add some relatively low-quality
indices values in order to increase the sample size. Quality
flags of yearly indices values were determined according to
corresponding streamflow records and the same criteria as is
shown in Table 3.

3.3 Example streamflow indices time series

To give a first impression of streamflow indices time series,
Fig. 4 shows some streamflow indices time series of Nash-
waak River at Durham Bridge, Canada on a yearly scale as
an example. It is obvious that the Qmax1 and Qmean are

increasing while Qmin7 has no obvious trend. The RM also
shows an upward trend. These trends indicate that the magni-
tude of high flow is increasing. Moreover, the Num99th and
Dur99th are also increasing, which means the number and
lasting time of flood are rising too. To make matters worse,
the RBFI and RRmean are obviously climbing as well. It
means the streamflow regime of Nashwaak River is becom-
ing more and more flashy with a higher rising–dropping
speed of floods. Besides, the BFI also shows a downward
trend, which indicates worse flow regulations of the river
basin. In conclusion, the floods have grown in intensity and
therefore flood forecasting and protection are becoming more
important there.
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Table 5. The fields in “station_catalogue.csv”.

Field Definition

no station ID number
no_ori station ID number in the original data source
database the database where records come from
river river name
station station name
country country code (ISO 3166)
latitude latitude (decimal degree)
longitude longitude (decimal degree)
area contributing area upstream of the gauge location (if available) in square kilometre
altitude height of gauge above sea level (meter)
start the start year of the time series
end the end year of the time series
years length of time series; years = end – start +1
days number of days with records
miss percentage of missing values in original streamflow records (%)
flag quality flag of station; see relevant paper for details
Qmax1 the maximum of daily streamflow (m3 s−1)
MMD date when Qmax1 occurred
Qmax3 the maximum of consecutive 3 d streamflow averages (m3 s−1)
Qmax7 the maximum of consecutive 7 d streamflow averages (m3 s−1)
Qmax30 the maximum of consecutive 30 d streamflow averages (m3 s−1)
Qmin1 the minimum of daily streamflow (m3 s−1)
Qmin7 the minimum of consecutive 7 d streamflow averages (m3 s−1)
MC7FD the first day of consecutive 7 d of Qmin7
Qmin30 the minimum of consecutive 30 d streamflow averages (m3 s−1)
Q1st the 1st percentile of daily streamflow (m3 s−1)
Q5th the 5th percentile of daily streamflow (m3 s−1)
Q10th the 10th percentile of daily streamflow (m3 s−1)
Q25th the 25th percentile of daily streamflow (m3 s−1)
Q50th the 50th percentile of daily streamflow (m3 s−1)
Q75th the 75th percentile of daily streamflow (m3 s−1)
Q90th the 90th percentile of daily streamflow (m3 s−1)
Q95th the 95th percentile of daily streamflow (m3 s−1)
Q99th the 99th percentile of daily streamflow (m3 s−1)
Qmean long-term average discharge (m3 s−1)
Qmean1 the long-term average discharge in January (m3 s−1)
Qmean2 the long-term average discharge in February (m3 s−1)
Qmean3 the long-term average discharge in March (m3 s−1)
Qmean4 the long-term average discharge in April (m3 s−1)
Qmean5 the long-term average discharge in May (m3 s−1)
Qmean6 the long-term average discharge in June (m3 s−1)
Qmean7 the long-term average discharge in July (m3 s−1)
Qmean8 the long-term average discharge in August (m3 s−1)
Qmean9 the long-term average discharge in September (m3 s−1)
Qmean10 the long-term average discharge in October (m3 s−1)
Qmean11 the long-term average discharge in November (m3 s−1)
Qmean12 the long-term average discharge in December (m3 s−1)
Qhigh high-flow event threshold (m3 s−1)
Qlow low-flow event threshold (m3 s−1)
RBFI Richards–Baker flashiness index
RLD rising limb density
FSS the start month of flood season
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Figure 5. Trends in annual mean and percentiles of streamflow during 1970 to 2022. Relative change per decade is the trend in yearly index
multiplied by ten years and then divided by the multi-year index value. The trends were calculated using Sen’s slope estimator. See Gocic
and Trajkovic (2013) for details. Refer to Table 4 for the definitions of indices.

Table 5. Continued.

Field Definition

HFD half flow date (days)
HFI half flow interval (days)
VY variance of streamflow time series
COVY coefficient of variation of streamflow time series
QCV quartile-based coefficient of variation of streamflow time series
RMM ratio of maximum to median of streamflow time series
GNC Gini coefficient
SFDC slope of flow duration curve
SDP slope of distribution of peaks

4 Global streamflow change and comparative
analyses

Studies on streamflow regime on a global scale are mainly
focused on the magnitude of streamflow. There are few or
even no global-scale studies on other components of stream-
flow regime. Therefore, several studies’ results about trends
in annual mean and extreme streamflow were selected for
comparisons with our dataset’s. Figure 5 shows trends in
yearly indices of mean and extreme streamflow during 1970
to 2022 derived from our dataset. Noticeable clusters of up-
ward trends in annual mean streamflow appear in the east

part of the US near the Great Lakes and the northwest part of
Europe (Fig. 5a). The results are in accordance with the re-
sults of Gudmundsson et al. (2019) and Yang et al. (2021) but
show more details as our collection have more stations (more
than 40 000 stations) compared to around 30 000 stations of
Gudmundsson et al. (2019) and around 20 000 stations of
Yang et al. (2021). The spatial pattern of annual maximum
streamflow is also in line with those in Do et al. (2017) and
Yin et al. (2018)’s papers but have a higher resolution be-
cause more stations are included (Fig. 5f). It is noticeable
that the signs of trends in different percentiles and mean of
streamflow are consistent in most of regions. When one in-
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dex shows an upward trend, it is highly probable that other
indices will also exhibit an upward trend, and vice versa.
However, there are some differences between the magnitude
of changes in different indices values. The absolute values
of relative change per decade of Qmin1 are obviously larger
than those of other indices (Fig. 5b). In contrast, the absolute
values of relative change per decade of Qmax1 are noticeably
smaller than those of other indices (Fig. 5f). As the percentile
increases, the absolute value of relative change per decade
tends to decrease. It indicates that the low flow is more sensi-
tive to the changing environment compared to high flow. The
low flow of rivers is more vulnerable to the threat of drying
up, and the regulation of streamflow during low-flow periods
should be strengthened to ensure the ecological functions as
well as water supply.

5 Data availability

The global streamflow indices time series dataset is available
for download at https://doi.org/10.57760/sciencedb.07227
(Chen et al., 2023a). There are two folders corresponding to
two different data storage ways. One is “MAT” for files with
the .mat extension, which is a binary data container format
used in the MATLAB. The other is “CSV” for files with the
.csv extension, in which the data are stored as a delimiter-
separated text format. Apart from these, there is a file named
“station_catalogue.csv”. This contains the basic information
and multi-year streamflow indices of every hydrological sta-
tion (Table 5).

6 Conclusions and perspective

This paper presents a global streamflow indices time se-
ries dataset for large-sample hydrology, which is designed to
characterize the streamflow regime comprehensively. It in-
cludes 79 indices over 7 components of streamflow regime
(i.e., magnitude, frequency, duration, changing rate, timing,
variability, and recession) of 41 263 river reaches globally
on yearly and multiyear scales. Before the establishment of
indices dataset, streamflow records and metadata from nine
databases were collected and merged into one data collec-
tion. Data quality control was performed by removing dupli-
cate and unreasonable records, and attaching quality flags to
all records and stations. Quality flags were also attached to
each yearly index value in the indices dataset. A comparative
analysis was performed on the trends in annual mean and
percentiles of streamflow on a global scale. The results show
that our dataset’s results are in accordance with the results
of existing studies, but our results have a higher resolution
because more stations are included. Our results also indicate
that the low flow is more sensitive to the changing environ-
ment compared to high flow.

Compared to existing datasets, our indices dataset has sev-
eral advantages. Firstly, it includes more indices, which can

characterize streamflow regime more comprehensively. Our
indices dataset covers indices that characterize the frequency,
duration, changing rate, and recession of streamflow regime,
which are not included in GSIM or completely incorporated
in other global-scale datasets. To the best of our knowledge,
our dataset is the most comprehensive global-scale indices
dataset in terms of streamflow indices coverage. Secondly,
it includes more stations (41 263) with a longer time series
(from 1806 to 2022) compared to existing streamflow indices
datasets. By comparison, GSIM includes 30 959 stations with
yearly indices time series from 1806 to 2016. The additional
stations are mainly located in the US and China.

This dataset will greatly facilitate large-sample studies on
both global and regional scales on a great number of hydro-
logical issues related to streamflow regime, such as: (1) cali-
bration, evaluation, and improvement of hydrological models
for water resource assessment; (2) estimation of impacts of
factors (like vegetation greening and snow melting caused by
climate change) on streamflow regime components; (3) con-
struction, training, and evaluation of machine learning mod-
els for hydrological forecasting and catchment classification;
(4) assessment of impacts of streamflow regime shifts on bio-
geochemical cycles (like soil erosion) and ecological func-
tions of streamflow; (5) analysis on the spatiotemporal pat-
tern of streamflow regime shifts and attribution; and (6) iden-
tification of nonstationary of streamflow indices and its attri-
bution.
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