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Abstract. The performance of numerical, statistical, and data-driven diagnostic and predictive crop production
modeling relies heavily on data quality for input and calibration or validation processes. This study presents a
comprehensive database and the analytics used to consolidate it as a homogeneous, consistent, multidimensional
genotype, phenotypic, and environmental database for maize phenotype modeling, diagnostics, and prediction.
The data used are obtained from the Genomes to Fields (G2F) initiative, which provides multiyear genomic
(G), environmental (E), and phenotypic (P) datasets that can be used to train and test crop growth models to
understand the genotype by environment (GxE) interaction phenomenon. A particular advantage of the G2F
database is its diverse set of maize genotype DNA sequences (G2F-G), phenotypic measurements (G2F-P),
station-based environmental time series (mainly climatic data) observations collected during the maize-growing
season (G2F-E), and metadata for each field trial (G2F-M) across the United States (US), the province of On-
tario in Canada, and the state of Lower Saxony in Germany. The construction of this comprehensive climate
and genomic database incorporates the analytics for data quality control (QC) and consistency control (CC) to
consolidate the digital representation of geospatially distributed environmental and genomic data required for
phenotype predictive analytics and modeling of the GXE interaction. The two-phase QC—CC preprocessing algo-
rithm also includes a module to estimate environmental uncertainties. Generally, this data pipeline collects raw
files, checks their formats, corrects data structures, and identifies and cures or imputes missing data. This pipeline
uses machine-learning techniques to fill the environmental time series gaps, quantifies the uncertainty introduced
by using other data sources for gap imputation in G2F-E, discards the missing values in G2F-P, and removes rare
variants in G2F-G. Finally, an integrated and enhanced multidimensional database was generated. The analytics
for improving the G2F database and the improved database called Climate for OMICS (CLIM4OMICS) follow
findability, accessibility, interoperability, and reusability (FAIR) principles, and all data and codes are available
at https://doi.org/10.5281/zenodo.8002909 (Aslam et al., 2023a) and https://doi.org/10.5281/zenodo.8161662
(Aslam et al., 2023b), respectively.
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1 Introduction

The evolving nature of Earth system models, proximal and
remote sensing, instrumentation, artificial intelligence, and
data availability requires a more comprehensive suite of an-
alytics for quality and consistency controls (Livneh et al.,
2015; Reyer et al., 2020; Quifiones et al., 2021; Rico et al.,
2021; Westhues et al., 2022; Winn et al., 2023) that foster
democratization of data collection, management, transforma-
tion, and adoption of findability, accessibility, interoperabil-
ity, and reusability (FAIR) principles. In this changing digital
environment, data quality and uncertainty assessment of the
training and testing datasets become critical for improving
model performance and the ability to predict systems of natu-
ral and human origins (Furche et al., 2016; Jiang et al., 2017;
Sarzaeim et al., 2022a). We introduce the analytics for qual-
ity and consistency controls useful for the development and
consolidation of an enhanced, high-quality, large-scale, and
multidimensional database for maize phenotype predictabil-
ity using genomic and phenomic (OMICS) data and meteo-
rological and climatological observations distributed across
maize production areas in the US, the province of Ontario in
Canada, and the state of Lower Saxony in Germany.

The creation of multidimensional databases consistently
grapples with integrating the multiple sources and spatiotem-
poral attributions of data, including variety, velocity, volume,
and seven other characteristics known as the “Vs” of big data
(Firican, 2017; Janev, 2020). Exploration, discovery, plan-
ning, and management of biological systems under volatile
and unevenly distributed climate conditions favor the col-
lection, transfer, transformation, and construction of multi-
dimensional databases with disparate structures and uncer-
tainties (Gonzalez-Rouco et al., 2001; Hubbard et al., 2005;
Bronnimann et al., 2006; Sertel et al., 2010; Chiu et al., 2009;
Sarzaeim et al., 2022a). The use of accessible analytics for
quality and consistency controls for a growing availability of
OMICS data including climate data becomes critical for cre-
ating and making valuable databases, favoring data construc-
tion, access, improvement, and use for discovery and innova-
tion (Overpeck et al., 2011; Shekhar et al., 2017; Baru et al.,
2022).

Generally, quality control (QC) frameworks are character-
ized by the identification of technical errors in data collec-
tion (Livneh et al., 2015) and the diagnostics and removal
of data outliers (Gonzalez-Rouco et al., 2001; Alkhalifah et
al., 2018). Habib et al. (2010) described QC as a process de-
signed to check the correctness and completeness of models’
input data. QC is traditionally oriented to detect and discard
erroneous samples, decreasing uncertainties in model out-
puts. For example, Chiu et al. (2009) employed QC based
on geospatial interpolation to identify missing data and elim-
inate erroneous values in a dataset of geospatially and het-
erogeneously distributed meteorological stations. While the
heterogeneity of the spatially distributed data is critical, tem-
poral gaps are an integral part of a robust database for predic-
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tive phenotype analytics and models. Lin and Habib (2021)
proposed a framework for QC of multitemporal data for phe-
notyping from lidar, developing external and internal con-
trols to increase accuracy in automated phenotyping. In an-
other study, van Wart et al. (2013) applied a QC algorithm
to detect the incorrect temperature, precipitation, relative hu-
midity, and solar radiation values in time series released by
NOAA in parts of the US Midwest and replaced the missing
values using interpolation techniques. Similar approaches
have been developed and operationalized for hydroclimate
data (Maurer et al., 2002; Livneh et al., 2013, 2015). The
application of QC analytics for high-dimensional databases
has been tested in crop models such as HybridMaize (van
Wart et al., 2013) and statistical models such as the genotype
by environment (GXE) approach (Sarzaeim et al., 2022a) to
predict maize yields. The latter found that improvements in
yield predictability are directly related to data improvements.
However, it remains to be seen whether additional improve-
ments in the inputs and the model or the database enhance-
ment based on certain variables can improve the predictabil-
ity of phenotypes and, eventually, identify the underlying
processes that drive it.

On the other hand, the uncertainty in monitoring and
sampling and the inconsistency among the collected data
structures and formats are other limitations of predictive
analytics and models. Zeng et al. (2015) defined consis-
tency control (CC) as an intercomparison among indepen-
dent datasets of the same product, leading to possible syner-
gies to enhance the product. The CC contributes to consoli-
dating multidimensional climate and OMICS databases with
different formats for phenotype simulations. The designed
CC cross-checks the quality-controlled OMICS and climatic
datasets, discarding discontinued data segments containing
corresponding missing values and synthesizing the remain-
ing consistent datasets ready for crop growth simulation and
prediction applications. Several studies underscore QC and
CC’s critical and complementary roles in improving model
prediction accuracy (Feng et al., 2004; Matthews et al.,
2013). For example, Hartkamp et al. (1999) showed how the
accuracy of agronomic models’ output is affected by the in-
put data quality, emphasizing that data QC is a prerequisite
for model applications and that the data CC is complemen-
tary for successful model operations. The solutions for the
incompatibility of input data and their effects on data avail-
ability improvement have been presented in their study to
show the critical role of CC and QC practices. Other efforts
by Amaranto et al. (2019, 2020) illustrate the need for QC
and CC data to improve the predictability of variables con-
nected by human or natural origin processes, such as crop
evaporative demands and natural and engineered water sup-
plies.

Uncertainty analysis is critical for developing and imple-
menting models and analyzing observations and simulations.
Surendran Nair et al. (2012) and Merchant et al. (2017)
shed some light on the sources of uncertainty in models’
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inputs, structures and parameters, and calibration or valida-
tion. Mufioz-Arriola et al. (2009), Pogson (2011), Asseng
et al. (2013), and Jaimes-Correa et al. (2022) explain that
simplifying the models or using variables that represent key
complex processes can contribute to explaining the sensi-
tivities in model performance to uncertainties in input data
and multiple environmental processes. The integration of
multiple variables also represents a challenge for estimating
and explaining uncertainties that emerged from, for example,
compounded temperature and precipitation and is affected by
sampling density and interpretation of spatially distributed
data (Rehana et al., 2022; Liu et al., 2022). Furthermore, un-
certainties associated with climate and crop model perfor-
mance require data that allow analyses of error propagation
from the inputs to the outputs (Asseng et al., 2013; Ama-
ranto et al., 2020). The diagnostic analyses of observed data
and the sensitivity of model performance to the uncertainties
in the inputs are related to the quality and consistency con-
trols in high-dimensional datasets. These relationships also
show the necessity of expanding input data and quantifying
uncertainties to improve models and model performance for
geospatially suitable and reliable applications (Robertson et
al., 2014).

In crop phenotype predictability, large-scale and geospa-
tially distributed experiments integrate crop genetics and cli-
mate data to map regions suitable for growing and manag-
ing resources adaptively to climate and land use changes
(Muiioz-Arriola et al., 2009; Tang et al., 2012; Rosenzweig
et al., 2013; Jarquin et al., 2014; Ruane et al., 2015; Jar-
quin et al., 2021; Sarzaeim et al., 2022a). The Genomes
to Fields (G2F) initiative is a large-scale effort designed
and operated to improve the predictability of maize pheno-
types across the US (http://www.genomes2fields.org, last ac-
cess: 21 August 2023; Genomes to Fields, 2013). The G2F
initiative has released a well-documented, large-scale, and
sharable database for maize breeding, capturing the pheno-
types in response to genetic improvement and environmen-
tal changes (Alkhalifah et al., 2018). Engineers, researchers,
and economists interested in understanding maize genetic
functionality across environments can benefit from the G2F
database for phenotypic simulation using statistical models
including the genotype by environment (GXE) interaction
(Lawrence-Dill et al., 2019). The initial implementation of
QC in the G2F database aims to remove the outliers (Alkhal-
ifah et al., 2018). However, large-scale enterprises are more
likely to expand errors and inconsistencies like missing sam-
ples, uneven records, and emerging locations. Additionally,
inconsistencies between the collected data structures and for-
mats have been maintained rather than the editing for con-
sistency (Alkhalifah et al., 2018). These limitations reduce
the advantages of using the G2F database for implement-
ing the GXE models. Consequently, improving the datasets
through gap-filling and providing a consistent data structure
and format is necessary for implementing predictive analyt-
ics and models adequately. Hence, we use the G2F data to
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test a quality and consistency control (QC-CC) framework
for the database improvement and uncertainty quantification
of input data in the predictability of maize yields in the US,
the province of Ontario in Canada, and the state of Lower
Saxony in Germany. The G2F database offers a geospatial
and multidimensional suite of variables useful for predicting
maize traits using models including the GxE interaction. It
can improve parameterizations of the Earth system and crop
models (Rosenzweig et al., 2013; Ruane et al., 2015; Winn et
al., 2023). The required four-dimensional database for train-
ing and testing the GXE models and the output visualization
consists of (1) sequences of maize genomic molecular mark-
ers for multiple inbred genotypes (G2F-G), (2) observed phe-
notypic variables (G2F-P), (3) time series of spatially dis-
tributed environmental variables for each experimental trial
(G2F-E), and (4) metadata for further analytics and geospa-
tial visualization purposes (G2F-M). Figure 1 illustrates a
conceptual framework of the quality and consistency control
algorithms of the G2F data to build homogeneous, consis-
tent, and multidimensional OMICS and environmental time
series for maize phenotype modeling and prediction.

Open and valid data sources are the foundation for open-
source science (Wilkinson et al., 2016; Peng et al., 2022),
which is built upon FAIR principles. When these databases
follow the FAIR principles, researchers and communities
trigger discovery, innovation, and the democratization of dig-
ital resources (Livneh et al., 2015; Wilkinson et al., 2016;
Amaranto et al., 2018; Quifiones et al., 2021; Peng et al.,
2022). However, access constraints are still a limiting fac-
tor in user innovation and more expedited improvement
in data and algorithms for collection-to-curation pipelines.
This study consolidates a homogeneous, enhanced, and high-
dimensional database following the FAIR data principles for
applications in maize breeding; phenotypic modeling; and
prediction within statistical, data-driven, or biophysical mod-
eling frameworks.

The objectives of this study are to (1) design and develop
a QC—CC framework to construct an enhanced multidimen-
sional database for GXE modeling and geospatial analyses of
maize phenotype predictability, (2) quantify the environmen-
tal input data uncertainties used for maize yield predictions,
and (3) provide access to the database and the QC-CC frame-
work pipeline.

The study contains six additional sections. Section 2
provides a comprehensive description of the original G2F
database containing a review of each dataset and the as-
sociated limitations of the G2F data and metadata. Sec-
tion 3 contains the foundation and algorithm explanation
for the QC module for each dataset (Sect. 3.1), the CC al-
gorithm and the compatible multidimensional datasets from
the quality-controlled data (Sect. 3.2), and the quantification
of uncertainty based on the environmental time series errors
(Sect. 3.3). The results and discussion of the study are pre-
sented in Sect. 4. Finally, the data availability statement and
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Figure 1. A conceptual framework of quality and consistency control algorithms for the multidimensional Genomes to Fields (G2F) OMICS
and hydroclimatic database. “G2F-G” denotes G2F genomic data, “G2F-P” denotes G2F phenotypic data, “G2F-M” denotes G2F metadata,
and “G2F-E” denotes G2F environmental data. The map indicates the locations and number of sites per state used by the G2F initiative and

represented in CLIM4AOMICS (the map is expanded as Fig. Al).

concluding remarks are summarized at the end of Sect. 4 and
Sect. 5, respectively.

2 G2F database dimensions

The goal of the G2F initiative is to collect the key datasets
for understanding the roles played by the genotype, environ-
mental conditions, and agricultural management practices in
crop traits (Lawrence-Dill et al., 2019). Since 2014, the G2F
initiative has designed several maize field experiments across
the US, the province of Ontario in Canada, and the state of
Lower Saxony in Germany to integrate a large-scale and mul-
tidimensional database required for maize trait prediction.
This database provides opportunities for further research and
development in data analytics and different types of mod-
eling approaches for maize phenotype prediction by incor-
porating genotypes by environment interactions. The G2F
platform is updated annually to publish the genomic data,
phenotypic data, environmental data, and metadata collected
from the maize field trials. The genomic data are published in
one file containing the molecular markers of all maize inbred
lines tested and/or used as parents of the hybrids observed
in the G2F sites in the experimental years. While the pheno-
types, environments, and metadata are published in separate
annual years, there are two released versions for all pheno-
typic and environmental data for a given year: (1) raw and
(2) clean data files. The raw file is the first integrative version
of the data collected by the G2F collaborators at each experi-
mental site. After implementing initial checks on the format,
data structure, and wrong-entry calibration, the clean file is
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the controlled version of the raw file. This study uses the
clean version files, yet there are still several missing values,
typos, and data structure inconsistencies among the clean
version files from different years, which constrains the use
of data for any analytics, simulation, and visualization prac-
tices (Genomes to Fields initiative, 2014, 2015, 2016, 2017,
2018, 2019, 2020, 2021).
The following subsections review each G2F dimension.

2.1 Dimension 1: G2F genomic data (G2F-G)

G2F has generated, stored, and released molecular ge-
netic sequences at the level of single nucleotide polymor-
phisms (SNPs) for 1576 lines tested across the environments.
The SNPs are the most common type of genetic variation
among individuals. These data have been generated by the
genotyping-by-sequence method, known as GBS (McFar-
land et al., 2020). The hierarchical data format (HDF) stores
the sequenced raw SNP data of all tested cultivars for data re-
liability and storage efficiency. The raw genomic data stored
in one single HDF file are available through the G2F platform
for public access. Figure 2 shows a screenshot of a slice of
the G2F-G hierarchical database stored in a single HDF file.

The published G2F-G HDF file is designed to be pro-
cessed by the software Trait Analysis by aSSociation, Evolu-
tion and Linkage (TASSEL; Bradbury et al., 2007). TASSEL
contains statistical approaches for trait association mapping,
evolutionary patterns, and disequilibrium linkage (TASSEL,
2022). Table 1 is a screenshot of a portion of the G2F molec-
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Table 1. Overview of raw G2F-G data illustrating the genotyping by sequencing the molecular marker sequences of different hybrids stored
in a single HDF-format file. The first column shows the maize hybrid codes, and the first row shows the locus information. The letters A, T,
G, C, and R are a sample of the major and minor alleles in different marker positions. The letter N denotes the missing markers in a genetic
sequence at each molecular site. The source file directory for the genetic data is in “File Upload/Genotype/Markers.txt” in the database
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Figure 2. A screenshot of the raw G2F-G data file stored in a single
HDF file showing a portion of the complex hierarchical data struc-
ture of SNP sequences.
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ular marker dataset open in TASSEL, illustrating a compre-
hensive structure of genetic sequences.

2.2 Dimension 2: G2F maize phenotypic data (G2F-P)

Different types of phenotypic variables have been collected
as part of the G2F experiment: time-related traits recorded
during the growing season such as the number of days to
silking or pollen or flowering traits; yield components such
as plant height (cm), ear height (cm), ear width (cm), and
ear length (cm); and harvest or end traits such as grain
yield. Other traits like root or stalk lodging occurrence are
monitored before the harvest, and the number of stands,
grain moisture (%), and grain yield (bu A~ are collected
at harvest. More additional information, phenotypic variable
definitions, and measurement techniques and devices can
be found in the Genomes to Fields Phenotyping Handbook
(http://www.genomes2fields.org; Genomes to Fields, 2013).
All the mentioned variables for all cultivars are recorded and
released annually in comma-separated-values (.csv) format
through the G2F platform. Table 2 represents data types of
different variables and shows a slice of the G2F-P dataset.

2.3 Dimension 3: G2F environmental data (G2F-E)

Each G2F trial field is equipped with a WatchDog 2700
weather station (http://www.genomes2fields.org). These
weather stations record the environmental data, mainly the
climatic drivers in maize growth during the growing sea-
son, including temperature (7', °C), dew point (DP, °C), rel-
ative humidity (RH, %), solar radiation (SR, W m~2), rain-
fall (R, mm), wind speed (WS, m s~1), wind direction (WD,
°), and wind gust (WG, ms~1). The annual environmental
data are collected using weather stations at each experimen-
tal field with a temporal resolution of 30 min and stored in

Earth Syst. Sci. Data, 15, 3963—-3990, 2023
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Table 2. Overview of the raw G2F-P data stored in “.csv” file format showing detailed information of the phenotypic observations in 2014 as one example of the multiyear data. The
“Year” column shows the year of a specific G2F experiment, the “Field location” column shows the four-character name of the G2F experiment consisting of the state abbreviation in
the first two characters and the name of the hybrid experiment in the last two characters tested in that state, the “Recld” column shows the ID of the phenotypic record, the “Source”
column shows the source of the collected phenotypic sample portal, the “Plant height (cm)” column shows the height of the plant in centimeters, the “Ear height (cm)” column shows the
height of the ear in centimeters, the “Stand count (plants)” column shows the number of plants per plot at harvest, the “Root lodging (plants)” column shows the number of plants that
show the root lodging per plot, the “Stalk lodging (plants)” column shows the number of broken plants per plot at harvest, and the “Grain moisture (%)” column shows the percentage
of the water content in plants at harvest. The other phenotypic variables have been measured and stored in similar columns. The blank cells represent the missing values of phenotypic
observations. The source file directory for the phenotypic data example is in “File Upload/Phenotype/g2f_2014_hybrid_data_clean.csv” in the database package.

Year  Field Recld  Source Pedigree Plant Ear Stand Root Stalk Grain Test Plot Grain
location height  height count lodging lodging moisture weight  weight yield
(cm) (cm)  (plants) (plants) (plants) (%) (lbs _u:\_v (Ibs)  (bu >\_V
2014 DEHI 2209111  WEI13-195ISO-049-X-POL-195 MOG_PHG83-129-1-1-1-1-B/LH195 186 104 40 0 4 18 54.1 10.04 98.29
2014 DEHI 2209430 13WJWE:LH185:2073 MO039/LH185 172 85 37 0 0 19.5 18.8 180.69
2014 DEHI 2209118  WEI13-1951SO-390-X-POL-195.3 MOG_MO45-055-1-1-1-1-B/LH195 230 109 37 0 1 16.7 54.3 12.59 125.21
2014 DEHI 2209199  13WJWE:LH185:2865 Z022E0130/LH185 237 103 36 0 0 18.7 54.3 8.26 80.17
2014 DEHI 2209513  13WJWE:LH185:2601 W10004_0032/LH185 166 77 35 0 0 18 15.8 154.68
2014 DEHI 2209203  13WIJWE:LH185:2847 Z022E0046/LH185 266 136 35 0 0 19.3 55.7 15.39 148.28
2014 DEHI1 2209208 13WJWE:LH185:2661 Z013E0028/LH185 228 115 35 0 0 18.8 55.9 12.6 122.15
2014 DEHI 2209182  13WJWE:LH185:2856 Z022E0009/LH185 234 103 33 0 0 20.2 523 10.81 102.99
2014 DEHI 2209086  WEI13-195ISO-361-X-POL-195 B73_NC230-041-1-1-1-1/LH195 227 125 26 0 0 19.3 539 10.86 104.63
2014 DEHI 2209169  13WJWE:LH185:2013 MO0355/LH185 248 123 24 0 0 18.9 55.3 8.41 81.43
2014 DEHI 2209156  13WJWE:LH185:2214 MO172/LH185
2014 DEHI 2209168  13WJWE:LH185:2205 MO114/LH185
2014 DEHI 2209170  13WJWE:LH185:2073 MO0039/LH185
2014 DEHI 2209160 13WJWE:LH185:2046 MO0378/LH185
2014 DEHI1 2209148  13WJWE:LH185:2055 MO0266/LH185
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.csv format. Data collected from every weather station are
stored in one file for each year and are accessible through the
G2F website. The National Weather Service (NWS) station
in the Automated Surface Observing Systems (ASOS) net-
work nearest to each of the G2F weather stations installed in
the trial field has been used for false-data calibration by G2F
collaborators across the G2F layout (Alkhalifah et al., 2018;
Jarquin et al., 2021). The hydroclimatic time series extracted
from the NWS stations have been released along with the
G2F hydroclimatic time series observed in the experiments.
Table 3 represents a screenshot of a slice of G2F-E data in
2014 data stored in .csv format.

External environmental databases

To gap-fill the climatic datasets, we need to use externally
accessible databases. Here three publicly available databases
are proposed for use for this purpose: (1) the National So-
lar Radiation Database (NSRDB), modeling and integrating
a half-hourly 4 x 4 km? meteorological dataset in the nation
developed by the U.S. Department of Energy (Sengupta et
al., 2018); (2) DayMet, the 1 x 1 km? Daily Surface Weather
and Climatological Summaries developed by Thornton et
al. (2022); and (3) ASOS, developed by the NWS, which is a
station-based program containing daily and subdaily histor-
ical and forecasting hydroclimates. These public databases
release temperature (°C), dew point (°C), relative humidity
(%), solar radiation (W m~2), rainfall (mm), pressure (mb;
Pa), wind speed (m g1 ), wind direction (°), and precipitable
water (mm).

2.4 Dimension 4: G2F metadata (G2F-M)

The metadata information is supplementary data about each
experiment, including the name, ID, year, state, city, farm
name, planting and harvesting dates, weather station serial
number, weather station geolocation, and farm boundaries.
These metafiles are released annually in .csv format through
the G2F website. Table 4 represents a screenshot of a slice of
G2F-M data in 2014 stored in .csv format.

3 Methodology

3.1 Database quality control

The QC-CC is a two-module data preprocessing pipeline
developed in Python for each of the G2F data dimensions
(G2F-G, G2F-P, G2F-E, and G2F-M) released between 2014
and 2017 (Fig. 2). The QC module focused on four general
phases, and they have specific extensions for each data di-
mension. The general QC phases are

1. reading raw files,

2. checking the data format and structure,
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3. detecting missing values and data gaps in the datasets,
and

4. implementing predictive data analytics to fill gaps.

In the first step, the raw files for G2F-P, G2F-E, and G2F-
M are read to identify whether the necessary information
is recorded in the right column with the appropriate header
name (some headers are presented in Tables 2—4). The com-
plete lists of appropriate headers for each data dimension are
represented in Sect. 3.1.2-3.1.4. When the released files lack
structure and a consistent format, the next step is to correct
the respective columns and header names. Then, the miss-
ing values in each dataset are searched and identified, and
the appropriate QC methods (i.e., assign an average value for
G2F-G and a predicted value based on a deep neural network
for G2F-E; Sarzaeim et al., 2022a) are adopted to impute the
missing values. After performing all of the above steps for
each dataset, the quality-controlled datasets are restored in
the updated files and transferred to the CC module. The sub-
sections below explain the methodological QC steps for each
G2F data dimension (Fig. 2 illustrates the associated algo-
rithm).

3.1.1 Submodule 1: G2F-G

G2F stores and releases genomic sequence data in an HDF
file. It is noteworthy that, unlike the phenotypic data, envi-
ronmental data, and metadata released annually through the
G2F website, the genomic data file has been made available
once in a consolidated HDF file containing the molecular
marker sequences of all maize inbred lines used as parents
of the hybrids tested in all the G2F experiments.

First, we downloaded the raw genotypic data file from the
G2F platform, converted it to text (.txt) format, named it
“Markers.txt”, and saved it in the “File Upload/Genotype”
directory in the database package (Aslam et al., 2023a). The
text file is then preprocessed to (1) convert the SNPs to nu-
merical genotypic data, (2) exclude the genotypes with a
large percentage of missing values in their genetic sequence,
(3) exclude the genotypes that lack allelic variation, and
(4) impute the missing SNPs for the remaining cultivars (see
Fig. 2). These steps were integrated and implemented as fol-
lows in a single script in Python named “0O1_Transforma-
tions.py” located in the “G2F data preprocessing/Genotype”
directory.

1. The raw HDF file released by G2F has been created in
the structure that works only in TASSEL as “blackbox”
software. The developed script extracts the molecular
genetic markers from the text file and converts them to
numerical genotypes in .csv format. This step facilitates
the processing of the SNPs within the Python environ-
ment. The numerical genotype values are the probabil-
ity of a major allele being selected randomly in a site
marker. Thus, the minor and major homozygous alleles
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Table 3. Overview of raw G2F-E data stored in .csv file format showing the environmental time series in tabular format for 2014 as one example of the multiyear data. The “Record
number” column shows the number of weather station records in each experiment. The “Experiment” column shows the four-character name of the G2F experiment consisting of
the state abbreviation in the first two characters and the name of the hybrid experiment in the last two characters tested in that state. The “Station ID” column shows the ID of the
weather station. The “NWS network” and “NWS station” columns show the nearest NWS network and station used for initial QC by the G2F collaborators. The “Day (local)”, “Month
(local)”, “Year (local)”, and “Day of year (local)” columns show the local day, month, year, and day of year of the weather record. The “Date and time (UTC)” column shows the
coordinated universal time. The “Temperature (°C)”, “Dew point (°C)”, “Relative humidity (%)”, “Solar radiation (W Blwv:, “Rainfall (mm)”, *“ Wind speed (m mlJz, “Wind direction
(°)”, and “Wind gust (m s~1)” columns show the hydroclimatic time series. The blank cells represent the missing values of phenotypic observations. The source file directory for the
environmental data example is in “File Upload/Environment/g2f 2014_weather.csv” in the database package.

Record  Experiment Station NWS NWS Day Month Year Dayof Time Date and time Temperature ~ Dew  Relative Solar  Rainfall Wind Wind Wind
number ID  network station  (local) (local) (local) year  (local) (UTC) (°C)  point humidity radiation (mm) speed  direction gust

(local) ©0) % (Wm?) (ms™h) ©) s
191 DEH1 9079 DE_ASOS GED 13 5 2014 133 14:00:00  13/05/2014 18:00 22.89 14.33 58.2 942 0 4.47 18 7.6
192 DEH1 9079 DE_ASOS GED 13 5 2014 133 14:30:00  13/05/2014 18:30 21.78 13.89 60.5 918 0 4.92 40 7.6
193 DEH1 9079 DE_ASOS GED 13 5 2014 133 15:00:00  13/05/2014 19:00 21.56  13.17 58.4 855 0 4.02 21 6.71
194 DEH1 9079 DE_ASOS GED 13 5 2014 133 15:30:00  13/05/2014 19:30 20.83 12.89 60 778 0 4.47 14 7.15
195 DEH1 9079 DE_ASOS GED 13 5 2014 133 16:00:00  13/05/2014 20:00 2072 1272 59.8 728 0 4.92 351 7.15
196 DEHI 9079 DE_ASOS GED 13 5 2014 133 16:30:00  13/05/2014 20:30 2022 12.83 62 642 0 4.02 19 6.26
197 DEH1 9079 DE_ASOS GED 13 5 2014 133 17:00:00  13/05/2014 21:00 20.06 12.67 62.1 552 0 3.58 354 5.81
198 DEH1 9079 DE_ASOS GED 13 5 2014 133 17:30:00  13/05/2014 21:30 19.28 12.89 66 452 0 4.47 5 6.26
199 DEHI 9079 DE_ASOS GED 13 5 2014 133 18:00:00  13/05/2014 22:00 17.89  12.78 71.6 350 0 4.92 32 5.81
200 DEH1 9079 DE_ASOS GED 13 5 2014 133 18:30:00  13/05/2014 22:30 759 284 0 4.47 25 5.81
201 DEH1 9079 DE_ASOS GED 13 5 2014 133 19:00:00  13/05/2014 23:00 16 12.5 79.6 155 0 3.58 36 5.36
202 DEH1 9079 DE_ASOS GED 13 5 2014 133 19:30:00  13/05/2014 23:30 1494 1222 83.7 79 0 3.58 25 6.26
203 DEH1 9079 DE_ASOS GED 13 5 2014 133 20:00:00  14/05/2014 0:00 14.06 12 87.4 8 0 4.02 33 6.26
204 DEH1 9079 DE_ASOS GED 13 5 2014 133 20:30:00 14/05/2014 0:30 13.67 12 89.8 0 0 3.13 12 5.36
205 DEH1 9079 DE_ASOS GED 13 5 2014 133 21:00:00  14/05/2014 01:00 1322 12.17 933 0 0 3.13 9 5.36
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Table 4. Overview of raw G2F-M data stored in .csv file format showing the metadata collected for the 2014 experiments as one example of
the multiyear data. The “Location name” column shows the state and the number of the experiment in that state. The “Type” column shows
the type of experiment, which can be hybrid or inbred. The “Experiment” column shows the four-character name of the G2F experiment
consisting of the state abbreviation in the first two characters and the name of the hybrid experiment in the last two characters tested in
that state. The “City” column shows the city in which the experiment was carried out. The “Farm” column shows the name of the farm on
which the experiment was carried out. The “Field” column shows the name of the field of the experiment. The “Long” and “Lat” columns
show the longitude and latitude of the weather station installed in the field. The source file directory for the metadata example is in “File

Upload/Meta/g2f_2014_field_characteristics.csv” in the database package.

Location Type Experiment  City Farm Field Long Lat
name
DE Hybrid DEHI1 Georgetown Elbert N. & Ann V. Carvel 27AB —75.20 38.63
Research & Education Center
GA Hybrid GAHI1 Tifton Bellflower 18 —83.55 31.50
1A1 Hybrid IAHI1 Ames Worle —93.69 41.99
1A2 Hybrid IAH2 Carroll 9472  42.06
1A3 Hybrid IAH3 Keystone —-92.25 41.98
1A4 Hybrid IAH4 Crawfordsville  Southeast Research Farm 14 —91.48 41.19
IL1 Hybrid ILHI1 Urbana Maxwell Farms MF500 —88.23 40.06
IN Hybrid INHI West Lafayette ~ Purdue ACRE 97/98 —87.00  40.48
MN Hybrid MNHI1 Waseca Southern Research & NA —93.53 44.06
Outreach Center
MO1 Hybrid MOHI1 Columbia Bradford Cla —-92.20 38.89
MO2 Hybrid MOH2 Columbia Rollins (Hinkson Creek) Block 5 —92.35 38.92
Bottoms
NC Hybrid NCHI1 Kinston Cunningham Research Farm L block 5 —71.57 35.29
NE1 Hybrid NEHI1 Lincoln East Campus 1807 —96.65 40.83
NE2 Hybrid NEH2 North Platte Dryland farm —100.74  41.05
NE3 Hybrid NEH3 Brule North Dryland West 1/4  —101.99  41.16
NY1 Hybrid NYHI Aurora Musgrave Research Farm J —76.65 42.72
NY2 Hybrid NYH2 Aurora Musgrave E4 —76.65 42.73
ONI1 Hybrid ONHI1 Waterloo Rosdendale Huras —80.42 43.49
ON2 Hybrid ONH2 Ridgetown On campus Range 5 —81.88 42.45
TX1 Hybrid TXHI1 College Station  University Farm 224 —-96.43 30.54
TX2 Hybrid TXH2 Halfway Halfway Pivot —101.94 34.18
WI Hybrid WIHI1 Madison West Madison M1400 —89.53  43.057

are converted to 0 and 1, respectively, and the heterozy-
gous alleles are converted to 0.5.

. A script was developed to discard the cultivars with
more than 20 % missing values in their genetic se-
quence, providing enough DNA information for further
analyses. The 20 % threshold percentage is called the
percent of missing values (PMV), which varies accord-
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ing to the criteria of the data user. Here, we used the
PMYV proposed by Jarquin et al. (2017).

. The SNPs with a minor allele frequency (MAF) smaller

than 3 % were removed. This filter aims to discard the
genotypes that lack allelic variation. As in the previ-
ous step, the MAF threshold used is from Jarquin et
al. (2017).
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4. The remaining missing SNPs for each individual are
filled using the average of the numerical genotypes at
each locus (p). If the average is equal to or smaller
than 0.5 (the probability of heterozygous selection), the
missing values are filled by the p. Otherwise, the miss-
ing values are imputed by 1 — p. The screened lines and
their filled SNP sequences are generated and stored in a
clean version of genotypic data in “.csv” format.

3.1.2 Submodule 2: G2F-P

Multiple participants affiliated with the G2F initiative mon-
itored maize’s growth stages and harvest (http://www.
genomes2fields.org). Examples of phenotypes include plant
morphology (e.g., plant height, cm), ear morphology (e.g.,
ear height, cm; width, cm; length, cm), and plant produc-
tivity (e.g., grain moisture, %; yield, bu A~'). While in this
study we focused on yield for simulation and prediction pur-
poses (bu A1), other phenotypes are made available and can
be used.

The phenotypic datasets are released on an annual basis
through the G2F website in .csv format. First, for preprocess-
ing, we download the raw data files from all available years
and save them in the “File Upload/Phenotype” directory, and
then the QC is implemented to (1) check whether the first-
level data known as primary columns are available, (2) check
whether the second-level data known as secondary columns
are available, and (3) remove the missing samples (Fig. 2).
These steps are described below.

1. The primary columns are the first-level data nec-
essary for further processing. These columns are
“Year”, “Field Location”, “Pedigree”, “Plant Height
[cm]”, “Ear Height [cm]”, “Grain Moisture [%]”, and
“Grain Yield [bu A~!]”. The Python script “01_Pheno-
type_Files_Primary_Columns.py” verifies whether the
mentioned headers are available in the phenotypic files.
Note that the input is case-sensitive, and in many cases
there are typos in the headers in the raw files. Thus, the
script returns the associated error(s) with typos and sug-
gests how to fix them. The user fixes those typos manu-
ally in the raw files. Otherwise, the file is ready for the
secondary-column control step.

2. The secondary columns represent the second-level data
necessary for further analysis, but if they are not avail-
able in the raw files, they can be constructed based
on primary columns. These columns are “ID”, “Ex-
periment”, “Experiment ID”, ‘“Pedigree”, “P1”, and
“P2”. “Location” denotes the state and the name of
the hybrid experiment. “Experiment” refers to the en-
vironment, year, state, and name of the hybrid ex-
periment. “Experiment ID” refers to the unique ID,
which is the combination of the hybrid experiment’s
year, state, and name. P1 and P2 denote the maize
hybrid parental pedigrees’ names. The Python script
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“02_Phenotype_Files_Secondary_Column.py” controls
the availability of these columns. If they are not avail-
able in the raw files, they will be created automatically
from the data available in the primary columns.

3. We need the phenotypic observations to train and test
the crop growth model (e.g., the GXE model). In many
cases, the phenotype’s observed measurements have
been missed from recording, and thus the missing phe-
notypic samples are filtered out from the database by
applying the “01_Phenotypes.py” script.

The developed Python scripts for steps (1) and (2) are located
in the “File Control/Phenotype” directory, and the script for
step (3) is located at “G2F data pre-processing/Phenotype”
in the database package.

3.1.3 Submodule 3: G2F-E

The G2F environmental time series consists of 7 (°C), DP
(°C), RH (%), SR (Wm™2), R (mm), WS (ms~"), WD (°),
and WG (ms~!) collected during the growing season from
planting to harvest. The following QC steps and the devel-
oped Python scripts are designed to preprocess the above hy-
droclimatic variables. The users can adapt the scripts to inte-
grate other environmental time series.

The G2F-P and G2F-E QC steps are similar except for
some extensions of the latter. The G2F-P datasets are sin-
gle measurements sampled at a specific maize-growing stage
for each individual plant, while the G2F-E datasets are time
series of continuous hydroclimate records along the maize-
growing season for each experimental site. The hydroclimate
time series data required additional preprocessing actions to
form the G2F-E QC. The additional actions include the initial
elimination of erroneous hydroclimatic records, corrections
of experiment names, and dataset categorizations accounting
for the missing values.

For G2F-E preprocessing, we first download the raw
data files from all available years. Then, we save the data
files in the “File Upload/Environment” directory in the
database package and implement the QC. The QC procedure
(1) checks whether the first-level data, known as primary
columns, are available; (2) checks whether the second-level
data known as secondary columns are available; (3) checks
whether the missing samples in each experiment in each year
exist; and (4) imputes the data gaps (see Fig. 2). These steps
are described below in detail.

1. The primary columns are the first-level data nec-
essary for further processing. These columns are
“Station ID”, “Experiment”, “Day [Local]”, “Month
[Local]”, “Year [Local]”’, “Time [Local]”, Tem-
perature [C]”, “Dew Point [C]”, “Relative Humid-
ity [%]”, “Solar Radiation [Wm™2]”, “Rainfall
[mm]”, “Wind Speed [m s~11”, “Wind Direction [de-
grees]”, and “Wind Gust [ms~!']”. The Python script
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“01_Weather_Files_Primaty_Column.py” located
in subdirectory “File Control/Environment” checks
whether these columns with exactly the mentioned
headers are available in the environmental files. Note
that, like G2F-P, the input is case-sensitive. Thus, the
script exactly returns the associated error where there is
a mismatch and provides suggestions for fixing typos.
Also, the user needs to fix the typos manually in the raw
files. Otherwise, the file is ready for the next control
step.

. The secondary columns are the second-level data neces-
sary for further analysis, but if they are not available in
the raw files, they can be constructed based on primary
columns. The columns for weather data are “Record
Number” and “Day of Year [Local]”. The Python script
“02_Weather_Files_Secondary_Column.py” located in
“File Control/Environment” controls the availability of
these columns. If the columns are not available in the
raw files, they will be created automatically from the
data available in the primary columns.

. Before checking for the missing values, we can perform
an initial check on the time series and remove the re-
maining erroneous samples after the G2F collaborators
have implemented the QC. The “03_Control.py” script
is saved in the “File Control/Environment” directory.
This initial check occurs in the Python script and de-
pends on the weather variables and their possible value
range.

— For “Relative Humidity [%]”, the script removes
the x values if x < 0 or x > 100.

— For “Solar Radiation [W m~2]”, the script removes
the x values if x < 0.

— For “Rainfall [mm]”, the script removes the x val-
ues if x < 0.

— For “Wind Direction [degrees]”, the script removes
the x values if x <0 or x > 360 and assigns an
x value to empty if the “Wind Speed [ms™']” is
zero.

For further analysis, we need to have a consistent and
informative protocol to uniquely name the experiments
because of the many experiments implemented in each
state and field. Additionally, the name format should
be consistent in the entire QC module. We created a
name format that illustrates the split of the raw files
into as many .csv files as experiments that are recorded
in each raw environmental file. The newly generated
filenames are self-described as “YearStateExperiment”.
For example, “2014ILH1.csv” refers to the environ-
mental file containing the weather time series recorded
for experiment “H1” implemented in the state of “IL”
in the year “2014” and stored in .csv format. The
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scripts “01_Weather_Data_Reading.py”, which reads
the environmental data with correct primary and sec-
ondary columns and corrects the values from all years,
and “02_Name_Fixing.py”, which fixes the experiment
names, are both in the “G2F data preprocessing/En-
vironment” directory. The environmental datasets are
categorized into three groups based on the presence
of missing values in the raw environmental data files:
(1) “complete”, (2) “empty”, and (3) “incomplete”. The
separate Python script “Database.py” for each hydro-
climatic variable goes through the generated files with
a specific name containing the environmental time se-
ries for each experiment in each year to check whether
all the records during the growing season are available
or not. For example, if all records of temperature for
a given experiment are available, this dataset belongs
to the “complete” group. If all the temperature records
are empty, that dataset belongs to the “empty” category.
If the temperature dataset is not categorized into the
above groups, it belongs to the “incomplete” category.
The “complete” datasets are directly transferred to the
updated environmental database ready for the CC mod-
ule. However, the “empty” and “incomplete” datasets
must be imputed, filled, and then moved to the improved
database. A separate Python script has been developed
to categorize each hydroclimatic variable into the three
groups above and within the “Database” subdirectory of
the database package.

. For gap-filling of the “empty” and “incomplete”

time series, we developed an evaluation—improvement
pipeline (Sarzaeim et al., 2022a). This pipeline acquires
an external hydroclimate (i.e., NSRDB, DayMet, and
NWS) through developed application programming in-
terfaces (APIs). The Python APIs are located in the
“API” folder in the database package for downloading,
storing, and processing the G2F hydroclimate time se-
ries in the available locations and years. Afterwards,
the script imputes the best-fitted dataset from NSRDB,
DayMet, or NWS for any given hydroclimatic variable
to the “empty” datasets. Following Aslam et al. (2023a),
the “incomplete” datasets use a separate script for pre-
dictive analytics of deep neural networks to cover the
missing hydroclimate values in the G2F-E time series,
which are stored in the “ML” folder and are part of the
database package (Aslam et al., 2023b, c). The updated
“empty” and “incomplete” datasets are transferred to
the updated improved G2F-E database and later used
by the CC module. For ease of selecting the desired ex-
periment(s) by users, a Python script has been devel-
oped and stored in the “Selection” folder of the database
package and offers experiment options for users to se-
lect.
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3.1.4 Submodule 4: G2F-M

The metadata files contain the digital information relevant
to the experiments released annually on the G2F website in
.csv format. For preprocessing, we download the raw data
files from all available years, save them in the “File Up-
load/Meta” directory, and then implement the control. Then,
control (1) checks whether the first-level data known as pri-
mary columns are available, (2) checks whether the second-
level data known as secondary columns are available, and
(3) checks whether any experiments with unknown locations
are available (see Fig. 2). The scripts for steps (1) and (2)
are stored in the “File Control/Meta” directory, and the script
designated for step (3) is located in the “G2F data preprocess-
ing/Meta” directory, all within the database package. These
steps are described below in detail.

1. The primary columns are the first-level data neces-
sary for further processing. These columns are “Experi-
ment”, “Lat”, and “Long”. “Lat” and “Long” denote the
latitude and longitude of the weather stations located in
the field. The “01_Meta_Files_Primary_Columns.py”
script first checks whether these primary columns with
the exactly listed headers are available in the metadata
files. Note that the input is case-sensitive. Thus, the
script returns the associated error where there is a mis-
match and suggests how to fix it. In this case, the user
needs to fix the typos manually in the raw files. Other-
wise, the file is ready for the next control step.

2. The secondary columns are the second-level data nec-
essary for further analyses. These columns are “State”,
“Experiment ID”, and “Experiment type”. Note that
there are two types of experiments conducted by the
G2F collaborators: inbred and hybrid experiments.
Here, we need the hybrid experiments for the GXE sim-
ulation. The “02_Meta_Files_Secondary_Columns.py”
script controls the availability of secondary columns. If
they are not available in the raw files, they will be cre-
ated automatically from the information available in the
primary columns.

3. For model output postprocessing and geospatial visu-
alization, the “O1_Lat_Lon_Reader.py” script requires
the latitude and longitude of the experiments. Addition-
ally, if a given dataset is categorized as empty or incom-
plete, the G2F experiment location is also required to
geolocate and extract the associated values from other
databases. The experiments with missing latitude and
longitude are removed.

3.2 Consistency control

The CC module is the last preprocessing step before data are
ready for model implementation (i.e., GXE modeling). The
CC module integrates all controlled and updated files from
the QC module, checks their compatibility as inputs for GXE

Earth Syst. Sci. Data, 15, 3963-3990, 2023

P. Sarzaeim et al.: CLIM4OMICS

modeling, and synthesizes the multidimensional database for
phenotypic simulation and postprocessing. The compatibil-
ity check is required by the GXE model and is only possi-
ble when genomic data, phenotypic data, environmental data,
and metadata are present.

When some genotypic markers, phenotypic observations,
or metadata are discarded in the QC submodules, the CC re-
moves those experiments with at least one missing dimension
in the controlled files. The designed Python script for the CC
module is saved in the “Control” folder in the database pack-
age.

Figure 3 conceptualizes the QC—CC algorithm for each di-
mension. First, each dataset is controlled by its format, avail-
ability, and imputation. Then, the quality-controlled datasets
are evaluated for compatibility purposes for the simulation
process in the CC module.

3.3 Uncertainty

For the quantification of uncertainty in improved climate data
by other data sources (i.e., NSRDB, DayMet, and NWS), we
used the differences in the standard deviation (SD) between
the climatic time series of the G2F and other data sources
used for G2F-E data imputation. The SD represents the dis-
persion of the probability distribution function (PDF) of er-
rors and measures the magnitude of the standard uncertainty
according to Merchant et al. (2017). The following equation
represents the error term:

CITG2F-option = Xm,t,G2F — Xm,t,options
option = NSRDB, DayMet, NWS, (D)

where errGar.option 18 the difference between G2F time series
and other options, x,, ; GoF is the G2F-observed value of vari-
able m atday ¢, and Xy, ¢ option 1S the value of variable m from
other options at day ¢. The uncertainty is estimated as a spa-
tial aggregate for the area of study. However, the algorithm
can be implemented by station if the degrees of freedom are
adequate. A separate script, “Uncertainty.py”, was developed
to quantify the uncertainty for each hydroclimatic variable
located in the “Database” folder of the database package.

4 Results and discussion

In this study, we aim to introduce a quality and consis-
tency data control framework that includes the consolidation
of pipelines for retrieval, transformation, improvement, and
access to spatiotemporal, large-scale, and multidimensional
databases for plant breeding. The provided QC—CC pipeline
uses a high-dimensional G2F database that involves genomic
data, phenotypic data, environmental data, and metadata,
integrating and improving a database for maize yield pre-
dictability. The results of the QC module applications are
presented in Sect. 4.1 to 4.4. The results of the CC module

https://doi.org/10.5194/essd-15-3963-2023



P. Sarzaeim et al.: CLIMAOMICS 3975
QC Module CC Module
E-Submodule 1 i

1
! " 1
1 Numerical
: G2F-G HDF raw file — Covesion —_— PMV —_— MAF i 7

1

i ¥ H Quality-
, Dataset ! Controlled
1 imputation | Database

4
|

Consistency
Control

G2F-G

G2F-P
G2F-E
Y

Data Synthesis

Figure 3. The overall algorithmic QC—CC framework for the G2F database. “G2F-G”, “G2F-P”, “G2F-E”, and “G2F-M” denote the G2F
genomic data, phenotypic data, environmental data, and metadata, respectively. “PMV” and “MAF” denote the percentage of missing values
and minor allele frequency, respectively. “Primary Cols.” and “Secondary Cols.” denote the primary and secondary columns, respectively.

and data synthesis are presented in Sect. 4.5. Finally, the un-
certainty introduced by external environmental databases to
improve the G2F-E is presented in Sect. 4.6.

41 G2F-GQC

Plant-breeding and genetic improvement programs focus on
developing more productive cultivars resistant to uncertain
environmental conditions. These uncertain conditions in-
clude a wide range of biotic (i.e., diseases, pests, and her-
bicides) and abiotic (i.e., drought, heat, cold extremes, wet
weather, and water limits) stresses (Blum, 2011) that directly
affect the crops’ productivity and yields. The crop yield (and
other commercially essential phenotypes) can be improved in
the target environment by selecting the varieties resistant to
the environmental stresses (Cattivelli et al., 2008; Sarzaeim
et al., 2021). The molecular marker data for tested lines in
multiple environments across the large scale of the US and
Ontario in Canada provide the opportunity to diagnose and
select superior and tolerant maize lines with specific envi-
ronmental stresses in each environment.

There are extensively published datasets for phenotypic
measurements, biophysical parameters, and geospatial en-
vironmental observations in croplands. Gémez-Dans et
al. (2022) released an integrative dataset in western Africa,
including location, leaf area index, and maize yield val-
ues. In another study, Weber et al. (2022) published a high-
quality, multi-crop, and multiyear database during the crop
phenological stages containing canopy height, leaf area in-
dex, biomass, and soil water content and temperature in Eu-
rope. However, the lack of genetic data may limit the abil-
ity to diagnose superior lines. Thus, providing and publish-
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ing high-quality crop genomic datasets and ground pheno-
typic and environmental observations adds value to designing
climate-resilient cropping systems for a changing climate.
Poland et al. (2012) and Jarquin et al. (2014) underscored that
crop DNA data consist of missing values due to the technical
inadequacy of sequencing. Also, Alkhalifah et al. (2018) de-
scribed the main limitations of G2F datasets, including G2F-
G, with missing data at several marker sites. We previously
observed the missing sequencing values in Table 1. To over-
come this limitation, the generated numerical genotypes for
each maize line pass through the PMV to remove the geno-
types containing missing values of more than 20 % of the
whole sequence. Along with the PMYV, the MAF filter elimi-
nates the uncommon variants. Lopes et al. (2015) described
how rare variants are usually removed because of the limited
population size and maintain an acceptable precision level in
phenotyping.

After applying the PMV and MAF filters, 253 lines were
removed, and 1323 individuals with numerical genotypes
were kept for further analysis. This process led to missing
values in the genome sequences in the remaining cultivars of
less than 20 %, and the minor allele frequency is larger than
3 %. The defined strategy in Sect. 3.1.1 fills the missing val-
ues at marker sites of the remaining 1323 maize lines, and the
integrated, imputed, and enhanced G2F-G datasets are ready
for further analysis.

42 G2F-PQC

Opverall, phenotypic field measurements of 89 549 individ-
ual cultivars have been recorded for maize inbred and hy-
brid experiments between 2014 and 2021 across G2F sites.

Earth Syst. Sci. Data, 15, 3963-3990, 2023
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Figure 4 shows the spatial distribution of phenotypic mea-
surements sampled for each G2F experiment. The minimum
and maximum observations are 38 and 1257, sampled in the
“2017COH1” and “2018TXH1” experiments, respectively.
The total numbers of observations in 2014 were 5834 and
13790 in 2021 (15 577 observations were recorded in 2019).

Like in G2F-G, there are several missing phenotypic ob-
servations. For example, Table 2 indicates the missing val-
ues for all environmental variables in the last five rows or
experiments. Also note that the phenotypic measurement is
maize grain yield in this study; thus, the missing values for
grain yield are removed from the raw phenotype datasets.
The same methodology can be applied to other phenotypic
variables like grain moisture, test weight, and plot weight
found as columns in the stored .csv file (Upload/Pheno-
type/g2f_2014_hybrid_data_clean.csv). By removing culti-
vars with grain yield missing values, a total of 89549 field
observations remain in the G2F-P dataset. In the last step,
the clean versions of the G2F-P dataset in each year between
2014 and 2021 are consolidated in one single .csv file. One
record of the clean G2F-P dataset is represented in Table 5 as
an example. This example displays phenotypic observations
for the B37/MO17 maize line tested in the state of Delaware
in the HI experiment in 2014.

43 G2F-EQC

The designed QC scripts in Python for hydroclimatic files
have been implemented, and the available typos and mis-
matches in the headers have been fixed to have a consistent
format among the files stored in different years.

The nonviable samples available in the datasets, such as
negative values for solar radiation and rainfall, the out-of-
range relative humidity percentage, and the wrong wind di-
rection values, have been detected, eliminated, and left as
missing values as described in Sect. 3.1.3.

At this point, the naming policy for the environments is ap-
plied. Note that this study focuses on the hybrid experiments
for GXE models and the associated simulations, which sug-
gests that inbred experiments are discarded; 211 hybrid ex-
periments remain in the database for the categorization step.

The G2F-E QC and G2F-M QC submodules are imple-
mented in parallel. The reasons for this parallel implemen-
tation are the following. (1) Geolocation of weather stations
is required to download the data from external environmen-
tal data sources. (2) Location of the experiments is required
for visualization of the geospatially distributed crop growth
predictability. Among the 211 experiments, there are 8 ex-
periments with missing data. Afterwards, for simplicity of
the dataset analyses, each G2F annual climate .csv file is
split into separate files for each experiment and climate vari-
able. This file structure represents eight files containing each
of the hydroclimatic variable time series (e.g., temperature,
dew point, relative humidity, solar radiation, rainfall, wind
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speed, wind direction, and wind gust) for each experiment
(203 x 8 = 1624 time series files are created and stored).

On the other hand, just 32 experiments were complete of
the 97 experiments that comprise the file structure between
2014 and 2017. Table 6 presents a synthesis of experiment
completeness between 2014 and 2021 for the G2F-E data.
The missing files are mainly caused by gaps in environmen-
tal data, limiting the ability of crop models and analytics
for phenotype predictions. This situation was emphasized by
Huang et al. (2019), who showed that the limitation in phe-
notypic and environmental data restricts timely diagnostics
of crop growth and, consequently, hampers the use of crop
growth models for prediction purposes. Di Paola et al. (2016)
provided an additional perspective by using the minimal set
of input data for crop growth modeling predictions becom-
ing more biased. Sarzaeim et al. (2022a) provided a strategy
to reduce the gaps in environmental data using deep neural
networks. Such efforts showed how phenotype predictability
increases and could be attributed to climate patterns of vari-
ability.

In this study, we fill the missing values identified as empty
and incomplete in the environmental time series to consol-
idate a high-dimensional database that could be translated
into an improvement in GXE model performance. The im-
proved G2F-E enhances the G2F multidimensional database
and provides an opportunity to increase the OMICS obser-
vations engaged in the GXE simulations. The time series
without missing values are delivered to the final improved
database, while files with empty or incomplete time series are
processed to fill data gaps with external climate data sources
(e.g., NSRDB, DayMet, or NWS). For the filling step, the de-
signed APIs read the “Lat” and “Long” data from controlled
G2F metafiles and download and store the climatic datasets
for each G2F experiment trial site. The downloaded datasets
for each data source are divided into separated files, one per
experiment and climate variable, and are stored in .csv for-
mat.

The empty datasets have been replaced by one of the other
data sources selected based on the calculated minimum root
mean square error (RMSE) values between G2F and each
of NSRDB, DayMet, and NWS for a given climatic variable
in the G2F database. A deep neural network (DNN) tech-
nique was implemented to estimate the missing values of
the incomplete datasets. The strategies for gap-filling were
explained in detail in Sarzaeim et al. (2020, 2022a, b). The
gap-filling in the environmental data allowed us to increase
the number of complete experiments from 32 to 86. Also,
we added other climatic variables like pressure and precip-
itable water from NSRDB and DayMet, which were not ini-
tially provided by the G2F initiative. The G2F-E QC sub-
module enables one to download other databases and prepro-
cess them for the expansion of G2F-E.

One record of the improved G2F-E data is represented in
Table 7 as an example. This example refers to a record for
the hybrid experiment called H1 conducted in the state of
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Figure 4. The spatial distribution of phenotypic records of G2F experiments in the US regions and the province of Ontario in Canada
between 2014 and 2021. The state of Lower Saxony in Germany includes the years 2018, 2020, and 2021 for three locations. The location
of each station on the map was modified for visualization purposes, allowing the illustration of stations with multiyear records. The size of
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Table 5. Record of a single G2F-P dataset. It shows the phenotypic measurements, including “Plant height (cm)”, “Ear height (cm)”,
“Grain moisture (%)”, and “Grain yield (bu A~y for a maize hybrid with pedigrees of “B37”” and “MO17” collected in the “2014-DEH1”
experiment located in Delaware in 2014. The ID of the record is “2014_DEH1_B37/MO17”, and the ID of the experiment is “2014DEH1".
“H” denotes the hybrid type of the experiment, “P1” and “P2” denote the pedigrees of the maize hybrid, and “DE” denotes the state of
Delaware.

ID Year Location Experiment Experiment Pedigree P1 P2 Plant Ear Grain Grain
ID height height moisture yield

(cm)  (cm) (%) (buA™")

2014_DEH1_B37/MO17 2014 DEHI 2014-DEH! 2014DEH1 B37/MO17 B37 MOI17 235 1395 19.2 217.2

Delaware in 2014. This record represents the first observation
of the climatic time series, including temperature, dew point,
relative humidity, solar radiation, rainfall, wind speed, wind
direction, and wind gust.

After implementing the G2F-E QC submodule and im-
proving the recorded hydroclimatic time series for each ex-
periment, the mean temperature (Tiyean) and accumulative
rainfall (R,c.) over the maize-growing season are calculated
here and represented in Fig. 5. The minimum and maxi-
mum of Tinean values are 11.8 and 25.9 °C in the 2014NYHI1
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and 2016GAH2 experiments, respectively. The minimum
and maximum of Ry, during the growing season of maize
are 11.8 and 1525.9 mm as observed in the 2015NEH3 and
2016KSH1 experiments, respectively.

Additionally, the number of G2F trial heatmaps located in
the same state over the period of 2014-2021 is illustrated in
Fig. 6. The lowest and largest numbers of experiments are 2
in the state of Colorado in the Rocky Mountains region and
12 in Towa in the Midwest, respectively. The number in each
cell displays the average of improved hydroclimatic variables

Earth Syst. Sci. Data, 15, 3963-3990, 2023
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Table 6. The percentage of complete, empty, and incomplete portions of time series for each G2F hydroclimatic variable: temperature (7'),
dew point (DP), relative humidity (RH), solar radiation (SR), rainfall (R), wind speed (WS), and wind direction (WD).

T DP RH
O O (P

SR R
(Wm™2)  (mm)

WS WD
ms~hH  ©

Complete 786 69.6 79.2
Empty 0 6.1 0.5
Incomplete 214 243 203

37.6 84.3 764 23.6
11.8 0 1.1 1.6
50.6 16.7 225 7438
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Figure 5. The spatial distribution of (a) improved mean tempera-
ture (Tipean) and (b) improved accumulated rainfall (Rjcc) records
in the G2F-E database during the maize-growing season in all G2F
experimental fields in 2014-2017.

in each state, including the mean of temperature, dew point,
relative humidity, solar radiation, accumulative rainfall, wind
speed, and wind direction.

44 G2F-M QC

From 2014 to 2017, a total of 112 tested hybrid experi-
ments were registered across the G2F sites. However, the
latitude and longitude of 15 experiments were missed and
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consequently removed from the database. As mentioned in
Sect. 4.3, the G2F-M QC submodule has been implemented
in parallel with the G2F-E QC submodule to avoid the pro-
cessing of redundant data for the experiments with unknown
locations. One record of the G2F-M data is represented in Ta-
ble 8 as an example. This example illustrates the coordinates
of the weather station located in the experiment of H1 in the
state of Delaware in 2014.

4.5 Database CC

The last stage of input data preprocessing is to check the
consistency among the quality-controlled and improved files
across the G2F-G, G2F-P, G2F-E, and G2F-M QC submod-
ules. The main purpose of the CC module is to check all
quality-controlled files and remove them from the records
when their information is not available. In other words, the
CC module records the available files with complete se-
quences of genetic data, phenotypic observations, climatic
time series, and location data for eventual implementation
of GXE model and visualization analytics or possible use in
crop and Earth system models. Also, the CC uses the unique
experiment names in the “Experiment ID” column, which
is common among G2F-P, G2F-E, and G2F-M, to remove
those records missing at least one OMICS or environmen-
tal category of G2F data. After checking these three data di-
mensions’ consistency, the CC module uses the P1 and P2
columns, common between the controlled G2F-P and G2F-
G, to update the G2F-G file for the available records in phe-
notypic data. Consequently, all the common records in the
high-dimensional G2F data are kept for use in crop growth
modeling. We identified that, after implementing the CC on
the 2014-2021 G2F, 376 lines, 79 122 yield observations,
and 178 experiments remained for phenotype diagnostics or
modeling. Figure 7 symbolizes the synthesis of the enhanced
high-dimensional G2F database after applying QC and CC
modules.

The considerable decrease in the number of genotypes in-
dicates that, although the genetic sequences of 1576 maize
lines have been generated and published in the G2F database,
most of them have not yet been tested in the trials. The
phenotypic observations dropped from 89 549 to 79 122 af-
ter QC—CC, which could be mitigated by releasing the new
samples in a larger number of experiments by the G2F ini-
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tiative through the years and overcoming this trial deficit
(Fig. 7). The use of crop and data-driven modeling together
with remote-sensing products to estimate the crop yield and
other phenotypes can mitigate these data deficits as well.
Following the FAIR principles, the multidimensional, con-
solidated, and enhanced G2F databases along with devel-
oped Python-based QC—CC scripts are released on the Zen-
odo platform for public access (findable and accessible). The
associated documentation is also available for the database
users. The folder and file structures are explained and inter-

https://doi.org/10.5194/essd-15-3963-2023

operable, including the dataset preprocessing, the QC and CC
submodules, and the implementation process for each G2F
data release. Additionally, the database is usable for other
crop growth modeling, and the scripts are modifiable for im-
plementation using datasets from sources other rather than
G2F (reusable). The CLIM4OMICS database package along
with the current study can be taken as a guideline to cre-
ate and enhance other geospatial databases for Earth system,
crop growth, and statistical modeling.

Earth Syst. Sci. Data, 15, 3963-3990, 2023



3980
[~ |
oo 8
- 2P| 25 2%
5 2 T e s =
s S o%-g.“’
[CRN =h ~
) gg = 5
£~ g8
%] 2 o= o
©° = £ g Q
= Q =
S — 3 g2 7 a
o o
= loi= -]
5
— 5w
g ° ol =
s 8 © B
= 2. g8 %
1<)
=] N%Q
S5k
) = o
S UE? 5 5
— =] O = o
& @ S
o 2 =zle
m 3 o 2o
o) e < =5
— = NE“(‘D
SaQ
- a2
15} Q}g’-llj
gg - o m
© =< ;&%
SB g
—_ S »n @
z = 278
S 3 S =
8 2 == =
w =S g-ig
=y
. &go
Y ) 9‘5'5
S & = 3 al
= £ o o =
BN = =R . E.:(D
9% o
- 829
5.5 = £ &
S|18% < SR
S| = 8 S 38
= = o
=
O %.—'_] ONQ-
> g 2 $ 23
S e o "OQ'Q
3 - & =
< 2. =3
2 58
g ac
= =g &
g -
z 8
= . 4§
o < N o~ =
Sl e =B 2
= O = -hmE‘
N - o U.‘_.Q-
AR =8 3
~ =y .
ooQE» :Eg
T25
= 3 ]
EZX| §5E
3 2 gz
o B 5 ] £
~as o =
w2 Q.—nz = &
N = o
N < o mi’“o
I
5o 0
£ 8 =8 -
E&U} < =
o
AR SEY
o0 [SRelE™ a =
N | B = '_"52
$23
e & = 5
~ B. o = &
22| 2%z
= 2E a5 Q0
e g.:
29,
=] e 2 =%
~| =B = =
G L8 F 3 98
S| T aa o <=
~ 5 Q<
590
% g*—hg
o
@ o= B
g = g e
w| 39 B g5 =
N — B3 a m . <
2 S~
~ 2 o X
[N
3 5 B¢
b m\(’ég %Ua
j=3
S|CEz2 229
S‘»—‘g
S

Earth Syst. Sci. Data, 15, 3963-3990, 2023

P. Sarzaeim et al.: CLIM4OMICS

89,549 Phe. 85,138 Phe. 79,122 Phe.

Figure 7. The number of observations of G2F-Gen. (genomic data),
G2F-Phe. (phenotypic data), and G2F-Env. (environmental data) in
the original database, quality-controlled database, and consistency-
controlled database. “QC” and “CC” refer to the quality and consis-
tency control algorithms.

1,323 Gen.
376 Gen.

211 Env. 203 Env.

The developed database package in this study is an exam-
ple of a multidimensional database involving the enhanced
OMICS variables along with the improved hydroclimatic
drivers of crop growth. The present database contributes to
mitigating the lack of genomic and phenotypic data, which
limit the use of OMICS data in plant modeling according
to Germeier and Unger (2019). Several databases are used
in applications like the Agricultural Model Intercomparison
and Improvement Project (AgMIP) to simulate agricultural
risks under climate change, emphasizing the role played by
environmental factors like weather and soil physical proper-
ties (AgMIP, 2022).

On the other hand, improving digital products through ge-
nomic and phenotypic quality control pipelines for genomic
selection can lead to applications in multiple fields, as Persa
et al. (2021) stated. The developed QC-CC framework for
environmental drivers in our study finds its niche among
other efforts as a showcase for climate data for OMICS
database enhancement, which could be relevant for improv-
ing phenotype predictability, integrating high-throughput
phenotyping, and showing emerging phenotyping technolo-
gies (Araus et al., 2018; Rico et al., 2020, 2021). The en-
hanced G2F climate and OMICS database, CLIM4OMICS,
and the preprocessing data framework are designed to in-
terconnect the OMICS variables with environmental drivers
to improve the models’ performance in complex agricultural
and climate systems. For example, in an application for ver-
sion 1.0 of the database, Sarzaeim et al. (2022a) illustrated
the benefits of an enhanced G2F database in increasing maize
yield predictability by 12.1 % using the coefficient of deter-
mination (R?), 2.2 % in terms of RMSE, 11.4 % in terms of
mean square error (MSE), and 1.4 % in terms of mean ab-
solute error (MAE). Thus, the current developed database
provides an opportunity to integrate interdisciplinary teams
formed by agronomists, agricultural engineers, and climate
scientists interested in improving food security and resilience
applications for climate change and increasing population
demands of grains.
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Table 8. Record of a single G2F-M dataset. It shows the location, including the “Lat” and “Long” of the “2014DEH1” experiment located
in Delaware in 2014. The ID of the experiment is “2014DEH1”. “Lat” denotes latitude, “Long” denotes longitude, “H” denotes the hybrid

type of the experiment, and “DE” denotes the state of Delaware.

Experiment Experiment Experiment Year State Lat Long
ID type
DEH1 2014DEH1 H 2014 DE 38.63 —75.20

4.6 Error uncertainty

In database creation and curation to successfully train and
test crop growth models, uncertainty quantification is a use-
ful technique for assessing error sources. Quality and con-
sistency controls enhance and consolidate multidimensional
databases to achieve crop model high performance, and un-
certainty assessment diagnoses the main sources of error
propagation in the models’ predictive skill.

The use of external databases (e.g., NSRDB, DayMet, and
NWS) to impute and simulate missing environmental data
propagates errors in sampling, modeling, and transforming
environmental estimations into the G2F time series. These
errors in the input data also propagate uncertainties into crop
growth model outputs, which require the quantification of in-
put data uncertainty. The standard uncertainty of the climate
variables has been quantified using the SD of the PDF of
the errors between the observed G2F time series and those
of the external databases for a given climatic variable. For
G2F improvement, the error SD represents the uncertainty
introduced by using each external data source (Steiner et al.,
2013). Thus, first, we calculated the errors using Eq. (1), and
then we calculated the PDFs of errors. The SD statistics of
the error terms are then calculated (see Fig. 8).

Standard uncertainty is a very informative measurement
when the PDF of errors is close to a normal distribution with
a mean of zero (Merchant et al., 2017). Here, the error dis-
tributions for rainfall (Fig. 8a), dew point (Fig. 8c), relative
humidity (Fig. 8d), wind direction (Fig. 8f), and temperature
(Fig. 8g) are roughly normal. In the case of solar radiation
(Fig. 8b), the normal distribution is reasonably fitted to the
errors between G2F and NSRDB. Also, the PDFs of the er-
rors in wind speed are close to a normal distribution.

The SD has been calculated for the errors between G2F
and each of the NSRDB, DayMet, and NWS databases. In
the case of temperature, the smallest standard uncertainty
of errors is obtained from DayMet (SDG2p.payMet = 2.1).
For dew point, the NSRDB introduces the smallest er-
ror uncertainty (SDgop-NsrRpB = 2.6). In the case of rela-
tive humidity, although the SD statistics are very close for
both NSRDB and NWS, it is slightly smaller for NSRDB
(SDgar.nsrpB = 11.7). For solar radiation, the uncertainty
of using NSRDB to impute the gaps of G2F is considerably
smaller than using DayMet (SDgr-NSrRDB = 72.6). The dis-
persion of errors for rainfall for DayMet and NWS shows
the largest differences among climate variables (with SDs of
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11.8 and 185.3, respectively). This discrepancy can be at-
tributed to the geospatial location and aggregation since one
of the products uses the closest climatological station and the
other represents a gridded product (NWS and DayMet, re-
spectively). There is no consistent pattern of uncertainty for
the wind properties. For the wind speed, the SD is slightly
smaller from the NWS (SDgor.nws = 7.4), while in the case
of the wind direction, NSRDB represents the smaller error
uncertainty (SDgor.NnsrpB = 71.7). These SD statistics val-
ues illustrate the error magnitude introduced by using exter-
nal databases. In the case of using any data sources other than
those provided by the G2F initiative, the uncertainty estima-
tions show the sources of error propagation through the crop
growth prediction.

By comparing all the error dispersion statistics for each
climate variable, the largest inconsistencies among the dig-
ital resources (NSRDV, NWS, and DayMet) were found
for temperature and dew point, with error discrepancies of
43 % and 38 %, respectively. Solar radiation, relative humid-
ity, and wind speed followed, with discrepancies of 18.6 %,
10.4 %, and 8.6 %, respectively. The rest of the variables pre-
sented discrepancies below 5 %. These results are aligned
with several previous studies that show rainfall as a com-
plex phenomenon difficult to measure, model, and predict.
This difficulty in rainfall estimates can also be attributed
to the spatiotemporal heterogeneity of the collected data
(Bruno et al., 2014; Pollock et al., 2018). However, the
considerably small differences in the errors among G2F,
DayMet, and NSRDB for rainfall (SDG2r.paymet = 815.6 and
SDG2F-payMet = 814.5, respectively) illustrate the higher ro-
bustness of publicly available gridded products and their use-
fulness in complementing in situ databases (i.e., NWS) for
improvement of the G2F-E datasets.

Note that the NWS is the only database that records wind
gust. However, we removed the wind gust from the G2F-G
database due to several missing values in that database.

5 Data availability

The data that support the findings of this study, “CLI-
mate for Maize OMICS: CLIM4OMICS Analytics
and Database”, are openly available in Zenodo at
https://doi.org/10.5281/zenodo.8002909 (Aslam et al.,
2023a).
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Figure 8. The probability distribution function of the error values for (a) rainfall, (b) solar radiation, (c¢) dew point, (d) relative humidity,
(e) wind speed, (f) wind direction, and (g) temperature. Note that each of the external environmental data sources may not contain all the
G2F hydroclimatic variables. The error term has been calculated for the common variables between G2F and each of the data sources.
SDGop-NSRDB denotes the standard deviation of the errors between G2F and NSRDB, SDGop payMet denotes the standard deviation of the
errors between G2F and DayMet, and SDgyp.Nnws denotes the standard deviation of the errors between G2F and NWS for a given climatic

variable.
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6 Code availability

A quick guideline for Python scripts is provided in the
“ReadMe.txt” file, and the required Python packages to
be installed are listed in the “Requirements.txt” file in the
database package, in a GitHub code repository in Zenodo,
and in GitHub at https://doi.org/10.5281/zenodo.8161662
(Aslam et al., 2023b) and https://github.
com/HasnatJutt/CLImate-for-Maize-OMICS _
CLIM4OMICS- Analytics-and-Database/tree/v2.0
et al., 2023c), respectively.

(Aslam

7 Conclusions

In this study, we proposed an algorithmic QC—CC framework
for the data preprocessing pipeline to consolidate a homo-
geneous, multidimensional, and enhanced database consist-
ing of (1) OMICS observations, (2) hydroclimatic variables,
and (3) metadata for statistical, data-driven, and biophysical
crop growth model applications to simulate GXE interaction.
The G2F initiative database for maize phenotype predictabil-
ity across the US, the province of Ontario in Canada, and
the state of Lower Saxony in Germany between 2014 and
2021 has been used to test the designed QC—CC framework.
A QC submodule has been developed for each G2F data di-
mension, including the G2F-G, G2F-P, G2F-E, and G2F-M
submodules. Each submodule generally aims to (1) read the
raw files, (2) check and correct structural and format incon-
sistencies, (3) detect the missing values, and (4) fill them.
The CC module is the last step of the input data preprocess-
ing. It is designed to check the compatibility of controlled
input data to identify the intersection of the records between
all data dimensions ready for GXE model implementation and
analytical operation. Multiple external data sources, includ-
ing NSRDB, DayMet, and NWS, have been used to simulate
the G2F-E gaps. The error uncertainty introduced by these
data sources is also quantified.

After passing through the QC—CC data preprocessing
pipeline, the structural inconsistencies have been corrected
and the missing values have been filled in the G2F-G and
G2F-E datasets. As a result, 178 G2F trials for GXE sim-
ulation are released, consisting of molecular genetic mark-
ers of 376 maize lines and 79 122 yield observations. Here,
the target phenotypic observation is yield. However, other
phenotypes like plant height, ear height, and grain moisture
have also been provided in the improved database for users.
The improved G2F-E database contains seven hydroclimatic
time series during the maize-growing season at the G2F trial
sites: temperature, dew point, relative humidity, solar radi-
ation, rainfall, and wind speed and direction. The proposed
methodology is applicable to other spatiotemporal variable
improvement for the GXE model implementation. The im-
proved multidimensional G2F database, along with devel-
oped scripts in a Python environment, is freely available to
all users for employment in their research.
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The database provided in this study can foster further ef-
forts to improve GXE analytics and phenotypic predictability
by enhancing the quality and consistency controls’ robust-
ness as listed below.

1. Employ remote-sensing imageries to simulate and fill
the crop’s phenotypic missing values to involve more
samples in the database and analytics of maize growth
predictability.

2. Integrate other hydroclimate time series to provide a
wide range of environmental drivers of maize growth
for the improvement of GXE models’ predictive skill.

3. Develop rapid-response and user-friendly software ar-
chitectures benefiting from pattern recognition tech-
niques to correct typos, erroneous values, and data
structure inconsistencies in order to boost database
management, analytical tools, and visualization effi-
ciency.
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Figure A1. Locations, years, and number of sites per state used by the G2F initiative and represented in CLIM4OMICS.
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Figure A2. The spatial distribution of phenotypic records in the G2F-P database from (a) 2014 to (h) 2021.
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