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Abstract. Soil moisture (SM) is a key variable of the regional hydrological cycle and has important applica-
tions for water resource and agricultural drought management. Various global soil moisture products have been
mostly retrieved from microwave remote sensing data. However, currently there is rarely spatially explicit and
time-continuous soil moisture information with a high resolution at the national scale. In this study, we generated
a 1 km soil moisture dataset for dryland wheat and maize in China (ChinaCropSM1 km) over 1993–2018 through
a random forest (RF) algorithm based on numerous in situ daily observations of soil moisture. We independently
used in situ observations (181 327 samples) from the agricultural meteorological stations (AMSs) across China
for training (164 202 samples) and others for testing (17 125 samples). An irrigation module was first devel-
oped according to crop type (i.e., wheat, maize), soil depth (0–10, 10–20 cm) and phenology. We produced four
daily datasets separately by crop type and soil depth, and their accuracies were all satisfactory (wheat r 0.93,
ubRMSE 0.033 m3 m−3; maize r 0.93, ubRMSE 0.035 m3 m−3). The spatiotemporal resolutions and accuracy
of ChinaCropSM1 km were significantly better than those of global soil moisture products (e.g., r increased by
116 %, ubRMSE decreased by 64 %), including the global remote-sensing-based surface soil moisture dataset
(RSSSM) and the European Space Agency (ESA) Climate Change Initiative (CCI) SM. The approach developed
in our study could be applied to other regions and crops in the world, and our improved datasets are very valuable
for many studies and field management, such as agricultural drought monitoring and crop yield forecasting. The
data are published in Zenodo at https://doi.org/10.5281/zenodo.6834530 (wheat0–10) (Cheng et al., 2022a), https:
//doi.org/10.5281/zenodo.6822591 (wheat10–20) (Cheng et al., 2022b), https://doi/org/10.5281/zenodo.6822581
(maize0–10) (Cheng et al., 2022c) and https://doi.org/10.5281/zenodo.6820166 (maize10–20) (Cheng et al.,
2022d).
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1 Introduction

Soil moisture (SM) is closely associated with droughts and
floods and consequently agricultural production (Tao et al.,
2003). Therefore, SM information at a high resolution is crit-
ical to improve crop yield prediction (Prasad et al., 2006;
Chakrabarti et al., 2014) and drought impact assessment
(Sheffield, 2004). However, such higher resolutions at both
temporal (e.g., daily and more than decade) and spatial scales
are still unavailable across China, especially for dry crop-
lands.

SM can be obtained in several ways, including in situ ob-
servations (Walker et al., 2004; Bogena et al., 2007), remote
sensing retrieval (Mohanty et al., 2017; Wei et al., 2019) and
process-based model simulations (Vergopolan et al., 2020;
Ahmed et al., 2021). Field observations provide the most ac-
curate SM but are expensive and time-consuming, and there
are large uncertainties from extrapolating the limited obser-
vations into larger regions with high heterogeneity (Collow
et al., 2012; Crow et al., 2012). Microwave sensors have
been applied to retrieve SM in recent years (Schmugge et
al., 2002; Wigneron et al., 2003; Amazirh et al., 2018). The
microwave sensors can only monitor near-surface SM (0–
10 cm) (Eagleman and Lin, 1976; Jackson et al., 1982). Pas-
sive microwave sensors can monitor daily SM but with a
coarse resolution (25–40 km), compared with a high spatial
resolution (10–30 m) and a coarser repetition interval (15–
25 d) for active sensors (Eagleman and Lin, 1976; Jackson
et al., 1982; Mallick et al., 2009). Such SM products have
large uncertainties due to the limitations of satellite cover-
age and downscaling methods, although they can easily cover
large regions compared with in situ observations (Loew et
al., 2013; Su et al., 2016; Peng et al., 2017). Deriving the
SM from model simulation is also challenging because of
its high requirements in input data and computing ability, as
well as large uncertainties from model parameters (Wang and
Qu, 2009; Yilmaz et al., 2012; Petropoulos et al., 2015). In
addition, many studies have found that irrigation, as an addi-
tional water supply source other than precipitation, reduces
soil albedo (Chen and Dirmeyer, 2019), increases heat capac-
ity (Wang et al., 2019), alters local SM (Lawston et al., 2017),
and affects the water and energy budget (Shen et al., 2013).
However, few studies have taken irrigation into account in
developing SM data products at the national or global scale
(Drewniak et al., 2013; Qiu et al., 2016a). Therefore, it is crit-
ical yet challenging to improve SM accuracy at both spatial
and temporal resolutions.

As one part of the Climate Change Initiative (CCI), the
European Space Agency (ESA) published a long-term sur-
face SM dataset, and the latest version (v06.1) covered the
period of 1978–2020 (https://www.esa-soilmoisture-cci.org/,
last access: 10 April 2022) (Dorigo et al., 2017; Gruber et
al., 2019; Preimesberger et al., 2021). The ESA CCI SM
products are consistent with the observed values at some
grassland and farmland sites in China (Liu et al., 2011; Al-

bergel et al., 2013; Dorigo et al., 2015, 2017); however, they
have a coarse spatial resolution (∼ 27 km) and many cover-
age gaps (Llamas et al., 2020; Guevara et al., 2021). More re-
cently, based on multiple neural networks, the global remote-
sensing-based surface soil moisture (RSSSM) dataset cov-
ering 2003–2018 at 0.1◦ resolution was developed by us-
ing Soil Moisture Active Passive (SMAP) SM as the pri-
mary training target. The RSSSM improved the coefficient
of determination (R2) by 0.46 and the root mean squared er-
ror (RMSE) by 0.083 m3 m−3, with a 10 d resolution (Chen
et al., 2021). In 2020, another new SM dataset in China
from 2002 to 2018 was provided from different passive mi-
crowave SM products and model-based downscaling tech-
niques (Meng et al., 2021). With an improved correlation co-
efficient (r) of 0.84 and an unbiased root mean squared er-
ror (ubRMSE) of 0.056 m3 m−3, the new dataset has a 0.05◦

spatial resolution and a monthly time resolution. These SM
products have contributed largely to related agricultural stud-
ies and management; however, they are still too coarse to
assess agricultural drought risk and predict crop yield accu-
rately.

Although numerous efforts have been devoted to devel-
oping SM products, major concerns should be addressed: (1)
agricultural management activities such as irrigation have not
been fully considered by previous studies, especially in coun-
tries such as China with extensive irrigated areas (Zhu et al.,
2013); (2) both the spatial and temporal (e.g., daily) resolu-
tions of SM products need to be improved for regional agri-
cultural management; and (3) the SM accuracy needs to be
further improved. In recent years, in situ observations have
become available (Li et al., 2005). Some new methods, such
as machine learning, are increasingly applied to many fields
and have been shown to be robust in incorporating multiple
sources of data to develop spatiotemporal datasets (Ahmad
et al., 2010; Srivastava et al., 2013; Im et al., 2016).

Therefore, our main objectives in the study were to de-
velop a novel method to generate a daily 1 km SM dataset
for dry croplands across China based on numerous field ob-
servations, to evaluate their accuracy and compare them with
current products, and to explore the spatiotemporal charac-
teristics of soil moisture for dryland wheat and maize. We
anticipate that our methods and datasets will be valuable for
agricultural drought monitoring and crop yield forecasting.

2 Materials and method

2.1 Study area

The study area is dominated by dryland crops such as wheat
and maize in China, with complex cultivation methods (Wu
and Li, 2012) and various irrigation activities (Huang et al.,
2015). According to the annual harvesting areas of crops
across mainland China from 2000 to 2015 (Luo et al., 2020a,
b), maize and wheat are the two main crops in China, ac-
counting for 35.4 % of the total harvested area (FAOSTAT,
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Figure 1. Study areas and SM in situ field monitoring sites in
China. NAS: northern arid and semiarid region; LP: Loess Plateau;
HP: Huang–Huai–Hai Plain; SCB: Sichuan Basin; MYP: middle–
lower Yangtze Plain; YGP: Yunnan–Guizhou Plateau and southern
China; QT: Qinghai–Tibet region; ChinaCropland1 km: the harvest-
ing areas of crops across mainland China.

2019). The study areas and SM in situ field monitoring sites
for the two crops are shown in Fig. 1.

2.2 Data

2.2.1 In situ SM observations

The in situ SM observation data (http://data.cma.cn, last ac-
cess: 18 April 2021) from 1993 to 2018 were obtained from
agricultural meteorological stations (AMSs) in China, which
recorded the location, crop type, phenology, soil depth and
SM. SM was measured at depths of 10 cm and 20 cm at each
AMS on the 8th, 18th and 28th of each month. For each
sample, crop phenology was observed and recorded by well-
trained agricultural technicians in experimental fields (the av-
erage field size was 0.15 ha) and then checked and qualified
by the Chinese Agricultural Meteorological Monitoring Sys-
tem (CAMMS). The location of AMSs is generally selected
in areas with relatively homogeneous soil properties. Also
the fact that crops were quite well managed by irrigation ac-
cording to weather variability and crop growth status makes
the crop SM records largely representative of the overall level
of pixels (1 km× 1 km) (Zhang et al., 2020; Li et al., 2021).
The first layer (0–10 cm) has been widely used to investigate
the spatial and temporal characteristics of SM and validate
SM retrieved from microwaves across China (Lacava et al.,
2012; Zeng et al., 2015; Liu et al., 2018; Fang et al., 2020).

We collected the in situ observations of maize (287 sites)
and wheat (240 sites), with a total of 181 327 samples (maize:
36 226 samples for the 0–10 cm soil layer, 36 245 samples

for the 10–20 cm soil layer; wheat: 54 396 samples for the 0–
10 cm soil layer, 54 460 samples for the 10–20 cm soil layer).

2.2.2 Environmental factors

The environmental factors were classified into site features
and gridded features, both of which include meteorological
data (MD), day of year (DOY), classified irrigation (CIR),
soil properties (SPs), remote sensing data (RSD) and geo-
graphical information (GI) (Table 1).

MD includes daily total precipitation (pre) and ante-
accumulated precipitation over 10 d (pre10) from meteoro-
logical stations across China (CNMSs) (http://data.cma.cn,
last access: 10 April 2021) (Fig. S1).

CIR was calculated using Eq. (1).

CIR=
{

1, CiPjDkSM≥ SMIijk
0, CiPjDkSM< SMIijk

, (1)

where Ci , Pj , Dk and SMIijk are crop type, phenology, soil
depth and the evaluation index of relative soil moisture (SMI)
corresponding to the crop type i, phenology j and soil depth
k. SMI is a threshold to determine when irrigation is applied
(Table 2), which was released by the Ministry of Water Re-
sources of China (CNMWR) (http://www.mwr.gov.cn, last
access: 10 July 2022) in July 2012.

SP includes sand, silt, gravel, organic carbon, clay con-
tents, soil pH and bulk density, obtained from Harmonized
World Soil Database Version 1.2 (http://webarchive.iiasa.
ac.at/Research/LUC/External-World-soil-database/HTML/,
last access: 18 August 2021). The original 30 arcsec raster
spatial resolution data were resampled to a 1 km resolution
based on nearest neighbor interpolation, and the site-related
SPs were extracted from values to points using ArcGIS 10.5
software (ESRI).

RSD includes reference evapotranspiration (pet) and field
capacity (fc): pet was obtained from TerraClimate (https://
doi.org/10.7923/G43J3B0R, Abatzoglou et al., 2018), which
included monthly climate and climatic water balance from
1958–present with a resolution of 1/24◦ or ∼ 4 km, and fc
was obtained from OpenLandMap (https://doi.org/10.5281/
zenodo.2629589, Hengl and Gupta, 2019), which included
fc under 33 kPa at 0 cm (b0) and 10 cm (b10) depths.

GI includes latitude (lat), longitude (lon), moisture index
(im) (Thornthwaite, 1948) and river vector data, provided by
the Data Centre for Resources and Environmental Sciences,
Chinese Academy of Sciences (http://www.resdc.cn/Default.
aspx, last access: 18 April 2021). The distance from each
AMS to river networks at all levels (R4, R5, R12) in China
was calculated using the Euclidean distance analysis method.
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Table 1. Environmental factors used in the study, including meteorological data (MD), day of year (DOY), classified irrigation (CIR), soil
properties (SP), remote sensing data (RSD) and geographical information (GI).

Data type Variable Data description Temporal resolution Spatial resolution

MD
pre daily precipitation daily 1 km
pre10 ante-accumulated precipitation over 10 d daily 1 km

DOY DOY day of year daily 1 km

CIR CIR classified irrigation – –

SP

T_REF_BULK unit: % kg dm−3. – 1 km
T_SAND unit: % wt. – 1 km
T_CLAY unit: % wt. – 1 km
T_PH_H2O unit: %–log (H+). – 1 km
T_GRAVEL unit: % vol. – 1 km
T_SILT unit: % wt. – 1 km

RSD
pet potential evapotranspiration monthly 4 km
fc field capacity – 250 m

GI

R4 river network vector I – –
R5 river network vector II – –
R12 river network vector III – –
lat latitude – –
lon longitude – –
im moisture index – –

Note: REF_BULK: soil bulk density; PH_H2O: hydrogen ion concentration; GRAVEL: volume percentage of crushed stone; T: topsoil layer. The dashed
line represents no default values.

Table 2. Evaluation index of relative soil moisture (SMI) in different growth periods of crops at 0–10 and 10–20 cm depths.

SMI in different growth periods of wheat (%)

seeding seedling tillering greening jointing booting grouting mature

70–90 75–95 80–95 55–60

SMI in different growth periods of maize (%)

seeding seedling jointing booting tasseling grouting mature

75–85 65–75 70–80 75–85 65–75

2.2.3 Public SM products for comparison

We used two existing SM products for comparison. (1) The
ESA CCI SM data are a merged multisatellite surface SM
product, which consists of active, passive or combined prod-
ucts. The SM retrievals were from four microwave radiome-
ters (SMMR: Scanning Multichannel Microwave Radiome-
ter; SSM/I: Special Sensor Microwave/Imager; TMI: Tropi-
cal Rainfall Measuring Mission’s (TRMM) Microwave Im-
ager; and AMSR-E: Advanced Microwave Scanning Ra-
diometer for the Earth Observing System) and two scat-
terometers (AMI: Active Microwave Instrument; ASCAT:
Advanced Scatterometer) in a 0.25◦ global daily dataset. The
assimilated data rely on their respective sensitivity to vege-
tation density and use a Global Land Data Assimilation Sys-
tem (GLDAS) surface SM product (Rodell et al., 2004) as a

climatological reference (Wagner et al., 2012). The active/-
passive products were the integration of the scatterometer-
and radiometer-based SM retrievals, while the ESA CCI SM
product is the fusion of both the active and passive prod-
ucts. We used the v05.2 product for comparison because of
its advantages compared with active/passive products (Liu et
al., 2012; Dorigo et al., 2017). (2) The RSSSM is an im-
proved global long-term remote-sensing-based surface SM
dataset covering 2003–2018 at a 0.1◦ resolution (https://doi.
org/10.1594/PANGAEA.912597, Chen et al., 2021). Consid-
ering their compatibility, we chose 1995 to 2018 for com-
parison between ChinaCropSM1 km and ESA CCI SM and
the 2003–2018 period for that of ChinaCropSM1 km and
RSSSM.
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2.3 Method

2.3.1 Variable selection and data treatment

For the site-related variables, we used the extract values to
points tool to extract the 1 km resolution raster information of
the environmental (i.e., SP, RSD and GI) data to AMS point
data, to output point data attributes and to save it in CSV
format to obtain a dataset of environmental factors through
ArcGIS 10.5, and then we deleted those with high multi-
collinearity (|r|>0.5) according to the factor stacks (Figs. S3
and S4). Therefore, the 11 independent variables (pre, pre10,
DOY, CIR, T_REF_BULK, R4, im, pet, lat, lon and fc) were
selected because they characterize well the impacts of mete-
orology, time, irrigation, soil properties and geography on
regional SM. We used the “Euclidean distance” option of
the spatial analyst tools in ArcGIS10.5 to obtain the vari-
ables related to river networks in China (Danielsson, 1980).
We also applied the kriging interpolation method to obtain
precipitation-related variables (e.g., pre- and pre-10) from
CNMSs. Thereafter, all gridded maps were processed in
the WGS84 UTM zone 45N Geographic Coordinate System
(EPSG: 332645) and resampled to the same spatial resolution
(1 km).

2.3.2 Model development

Ensemble learning was used to aggregate a collection of al-
gorithms to predict the potential impacts, which represents a
better method than that using any algorithm alone (Brown-
lee, 2016). Random forest (RF) is a typical ensemble learn-
ing algorithm that can be used to build predictive models for
both classification and regression purposes. RF fits an en-
semble of models that first train a multitude of decision trees
and then obtain predictions by an average or vote through all
individual trees (Breiman, 2001). The algorithm introduces
extra randomness when growing trees and searches for the
best trees among a random subset of features. This technique
results in greater tree diversity, generally yielding an overall
better model (Hutengs and Vohland, 2016; Lagomarsino et
al., 2017). In addition, the bagging method, which constructs
multiple training subdatasets by resampling with the replace-
ment of the original dataset, is employed to reduce the vari-
ance and overfitting (Díaz-Uriarte and Alvarez de Andrés,
2006; Zhang et al., 2018). Its high accuracy and stability in
agricultural fields have been substantiated in several previ-
ous studies, especially for predicting grain yield, identifying
crop planting areas and mapping soil properties (Hengl et al.,
2015; Jeong et al., 2016; Sun et al., 2019).

Hyperparameters in an RF model are very important to
optimize its performance. Such parameters are initially de-
faulted, and we need to investigate their appropriateness or
find potentially better values during the development of an
RF regression (RFR). The important hyperparameters in-
clude the following:

– n_estimators: the number of trees that the algorithm
builds before taking the maximum voting or average
overpredictions (a high number of trees increases the
performance and makes the predictions more stable but
demands more computations);

– max_features: the maximum number of features that the
random forest considers on a per-split level (the condi-
tion is based on variance for regression);

– min_samples_leaf: the minimum number of leaves that
are required to split an internal node;

– max_samples: ratio of samples needed for training each
tree.

We applied the 10-fold cross-validation method to tune the
four hyperparameters to avoid overfitting the RF models
(Fig. S5). Additionally, we used this 10-fold cross-validation
to evaluate model performance (Fig. S7).

The detailed irrigation module is shown in Fig. S2. Given
that SM is highly sensitive to irrigation application for dry-
land wheat and maize in China, we first used RF classifica-
tion (RFC) to build an irrigation module. This module aimed
to predict whether irrigation application occurred there and
assigns response variable “1” for irrigation and “0” for with-
out irrigation according to the response variables and pre-
dictor variables (the same environmental indicators used in
producing ChinaCropSM1 km).

The response variable (classified irrigation CIR) was cal-
culated by the irrigation threshold (Table 2) and in situ in-
formation, including crop type, phenology and soil depth.
Then, we used the forecasted CIR as an additional predictor,
integrating with other key predictor variables, to drive RFR
for forecasting SM. Considering the regional differences in
SM, we randomly sampled in situ SM observations (90 %
for training and 10 % for testing) in each agricultural zone to
develop the RF model. In total, 98 576 (65 626) and 10 820
(6845) observations were used for training and testing the
model for wheat (maize), respectively. All these point sam-
ples were used to develop the pointed SM model, and then
these pointed models are applied to inversely calculate the
gridded SM by inputting 1 km raster environmental variables
(Fig. 2).

The hyperparameters in the optimal model were deter-
mined as 50, 1, 1 and 4 for the respective n_estimators,
max_samples, min_samples_leaf and max_features accord-
ing to the highest accuracy during training (Fig. S5).
We implemented these processes in MATLAB 9.8.0
(R2020a). More information can be found in the MAT-
LAB help center (https://www.mathworks.com/help/stats/
regressionlearner-app.html, last access: 26 May 2022).

The feature importance was evaluated for the RF
model with the greatest regression accuracy by or-
dering the out-of-bag predictor observations using the
MATLAB “oobPermutedPredictorImportance” func-
tion (https://www.mathworks.com/help/, last access:
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Figure 2. Flow chart for producing ChinaCropSM1 km with an irrigation module.

26 May 2022). We also used the method to measure the
importance of each predictor variable when predicting
ChinaCropSM1 km.

2.3.3 Evaluation metrics for validation and comparison

The in situ observations provide the most accurate SM, and
all performance measures were calculated using the testing
dataset for evaluation purposes. All SM products were evalu-
ated against the in situ observations (testing dataset) accord-
ing to five metrics: root mean square error (RMSE; m3 m−3),
bias (m3 m−3), unbiased RMSE (ubRMSE; m3 m−3), ex-
plained variance (R2) and the correlation coefficient (r),
which are defined in Eqs. (2)–(6) as follows:

r =
1

N − 1

∑N

i=1

(
Pi −P

σP

)(
Oi −O

σO

)
, (2)

R2
= 1−

∑N
i=1(Pi −Oi)2

N
∑N
i=1

(
Pi −P

) , (3)

bias=
1
N

∑N

i=1
(Pi −Oi) , (4)

RMSE=

√
1
N

∑N

i=1
(Pi −Oi)2, (5)

ubRMSE=
√

RMSE2
− bias2 , (6)

where the overbar indicates the mean, Pi is the ith prediction
SM from products, Oi is the ith in situ observation SM, N
is the total number of observations, and σO and σP are the
standard deviations of the in situ observed and predicted SM,

respectively. In addition, we compared our four subsets of
data with RSSSM and ESA CCI SM separately by evaluating
their spatial and temporal accuracies related to in situ surface
SM observations (Tables S1 and S2).

We evaluated our irrigation factor forecasting model re-
sults using the receiver operating characteristic (ROC) curve
and the area under the curve (AUC) (Table S4) (Fawcett,
2006). Additionally, we calculated user’s accuracy (UA)
(Eq. 7), producer’s accuracy (PA) (Eq. 8) and overall accu-
racy (Eq. 9) based on confusion matrices (Table S3) contain-
ing the percentages of the four possible outcomes of a model:
true positive (TP), true negative (TN), false-positive (FP) and
false negative (FN) (Fawcett, 2006).

PA=
TP

TP+FP
(7)

UA=
TP

TP+FN
(8)

Accuracy=
TP+TN

TP+FP+TN+FN
(9)

3 Results and discussion

3.1 Validation of ChinaCropSM1 km products

The scatterplots between the predicted SM and those obser-
vations are displayed by soil layers and crops (Fig. 3). We
found that the SM predicted by the RF model agreed well
with the in situ SM observations, with an ubRMSE of 0.028–
0.037, bias of−0.0011–0.0009 and r from 0.925–0.944. Ad-
ditionally, the mean bias in predicting SM for wheat was
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Figure 3. Comparison between the predicted soil moisture (ChinaCropSM1 km) and in situ samples by crops and depths (cm). (a) wheat0–10,
(b) wheat10–20, (c) maize0–10 and (d) maize10–20. The red lines are the trend lines, the color bar indicates the point density, and the black
lines represent the 1 : 1 lines.

Figure 4. Comparison of soil moisture accuracy with and without
an irrigation module.

negative (Fig. 3a, b), while those for maize were positive
(Fig. 3c, d). These findings suggest that maize SM was over-
estimated, while that for wheat was underestimated. The ab-
solute values of mean bias and RMSE in predicting SM at
topsoil depth (0–10 cm) for both crops were relatively larger
(e.g., 0–10 cm; RMSE 0.036>0.028) than that for a soil
depth of 10–20 cm. This result indicates that the RF model
performed better in predicting the SM content in the 10–
20 cm layer than in the 0–10 cm layer, which was consistent
with previous studies (O and Orth, 2020).

3.2 The improvement of ChinaCropSM1 km products
with an irrigation module

Interestingly, all prediction accuracies of SM were consis-
tently improved for both crops and depths (Fig. 4) compared
with those without an irrigation module (Table S5). Specif-
ically, R2 values increased by 6.8 %–9.7 %, and RMSE val-
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Figure 5. The importance scores of 11 independent variables and
the irrigation factor (CIR).

ues decreased by 16 %–23 % (Table S5). Among these, R2

values for maize SM were slightly improved compared with
those of wheat, and RMSE for maize decreased more than
that of wheat. This finding further suggests that the irrigation
water requirements of maize are higher than those of wheat,
which is consistent with the fact that summer maize requires
large amounts of water to produce high yields. (Karrou et al.,
2012).

3.3 The significant scores of different factors for
simulating SM

It is critical to select which independent variables are in-
volved in a model, neither too many nor too few, while simul-
taneously avoiding multicollinearity among them. We have
deleted 7 variables due to their high correlations (|r|>0.5),
leaving the 11 variables selected (Figs. S3 and S4). Surpris-
ingly, the top scorer was irrigation factor (CIR), followed
by pre10 (ante-accumulated precipitation over 10 d) and fc
(field capacity) (Fig. 5). Current daily precipitation shows
significantly different importance on SM planted by wheat
and maize, with a similarity for DOY. However, all other fac-
tors show less importance in SM simulations. Compared with
the significant roles of precipitation-related variables (e.g.,
pre10, pre) on SM in most rainfall-fed areas, irrigation shows
overwhelming impacts on dryland soil moisture across China
(Qiu et al., 2016b). Such results highlight that monitoring
management activities more accurately, including irrigation
times, areas and quantities, will further improve irrigation
modules, consequently improving SM simulations (Wu et al.,
2020; Zhang et al., 2015, 2022).

3.4 The temporal and spatial patterns between
ChinaCropSM1 km and the in situ SM observations

The SM values in ChinaCropSM1 km were significantly
correlated with the in situ SM observations, with a mean
r of 0.92, 0.94, 0.93 and 0.94 for wheat0–10, wheat10–20,
maize0–10 and maize10–20, respectively, during the whole
growing period (Fig. 6). The spatial coefficients for wheat
at 10–20 cm were generally higher than the surface SM (0.94
vs. 0.92), and the two soil depths of SM in April and Septem-
ber were significantly higher (Fig. 6a, b). We attributed the
high spatial correlations of surface SM to irrigation impacts
because April and September are planting times for both
spring and winter wheat. The better relationships further sub-
stantiated that the irrigation module developed in our SM
model improves the simulation accuracy for surface SM.
Consistently, the spatial coefficients for maize at the 10–
20 cm depth were higher than those for the 0–10 cm depth
(0.94 vs. 0.93) (Fig. 7c, d). At the sowing (April), heading
(July) and milking (August) stages, maize usually demands
a large water supply. The spatial coefficient for maize SM
at both soil depths from May to August was lower than the
mean value potentially due to the lack of irrigation applica-
tions (Yin et al., 2016) (Fig. 6).

We further analyzed the temporal pattern of SM accuracy
in different regions (Fig. 7). The median r values for the
Huang–Huai–Hai Plain and the northern arid and semiarid
regions were higher than those in other agricultural regions
because of the larger training samples. Our findings further
substantiated that a larger training sample size will cause
a higher temporal accuracy, indicated by a higher r and a
lower RMSE (Fig. S6). However, the poor performance in the
Yunnan–Guizhou Plateau might be caused by smaller train-
ing samples (Fig. S6).

3.5 Comparisons between ChinaCropSM1 km and
public global SM products

We further compared our ChinaCropSM1 km with the two
popular products through evaluating their spatiotemporal ac-
curacy related to in situ surface SM observations. We sum-
marized their evaluation indices by each individual product
in Table 3, which consistently indicated in bold our Chi-
naCropSM1 km means (all r>0.90, RMSE<0.04), while
RSSSM and ESA CCI SM were shown by r<0.50 and
RMSE>0.1.

To match the different spatial resolutions of the three prod-
ucts, we calculated the averages of all in situ observations in
the same pixel (e.g., 1 km, 27 km or 0.1◦) to make their spa-
tiotemporal accuracies comparable. Interestingly, all indices
of our products were consistently indicated by the higher
accuracy (e.g., r 0.94, bias 0.005, RMSE 0.034, ubRMSE
0.034) (Fig. 9). The RSSSM dataset significantly underesti-
mated SM with an averaged bias of −0.114, accompanied
by a higher RMSE of 0.150. ESA CCI SM performed better
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Figure 6. Comparison of the spatial accuracy (r) between ChinaCropSM1 km and in situ SM observations in each month by crops and
depths. (a) wheat0–10, (b) wheat10–20, (c) maize0–10 and (d) maize10–20. The dashed lines represent the mean values.

Figure 7. Comparison of the temporal accuracy (r , RMSE, bias, ubRMSE) between ChinaCropSM1 km and in situ soil moisture observations
by crops and depths. (a1, a2) wheat0–10, (b1, b2) wheat10–20, (c1, c2) maize0–10 and (d1, d2) maize10–20. The dashed lines represent the
mean values.

than RSSSM (e.g., RMSE 0.11 vs. 0.15) derived from Soil
Moisture Active Passive (SMAP) (Entekhabi et al., 2010),
and we ascribed such improvement partly to some correc-
tions based on in situ observations for ESA CCI SM (Dorigo
et al., 2017). Such results highlight that SM products derived
solely from remote sensing satellites should be corrected
with ground observations. Additionally, neither RSSSM nor

ESA CCI SM considered irrigation activities; thus, their spa-
tial correlations with ground observations are incompara-
ble to those of our products (r 0.944 vs. 0.381 and 0.256)
(Fig. 8). Our study strongly substantiates that an irrigation
module should be taken into account when developing SM
simulation models for producing SM products.
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Table 3. Summary of means of evaluation indices (r , bias, RMSE and ubRMSE) of three products (ChinaCropSM1 km, RSSSM and ESA
CCI SM), with better performance highlighted in bold. All products were compared with in situ surface observations (0–10 cm).

Product ChinaCrop SM1 kmmaize RSSSM ESA CCI SM ChinaCrop SM1 kmwheat RSSSM ESA CCI SM

r 0.93 0.43 0.35 0.93 0.29 0.33
RMSE 0.033 0.167 0.126 0.035 0.187 0.121
Bias 0.0006 −0.1361 −0.0846 −0.0008 −0.1552 −0.0705
ubRMSE 0.033 0.097 0.093 0.035 0.105 0.099

Figure 8. Time series of comparison between in situ SM observations and products.

4 Data availability

The 1 km gridded daily soil moisture datasets for the
main dryland crops (i.e., wheat and maize) in China
from 1993 to 2018 (ChinaCropSM1 km) are pub-
licly available at https://doi.org/10.5281/zenodo.6834530
(wheat0–10) (Cheng et al., 2022a), https://doi.org/10.
5281/zenodo.6822591 (wheat10–20) (Cheng et al., 2022b),
https://doi.org/10.5281/zenodo.6822581 (maize0–10) (Cheng
et al., 2022c) and https://doi.org/10.5281/zenodo.6820166
(maize10–20) (Cheng et al., 2022d).

5 Discussion and conclusions

We developed a daily 1 km soil moisture dataset based on
numerous field observations (181 327 samples) from 1993–
2018, which significantly enriches the current SM datasets
available. ChinaCropSM1 km shows higher spatial and tem-
poral resolution and accuracy than the popular global SM
products. Additionally, to date, few studies have provided
a daily SM product with such a higher resolution, com-
bining different soil depths and an irrigation module. Chi-
naCropSM1 km is the first SM product with a higher spatial
resolution (∼ 1 km) at depths of 0–10 and 10–20 cm in crop-
lands in China by compiling ground observations and using
the RF method.

Our ChinaCropSM1 km predicted by the RF model agreed
well with in situ SM observations (ubRMSE ranges from
0.028–0.037, bias ranges from −0.0011–0.0009, r ranges

from 0.925–0.944, and R2 ranges from 0.860–0.895). An ir-
rigation module was first developed according to crop type
(i.e., wheat, maize), soil depth (0–10 cm, 10–20 cm) and phe-
nology. All prediction accuracies of SM were consistently
improved (R2 values increased by 6.8∼ 9.7 %, RMSE de-
creased by 16∼ 23 %) for both crops and depths. Addition-
ally, ChinaCropSM1 km generally has advantages over other
popular gridded SM products (RSSSM and ESA CCI SM)
through evaluating their spatiotemporal accuracy related to
in situ SM as the benchmark. Our ChinaCropSM1 km has
relatively higher accuracy (all r>0.90, RMSE<0.04), while
RSSSM and ESA CCI SM showed r<0.50 and RMSE>0.1.

The ChinaCropSM1 km dataset is credible and accurate
according to the results compared with the public datasets;
however, some limitations still exist in our study. First, the
limited AMS irrigation records may lead to uncertainty in the
irrigation factor predictions. More detailed irrigation infor-
mation will help to improve irrigation module performance.
Second, our method for generating cropland SM is applica-
ble to other regions and crops, but more environmental vari-
ables will be increasingly required considering that SM vari-
abilities are complex processes controlled by many factors
(Famiglietti et al., 2008; Qin et al., 2013; Guevara and Var-
gas, 2019), especially for irrigation activities. For example, to
more accurately characterize irrigation activities, many field
samples are required at both spatial and temporal resolutions.
Other auxiliary data on information on crop growth, classi-
fication and management (e.g., irrigation frequency, amount
and method) will benefit the development of our irrigation
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Figure 9. Boxplot of the temporal (a, c) and spatial (b, c) accu-
racies for ChinaCropSM1 km, RSSSM and ESA CCI SM by r ,
bias, RMSE and ubRMSE. These evaluation indices were calcu-
lated by comparing the three products with in situ SM observations;
the comparison period for ChinaCropSM1 km and RSSSM is from
2003 to 2018, and for ChinaCropSM1 km and ESA CCI SM it is
1995–2018.

module and the accurate derivation of SM datasets. Third, to
provide the most extensive SM data as possible, a constant
layer integrated with all pixels planting wheat/maize during
2000–2015 (http://dx.doi.org/10.17632/jbs44b2hrk.2, Luo et
al., 2020b) was applied to generate our ChinaCropSM1 km.
Such merged areas could lead to uncertainties in their spatial
distributions because annual wheat/maize planting areas are
dynamic over time. To avoid the uncertainties, potential users

should mask our products with explicitly annual wheat/maize
planting maps to obtain accurate SM data including spa-
tial dynamic information. Fourth, different splitting methods
during training and testing affect model performance. Select-
ing a splitting method to improve the generalization perfor-
mance is dependent on the data. Generally, the larger the size
of the data, the smaller the effect of the splitting methods on
the results (Birba, 2020). Additionally, advanced algorithms
will be potential alternatives for random forest due to their
strong dependence on inputs (Breiman, 2001; Rasmussen,
2004). Improving irrigation modules should focus on details
such as irrigation amount and frequency, which will signifi-
cantly help to verify and improve the accuracy of both irri-
gation and SM predictions. We anticipate that a more accu-
rate SM dataset will be produced by applying the approach
to other crops and areas in the future with all the above im-
provements.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-395-2023-supplement.
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