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Abstract. Antiarcha data are essential to quantitative studies of basal jawed vertebrates. The absence of struc-
tured data on key groups of early vertebrates, such as Antiarcha, has lagged in understanding their diversity and
distribution patterns. Previous works of early vertebrates usually focused on anatomy and phylogeny, given their
significant impacts on the evolution of key characters, but lacked comprehensive structured data. Here, we con-
tribute an unprecedented open-access Antiarcha dataset covering 60 genera of 6025 specimens from the Ludfor-
dian to the Famennian globally. We have organized an expert team to collect and curate 142 publications spanning
from 1939 to 2021. Additionally, we have two-stage quality controls in the process: domain experts examined
the literature and senior experts reviewed the results. In this paper, we give details of the data storage structure
and visualize these antiarch fossil sites on the paleogeographic map. The novel Antiarcha dataset has tremendous
research potential, including testing previous qualitative hypotheses in biodiversity changes, spatiotemporal dis-
tribution, evolution, and community composition. It is now an essential part of the DeepBone database and will
be updated with the latest publication, also available on https://doi.org/10.5281/zenodo.6536446 (Pan and Zhu,

2021).

1 Introduction

Placodermi is an extinct group of jawed vertebrates that
first occurred in the Silurian, then dominated the Devonian
and constituted a prevalent biotic component of the ma-
rine vertebrate ecosystem from 425.0 to 358.9 million years
ago (Carr, 1995; Denison, 1978; Janvier, 1996; Young,
2010; Zhu, 1996). Recent prevailing phylogenetic hypothe-
ses placed Placodermi as jawed stem-Gnathostomata that is
sister to crown-Gnathostomata or modern jawed vertebrates
(Brazeau, 2009; Davis et al., 2012; Dupret et al., 2014; Giles
et al., 2015; King, 2021; Long et al., 2015; Qiao et al., 2016;
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Trinajstic et al., 2015; Zhu et al., 2013, 2016). In this sce-
nario, Antiarcha has usually been placed at the most basal po-
sition in the Placodermi (Fig. 1), representing the most basal
jawed vertebrates. The spatiotemporal distribution of Antiar-
cha will thus help us understand the origin and early evolu-
tion of jawed vertebrates. For example, Sallan et al. (2018)
found that vertebrate diversification occurred primarily in
nearshore environments, by analyzing early vertebrate occur-
rence and habitat data. Historically, antiarchs resided in var-
ious paleoenvironments across all paleocontinents, includ-
ing marine and freshwater environments close to shore. As
a successful vertebrate group during the Devonian (Long,
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Figure 1. Phylogenetic relationships of major early vertebrate
groups from Qiao et al. (2016) and Pan et al. (2018). Silhouettes
indicate groups of Antiarcha.

2011; Young, 2010), Antiarcha has contributed significantly
to the Devonian stratigraphic correlation. For instance, the
biozonation of the East Baltic and southern East Antarctica
Devonian succession is partly based upon the antiarchs Both-
riolepis, Asterolepis, and Pambulaspis (Young, 1974, 1988).
LukseviCs (1996) identified 14 bothriolepid species (12 Both-
riolepis and two Grossilepis) in the Frasnian—Famennian for-
mations of the East European Platform, proposed nine an-
tiarch assemblages, and set up the most detailed zonation of
the Main Devonian Field, northwestern part of the East Eu-
ropean Platform (Latvia and NW Russia).

Collecting and visualizing the data of Antiarcha is a pre-
requisite to explaining the spatial and temporal distribution
of early vertebrates. With the help of data visualization, we
could better understand the biogeographic evolution of early
vertebrates. Although Zigaite and Blieck (2013) advocated
a quantitative analysis to define early vertebrates’ biogeo-
graphic patterns, efficient quantitative analysis is still lacking
to understand the dispersal of early vertebrates. This occurs
mainly because no comprehensive data collection of early
vertebrates was accomplished. What is more, the disadvan-
tages of unstructured data are clear: the absence of schema
and structure makes them difficult to manage, and the lack
of predefined attributes makes them difficult to be reused or
extended.

In this paper, we present an unprecedented structured
dataset of Antiarcha that potentially facilitates understand-
ing the spatiotemporal distribution pattern and quantifying
the variety of antiarchs. This dataset is open-access and
follows the FAIR principles (findability, accessibility, inter-
operability, and reusability) (Wilkinson et al., 2016). This
dataset complements existing fossil records of early verte-
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brates. Moreover, it is the first step to accomplishing the
global coverage of the vertebrate fossil dataset to analyze the
Middle Paleozoic biogeography and paleogeography. Visu-
alizing the distribution of antiarchs in the paleogeographic
background with reference to the global paleogeographic re-
constructions of Scotese (2021), our preliminary results can
also be used to test the hypothesis of paleogeographic recon-
structions.

2 Method

2.1 Overview

Comprehensive data are essential for quantitative studies and
simulation analysis on early vertebrates. Sallan et al. (2018)
pointed out that a lack of early vertebrate fossil data has lim-
ited quantitative approaches and hindered the resolution of
issues regarding ancestral habitat in vertebrate evolution. To
bring the study of vertebrate paleontology into the next phase
of macroevolution, we built the DeepBone database with the
implementation of a project entitled “Big Earth Data Science
Engineering (CASEarth)” in 2018 (Guo, 2017; Pan and Zhu,
2019).

With continuously refining data, the Antiarcha dataset of
the DeepBone database is the first and most comprehen-
sive dataset endorsed by Chinese researchers at the Institute
of Vertebrate Paleontology and Paleoanthropology, Chinese
Academy of Sciences. The Antiarcha dataset of DeepBone
differs from that of PBDB (https://paleobiodb.org/, last ac-
cess: 22 October 2021) in its basic unit, which is the speci-
men ID coupled with the occurrence and other detailed data.
All the specimens are referenced in taxa and literature to
guarantee accuracy. Because the data format was designed
as specimen-based, we input the metadata according to the
published specimen ID or virtual specimen ID. The literature
on classic systematic paleontology always has real specimen
IDs. When it handled stratigraphic topics, the authors usually
cited fossil records instead of real specimens. We introduce
a virtual specimen ID to store the taxon information in this
kind of literature containing no real specimens.

Since no satisfactory approach can automatically extract
paleontological data from the literature, we recruit several
data entry assistants, including researchers, master’s stu-
dents, and PhD students to collect and curate the data. In
order to guarantee the quality of the data, we designed a four-
step data processing procedure (Fig. 2) as follows.

1. Experts who obtained their PhD degrees in paleontol-
ogy collected and sifted the data source.

2. Data entry assistants read the related references, ex-
tracted the antiarch placoderm data, and manually filled
them into the online record file under the supervision of
vertebrate paleontology experts.
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Figure 2. Workflow of the data processing. (1) Collecting and sifting lectures by experienced experts. (2) Data entry assistants digitalize
paleontological descriptions from the page into the DeepBone database. (3) According to the reference, experts are accountable for data
review and cleaning to implement quality control. (4) Senior researchers review the data again. (5) Data managers release the data to the
public through DeepBone.org (http://DeepBone.org, last access: 22 October 2021).

3. According to the references, experts reviewed and
cleaned the data line by line as the quality control pro-
cedure.

4. Senior experts, who have outstanding achievements in
vertebrate paleontology, reviewed the data again to
guarantee quality.

5. DeepBone.org (http://DeepBone.org, last access:
22 October 2021) published the dataset with visualiza-
tion. A better user interface helps dissemination.

Next, we provide more details on the data processing and
visualization.

2.2 Data source

The data were extracted from the published literature con-
taining information on antiarch specimens. Most of the jour-
nals are professional journals on paleontology. The main
journals include Alcheringa, Acta Geologica Polonica, Bul-
letin of the Geological Society of China, Estonian Journal of
Earth Sciences, Journal of Vertebrate Paleontology, Journal
of Paleontology, Palaeontologia Electronica, Palaeontology,
Palaeoworld, and Vertebrata PalAsiatica. In total, we have
collected 142 publications spanning from 1939 to 2021 (see
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dataset for more details). The satisfactory literature should
include an accurate description or revision of the specimen
and taxon. We accepted the latest peer-reviewed literature
to deal with the inconsistent descriptions of stratigraphy and
taxonomy.

2.3 Data processing and quality control

We made a tailored web page that provides a better user in-
terface for data entry assistants to fill in the rows of paleon-
tological data. After that, the other related experts would re-
view the data so that a researcher could quickly access them
to perform quantitative analysis (Fig. 2). This workflow was
adopted from the Geobiodiversity Database (GBDB) (Xu et
al., 2020). Almost all antiarch literature was published in En-
glish, Russian, French, German, and Chinese. The data entry
assistant could handle the literature in Chinese and English
well. Many fossils were documented in French, Russian, and
German. We invited paleontology postgraduates who know
French, Russian, or German to deal with the literature in
these languages.

The faunistic elements in the communities are used herein
at the genus level for their distributions because many Both-
riolepis and Asterolepis species were described based on iso-
lated plates lacking diagnostic characters (Blieck and Janvier,
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1993; Downs, 2011). Identifying a specimen depends on the
ability to recognize species in a way that is coherent within a
particular genus and through broader groups. This is very dif-
ficult for fossil material because of two especially intractable
problems: practically because of the fragmentary nature of
the fossil and philosophically because of questions with the
criteria by which fossil species (Nelson, 1984; Thomson and
Thomas, 2001) are demarcated. For example, Thomson and
Thomas (2001) reviewed the previous study on Bothriolepis
and proposed that B. nitida, B. minor, B. virginiensis, B. dar-
biensis, and B. coloradensis could not be consistently dis-
tinguished. Weems (2004) questioned the validity of B. vir-
giniensis. Since there is no consensus on the species level
of Bothriolepis and Asterolepis, the former researchers only
used the evidence of Antiarcha on the genus level to discuss
the biostratigraphic significance (Lelievre and Goujet, 1986;
Pan, 1981; Young et al., 2010; Young and Lu, 2020). To keep
accuracy and consistency, here we choose the genus of An-
tiarcha to perform data visualization.

2.4 Data visualization

Due to the easy access of the paleogeographic coordinates
calculator (PointTrack version 7.0) (Scotese, 2021) and its
wide use in paleontology (Ke et al., 2016; Kiel, 2017), we de-
cided to use Scotese’s paleocontinent reconstruction to per-
form the plot map, although many paleogeographic recon-
structions were proposed (Heckel and Witzke, 1979; Li and
Powell, 2001). Using the TrackPoint software, we converted
the excavation locations from the current GPS to paleo-GPS
and visualized the locations using the Web Mercator algo-
rithm (Battersby et al., 2014).

The timescale follows the International Commission on
Stratigraphy International Chronostratigraphic Chart ver-
sion 2021/07 (Cohen et al., 2013).

3 Results

3.1 Data overview

This dataset consists of 60 genera of 6025 specimens, cover-
ing all known antiarch lineages. The observed quantities of
genus and species in our dataset over time were summarized
in histograms (Fig. 3). The 6025 specimens include 5867 fos-
sil specimens that have been systematically described and
documented and 158 virtual specimens introduced to de-
scribe the taxon information when no specimen was assigned
for the referred fossil records. Each specimen has at least
one reference within our dataset, and the specimens lacking
precise age are excluded. We followed the lithostratigraphic
information of the original authors except we found a revi-
sion. We accepted the latest revision in the literature to mod-
ify our dataset. The amendments were linked to the latest
reference as an endorsement. We took the geological back-
ground data in our dataset unless they were missing from
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the original literature. We transferred the unstructured data
from the literature to structured data for further research in
as much detail as possible. Table 1 shows the data struc-
ture of our present dataset. Among all the referred speci-
mens, 6.51 % belong to Yunnanolepidoidei, 2.86 % belong to
Sinolepidoidei, 78.92 % belong to “Bothriolepidoidei”, and
11.71 % belong to Asterolepidoidei. We plotted all the fossil
sites of the constituent groups in Fig. 4.

GBDB is a stratigraphic and paleontological database, but
no antiarch record exists. Compared to the 138 records of
Antiarcha in the Paleobiology Database (PBDB, 22 Octo-
ber 2021), this is the most comprehensive dataset of An-
tiarcha up to now (Table 2). Only taxon rank, reference,
and occurrence location are available in PBDB. DeepBone
dataset has more fields on the structured information of
the specimen than in the PBDB, such as lithostratigraphic
fields (Table 1). Some records in PBDB are not stored at
the genus or species level. There are some typing errors
in PBDB, for instance, “Jiangxilepus”, “Bothriolepiodei”,
and “Pterichthys”. Jiangxilepis, “Bothriolepidoidei”, and
Pterichthyodes are the correct spellings. Macrodontophion
is not a genus of Antiarcha, but PBDB adopts it in antiarchs.
PBDB also adopts Silurolepis as an antiarch, ignoring the lat-
est research of Zhu et al. (2019). To ensure accuracy, every
specimen of DeepBone is endorsed by the latest publication
and reviewed by the experts who have focused on Antiar-
cha. It is open to access through the website of the Deep-
Bone database or https://doi.org/10.5281/zenodo.6478602
(Pan and Zhu, 2021).

3.2 The geospatial distribution of the Antiarcha dataset

The geospatial distribution of the Antiarcha is shown in
Fig. 4. Yunnanolepidoidei is endemic in the South China
block (comprising southern China and northern Vietnam) re-
garding the fossil site distribution. Sinolepidoidei is limited
in South China and Australia (East Gondwana). In contrast,
“Bothriolepidoidei” and Asterolepidoidei are cosmopolitan,
especially Bothriolepis. The heat map of fossil sites (Fig. 5)
shows that Europe, Australia, and China account for the most
fossil sites globally, partly due to their long research history.

3.3 The paleogeographic distribution of the Antiarcha
dataset

As Young (1990) mentioned that biogeographic data must
be interpreted in the context of paleogeographic hypothe-
ses, we plot our data on a paleogeographic atlas (Fig. 6)
only to generate an outline of their past. The further in-
terpreting data studies will be published separately. The
continental reconstructions of Scotese place Baltica, China,
and Australia in the tropics and subtropics near the paleo-
Equator from Llandovery to Famennian. We excluded the
Silurian Shimenolepis because it is the earliest record of
Yunnanolepidoidei and the only documented antiarch spec-
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Figure 3. Histogram of specimen number. (a) The genus number at different time intervals and (b) the species number at different time

intervals.

imen before the Devonian (Wang, 1991; Zhao et al., 2016).
Most of the fossil sites were positioned around the paleo-
Equator. In the present scenario, the suborder Yunnanolepi-
doidei apparently originated as early as the Silurian in the
South China block, forming a highly endemic fauna. All
fossil sites of Yunnanolepidoidei lay in southern China and
northern Vietnam (Wang et al., 2010). From Ludlow (Sil-
urian) to the Early Devonian, Yunnanolepidoidei formed
dominant antiarchs. Sinolepidoidei and “Bothriolepidoidei”

https://doi.org/10.5194/essd-15-41-2023

first appeared in Pragian in South China, and Asterolepi-
doidei first evolved in Emsian in Australia or East Gond-
wana. During the middle Devonian, along with lessened iso-
lation of South China, Yunnanolepidoidei became extinct.
Euantiarcha (“Bothriolepidoidei” + Asterolepidoidei) domi-
nated Middle and Late Devonian antiarchs, and only a few
members of Sinolepidoidei coexisted with them in China and
Australia. In Eifelian, Asterolepidoidei suddenly bloomed in
Baltica without any clue from the older horizons based on ex-
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Figure 4. Antiarch placoderm spatial distribution. The tree topology is simplified from the phylogenetic result in Pan et al. (2018). Numbers
under the pie chart represent each group’s relative amounts of specimens. Terminal groups are linked with their geographic distributions.
Each node represents a single specimen. Specimens from one locality overlap each other.

Table 1. The structure of Antiarcha dataset.

Specimen

Specimen ID Genus
Lithostratigraphy_formation  Species
Lithostratigraphy_member Lithostratigraphy_member

Fossil site Custodian country

Discovery country System/period

Latitude Series/epoch

Longitude Stage/age

Paleo-latitude Reference age to calculate paleo-coordinates

Paleo-longitude

Reference

Literature type
Title
Keywords
Volume

Issue

Pages

Authors

Year

Journal

DOI
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Table 2. Comparison of Antiarcha data in two paleontological databases.

DeepBone database Paleobiology database (PBDB)
Type specimen-based fossil-occurrence-based
No. of references 142 19
No. of genera 60 26
No. of species 187 98
No. of specimens/occurrences 6025 138
Found in 2018 1998

Website (last access: 22 October 2021)

http://www.deepbone.org

https://paleobiodb.org/
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Figure 5. Heat map of Antiarcha fossil sites based on the modern world map. Each spot represents a single fossil site. The blue color
indicates the area with sparse fossil sites. The red color indicates the area with dense fossil sites.

isting research. The distribution of Antiarcha reached a peak
in Givetian. “Bothriolepidoidei”, and Asterolepidoidei rep-
resent the main groups of Antiarcha in Givetian, comprising
five bothriolepidoid genera with 42 fossil locations and nine
asterolepidoid genera with 49 fossil locations.

3.4 First appearance record

A taxon’s first appearance record or lineage is important in
paleontology and evolutionary biology. It renders a hard min-
imum constraint on molecular clock calibration for a taxon
(Benton and Donoghue, 2007; Benton et al., 2009; Donoghue
and Benton, 2007). Based on our dataset, the oldest record
of yunnanolepidoids or antiarchs is Shimenolepis granifer-
ous from the Xiaoxi Formation at Shanmen Reservoir, Lix-

https://doi.org/10.5194/essd-15-41-2023

ian County, Hunan, China. Shimenolepis was first described
as the oldest known placoderm, dated as Telychian of Llan-
dovery (Janvier, 1996; Wang, 1991). However, after a de-
tailed stratigraphic work, Zhao et al. (2016) suggested that
the age of Shimenolepis is late Ludlow rather than late Llan-
dovery. Janvier and Tong-Dzuy (1998) also documented an
indeterminate yunnanolepidoid (Antiarcha gen. sp. indet.)
from the Do Son Formation of northern Vietnam, which
could be another earliest antiarch potentially.

The oldest sinolepid is Liujiangolepis suni, from the
Nakaoling Formation (Pragian), Xiangzhou, Guangxi, China
(Wang, 1987). The oldest bothriolepidid is Houershanaspis
zhangi, documented from the Danlin Formation (Pragian) in
Houershan, Dushan county, Guizhou, southwestern China,

Earth Syst. Sci. Data, 15, 41-51, 2023
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Figure 6. The distributions of Antiarcha during Devonian. Each spot represents the location of one specimen on the paleogeographic map.
Specimens from the same locality and the same age overlap each other. The paleo-coordinates are calculated by TrackPoint. Colors denoting

respective groups follow Fig. 4.

based on a bothriolepid-like anterior median dorsal plate (Lu
et al., 2017). The earliest asterolepidoid records are repre-
sented by Wurungulepis and some disarticulated specimens,
which have been documented from the Broken River Forma-
tion, Broken River, Australia. The age of the Broken River
Formation was first referred to Eifelian and then reassigned
to Emsian (serotinus Zone) (Burrow, 1996; De Pomeroy,
1996; Young, 1984, 1990).

Earth Syst. Sci. Data, 15, 41-51, 2023

4 Data availability

The current dataset achieved via Zenodo repre-
sents a static version of the dataset in October 2022
(https://doi.org/10.5281/zen0do.6536446 (Pan and Zhu,
2021). The latest version of the dataset is always freely
available via https://deepbone.org/ (last access: 22 Octo-
ber 2022).
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5 Conclusions

We presented here an open-access dataset of Antiarcha, the
most basal jawed vertebrate, from the late Silurian to the
Late Devonian. This dataset significantly expands the pre-
viously available data of antiarch fossils. Paleontologists,
stratigraphers, and evolutionary biologists could import the
tab-delimited file for future research studies, especially for
biodiversity analysis, stratigraphic correlation, and molecular
clock calibration. With the information of 6025 specimens,
our Antiacha dataset is far more comprehensive than the
other sources in lithostratigraphy and specimen details. Data
are significant for quantitative analysis and potentially con-
tribute to data-driven paleontology research. We performed
a visualization of the data to show the spatiotemporal dis-
tribution of Antiarcha. In brief, Antiarcha first appeared in
the Pan-Cathaysia province during the late Ludlow and then
boomed worldwide. At the end of Devonian, Antiarcha was
extinct along with the traditional placoderms. The available
Antiarcha data may be just the tip of the historical reality due
to the incomplete fossil record. We will continue to update
the dataset with the latest publication.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-41-2023-supplement.
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