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Abstract. Permafrost over the Qinghai–Tibet Plateau (QTP) has received increasing attention due to its high
sensitivity to climate change. Numerous spatial modeling studies have been conducted on the QTP to assess the
status of permafrost, project future changes in permafrost, and diagnose contributors to permafrost degradation.
Due to the scarcity of ground stations on the QTP, these modeling studies are often hampered by the lack of
validation references, calibration targets, and model constraints; however, a high-quality permafrost distribution
map would be a good option as a benchmark for spatial simulations. Existing permafrost distribution maps for
the QTP can poorly serve this purpose. An ideal benchmark map for spatial modeling should be methodologi-
cally sound, of sufficient accuracy, and based on observations from mapping years rather than all historical data
spanning several decades. Therefore, in this study, we created a new permafrost distribution map for the QTP
in 2010 using a novel permafrost mapping approach with satellite-derived ground surface thawing and freezing
indices as inputs and survey-based subregion permafrost maps as constraints. This approach accounted for the
effects of local factors by incorporating (into the model) an empirical soil parameter whose values were opti-
mally estimated through spatial clustering and parameter optimization constrained by survey-based subregion
permafrost maps, and the approach was also improved to reduce parametric equifinality. This new map showed a
total permafrost area of about 1.086× 106 km2 (41.2 % of the QTP area) and seasonally frozen ground of about
1.447× 106 km2 (54.9 %) in 2010, excluding glaciers and lakes. Validations using survey-based subregion per-
mafrost maps (κ = 0.74) and borehole records (overall accuracy= 0.85 and κ = 0.43) showed a higher accuracy
of this map compared with two other recent maps. Inspection of regions with obvious distinctions between the
maps affirms that the permafrost distribution on this map is more realistic than that on the Zou et al. (2017) map.
Given the demonstrated excellent accuracy, this map can serve as a benchmark map for constraining/validating
land surface simulations on the QTP and as a historical reference for projecting future permafrost changes on
the QTP in the context of global warming. The dataset is available from the repository hosted on Figshare (Cao
et al., 2022): https://doi.org/10.6084/m9.figshare.19642362.
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1 Introduction

Permafrost, defined as ground that remains at or below 0 ◦C
for at least 2 consecutive years (Dobinski, 2011), underlies
more than 20 % of the exposed land area in the Northern
Hemisphere (Obu et al., 2019) and constitutes an essential
component of the Earth system. The Qinghai–Tibet Plateau
(QTP), also known as the Earth’s third pole, contains the
largest mid- to low-latitude permafrost area in the world. Due
to the complex topography and unique plateau climate, per-
mafrost over the QTP is generally of low thermal stability
and strongly influenced by complex local factors, such as ter-
rain, vegetation cover, soil properties, and hydrological con-
ditions, which differentiate it from high-latitude permafrost
around the Arctic and make it more sensitive to global cli-
mate change (Li et al., 2008; Yang et al., 2019; Zhao et al.,
2020).

In the context of global warming, significant permafrost
degradation is occurring on the QTP and has strongly af-
fected hydrological processes (Li et al., 2020), carbon cy-
cling (Mu et al., 2020), and heat exchange processes (Zhao et
al., 2020). In addition, hazards related to permafrost degra-
dation threaten construction and infrastructure on the QTP
(Wang et al., 2020). Many researchers have studied the com-
plex responses and feedback of permafrost to climate change
(Yang et al., 2019), while land surface model-based spatial
modeling of permafrost has become an important approach
(Ji et al., 2022). Using land surface models, many spatial
modeling studies have attempted to project future changes in
permafrost (Chang et al., 2018; Debolskiy et al., 2020; Yin et
al., 2021), assess the permafrost status under climate change
(Koven et al., 2013; Burke et al., 2020), diagnose the contrib-
utors to regional permafrost degradation (Zhang et al., 2021a,
b; Mekonnen et al., 2021), and project potential feedbacks on
the climate system due to permafrost degradation (Zhang et
al., 2020; Andresen et al., 2020; Yokohata et al., 2020; Wang
et al., 2021). However, evaluating the spatial simulations for
the QTP can be challenging due to the limited availability of
ground observations, which may not be sufficient to serve as
references across the vast spatial modeling domain. Hence,
there is a need for an accurate permafrost distribution map
that would serve as a reference to validate the results of spa-
tial simulations. The map could be used as a target for the
calibration of model parameters and to provide a constraint
for future projections to minimize biases resulting from the
modeling process. Moreover, an accurate map of permafrost
distribution could serve as a fundamental dataset for hydro-
logical, carbon, ecological, and engineering studies in cold
regions (Hu et al., 2019a; Li et al., 2020; Song et al., 2020;
Mu et al., 2020).

Although many permafrost distribution maps have been
compiled over the QTP (Cheng et al., 2011; Shi and Mi,
2013; Wang, 2013; Guo and Wang, 2013; Zou et al., 2017;
Niu and Yin, 2018; Shi et al., 2018; Wu et al., 2018; Wang et
al., 2019c), few of them can serve as benchmarks for cal-

ibrating and validating land surface models (Wang et al.,
2016; Cao et al., 2019a). The accuracy of existing maps is
constrained by the limited availability and quality of data
used to create them as well as by the inadequacy of map-
ping approaches. Early permafrost maps on the QTP (Cheng
et al., 2011; Shi and Mi, 2013) were compiled through vi-
sual interpretation based on a limited number of data and
expert judgment. Subsequently, satellite data and reanalysis
data have become the main data sources of permafrost map-
ping (Wang, 2013; Zou et al., 2017; Shi et al., 2018; Wang
et al., 2019c). However, large gaps in satellite data coverage
caused by clouds would highly affect the accuracy of per-
mafrost maps in the absence of effective interpolation meth-
ods (Chen et al., 2020). Although the reanalysis products do
not suffer from cloud contamination, their coarse spatial res-
olutions and associated large uncertainties on the QTP (Hu
et al., 2019b; Qin et al., 2020; Cao et al., 2020) would limit
the accuracy of the derived maps.

Uncertainties associated with mapping approaches also
negatively impact the accuracy of existing permafrost maps.
Common statistical learning methods for permafrost map-
ping (Wang et al., 2019c; Ni et al., 2021) heavily rely on
in situ observations as a training dataset. Therefore, they are
often compromised when ground observations are unevenly
distributed and have different observation periods, as is the
case for the QTP. This led to misrepresentation and overfit-
ting in permafrost maps (Marcer et al., 2017). Meanwhile,
the lack of accurate soil properties, fine-tuned parameteriza-
tion schemes, and high-resolution forcing data on the QTP
severely challenged the applications of land surface models
in mapping permafrost (Wu et al., 2018). These physically
explicit models were often calibrated and validated at a point
scale, leading to unpredictable uncertainties when extended
to a large region with more variability and, thus, more com-
plex conditions (Qin et al., 2017; Wu et al., 2018). In addi-
tion, permafrost distribution maps generated by land surface
models are usually not well suited as independent benchmark
maps, as the land surface models are more or less similar in
terms of model structure and forcing data. Therefore, em-
pirical and semi-physical approaches remain the mainstay
of permafrost mapping on the QTP, as they require fewer in
situ observations than statistical learning methods and have a
simpler structure with fewer parameters than physical mod-
els (Zou et al., 2017; Zhao et al., 2017). Nevertheless, these
maps have been criticized for limited consideration of local
factors (Cao et al., 2019a; Hu et al., 2020) and the lack of
constraints imposed to avoid divergence. All of these issues
call into question the ability of the existing permafrost dis-
tribution maps to serve as benchmark maps for land surface
simulations on the QTP.

An ideal benchmark map for spatial modeling of per-
mafrost should fulfill the following criteria:
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1. It should be based on an adequate number of robust ob-
servations that have not already been used for the simu-
lation.

2. It should be based on the data from the mapping year,
rather than all data spanning decades while they were
still available; this is especially important if the bench-
mark map is used to calibrate a transient model.

3. It should account for the influences of local factors and
be well constrained during the mapping process.

Based on these criteria, this study aims to produce a per-
mafrost distribution map over the QTP in 2010 through an
effective permafrost mapping approach that considers the ef-
fects of local factors and utilizes observational data, includ-
ing remote sensing data and survey-based subregion per-
mafrost maps, as optimization targets and constraints. Our
objective is to provide a new reference map for 2010 for per-
mafrost studies on the QTP and to provide a benchmark map
for transient simulations of QTP permafrost under climate
change.

2 Study area and data

2.1 Study area

The QTP (bounded within 26–40◦ N and 73.5–104.5◦ E) is a
high-elevation flat terrain of about 2.6× 106 km2 and is sur-
rounded by high mountain ranges (Fig. 1). The northwestern
region of the QTP is predominantly characterized by alpine
desert, gradually transitioning towards alpine meadow and
forest in the southeastern part (Wang et al., 2016). Most of
the QTP lies between 3000 and 5000 m a.s.l. (above sea level)
with an average of about 4000 m a.s.l. The mean annual air
temperature varied between −5 and 5 ◦C in most areas dur-
ing the period from 1981 to 2010, with July experiencing
the highest monthly temperature of about 10 ◦C and January
recording the lowest at −10 ◦C. Between 1960 and 2010, air
temperature increased by about 0.3–0.4 ◦C per decade, which
is more than twice the global warming rate (Zhang et al.,
2019). Mean annual precipitation decreases from more than
700 mm in the southeast to about 50 mm in the northwest,
and about 90 % of precipitation falls during the growing sea-
son from May to September (Peng et al., 2019). Snow cover
on the QTP is thin and of short duration (Wu and Zhang,
2008). Extensive alpine permafrost has formed across the
QTP, featuring continuous permafrost in the central region
and discontinuous permafrost in the southern parts (Yi et al.,
2014). Ice-rich layers are commonly observed near the per-
mafrost table on the plateau, which typically reaches a depth
of 2–3 m (Zhao et al., 2020). Permafrost thickness on the
QTP ranges from several meters to about 350 m, while the
depth of zero annual amplitude varies from 3.5 to 17 m (Zhao
et al., 2020). The QTP permafrost is also characterized by
a high mean annual ground temperature (MAGT), which is
above −3 ◦C in most permafrost regions (Zhao et al., 2020).

2.2 Subregion permafrost maps

From 2009 to 2014, a research project sponsored by the Chi-
nese Minister of Science and Technology was carried out
to investigate permafrost and its surroundings. Intensive sur-
veys were conducted in five areas (i.e., West Kunlun, Gaize,
Aerjin, national highway G308, and Wenquan; see Fig. 1),
each characterized by distinct climatic and geographic con-
ditions and representative of the different permafrost envi-
ronments on the QTP (Zhao et al., 2017). Comprehensive
information was acquired through field observations, me-
chanical excavations, geophysical reconnaissance techniques
(e.g., ground-penetrating radar, GPR, and time-domain elec-
tromagnetic surveys), and borehole drilling, which allowed
for the mapping of the permafrost distribution with high ac-
curacy in all five subregions. The permafrost distribution in
the Wenquan and West Kunlun subregions was mapped by
a multivariate adaptive regression splines (MARS) model
trained on large samples from field surveys: 130 GPR profiles
and 21 boreholes in Wenquan and 103 GPR profiles, 50 pits,
and 13 boreholes in West Kunlun. In the Gaize, Aerjin, and
G308 subregions, the maps were based on aspect-stratified
relationships between the altitudinal limits of permafrost and
topography (Chen et al., 2016).

These subregion permafrost maps have been widely used
as ground truth in many modeling studies (Zou et al., 2017;
Zhao et al., 2017; Shi et al., 2018; Wu et al., 2018; Wang
et al., 2019b). The original maps have a spatial resolution of
250 m. In this study, these maps were aggregated, resampled
to a 1 km resolution, and then used to calibrate an empirical
soil parameter representing a synthesized soil thermal and
moisture condition.

2.3 Satellite land surface temperature product

The land surface temperature (LST) data product from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
aboard the Terra and Aqua satellites is one of the most widely
used LST products due to its high spatial and temporal res-
olutions (Wan, 2008). It has a global coverage and has been
applied in many permafrost mapping studies to provide tem-
perature conditions (Gisnås et al., 2017; Zou et al., 2017;
Obu et al., 2019; Wang et al., 2019c). In this study, the
daily MODIS LST and emissivity products (MOD11A1 and
MYD11A1 Version 6) were used, providing up to two day-
time and two nighttime LST observations at a 1 km resolu-
tion. These observations were used to estimate annual ground
surface thawing (DDT) and freezing indices (DDF) driving
the mapping approach. DDT and DDF are defined as the
absolute values of the cumulative degree-days throughout a
year when ground surface temperatures (GSTs) are above
and below 0 ◦C, respectively (Nelson and Outcalt, 1987). In
practice, multiyear average DDTs (DDFs) are used instead of
a single-year DDT (DDF) in order to mitigate the impact of
single-year meteorological anomalies. In addition, the pres-
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Figure 1. Map showing the topography of the Qinghai–Tibet Plateau (QTP), the locations of meteorological stations, and the subregions
with extensive field surveys. Inset maps show the local permafrost distributions in the five subregions based on the survey data of ca. 2010:
WK, West Kunlun; GZ, Gaize; AJ, Aerjin; WQ, Wenquan; and G308, national highway G308.

ence of permafrost is, by definition, determined by the ther-
mal conditions of the last 2 years, indicating that not only the
DDT and DDF of the current year but also those of previous
years influence the presence of permafrost. We finally used
the period from 2005 to 2010 to derive the DDT and DDF for
2010, partly because automatic weather stations have been
commissioned on the QTP since 2005, which we needed to
accomplish the DDT estimation from the MODIS LST data.

2.4 Environmental factors influencing permafrost
distribution

In our approach, we spatially divided the study area into
different soil clusters to represent the heterogeneity of per-
mafrost environments on the QTP on the basis of several
environmental factors. The composite 16 d 1 km normalized
difference vegetation index (NDVI) product (MOD13A2)
provides information on vegetation greenness and has been
shown to be well suited to differentiate the main vegetation
classes on the QTP (Zhao et al., 2015). We calculated the
average aggregate from 2005 to 2010 and used it as an at-
tribute for spatial clustering and as a predictor variable for
estimating DDT. Topographical factors, including elevation
and slope, were derived from the Shuttle Radar Topography

Mission 90 m digital elevation database (SRTM DEM, ver-
sion 4; Reuter et al., 2007) and then aggregated to a working
spatial resolution of 1 km. The STRM-derived topographic
wetness index (TWI), along with mean annual precipitation
from 2005 to 2010 aggregated from the 1 km monthly pre-
cipitation dataset for China (Peng et al., 2019), represents
wetness conditions affecting permafrost distribution. Like-
wise, average aggregate fraction snow cover (FSC) data were
processed for the same period from the 500 m Daily Frac-
tional Snow Cover Dataset Over High Asia (Qiu et al., 2017).
Soil texture-type data derived from the China Data Set of
Soil Properties for Land Surface Modeling (Shangguan et al.,
2013) were also included.

2.5 In situ observations

2.5.1 Ground surface temperature (GST) observations

There are 131 national meteorological stations of China on
the QTP (Fig. 1), which are mostly concentrated in the east-
ern QTP. At these stations, standard meteorological vari-
ables, including air pressure, air temperature, precipitation,
evaporation, relative humidity, wind speed and direction,
sunshine hours, and 0 cm ground surface temperature, are
measured four times a day, at 02:00, 08:00, 14:00, and 20:00
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(UTC+8). We extracted the daily GST observations during
the period from 2005 to 2010 at these stations from the daily
meteorological dataset of basic meteorological elements of
the China National Surface Weather Station (V3.0) (National
Meteorological Information Centre, 2019). The in situ GST
observations were used to estimate DDTs from the satellite
LSTs on the QTP.

2.5.2 Permafrost presence/absence observations

We used permafrost presence/absence information from
boreholes to evaluate the new permafrost distribution map
produced in this study. These data are independent of those
used to produce subregion permafrost maps and come pri-
marily from three sources.

First, a newly published synthesis dataset of permafrost
thermal state on the QTP (Zhao et al., 2021) provides 65
boreholes where soil temperatures at 10 and 20 m depths
were monitored for 2005–2018. Thus, the presence of per-
mafrost at borehole locations around 2010 was determined
based on mean annual soil temperatures at the two aforemen-
tioned depths, as previous evidence suggests that the depths
of zero annual amplitude at these locations are within the two
depths. These boreholes were further classified into three cat-
egories: boreholes with stable permafrost (mean annual soil
temperature below −0.1 ◦C at either depth), boreholes with
unstable permafrost (above −0.1 ◦C at both depths and be-
low 0 ◦C at either depth), and boreholes with seasonal frost
(above 0 ◦C at both depths).

Second, seven boreholes were collected from existing lit-
erature (Li et al., 2016) that provided information on per-
mafrost presence in the Yellow River source area, a key re-
gion in the eastern QTP. Ground temperatures in these bore-
holes were measured in the summers of 2013 and 2014 and
assumed to reflect the thermal regimes in 2010. The borehole
locations were classified as seasonal frost if soil temperatures
at a 15 m depth were above 0 ◦C, otherwise they were classi-
fied as permafrost.

Third, in the Yangtze River source area, an important, eco-
logically vulnerable permafrost region of the QTP, recent
observations of the presence/absence of permafrost in 2020
from 32 boreholes (Li et al., 2022) were also used as a refer-
ence. Because permafrost on the QTP has warmed in recent
decades (Cheng et al., 2019), some boreholes indicative of
the presence of seasonally frozen ground (SFG) in 2020 may
have appeared to be permafrost in 2010. Therefore, these
32 boreholes were not used to quantitatively validate the re-
sults but rather only as an aid for comparison.

2.6 Existing QTP permafrost maps for comparison

To better evaluate the new map produced in this study, two
peer permafrost distribution maps with a resolution of 1 km
were used. One was compiled by Zou et al. (2017) using
the temperature at the top of permafrost model (TTOP) and

MODIS LST data from 2003 to 2012 (hereinafter referred to
as the Zou map). The other map was developed via a data-
driven approach by Wang et al. (2019) (hereinafter referred
to as the Wang map) with samples from two previous maps:
(1) a 2006 map (Wang, 2013) with the QTP portion mapped
using a multilinear regression model (Nan et al., 2002) and
(2) the Zou map. MODIS LST data were also used as a pre-
dictor variable for the Wang map. Recently, the Zou map has
been widely used to represent permafrost distribution around
2010 and has served as the ground truth in many QTP stud-
ies (Hu et al., 2019a; Song et al., 2020; Mu et al., 2020; Ni et
al., 2021; Yin et al., 2021). Cao et al. (2019a) evaluated the
Zou map as the best-performing permafrost map on the QTP
based on an inventory of field evidence.

For simplicity, we excluded lakes and glaciers from our
analysis. Glacier inventory data on the QTP were a subset
from Guo et al. (2015), and lake data for the period from
2008 to 2010 from Zhang et al. (2017) provided the lake
boundaries in this study.

3 Mapping method and validation

3.1 The FROSTNUM/COP method and the
improvements

We applied the FROSTNUM/COP mapping method devel-
oped by Hu et al. (2020) to map the distribution of per-
mafrost on the QTP. The general process of this method and
the improvements that we made in this study are outlined
in Fig. 2. It is based on the extended ground surface frost
number (FROSTNUM) model fed by satellite temperature
data (Fig. 2a, b), and it requires permafrost distribution maps
for subregions as optimization constraints. This method ac-
counts for local factors through a model parameter E, whose
values were optimally determined for all spatial units follow-
ing a procedure of spatial clustering (Fig. 2c), parametric op-
timization (Fig. 2d), and decision tree (Fig. 2c).

The extended FROSTNUM model determines the occur-
rence of permafrost using a frost number F :

F =

√
DDF

√
DDF+E ·

√
DDT

, (1)

whereE is a parameter accounting for the combined effect of
shifting soil properties from the unfrozen to the frozen state
and is determined by the soil thermal properties and moisture
conditions in both states. If F is greater than 0.5, the ground
is determined as permafrost, otherwise, it is seasonal frost.
Under ideal circumstances, if soil conditions remain constant
during the phase change, E equals 1 and Eq. (1) becomes
Nelson’s original frost number model (Nelson and Outcalt,
1987). Although the parameter E is physically well defined,
in practice it is impossible to compute its value directly due to
the lack of accurate information on soil properties and mois-
ture conditions. Therefore, the FROSTNUM/COP method
resorts to an optimization procedure to solve for E, which
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is detailed in Sect. 3.3. Once the freezing and thawing in-
dices and parameters are ready, the extended FROSTNUM
model is applied to map the distribution of permafrost across
the QTP.

The optimization procedure in the original
FROSTNUM/COP method uses Cohen’s kappa coef-
ficient (Cohen, 1960) as an objective function, which
measures the agreement of frozen-soil-type classification
between the simulated map and survey-based subregion
maps. This may lead to an equifinality problem given binary
categorical raters for kappa. In this study, we specially
reduced the equifinality problem by modifying the objective
function to additionally include a metric that guarantees
boundary consistency and by introducing an ensemble
simulation of 1000 runs of parametric optimization. These
processes are explained in Sect. 3.3.

3.2 Preparation of ground surface freezing and thawing
indices

DDF and DDT were calculated based on the MOD11A1
and MYD11A1 Level 3 products (Version 6). Gaps in
the MODIS LST data due to cloudiness resulted in sys-
tematic cold biases (Westermann et al., 2012) and, conse-
quently, uncertainties in mapping permafrost based on these
data. Despite many all-weather LST products (Zhang et al.,
2021; Xu and Cheng, 2021), we chose a stepwise interpo-
lation approach based on the solar–cloud–satellite geometry
(SCSG) effect (Chen et al., 2023) to interpolate the data-
gap regions in the MODIS LST data. Compared with ex-
isting approaches, the SCSG-based approach requires only
MODIS-family data and is effective for extensive missing
data (e.g., on the QTP). A brief introduction to this inter-
polation method is provided in Appendix A.

Due to the buffering effect of seasonal snow cover and veg-
etation, thermal offsets often exist between satellite-derived
LST values and GST values. In most areas of the QTP, snow
cover is thin and short-lived (Wu and Zhang, 2008; Zhao et
al., 2017); thus, the buffer effect of snow cover is limited and
LSTs are close to GSTs during snow-free periods (Hachem
et al., 2012), as also shown later in this study. Therefore, for
the DDF values, we simply calculated the sum of negative
degree-days of mean daily LST from four instantaneous LST
observations, ignoring the effects of snow cover.

Conversely, vegetation cover affects DDT by providing a
strong thermal buffer between GST and LST, especially on
the eastern QTP during growing seasons. Hence, thermal off-
sets should be removed from the raw LST data before DDT
can be derived as a sum of positive degree-days of mean
daily LST. To this end, we developed a multilinear regression
model where GST is a function of independent variables in-
cluding the raw LST, NDVI, and latitude at weather stations
(Huang et al., 2020). The correction was repeated over 23
time intervals a year, and the annual DDT was the aggregate

of all these corrected positive degree-days. More information
regarding this process can be found in Appendix B.

3.3 Determination of optimal values of soil parameter E

We followed the method developed by Hu et al. (2020) to
spatially group the soils of five subregions into soil clusters.
Because the QTP is a much larger region with more complex
climate and terrain conditions than the experimental area in
the previous study (Hu et al., 2020), the environmental vari-
ables that we chose to account for the influences of local fac-
tors on permafrost distribution were slightly different. Apart
from the previous factors of elevation, slope, TWI, precip-
itation, and soil texture type, we added NDVI and FSC as
a response to the relatively strong heterogeneity of surface
conditions on the QTP. Compared with Hu et al. (2020), we
excluded the relief degree due to its high correlation with
slope. To enable mixed clustering of both categorical (soil
texture type) and numerical variables, the k-prototype ap-
proach (Huang, 1998) was employed. Lakes were excluded
during the clustering analysis.

The particle swarm optimization (PSO) algorithm (Wang
et al., 2018) was used to find the optimal value of E associ-
ated with each soil cluster. In this population-based heuristic
method, the candidate solutions are guided toward the best-
known positions in the search space, thus enabling a very
rapid convergence to an optimal value. In the previous study
(Hu et al., 2020), the only objective function was Cohen’s
kappa coefficient (Cohen, 1960), which quantifies the agree-
ment between the simulation map and the survey-based sub-
region permafrost distribution maps. Despite the good per-
formance achieved in the experimental study area (Gaize in
Fig. 1), this relatively simple objective function inevitably
leads to equifinality in larger regions such as the QTP. Rec-
ognizing that the kappa coefficient is a good representation of
the overall consistency between simulation results and sub-
region maps, we retained the kappa coefficient (κ) and made
the objective function more rigorous by adding a specially
defined boundary consistency. The objective function is then
a weighted sum of overall consistency (κ) and boundary con-
sistency (β):

Fob = ωκ · κ +ωβ ·β, (2)

where Fob is the objective function value, and ωκ and ωβ are
the weights imposed on κ and β, respectively (ωκ+ωβ = 1).
To minimize the effects of the weights, a random value be-
tween 0.2 and 0.5 was chosen for ωβ and, correspondingly,
for ωβ in each of a total of 1000 ensemble runs. β represents
boundary consistency, which measures how well the bound-
aries between permafrost and SFG zones in the subregion
maps are represented by the simulation.
β is defined as the number of “positive boundary cells”

(Nm) normalized by the total number of “boundary cells”
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Figure 2. Workflow of the permafrost mapping method. Panel (a) outlines the data required in this study. Panel (b) describes the prepara-
tion of annual ground surface freezing indices (DDF) and thawing indices (DDT) based on satellite land surface temperature (LST) data.
Panel (c) presents the process of spatial clustering of soils in subregions and prediction of clusters for the study area based on local fac-
tors. Panel (d) outlines the determination of optimal values for soil parameter E in the model using the particle swarm optimization (PSO)
algorithm constrained by the subregion maps. Panel (e) shows the process of mapping the permafrost distribution on the QTP based on
1000 runs using the extended ground surface frost number model (FROSTNUM). Dashed blue lines mark the improved processes over the
original FROSTNUM/COP method (Hu et al., 2020), including refinement of the optimization objective and ensemble runs. The diagram
was modified from Hu et al. (2020). GST represents ground surface temperature and NDVI is the normalized difference vegetation index.

(Nb), with a range of 0 to 1:

β =
Nm

Nb
. (3)

A boundary cell is a cell on the survey-based subregion maps
whose neighboring cells of a size n×n satisfy two conditions:
first, the neighboring cells must contain both types of frozen
ground (permafrost and SFG); second, the neighboring cells
contain at least two soil clusters. According to Eq. (1), the
permafrost cells must have larger F values than those of SFG
grid cells. Therefore, in the neighboring cells of any bound-
ary cell, the F value averaged over the permafrost zone (Fp)
must be greater than that of the SFG zone (Fs). A bound-
ary cell is “positive” when this condition (Fp > Fs) is met,
otherwise it is “negative”.

The optimization procedure aims to maximize β as part of
the objective function, i.e., as high as possible boundary con-
sistency of the simulated map relevant to the subregion maps.
As the DDTs and DDFs were already predetermined in the
simulated map before the optimization procedure, the frost
number F in each grid cell depends on theE value associated
with the specific soil cluster of that cell. This means that, by
adjusting the E values of the soil clusters in the neighboring
cells of a “negative boundary cell”, the cell has the potential
to turn into a positive cell. In the other words, the number of
positive boundary cells, or β, is a function of E, thus permit-

ting parametric optimization. To illustrate this concept, we
present a simple instance of a boundary cell in Appendix C.

The lower and upper limits of E values were specified at
0.5 and 1.5, respectively, and the optimal E values were de-
termined for all soil clusters occurring in the subregions. Fi-
nally, a C5.0 decision tree (Kuhn and Johnson, 2013) was
trained on the information of soil clusters in the subregions
and then applied to predict soil clusters for all regions out-
side the subregions on the QTP on a cell basis, based on the
same environmental factors used in spatial clustering. After
the distribution map of soil clusters on the QTP was obtained,
the values of soil parameter E for the QTP were determined
by simply looking up the optimal E value associated with
each soil cluster in the soil cluster distribution map.

3.4 Mapping permafrost distribution and evaluation

Once E values are known for all QTP cells, the extended
FROSTNUM model was run to determine the type of frozen
ground of each cell using a threshold of F = 0.5, and the
permafrost distribution on the QTP could then be mapped.
However, this map may still be affected by local optima. To
reduce these issues, parameter optimization was performed
1000 times, a number that warranted minimal variability in
individual E values in our experiment, and the permafrost
distribution on the QTP was estimated 1000 times in re-
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sponse to 1000 different sets of E values. Finally, an ensem-
ble permafrost map on the QTP was generated by majority
voting of the 1000 estimates.

We validated the resulting map (hereafter referred to as our
map) from multiple aspects. Although these survey-based
subregion permafrost maps have been used as constraints
during the optimization process, the optimal E values were
obtained from all subregion maps as a whole. Therefore, the
survey-based permafrost map in each subregion is still of
value for validation. We also validated the maps using in
situ permafrost presence/absence observations around 2010.
We compared our map with two existing permafrost maps,
the Zou map and the Wang map, using the same references.
In particular, we analyzed the spatial inconsistency between
our map and the Zou map in some typical regions. In these
regions, we further evaluated the two maps by utilizing addi-
tional information from boreholes, satellite imagery, the per-
mafrost zonation index (PZI) map (Cao et al., 2019b), and
elevation characteristics. Satellite imagery provides indica-
tive landscape evidence of permafrost occurrence. While the
PZI rarely equates to the actual presence of permafrost, it
indicates a probability of permafrost presence with a value
ranging from 0 to 1 (Gruber, 2012). In some regions of the
QTP where permafrost is thermally controlled by elevation,
the dependency of permafrost occurrence on elevation pro-
vides useful information for evaluating permafrost distribu-
tion maps.

4 Results and discussion

4.1 Ground surface thawing and freezing indices

Figure 3 illustrates the comparison between average annual
in situ DDT (DDF) values, calculated as averages over 2005–
2010 from daily mean GSTs at 131 weather stations on the
QTP, and the average annual satellite DDT (DDF) values
at the corresponding MODIS pixels derived directly from
daily mean MODIS LSTs. The raw LST-derived DDF val-
ues exhibited a perfect match with the in situ DDF values,
echoing the limited effects of thin and short-duration snow
cover on the thermal states of underlying soils on the QTP
(Wu and Zhang, 2008; Zhao et al., 2017). In contrast, a no-
table discrepancy emerged in the LST-derived annual DDT,
which tended to underestimate the in situ DDT, resulting
in significant deviations at certain sites. The discrepancies
are mainly connected to the thermal offset between remotely
sensed LST and GST, which has also been reported by pre-
vious studies (Luo et al., 2018; Obu et al., 2019).

Obvious negative biases were observed in the raw LST-
derived DDT values (Fig. 4a). However, after applying the
interval-based approach, the negative biases were well re-
moved. Moreover, the corrected data points were concen-
trated along the 1 : 1 line (as shown in Fig. 4b), while the
coefficient of determination (R-squared) increased from 0.74
to 0.89. More importantly, the mean absolute error (MAE)

value (334 ◦C d−1) of the corrected LST-derived DDTs was
about one-third of the value (889 ◦C d−1) before the correc-
tion, i.e., the relative error dropped from 23.3 % to 8.8 %,
below our accepted level of 10 %. In addition, raw DDT
data points with large deviations have been effectively cor-
rected, resulting in a reduction in the root-mean-square er-
ror (RMSE) from 1072 to 421 ◦C d−1 after correction. Most
corrected data points fall into the ±400 ◦C d−1 band (about
10 %), indicating a well-controlled level of error after the re-
moval of thermal offsets between GST and LST.

The distributions of annual DDT and DDF (Fig. 5a, b)
were in close agreement with the characteristics of eleva-
tion (Fig. 1), which is one of the main factors controlling
ground temperature distribution over the QTP. In general,
annual DDT decreased and annual DDF increased with ris-
ing elevation. Over the relatively flat high plain between 33–
37◦ N and 80–90◦ E, the annual DDT showed moderate lat-
itudinal zonality, declining with increasing latitude, whereas
the annual DDF showed the opposite. This is an indication
of the influence of solar radiation on GST. The vast area and
complex topography of the QTP resulted in a wide spectrum
of annual DDT (from 0 to 9000 ◦C d−1) and DDF (from 0
to 8000 ◦C d−1). Most regions of the QTP lie between 3000
and 5500 m a.s.l., where DDT and DDF values were mostly
between 1000 and 2500 ◦C d−1. High DDT values appeared
in the low mountains in the southeastern QTP, in the Qaidam
Basin in the north, and in the southern valleys, whereas high
DDF values appeared on the Qiangtang Plateau in the north-
ern QTP and in the high-mountain areas, favoring the forma-
tion of permafrost. The DDT / DDF ratio indicates climatic
controls on permafrost preservation (Fig. 5c). Regions with
a DDT / DDF ratio < 1 would have the potential to form per-
mafrost in absence of local factors that affect permafrost for-
mation.

4.2 Soil clusters

A total of eight soil clusters were determined by the k-
prototype approach in the five subregions (Fig. 6), where
lakes were excluded. Soils in one cluster share more simi-
lar environmental characteristics with each other, as reflected
by a single value of model parameter E, than soils in other
clusters. The dominant soil clusters in each subregion dif-
fered from each other (Table 1): clusters 3 (30 %) and 1
(30 %) were dominant in West Kunlun, clusters 2 (58 %)
and 7 (23 %) were dominant in Gaize, clusters 7 (49 %) and
1 (23 %) were dominant in Aerjin, clusters 8 (55 %) and 7
(18 %) were dominant in G108, and cluster 8 (85 %) was
dominant in Wenquan. This implies distinctions between cli-
matic and geographic conditions in these subregions.

Among all clusters, clusters 1, 2, and 3 differ with respect
to slope and TWI, but they are all characterized by relatively
high elevation (about 5000 m), low vegetation cover (NDVI
< 0.2), thin snow cover (FSC < 10), and aridity (precipita-
tion< 200 mm) (Fig. 7), which generally may represent high
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Figure 3. Thawing/freezing indices calculated from the interpolated MODIS LST data (raw LST-derived DDT/DDF) and in situ observations
of ground surface temperature (in situ DDT/DDF) at each QTP weather station. The ordinate indicates the annual thawing/freezing indices
averaged over the period from 2005 to 2010, and the abscissa shows 131 weather stations available on the QTP.

Figure 4. Bias correction of MODIS LST-derived DDT with the interval-based approach. Panel (a) presents the data before bias correction,
and panel (b) shows the data after applying the interval-based method. Data points represent annual DDT values in 2005–2010 from the 131
stations. The dashed red lines outline a range of ∼ 10% (±400 ◦C d−1) from the 1 : 1 line (solid black line).

plateaus. Cluster 4, with the highest TWI, represents the val-
ley with low elevation and moderate slope. Cluster 5 has the
highest elevation, highest FSC, and lowest NDVI (even be-
low 0); thus, it may represent high mountains covered by
thick snow cover or glaciers. Cluster 6 has very varied eleva-
tions and steep slopes, and it occurs on the hillslopes of high
mountains. Except for the much lower TWI, cluster 7 is sim-
ilar to cluster 4, and it often appears around cluster 4, which
represents valleys (Fig. 6). Therefore, it is likely that cluster
7 represents gentle slopes near valleys. Cluster 8 is mainly
distributed in the two subregions (G308 and Wenquan) on
the east QTP; is characterized by the highest NDVI, highest
precipitation, and lowest elevation; and represents the soils
with better hydrological, thermal, and vegetation conditions
on the eastern QTP.

The distribution of soil clusters on the QTP (Fig. 6) was
predicted by the decision tree method. Soil cluster 8 covered
the largest area of about 37.76 % of the QTP and was mainly
distributed in the eastern QTP, which is related to the training
samples that were mainly located in G308 and Wenquan on
the eastern QTP (Table 1). Soil clusters 2, 3, 6, and 7 cov-
ered roughly the same proportion of area, about 10 % of the
whole QTP, followed by clusters 1 (6.94 %) and 4 (6.20 %).
Soil cluster 5, representing glaciers and regions with thick
snow cover, occupied the least area (2.85 %), which is con-
sistent with a previous study that thick snow coverage only
represented a relatively small portion of the QTP (Dai et al.,
2018).

The optimal values of parameterE associated with the soil
clusters (Table 2) were determined from the 1000 optimiza-
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Figure 5. Maps of the spatial distribution of (a) annual DDT, (b) annual DDF, and (c) the DDT / DDF ratio on the QTP, averaged over 2005
to 2010. Lakes were excluded and are shown in white, whereas glaciers were included. Regions with a DDT / DDF ratio < 1 are climatically
favorable for permafrost formation.

tion runs. The ranges of the optimal values were relatively
narrow for all soil clusters, suggesting that equifinality was
well mitigated due to a well-constrained objective. The mean
values as the optima for clusters 4 and 5 were greater than 1,
with an implication of unfavorable local conditions for per-
mafrost formation and preservation. For example, heat ad-
vection by water flows occurring near rivers in valley areas
represented by cluster 4 and the insulation effect of snow
cover in regions of cluster 5 are not beneficial for permafrost
formation and preservation. Clusters 1, 3, and 8 had relatively
lower E values, suggesting favorable local environments for
permafrost formation in these regions. Some characteristics
of local factors, such as high elevation for clusters 1 and 3
and high precipitation for cluster 8, are beneficial for per-
mafrost preservation (Zhang et al., 2021b), as also reflected
by their lower E values.

4.3 The resulting 2010 permafrost distribution map on
the QTP

The resulting permafrost distribution in 2010 on the QTP is
shown in Fig. 8 with a spatial resolution of 1 km. Permafrost
covered about 1.086×106 km2, or 41.17 %, of the QTP, while
SFG occupied about 1.447×106 km2, or 54.85 %, of the total
QTP area. The non-frozen ground was about 2.24×104 km2

(0.85 % of the QTP), and the rest consisted of glaciers (about
4.08×104 km2, or 1.55 %) and lakes (about 4.17×104 km2,
or 1.58 %).

The map shows that permafrost was prevalent through-
out the northern central QTP, especially on the Qiangtang
Plateau. In the north, the Qaidam Basin was occupied by
SFG due to its low altitude, interrupting the continuity of per-
mafrost that extended north to the Qilian Mountains. From
the central Qiangtang Plateau southward, the spatial conti-
nuity of permafrost tended to decline due to decreasing lat-
itude and elevation. Near the permafrost zone in the Bayan
Har Mountains and Tanggula Mountains in the eastern QTP,
SFG occurred extensively in the river source areas, namely
the Three-River Headwaters Region, probably due to the low

latitude and the effects of heat advection by water flows that
prevent permafrost formation. As the DDT / DDF ratios in
these regions were generally greater than 1 (Fig. 5c), per-
mafrost in the river source areas (e.g., the Yangtze River
headwaters) was thermally vulnerable and very sensitive to
climate warming (Zhang et al., 2022). On the southern QTP,
permafrost was sporadically distributed at high elevations,
mainly in the high mountains of the Eastern Himalayan Syn-
taxis, the Gangdise Mountains, and the Himalayan Moun-
tains. Only a small amount of non-frozen ground existed in
the southern QTP.

4.4 Assessment based on survey maps and borehole
data

Our map showed substantial spatial agreement with the
survey-based permafrost maps in all subregions (Fig. 9). Our
map had a Cohen’s kappa coefficient (κ) of about 0.74 (Ta-
ble 3), which was notably higher than that of the Zou map
and the Wang map, which were 0.55 and 0.50, respectively.
Overall, compared with the survey-based maps (Fig. 9a) and
our map (Fig. 9b), the Zou map significantly overestimated
permafrost extents in Gaize and Aerjin and underestimated
permafrost extent in G308 (Fig. 9c), whereas the Wang map
severely overestimated permafrost extents in all subregions
(Fig. 9d). The differences can be better discerned in the dif-
ference maps in Fig. E1.

More specifically, in permafrost-dominated West Kunlun,
our map and the Zou map slightly overestimated the extent
of the SFG around the lake, whereas the Wang map slightly
underestimated the extent of SFG. There were only small dif-
ferences between the three maps in West Kunlun, with almost
the same κ for all three maps (0.62 for our map and 0.63 for
both the Zou map and the Wang map). All three maps were
based on satellite LST data, which can generally capture the
patterns of surface ground temperature. Although the inter-
polation methods for processing LST gaps differed and re-
sulted in data with different accuracy for mapping, the cold
climate in West Kunlun, with LST values well below 0 ◦C
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Figure 6. Resulting soil clusters in the five subregions and the predicted distribution of clusters on the QTP. A total of eight clusters were
determined. Each soil cluster represents unique traits as reflected by a distinct value of model parameter E.

Table 1. Area percentages occupied by individual soil clusters in each subregion, over all subregions, and over the entire QTP.

Region Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

West Kunlun 29.53 2.02 30.65 4.21 16.21 14.13 1.89 1.37
Gaize 1.11 57.75 5.34 12.62 0.12 0.44 22.55 0.06
Aerjin 22.97 12.39 8.51 3.88 0.40 2.88 48.76 0.20
G308 6.24 9.56 4.40 7.29 0.00 0.12 17.24 55.15
Wenquan 7.27 6.37 0.72 1.62 0.00 0.04 9.01 74.97
All subregions 14.63 25.93 16.27 7.93 7.17 6.44 12.91 8.72
QTP 6.94 11.45 11.69 6.20 2.85 9.31 13.79 37.76

in most areas, made the impact of these differences in input
data on permafrost distribution negligible.

In Gaize, our map performed better (κ = 0.71) than the
Zou map (κ = 0.48) and the Wang map (κ = 0.43). Both
the Zou and Wang maps severely overestimated permafrost
distribution, whereas our map agreed well with the survey-
based map in this region (Fig. 9b). The same trends oc-
curred in Aerjin, and the comparison with the survey-based
map indicated a much lower κ for the Zou map (0.38) and
the Wang map (0.00) than for our map (0.71). Gaize has a
warmer climate than West Kunlun and contains the southern
limit of continuous permafrost. Therefore, the influence of
input data accuracy and local factors on permafrost preser-
vation is more profound in this area. The overestimated per-

mafrost extents in Gaize and Aerjin in both the Zou map and
the Wang map may most likely be related to the relatively
lower quality of the interpolated LST data as model input
and insufficient consideration of local factors in the map-
ping approaches. Compared with the harmonic analysis of
time series (HANTS) algorithm (Xu et al., 2013) used for
the Zou and Wang maps to reconstruct the missing LST data
under clear-sky assumptions, the SCSG-based interpolation
method with full consideration of cloud effects on LST used
in this study was found to be effective for handling large
areas of missing data with sufficient accuracy (Chen et al.,
2023). Moreover, the daily GST data required to produce the
Zou and Wang maps were the weighted sum of four MODIS
LST observations per day through an empirical linear for-
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Figure 7. Soil clusters’ environmental characteristics in the subregions: (a) elevation, (b) slope, (c) normalized difference vegetation index
(NDVI), (d) fractional snow cover (FSC), (e) topographic wetness index (TWI), and (f) precipitation. All clusters are shown in different
colors to match those in Fig. 6. The center line in the box shows the median, the box shows the lower and upper quartiles, and the whiskers
extend to the minimum and maximum data values.

Table 2. Ranges and mean values as the most optimal values of the soil parameter E associated with the eight soil clusters. The results were
obtained from 1000 optimization trials.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Max 0.778 0.831 0.784 1.014 1.149 1.011 0.938 0.785
Min 0.757 0.820 0.745 1.000 1.061 0.931 0.932 0.778
Mean 0.768 0.822 0.748 1.007 1.073 0.946 0.938 0.779

mula based on sample observations from three automatic
weather stations in the central QTP (Zou et al., 2014). This
relatively simple treatment of GST data in the Zou and Wang
maps can lead to considerable systematic biases in some re-
gions, especially in warm permafrost regions (e.g., the Gaize
subregion) that are highly vulnerable to thermal perturba-
tions like persistent regional climatic warming (Zhang et al.,
2021a), and ultimately cause large uncertainties in the final
permafrost distribution maps. In contrast, the thermal offsets
between GST and LST have been well handled in this study
when estimating thawing indices from satellite LST obser-
vations by considering the effect of vegetation cover as a
buffer layer based on 131 weather stations over the QTP.
As the Wang map was produced using statistical learning
methods, uncertainties also resulted from training samples
selected from two previous QTP permafrost maps produced
in different years more than a decade apart and subject to
varying levels of uncertainty (Ran et al., 2012; Zou et al.,
2017). Together, all of these factors caused the Wang map to
overestimate the permafrost extent in Gaize.

In G308, the Wang map (κ = 0.68) indicated more per-
mafrost areas than the local survey map, whereas both the
Zou map (κ = 0.48) and our map (κ = 0.68) showed fewer
permafrost areas compared with the local survey map, with
the Zou map even more evident. The soil thermal regime in
G308 is strongly influenced by rivers and vegetation cover;
these effects were well accounted for in our mapping ap-
proach, whereas they were absent in the Zou map. In Wen-
quan, both our map (κ = 0.70) and the Zou map (κ = 0.65)
performed generally satisfactorily, with a slight overestima-
tion of permafrost extent. In contrast, the overestimation was
more pronounced in the Wang map (κ = 0.46), which is
probably also related to the misrepresented training samples
used for this map.

The maps were also verified by 72 permafrost presence/ab-
sence observations obtained by boreholes drilled within a 5-
year time frame around 2010 (Li et al., 2016; Zhao et al.,
2021). Only our map showed good agreement (κ = 0.43)
with the borehole observations in terms of κ (Table 4), com-
pared with the Zou map (κ = 0.30) and the Wang map (κ =
0.14). According to the borehole observations, SFG was un-
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Figure 8. Map of permafrost distribution at a 1 km resolution over the QTP in 2010 (our map) produced in this study. Areas and percentages
of frozen soil types are provided. The map shows hillshading with elevation.

derrepresented in all three maps, with our map performing
the best with respect to predicting SFG (with 54.5 % accu-
racy), as opposed to the Wang map that showed the worst
performance (correctly identifying only 1 out of 11 seasonal
frost boreholes). Unlike SFG, permafrost was overestimated
at borehole locations in three maps, as evidenced by rela-
tively high false-positive (permafrost) rates (45.5 % for our
map, 54.5 % for the Zou map, and 90.9 % for the Wang map).
As most of the borehole locations were underlain by per-
mafrost (Fig. 9), the Wang map predicted almost all locations
as permafrost with no discretion, as indicated by a 100 %
true-position rate (Table 4), and consequently led to an in-
flated accuracy of 86.1 %, which was the highest among the
three maps.

In our map, two out of six false negatives (misidentified
as SFG) were the boreholes with unstable permafrost located
in the SFG zone close to the permafrost boundary. However,
in the Zou map, all eight false negatives were boreholes with
stable permafrost, and those with unstable permafrost were in
the permafrost zone. If we excluded all four boreholes with
unstable permafrost from the evaluation, the false-negative
rate of our map would drop from 9.8 % to 7 % and κ would
rise from 0.43 to 0.49, whereas the false-negative rate and
κ of the Zou map would remain almost unchanged, leaving
an even higher false-negative rate (∼ 13%) than that of our
map (∼ 7%). This borehole-based verification may be biased
by the mismatch between a site and a 1 km ×1 km grid cell.
Nevertheless, considering the collective evidence, our map

demonstrates satisfactory performance with respect to pre-
dicting frozen ground distribution.

4.5 Cross-comparison with the Zou map

The permafrost distributions in our map and the Zou map
were generally comparable, although there were discrepan-
cies in some regions (Fig. 10), mainly in the transition re-
gion between the continuous permafrost zone of the Qiang-
tang Plateau to the north and the SFG zone to the south. In
addition, the headwaters of China’s major rivers (regions c
and d in Fig. 10) in the eastern QTP showed noticeable spa-
tial inconsistency between the two maps. These headwater
regions were reported to be the critical regions where per-
mafrost is warm and very susceptible to degradation due to
climate change (Jin et al., 2011; Zhang et al., 2021a). Per-
mafrost there is characterized by high temperature (MAGT
>−2.0 ◦C) and low thermal stability (Qin et al., 2017). The
warm permafrost is difficult to distinguish from SFG, which
poses a challenge to the accuracy of soil temperature mod-
eling. Moreover, permafrost in transition areas is often con-
trolled by many local factors (e.g., terrain, vegetation cover,
soil properties, and hydrological conditions), and a model
without adequate consideration of local factors often fails to
accurately describe the soil thermal regime.

In and around Gaize (region a in Fig. 10), a larger extent
of permafrost was simulated in the Zou map than in our map.
Comparisons of the two maps with the survey-based Gaize
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Figure 9. Spatial distributions of frozen ground in the subregions from (a) survey-based maps, (b) our map, (c) the map from Zou et
al. (2017), and (d) the map from Wang et al. (2019). Triangle symbols mark the locations of boreholes drilled in around 2010. Difference
maps between survey-based maps and the three simulated maps are provided in Fig. E1.

Table 3. Kappa values measured between the evaluated permafrost maps (our map, the Zou map, and the Wang map) and survey-based maps
in the subregions.

West Kunlun Gaize Aerjin G308 Wenquan All subregions

Our map 0.62 0.71 0.71 0.68 0.70 0.74
Zou map 0.63 0.48 0.38 0.46 0.65 0.55
Wang map 0.63 0.38 0.00 0.68 0.46 0.50

Table 4. Measures of confusion matrices describing the perfor-
mance of the evaluated permafrost maps (our map, the Zou map,
and the Wang map) at the borehole locations. To fit the binary clas-
sification, permafrost is regarded as positive and SFG is considered
negative. n= 72.

Our map Zou map Wang map

True positives (rate) 55 (90.2 %) 53 (86.9 %) 61 (100.0 %)
False positives (rate) 5 (45.5 %) 6 (54.5 %) 10 (90.9 %)
True negatives (rate) 6 (54.5 %) 5 (45.5 %) 1 (9.1 %)
False negatives (rate) 6 (9.8 %) 8 (13.1 %) 0 (0.0 %)
Accuracy 84.7 % 80.6 % 86.1 %
Cohen’s kappa 0.43 0.30 0.14

map (Fig. 9) have already confirmed the better performance
of our map in this region than the Zou map, due to the use of
the survey-based Gaize map as part of the constraints in mod-
eling our map (Table 3). The vicinity of Gaize is very similar
to the Gaize subregion, also characterized by a relatively flat
plateau with an arid climate and low vegetation cover. It can
be inferred that our map could likely have better accuracy
than the Zou map in and around the Gaize subregion.

In the areas between the Altun Mountains and Kunlun
Mountains (region b in Figs. 10 and 11) containing the
Aerjin subregion, our map estimated much more SFG than
the Zou map. Referring to the survey-based Aerjin subre-
gion map (Fig. 9), the Zou map underestimated the extent
of SFG, and our map showed a better performance despite
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Figure 10. Spatial inconsistencies in the distribution of frozen ground between our map and the Zou map. “Both P” represents areas identified
as underlying permafrost in both maps, “Both SFG” represents areas identified as seasonally frozen ground (SFG) in both maps, “Zou-P and
Our-SFG” represents areas identified as underlying permafrost in the Zou map but SFG in our map, and “Zou-SFG and Our-P” represents
areas identified as SFG in the Zou map but permafrost in our map. The dashed boxes highlight areas of significant inconsistency: (a) Gaize
and its vicinity, (b) the areas between the Altun Mountains and the Kunlun Mountains, (c) the headwaters of the Yangtze River, and (d) the
headwaters of the Yellow River.

a slight overestimation of SFG extent. According to bore-
hole records (Fig. 9) in the Aerjin subregion, some locations
had ground temperatures at 10 m of about −0.1 to 0 ◦C, and
one borehole location was even above 0 ◦C but fell within a
permafrost zone in the survey-based map. This reflects that
permafrost in this region was extremely thermally unstable.
We inspected inconsistency zones identified as permafrost in
the Zou map but as SFG in our map (Fig. 11a), where the
DDT / DDF ratios were around 1.3 (Fig. 11b) and clusters 4
and 7 predominated with E values of about 1.07 and 0.94,
respectively (Fig. 6). Those characteristics are very similar
to the SFG zone in the survey-based Aerjin map. Following
Eq. (1), surface frost numbers were less than 0.5 in these ar-
eas with a climatic implication of no permafrost presence.
From the satellite image (Fig. 11c), it can be seen that rivers
are well developed in the basins. The presence of these rivers
could potentially lead to greater degradation of permafrost
due to the thermal advection of water flows. Overall, our
map showed more acceptable distribution characteristics in
this region than the Zou map. However, further field studies
are necessary to provide more direct evidence to strengthen
our understanding of permafrost distribution in this critical
region.

In the source areas of the Yangtze River (region c in
Figs. 10 and 12), the riparian zones were generally identi-
fied as SFG in both our map and the Zou map. However,
the SFG zones in our map spread on both sides along the

rivers, whereas they were distributed on only one side of the
rivers in the Zou map. In this region, 35 observations of per-
mafrost presence/absence were collected. Of these, 32 were
drilled in 2020 during the Second Tibetan Plateau Scien-
tific Expedition and Research campaign (Li et al., 2022), so
they were not included in the quantitative validation above.
Boreholes QTB11, QTB15, and TGLGT (Fig. 12), collected
from Zhao et al. (2021), were drilled before 2010, and the
frozen ground types at these borehole locations were cor-
rectly identified in both maps. For the 32 boreholes drilled in
2020, 2 of 6 boreholes with seasonal frost and 24 of 26 bore-
holes with permafrost were correctly identified in our map,
whereas no borehole with seasonal frost and 24 boreholes
with permafrost were correctly identified in the Zou map.
The misidentified boreholes were located near the bound-
ary of the permafrost zone on our map, whereas they were
mostly located within permafrost zones on the Zou map. We
also noted that two upstream boreholes at 4870 m (Li et al.,
2022), located within a permafrost zone in both maps (red
box in Fig. 12a and b), were revealed as seasonal frost in
2020. In a borehole labeled QTB15 (Fig. 12a, b; Zhao et
al., 2021) in this region, ground temperature experienced a
significant increase from 2006 to 2018 (Table E1), indicat-
ing a warming trend. Considering the potential impact of cli-
mate warming occurring in this region over the past decade,
it is possible that permafrost degradation occurred at the two
upstream borehole locations, resulting in the conversion of
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Figure 11. Maps of the areas between Altun Mountains and Kunlun Mountains (region b in Fig. 10) showing (a) detailed spatial differences
in permafrost distribution between our map and the Zou map, (b) the DDT / DDF ratios, and (c) a satellite image covering this region from
Google Earth. The box indicates the Aerjin survey area for which the survey-based permafrost map is available. P (survey based) and SFG
(survey based) represent permafrost and seasonally frozen ground in the survey-based map, respectively. The reader is referred to the caption
of Fig. 10 for an explanation of the notation used in the legend. Ovals mark areas that were most likely to be thermally affected by the
presence of waterbodies.

permafrost in 2010 to SFG in 2020. In these areas, the oc-
currence of permafrost degradation usually recedes to up-
stream areas with higher elevations and cooler air temper-
atures. In other words, by reasonable inference, permafrost
would remain in upstream areas in 2010, whereas SFG would
be present in downstream areas along the rivers, as well de-
picted by our map (Fig. 12a).

We further examined the two maps in the Yangtze River
source areas using a PZI approach (Cao et al., 2019b). By
definition, permafrost regions should have higher PZI val-
ues than SFG regions. The PZI map (Fig. 12d) used here
was compiled based on 1475 in situ observations (Cao et
al., 2019b), many of which were obtained between 2005 and
2018 in the vicinity of the G109 national highway traversing
the Yangtze River headwaters, making the PZI map a possi-
ble reference in this region. The PZI statistics for permafrost
in our map were close to those in the Zou map (Fig. 12e).
However, for the PZI statistics in SFG regions, the lower and
upper quartiles in the Zou map were 0.36 and 0.66, respec-
tively, whereas the values in our map were 0.34 and 0.53,
respectively. The SFG regions shown in our map had lower
PZI values. The upper quartile for SFG regions (0.66) in the
Zou map surpassed the lower quartile for permafrost regions,
which was 0.55. The overlap is questionable because it sug-

gests that some SFG regions have higher PZI values than per-
mafrost regions in the same map, which contradicts the PZI
definition. In contrast, the PZI ranges for both frozen ground
types were more clearly distinguishable on our map.

Similar to the Yangtze River source areas, there were con-
siderable discrepancies between our map and the Zou map
in the Yellow River source areas (region d in Figs. 10 and
13). In this region, observations of seven boreholes in 2013
and 2014 collected from Li et al. (2016) were used as inde-
pendent references. Our map was more accurate, as five of
the seven borehole locations were correctly identified in our
map, but only three were correctly identified in the Zou map.
Considering that elevation is the main factor controlling the
permafrost distribution in this region, we conducted an analy-
sis of elevation-related characteristics in this area. According
to Li et al. (2016), the lower limit of permafrost occurrence
in this region was around 4300 m. Our map showed greater
consistency of permafrost distribution conforming to eleva-
tional characteristics than the Zou map, and the boundaries of
permafrost zones of our map extended along the 4300 m con-
tour in this area (Fig. 13a). In the Zou map, the permafrost
area near the two lakes lower than 4300 m a.s.l. was overrep-
resented (Fig. 13b).
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Figure 12. Maps of the Yangtze River headwaters (region c in Fig. 10) showing permafrost distributions in (a) our map and (b) the Zou
map as well as (c) the spatial differences and (d–e) the spatial and statistical permafrost zonation index (PZI) distributions in this region.
The boreholes QTB11, QTB15, and TGLGT in panels (a) and (b) were drilled before 2010 and provided by Zhao et al. (2021), whereas the
others were drilled in 2020 during the Second Tibetan Plateau Scientific Expedition and Research program (Li et al., 2022). The red box in
panels (a) and (b) covers two boreholes of particular concern. Both boreholes, at an elevation of 4870 m a.s.l., were within a permafrost zone
in both our map and the Zou map but revealed seasonal frost in 2020. For panel (c), the same notation applies as outlined in the caption of
Fig. 10. Panel (e) presents a box plot of the statistical distributions of PZI values for permafrost and SFG regions on our map (Our-P and
Our-SFG) and those on the Zou map (Zou-P and Zou-SFG). The center line in the box shows the median, the box shows the lower and upper
quartiles, and the whiskers extend to the minimum and maximum data values.

Figure 13. Maps of the Yellow River headwaters (region d in Fig. 10) showing permafrost distributions in (a) our map and (b) the Zou map
as well as (c) the spatial differences and (d–e) the spatial and statistical elevation distributions in this region. The contour at 4300 m a.s.l.,
as the lower limit of permafrost occurrence in this region, is shown in panels (a), (b), and (d). Panel (e) presents a box plot of the statistical
distribution of elevations in the permafrost and SFG zones in both maps. The same notation applies as that used in Fig. 12.
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4.6 Simulation limitations

Despite the better performance of our map compared with
other available products, our mapping approach had limita-
tions and left room for potential improvements. We extracted
GST observations from weather stations to estimate DDT
from LST-derived thawing degree-days. However, GST sites
are actually concentrated mainly in the eastern QTP, with few
in the west (Fig. 1). This has a detrimental effect on the qual-
ity of the DDT estimate. Therefore, we developed multilin-
ear regression models incorporating the NDVI as a predictor.
This not only properly reflects the thermal offset due to veg-
etation cover in the eastern QTP, where weather stations are
concentrated, but also helps avoid overfitting in areas of low
NDVI (< 0.1) in the western QTP, where thermal offset tends
to be low. It should also be noted that, although the resulting
DDT/DDF values still have some degree of bias, the residual
errors were further reduced during the optimization process
of our mapping approach by adjusting the E values to best
match the simulated results with the survey-based subregion
permafrost maps. We also imposed boundary consistency as
a part of the more stringent objectives during the optimiza-
tion process, but the problem of parametric equifinality could
not be fully solved and deserves further research, especially
when working with binary classification maps (permafrost or
SFG).

Our mapping approach relies on subregion survey maps
to set up constraints on the simulation and to properly ac-
count for the influence of local factors by calibrating a model
parameter. The quality and representativeness of subregion
survey maps have a strong influence on the accuracy of the
resulting permafrost map. In our approach, the heterogene-
ity of local factors in space is also represented by soil clus-
ters. While more soil clusters can, in theory, better represent
spatial heterogeneity, there is a contradiction between the
number of soil clusters and the effectiveness of parameter
optimization. More soil clusters result in a smaller area for
each soil cluster, and a smaller area would lead to a weaker
constraint in the search of optimal parameter values, thereby
causing a stronger equifinality. Therefore, our mapping ap-
proach can benefit from more high-quality subregion per-
mafrost maps, which could provide more soil clusters to bet-
ter represent the heterogeneous influences of local factors.

5 Data availability

The new 2010 permafrost distribution map and associated
data (annual DDT and DDF data derived from MODIS
LST data and soil clusters over the Qinghai–Tibet Plateau)
are available from the repository hosted on Figshare (Cao
et al., 2022): https://doi.org/10.6084/m9.figshare.19642362.
Data are provided as GeoTIFF files (.tif). The sources
of the datasets used for mapping and comparison are
listed in Appendix D. The related codes and sample
data are accessible at https://github.com/nanzt/frostnumcop

(last access: 1 September 2023) (Cao et al., 2023):
https://doi.org/10.5281/zenodo.8301453.

6 Conclusions

This study provides a map of the permafrost distribution over
the QTP in 2010 at a spatial resolution of 1 km using a mod-
ified version of the FROSTNUM/COP mapping approach.
This approach estimated the permafrost distribution using
an ensemble run of a semi-physical model based on satel-
lite temperature data and properly accounted for the effects
of local factors by adjusting a model parameter constrained
by survey-based subregion permafrost maps. Ground surface
thawing and freezing indices with a relative error < 10%
were obtained from interpolated all-weather MODIS LST
data. The problem of parametric equifinality was well mit-
igated by including boundary consistency as part of the ob-
jective function.

According to the new 2010 map, excluding glaciers and
lakes, permafrost underlaid about 1.086× 106 km2 (41.2 %
of the total QTP area) and seasonally frozen ground cov-
ered about 1.447× 106 km2 (54.9 % of the total QTP area)
on the QTP in 2010. Permafrost spread continuously across
the Qiangtang Plateau in the northern central QTP. The sea-
sonally frozen ground was mainly distributed in the south-
ern and eastern QTP. Our map also revealed that SFG was
widespread in the headwater regions of rivers in the eastern
QTP.

This map showed good consistency with the survey-based
subregion permafrost maps, with κ = 0.74, which is much
higher than that of two recently published maps (Zou et al.,
2017; Wang et al., 2019c). Upon validation against 72 bore-
hole records of permafrost presence collected around 2010,
we concluded that our map performed better than the Zou
map and the Wang map. In some regions where we found
distinct differences between our map and the Zou map, our
map proved more acceptable; this was supported by evi-
dence from various aspects, including satellite imagery, PZI
statistics, elevation features, and more independent boreholes
records. Our new 2010 permafrost distribution map provides
accurate and fundamental information about QTP permafrost
and can, thus, serve as a benchmark map to calibrate/validate
spatial simulations of land surface models on the QTP as well
as a historical reference for projecting future changes in QTP
permafrost.

Appendix A: Solar–cloud–satellite geometry
(SCSG)-based interpolation approach

We applied a stepwise interpolation approach to estimate
missing cloudy-sky land surface temperature (LST) values of
MODIS from informative samples due to the SCSG effect, by
which satellite imagery records the cloudy-sky LST values of
a portion of pixels. The satellite and Sun have specific illu-
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mination and observation angles with respect to the ground.
Based on the SCSG effect (Wang et al., 2019a), each MODIS
LST image was processed into four SCSG regions, with one
SCSG region containing known cloudy-sky LST values. A
clear-sky interpolation method with the advantage of effec-
tively handling large data gaps (Chen et al., 2020) was used to
estimate clear-sky LST equivalents for every pixel in cloud-
affected regions. This method estimated multiple initial esti-
mates for each interpolated pixel by an empirically orthogo-
nal function method based on multiple temporally proximate
reference images, and it then merged the initial estimates us-
ing a Bayesian approach to obtain a best estimate of the clear-
sky LST equivalent. Then, for each missing cloudy-sky pixel,
a multivariate adaptive regression splines model (Friedman,
1991) was trained with the pixels in the specific SCSG region
with known cloudy-sky LST values that were similar to that
missing pixel in terms of environmental characteristics, and
then the trained model was applied to recover the missing
cloudy-sky LST values (Chen et al., 2023). The fraction of
pixels with null values for each image after the interpolation
was small and was further interpolated by an ordinary Krig-
ing method. This resulted in four all-weather LST values per
day for all 1 km MODIS pixels. A sinusoidal method (Van
Doninck et al., 2011) was applied to calculate the daily mean
LSTs based on four instantaneous LST observations and the
corresponding acquisition times.

Appendix B: Annual thawing index estimation

Table B1. Comparison of performance between two (interval-based and 1-year) approaches of estimating annual DDT from raw LST-derived
thawing degree-days based on 100 trials with a random split of the training and test datasets from meteorological sites on the QTP. The
values indicate the metric means from the 100 random trials, and the values in parentheses represent ranges. r denotes Pearson’s correlation
coefficient, RMSE represents the root-mean-square error, and MAE is the mean absolute error.

r RMSE (◦C d−1) MAE (◦C d−1)

Interval-based estimation 0.94 (0.88–0.97) 437 (344–554) 349 (252–458)
1-year estimation 0.92 (0.85–0.97) 486 (309–671) 368 (240–509)

We tested two methods to estimate the annual ground sur-
face thawing index (DDT) from the raw LST-derived thawing
degree-days at a MODIS pixel: one is a “1-year estimation”,
in which a single regression model was fitted for each year;
the other is a form of “interval-based estimation”, in which
a full year was divided into 23 time intervals in line with the
16 d composite NDVI intervals each year and multilinear re-
gression was made for each interval. Most intervals consist
of 16 d, except for the last interval. The thawing degree-days
over the 23 intervals per year were summed for the annual
DDT.

The multilinear regression model for each time interval
has the following form trained on data at meteorological
sites:

DDTi,GST
′
= f (DDTi, LST

′Ni, L), (B1)

where DDTi,GST
′ is the ground surface thawing index for the

ith interval of the year, DDTi, LST
′ is the thawing degree-

days derived from the positive daily mean LST values of
the pixelfor the ith interval, Ni refers to the ith composite
NDVI value of the pixel, and L is the latitude. The index i
ranges from 1 to 23. The training was based on meteorologi-
cal records aggregated from all sites. The fitted functions (f )
for individual intervals were then applied to the entire QTP to
obtain the corrected interval thawing degree-days of a year,
before summing them for the annual DDT for that year. To
minimize the risk of single-year meteorological anomalies,
annual freezing index (DDF) and DDT values were averaged
over the period from 2005 to 2010 and then used to drive the
extended FROSTNUM model. The 1-year estimation is on
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a yearly basis, rather than on an interval basis, following an
approach similar to Eq. (B1) but without the need to sum the
interval-based values.

To compare the performance of the interval-based estima-
tion method and the 1-year estimation method, we randomly
divided the 131 weather stations into a training set (70 %)
and a testing set (30 %) 100 times. Each time, we performed
both interval-based estimation and 1-year estimation based
on the same training set, and we then assessed their predic-
tion results using the testing set. Pearson’s correlation coeffi-
cient (r), the root-mean-square error (RMSE), and the mean
absolute error (MAE) were used as performance metrics.

By carrying out an evaluation using annual in situ DDT
values at QTP sites, the annual DDT values obtained by the
interval-based estimation had generally lower errors and bet-
ter linear correlation than the DDT values obtained by the 1-
year estimation (Table B1). The ranges of metric values for
the interval-based estimation were all narrower than those for
the 1-year estimation, indicating consistent improvements in
performance across sites. This clearly demonstrates the ad-
vantage of the interval-based estimation over the 1-year esti-
mation in correcting thermal offsets between GST and LST
when estimating DDT values from raw MODIS LST-derived
degree-days.

Appendix C: An instance of boundary cell

To illustrate the concept of boundary consistency introduced
into the objective function, we present a simple instance
of a boundary cell located in the survey-based map. In the
neighboring cells (e.g., a size of 3× 3) of the boundary cell,
both frozen ground types (permafrost and seasonally frozen
ground) and two soil clusters are present (Fig. C1). The
DDT / DDF ratios in those cells are known, as they have al-
ready been calculated from the satellite LST data (Fig. C1).
The ratios in the permafrost cells in the neighboring cells are
presumably higher than those in the SFG cells in order to re-
semble a scenario where permafrost persists due to favorable
local factors in areas despite unfavorable climatic conditions.
This cell in the center would be considered to be a nega-
tive boundary cell if the E values associated with the two
soil clusters equal 1, resulting in Fp being smaller than Fs
(Fig. C1b). By adjusting the E values accordingly, this nega-
tive boundary cell can become positive (Fig. C1c), i.e., with
a larger Fp versus Fs. Thus, by enforcing boundary consis-
tency, more rigorous constraints are helpful to mitigate para-
metric equifinality in the search for optima of E.

Appendix D: Sources of open datasets used

The sources of data used in our mapping work are
listed below. The daily MODIS LST and emissiv-
ity products (MOD11A1 and MYD11A1 Version 6)
and the NDVI product (MOD13A2) are provided by
NASA: https://www.earthdata.nasa.gov/. The Shut-
tle Radar Topography Mission 90 m digital eleva-
tion database (SRTM DEM, version 4; Reuter et al.,
2007) is available at https://cgiarcsi.community/data/
srtm-90m-digital-elevation-database-v4-1/. The 1 km
monthly precipitation dataset for China (Peng et al., 2019)
is available at https://doi.org/10.5281/zenodo.3114194.
The 500 m Daily Fractional Snow Cover Dataset
Over High Asia (Qiu et al., 2017) is available at
https://doi.org/10.11888/GlaciolGeocryol.tpe.0000016.file.
The China Data Set of Soil Properties for Land Sur-
face Modeling (Shangguan et al., 2013) is available
at http://globalchange.bnu.edu.cn/research/soil2. The
China national surface weather stations (version 3.0)
information is provided by the China National Meteoro-
logical Information Centre: https://data.tpdc.ac.cn/en/data/
52c77e9c-df4a-4e27-8e97-d363fdfce10a/. The borehole
ground temperature data provided by Zhao et al. (2021) are
available at https://doi.org/10.11888/Geocry.tpdc.271107.
The new permafrost distribution map on the Ti-
betan Plateau by Zou et al. (2017) is available at
https://doi.org/10.11888/Geocry.tpdc.270468. The per-
mafrost distribution map by Wang et al. (2019) is available at
https://data.mendeley.com/datasets/ddj8ygdjbd/1. Our new
2010 permafrost distribution map and associated data are
available at https://doi.org/10.6084/m9.figshare.19642362
(Cao et al., 2022). The above links have been checked and
found accessible on 13 October 2022.
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Figure C1. Illustration explaining the concept of a boundary cell and the optimization process to improve boundary consistency. Column (1)
shows a boundary cell in a survey-based map whose 3× 3 neighboring cells contain permafrost and seasonally frozen ground. Column (2)
shows two soil clusters present in the neighboring cells. The numbers in the cells indicate the values of parameter E associated with the soil
clusters of the cells. Column (3) shows the DDT / DDF ratios predetermined on the grid cells. In this case, permafrost cells have DDT / DDF
ratios greater than 1, indicating an unfavorable climate condition for permafrost formation. Column (4) shows the resulting ground surface
frost numbers (F ) for the cells. Fp is an average of F over permafrost cells in the neighboring cells, and Fs is an average of F over seasonal
frost cells in the neighboring cells. A boundary cell is positive when Fp is greater than Fs. Row (b) indicates a negative boundary cell when
theE values assume 1, and row (c) shows that this boundary cell becomes positive by adjusting theE values. Boundary consistency improves
when negative boundary cells are converted to positive cells as much as possible (row b to row c). We added boundary consistency as part of
the objective function in an effort to mitigate parametric equifinality.
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Appendix E: Supplementary figures and tables

Figure E1. Differences in the spatial distribution of frozen ground type in the subregions between the survey-based maps and the three
simulated maps from (a) our study, (b) Zou et al. (2017), and (c) Wang et al. (2019). “Both P” represents areas identified as underlying
permafrost in both survey-based and simulated maps, “Both SFG” represents areas identified as seasonally frozen ground (SFG) in both
survey-based and simulated maps, “Simulated-SFG and Survey-P” represents areas identified as SFG in the simulated map but permafrost
in the survey-based map, and “Simulated-P and Survey-SFG” represents areas identified as permafrost in the simulated map but SFG in the
survey-based map.

Table E1. Annual average soil temperatures at three depths (3, 6, and 10 m) in borehole QTB15 (33.10◦ N, 91.90◦ E) within the source area
of the Yangtze River. Data were sourced from Zhao et al. (2021). The symbol “–” denotes a missing value.

Year Soil temperature Soil temperature Soil temperature
at 3 m (◦C) at 6 m (◦C) at 10 m (◦C)

2006 – – −1.1
2007 −1.1 −1.2 −1.1
2008 – – −1.2
2009 −1.1 −1.1 −1.1
2010 −0.8 −1 −1
2011 −0.8 −0.9 −0.9
2012 −0.7 −0.8 −0.8
2013 −0.8 −0.8 −0.8
2014 – – −0.8
2015 −0.6 −0.7 −0.7
2016 −0.5 −0.6 −0.7
2017 −0.5 −0.6 −0.7
2018 −0.7 −0.8 −0.6
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