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Abstract. Reducing oil and gas methane emissions is crucially important for limiting the rate of human-induced
climate warming. As the capacity of multi-scale measurements of global oil and gas methane emissions has ad-
vanced in recent years, including the emerging ecosystem of satellite and airborne remote sensing platforms,
a clear need for an openly accessible and regularly updated global inventory of oil and gas infrastructure has
emerged as an important tool for characterizing and tracking methane emission sources. In this study, we de-
velop a spatially explicit database of global oil and gas infrastructure, focusing on the acquisition, curation,
and integration of public-domain geospatial datasets reported by official government sources and by industry,
academic research institutions, and other non-government entities. We focus on the major oil and gas facility
types that are key sources of measured methane emissions, including production wells, offshore production plat-
forms, natural gas compressor stations, processing facilities, liquefied natural gas facilities, crude oil refineries,
and pipelines. The first version of this global geospatial database (Oil and Gas Infrastructure Mapping database,
OGIM_v1) contains a total of ~ 6 million features, including 2.6 million point locations of major oil and gas
facility types and over 2.6 x 10® km of pipelines globally. For each facility record, we include key attributes
— such as facility type, operational status, oil and gas production and capacity information, operator names,
and installation dates — which enable detailed methane source assessment and attribution analytics. Using the
OGIM database, we demonstrate facility-level source attribution for multiple airborne remote-sensing-detected
methane point sources from the Permian Basin, which is the largest oil-producing basin in the United States. In
addition to source attribution, we present other major applications of this oil and gas infrastructure database in
relation to methane emission assessment, including the development of an improved bottom-up methane emis-
sion inventory at high resolution (1 km x 1km). We also discuss the tracking of changes in basin-level oil and
gas activity and the development of policy-relevant analytics and insights for targeted methane mitigation. This
work and the OGIM database, which we anticipate updating on a regular cadence, help fulfill a crucial oil and
gas geospatial data need, in support of the assessment, attribution, and mitigation of global oil and gas methane
emissions at high resolution. OGIM_vl1 is publicly available at https://doi.org/10.5281/zenodo.7466757 (Omara
et al., 2022a).
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1 Introduction

Limiting human-induced global warming, in accord with the
climate-neutrality goals of the Paris Agreement (UNFCCC,
2015), requires “strong, rapid, and sustained” (IPCC, 2021)
reductions in emissions of methane — a potent but short-
lived climate pollutant responsible for at least a quarter of to-
day’s gross climate warming (Myhre et al., 2013; Ocko et al.,
2018, 2021). Globally, the oil and gas sector accounted for
about one-quarter of total anthropogenic methane emissions
of around 360 Tg in 2017 (Jackson et al., 2021). By 2030, an
estimated 50 % of global oil and gas methane emissions will
have the potential for no-cost abatement relative to current
emissions because of the inherent commercial value of the re-
covered natural gas and widely available methane abatement
technologies (Ocko et al., 2021). Recognizing the unique op-
portunity to slow the rate of near-term warming driven by
avoidable methane emissions, a concerted effort toward fast,
strategic action on emission reductions has emerged, with
public commitments by oil and gas companies (OGCI, 2021)
and pledges by countries (GMP, 2021) towards methane re-
duction targets and initiatives achievable within the decade.

At the same time, recent technological advancements in
oil and gas methane emission quantification, characterized
by a growing suite of airborne and satellite remote sens-
ing instruments, have paved the way for rapid, frequent,
and high-resolution mapping of both high-emitting methane
point sources and area sources on a global scale (Jacob et
al., 2022). These advancements in methane satellite remote
sensing allow for the assessment of the temporal evolution of
oil and gas methane emissions at multiple spatial scales and
enable the tracking of progress toward global emission re-
ductions against stated mitigation targets. However, it is very
challenging for satellite/airborne remote sensing to resolve
facility-level attributes (such as oil and gas facility type or
throughput rates) of detected methane sources, which must
be paired with geolocated methane source datasets in support
of source attribution, which is crucial for methane emissions
monitoring and mitigation. Furthermore, methane emission
rate estimations based on Bayesian inversion of satellite ob-
servations require a comprehensive, spatially explicit inven-
tory of methane emissions as a priori information (Jacob et
al., 2016), which invariably comes from bottom-up methane
emission inventories dependent on geolocated oil and gas ac-
tivity data (Scarpelli et al., 2022). Such geolocated methane
source datasets must be global in scope; contain relevant
attributional information on key oil and gas infrastructure
types — including exploration/production, processing, refin-
ing, storage, and transmission facilities — that are important
methane sources (EPA, 2022; Alvarez et al., 2018); and can
be updated on a regular cadence to account for evolving oil
and gas activity.
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The current dearth of an openly accessible, regularly up-
dated, and global geospatial database of oil and gas infras-
tructure is a major limitation for methane source assess-
ment and attribution of remotely sensed emissions. There
have been some useful efforts in the past to develop such a
database. However, those were either limited in geographic
scope, focused on one or a few oil and gas infrastructure
types, or lacked granularity and regular updates (Carranza et
al., 2018; Rafiq et al., 2020; Rose et al., 2018; GEO, 2018).
In this study, we focus on the acquisition of public-domain
location-specific datasets for all major oil and gas infrastruc-
ture types globally, including production wells, offshore plat-
forms, natural gas compressor stations, processing facilities,
liquefied natural gas (LNG) facilities, crude oil refineries,
and pipelines. The resultant geospatial database, which we
refer to as the Oil and Gas Infrastructure Mapping (OGIM)
database (Omara et al., 2022a), contains both locational in-
formation and, where available, facility-level attributes (e.g.,
facility type, operational status, and capacity or throughput)
that are critical for methane source assessment and attribu-
tion.

2 Methods

2.1 Overview of global oil and gas infrastructure

Global oil and gas infrastructure is diverse, complex, and
vast. Across global oil- and gas-producing fields or basins,
oil and gas infrastructure plays a critical role in the extrac-
tion of oil and gas resources from underground reservoirs,
as well as in the gathering, treatment, compression, process-
ing, refining, storage, and transportation of raw and refined
products (Devold, 2013).

Oil and gas infrastructure in upstream operations enables
the exploration, production, and gathering and treatment of
oil and gas in both onshore and offshore locations. The ma-
jor oil and gas facility types in upstream operations include
(i) production wells; (ii) offshore platforms; and (iii) equip-
ment or facilities that support oil and gas gathering, separa-
tion, metering, storage, and transportation. The latter may be
collocated with well sites or operate as standalone facilities.
Facilities in midstream operations allow for the separation
and treatment of raw natural gas to produce pipeline-quality
dry natural gas and associated hydrocarbon products (De-
vold, 2013). These facilities typically include natural gas pro-
cessing plants, natural gas compression facilities, LNG pro-
duction (liquefaction) or regasification facilities, and gather-
ing and transmission pipelines. The major facilities in down-
stream operations include crude oil refineries. Figure 1 shows
examples of these major oil and gas facility types.
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Figure 1. Examples of major oil and gas facility types as seen in high-resolution satellite imagery (Google basemap imagery, © Google
Earth). (a) An oil well pad with one pump jack and storage tanks in the Permian Basin, United States. (b) A cluster of oil pump jacks in
the Kern River Oil Field in California, United States. (¢) A dry natural gas production well pad, with 11 horizontally drilled wells, in the
Marcellus Shale play (northeastern Pennsylvania, United States). (d) A mixed oil and gas production well pad in the Bakken Shale play
(North Dakota, United States), with eight horizontally drilled wells. (e) A natural gas gathering compressor station in the Anadarko Basin
(Oklahoma, United States). (f) A natural gas transmission compressor station in Pennsylvania (United States). (g) A natural gas transmission
compressor station in the West Siberian region (Russian Federation). (h) A natural gas processing plant in Louisiana (United States). (i) An
LNG regasification facility in La Spezia, Italy. (j) A crude oil refinery in Mesaieed, Qatar.

2.2 Open oil and gas geospatial data acquisition,
integration, and database creation

We designed a three-step process for database development
that involved acquisition of open geospatial data, data pro-
cessing, and database analytics (Fig. 2). We searched the web
for open geospatial data on oil and gas infrastructure, fo-
cusing on major facility types that are relevant sources of
measured methane emissions in upstream, midstream, and
downstream operations, as described above. We used both
semi-automated and manual web search approaches, acquir-
ing and cataloguing open geospatial datasets retrieved from
both official government and non-government sources. Non-
government data sources included open data from oil and gas
company reports, non-profit research institutions, academic
research works, and other open oil and gas data websites
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(Fig. 2). Where necessary, we used automated website trans-
lation services (Google Translate) for non-English websites
for which relevant open geospatial datasets on oil and gas in-
frastructure were available. In cataloguing acquired datasets,
each unique data source was assigned a source reference 1D,
and metadata associated with the downloaded datasets were
recorded in a dedicated data catalog spreadsheet, including
the URL links, the original data owner names, data file for-
mats, the date the data were published and last updated, the
date we last accessed the data, and how frequently the data
were updated. The acquired geospatial datasets included sev-
eral geospatial data file formats, such as GeoJSONs (.geo-
json), shapefiles (.shp), geodatabases (.gdb), delimited files
(.csv, .dsv, .xls, .xIsx, .txt), and MS Access (.mdb, .accd).
For each country, we grouped all acquired geospatial
datasets by their oil and gas facility categories (Table 1),
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Figure 2. Data acquisition, data processing, analytics, and quality assurance and control procedures for the OGIM database development.

which formed the basis for each of the geospatial data lay-
ers in the consolidated database. These facility categories re-
late to the previously defined major oil and gas infrastructure
types in upstream, midstream, and downstream operations.
In addition, where data were available, we included spatial
information on major equipment (e.g., dehydrators at nat-
ural gas compressor stations) and components (e.g., valves
at natural gas processing facilities). We also included, as its
own data layer, locations of natural gas flaring at facilities or
clusters of facilities, based on VIIRS (Visible Infrared Imag-
ing Radiometer Suite) detections and gas flare radiant heat
and gas-flared volume estimates from the Earth Observation
Group (Elvidge et al., 2015). Finally, where available, we in-
cluded geospatial data for oil and gas fields, shale plays, and
sedimentary basins.

We analyzed each acquired geospatial dataset, first by
performing general data cleaning, such as identifying rel-
evant data attributes (Table 2), replacing abbreviated at-
tributes (e.g., for facility status) with full descriptions based
on dataset metadata and/or documentation, and standardizing
mixed data types. Further data pre-processing steps included
standardizing data spatial references to an unprojected ge-
ographic coordinate reference system (datum: WGS 1984,
European Petroleum Survey Group code, EPSG: 4326), au-
tomated translation of non-English attributes, and standard-
ization of date formats (OGIM format: “YYYY-MM-DD”)
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and numeric fields (three significant figures for all numeric
fields, except latitude and longitude attributes, which we
standardized to five decimal places). In addition, where data
were available, we transformed all production, capacity, and
throughput quantities to standard units of bbl (barrels) and
Mcf (1000 cubic feet) for oil and natural gas products, re-
spectively. Similarly, where necessary, we converted pipeline
lengths and field/basin areas to common units of kilometers
(km) and square kilometers (km?), respectively.

In addition to the data cleaning and feature attribute stan-
dardization described above, additional data quality assur-
ance and control that we applied before data integration in-
cluded the following: (i) assigning standard missing data
identifiers (“N/A” for categorical attributes, —999 for numer-
ical attributes, and “1900-01-01” for date attributes); (ii) as-
sessing and removing duplicate records, specifically for com-
pressor stations and gas processing plants in the United
States for which multiple datasets were acquired, where ob-
vious duplication of facility locations (within 100 m) and at-
tributes (common facility and operator names) were identi-
fied; and (iii) verifying and correcting facility category defi-
nitions (e.g., ensuring that the category for oil and gas wells
included only well locations as opposed to offshore rigs) and
locational information (e.g., confirming point locations of fa-
cilities match the state/province or countries to which they
are attributed). As part of the data pre-processing, for each

https://doi.org/10.5194/essd-15-3761-2023
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OGIM geospatial data layer

Additional information

Geometry type

Oil and natural gas wells Includes active, inactive, and plugged and aban-  Point
doned oil and natural gas wells.

Natural gas compressor stations Facilities for natural gas compression in the Point
gathering, transmission, and distribution sector.

Gathering and processing facilities Includes natural gas processing plants, natural  Point
gas dehydration and other treatment facilities,
and oil gathering and processing facilities.

Tank battery Can be collocated with well sites; typical equip-  Point
ment includes oil and natural gas separation
equipment and an arrangement of storage tanks.

Offshore platforms Oil and natural gas drilling, production, and Point
processing platforms in offshore areas.

LNG facilities Includes both liquefaction and regasification fa-  Point
cilities.

Crude oil refineries - Point

Petroleum terminals Includes tank farms and petroleum bulk storage  Point
tanks and terminals.

Injection, disposal, and underground storage facilities — Point

Stations — other Includes metering and regulating stations and  Point
POL (petroleum, oil, and lubricants) pumping
stations.

Equipment and components Includes point locations for dehydrators, sepa-  Point
rators, tanks, and valves.

Oil and natural gas production Includes reported well-level, facility-level, and  Point
field-level oil and natural gas production, as re-
ported for 2021.

Natural gas flaring detections Based on VIIRS natural gas flaring detections  Point
in 2021.

Oil and natural gas pipelines - Linestring

Oil and natural gas fields - Polygon

Oil and natural gas basins - Polygon

major facility category in each country, state, or province,
we automatically retrieved, visualized, and reviewed a sub-
set of randomly sampled facility locations (n = 20 to 50) in
high-resolution satellite imagery, which provided an initial
assessment of the accuracy of the facility category designa-
tion and spatial accuracy of point locations.

For some countries with rich open datasets on oil and gas
infrastructure, especially Canada, it was necessary to merge
multiple datasets for the same facility category to enhance
the attributes integrated in the OGIM database. For example,
while we use surface hole locations for wells in the well loca-
tion data for Alberta as integrated in the OGIM database, we
also incorporated information on well status, well name, op-
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erator name, and unique well identifier (UWI) number found
in a separate bottom-hole dataset from the Alberta Energy
Regulator. When we merged multiple datasets from different
sources to enhance the attributes for the same facility cat-
egory in the same country, we identify these multiple data
sources based on the source reference IDs as indicated in the
data catalog.

Finally, we also reviewed all unique descriptions of facility
status information and included a standardized facility status
attribute (“OGIM_STATUS”) in addition to the original fa-
cility status description, to facilitate grouping of infrastruc-
ture with the same level of activity. For example, original

well status values of “active”, « oil producer”,

CLINTY

gas producer”,

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Table 2. Examples of feature attributes for each layer in the OGIM database. bbl: barrels. Mcf: 1000 cubic feet. bpd: barrels per day. MMcfd:

million cubic feet per day.

Location attributes ~ Facility identification

Facility characteristics

Region Unique well identifier Facility type

Country Facility ID Facility operational status
State/province Data source reference ID  Installation date
On/offshore OGIM ID Wells: spud date

Latitude Facility name Wells: completion date
Longitude Operator name Wells: drill type
Geometry

Wells: annual oil (bbl) and gas (Mcf) production (as a separate data layer)

Pipelines: pipeline diameter (mm)

Pipelines: pipeline length (km)

Pipelines: pipe material

Pipelines: commodity

Compressor stations, processing plants, LNG, and refineries: reported capacity
and throughput rates (bpd and MMcfd)

Fields and basins: area (km

%)

9% ¢ LLINNT3

“producer”, “operating”, “pumping”, and “flowing” were all
mapped to an “OGIM_STATUS” value of “producing”.

As part of the data integration process, we developed and
applied a standard data schema for each oil and gas facil-
ity category included in the OGIM database (Appendix A).
These data schemata codified the data types, the geometry
types, and the coordinate reference systems, as well as the
feature attributes included in the OGIM database for all ac-
quired datasets (Tables 1 and 2). The included feature at-
tributes allow for facility localization (region, country, state,
latitude, longitude, etc.), identification (unique well identi-
fier, facility name, operator name, etc.), and characteriza-
tion (e.g., facility type, installation dates, facility status, pro-
duction rate, and pipeline length; Table 2). For each unique
facility category, we geospatially merged all the integrated
datasets and exported the results into a GeoPackage layer.
The final GeoPackage (the Oil and Gas Infrastructure Map-
ping database, OGIM_vl.gpkg) represents a consolidated
database of all acquired and integrated open geospatial oil
and gas infrastructure data across all regions.

2.3 Qil and gas geospatial database analytics

For each feature in the OGIM database, we assigned coun-
try names based on the UN Member States database (UN,
2022), with country boundaries based on a combination of
Esri World Country boundaries (Esri, 2022) and the global
Exclusive Economic Zone boundaries (EEZ, 2019). For each
country, we used the annual country-level oil and gas produc-
tion and consumption data based on international data from
the U.S. Energy Information Administration (EIA, 2022) for
2019, the latest year for which complete oil and gas produc-
tion statistics are available. From these data, we identify the
major oil- and gas-producing countries that account for the
top 80 % of global oil and gas production (i.e., combined oil
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and gas production in energy units of barrels of oil equiva-
lent per day (boed)). To analyze geospatial data on a regional
basis, we group countries into seven regions based on the
International Energy Agency’s energy regions of (i) Africa,
(i1) Asia Pacific, (iii) Central and South America, (iv) Eura-
sia, (v) Europe, (vi) the Middle East, and (vii) North America
(IEA, 2022).

We adapt the procedure by Rose et al. (2018) and develop
geospatial data quality metrics, accounting for the reliability
of the original data source, frequency of data updates, and
richness of data attributes. In characterizing data source re-
liability, we considered the type of data source (i.e., govern-
ment versus non-government data sources) and additional in-
dicators such as ease of access of open data and evidence of
regular data updates and/or maintenance. We then assigned a
score of 1-5 to each data source, with 5 representing a highly
reliable data source (updated frequently, available meta data
and documentation, and data portals are well maintained) and
1 representing the least reliable data source. We assessed the
frequency of data updates based on the reported data update
cadence for each acquired dataset. We assigned a score of
1-5 to each data source, where (i) a score of 5 represents
datasets that are updated on a daily to monthly cadence, (ii) a
score of 4 represents data of quarterly to annual update fre-
quency, (iii) a score of 3 represents data that are irregularly
updated and were last updated in the past 2 to 3 years, (iv) a
score of 2 represents data that are irregularly updated and
were last updated within the last 3 to 5 years, and (v) a score
of 1 represents data that were last updated more than 5 years
ago. We also characterize the richness of feature attributes
for each point feature in the OGIM database, focusing on
oil and gas wells and major facility types in the midstream
and downstream sector (i.e., natural gas compressor stations,
gathering and processing facilities, LNG facilities, and crude
oil refineries). For each feature for midstream facilities and

https://doi.org/10.5194/essd-15-3761-2023
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crude oil refineries, we assessed whether the following six
attributes were available: facility name, operator name, fa-
cility status, facility type, installation date, and capacity or
throughput information. For each oil and gas well feature, we
assessed whether the following six attributes were available:
facility name, operator name, facility status, facility type, in-
stallation date (at least either the spud date or completion
date), and drill type. If any of the attributes were available
for each record, we assigned a score of 1 for that attribute for
that feature, so that an attribute-rich feature will have a max-
imum score of 6. Thus, the maximum total score for each
feature, accounting for reliability of data source, frequency
of data update, and richness of feature attributes, is 16. We
use this maximum total score to compute a normalized ag-
gregate data quality score (0 to 1) for each feature, as well
as mean normalized aggregate data quality scores for each
country and region.

Understanding spatial accuracy of geospatial oil and gas
data is important for accurate methane source attribution.
However, it is not feasible to manually verify the accuracy
of spatial information for the millions of point locations in
the OGIM database. Nevertheless, and specifically for oil
and gas wells, we identified a select number of countries and
oil- and gas-producing basins in the United States (Bakken,
Fayetteville, Permian, Marcellus, Denver-Julesburg), Mexico
(Sureste), Argentina (Neuquén), Libya (Illizi-Ghadames),
Saudi Arabia (Rub’ al Khali), Germany (northwest Ger-
many), and Australia (Bowen—Surat) for an assessment of
the spatial accuracy of point locations in the OGIM database.
For each basin or country, we drew a random sample of
250 to 500 point locations and automatically retrieved high-
resolution satellite imagery (via the Google Earth satellite
basemap, henceforth Google basemap imagery) at each lo-
cation. On each retrieved image, we computed and plotted
several buffers of different radii, representing distances of
10, 20, 50, 75, 100, and 150 m, around each selected point
location (Fig. 3). We then semi-automatically labeled each
selected point location, indicating whether it was directly on
a facility footprint as seen in satellite imagery or offset within
x m of an actual facility footprint in satellite imagery, where
x is determined by the outline of the buffer radii around the
target location (Fig. 3). In total, we assessed the spatial ac-
curacy of a random sample of 2935 well locations in the se-
lected basins mentioned above. In addition, we followed a
similar procedure to evaluate the spatial accuracy of a ran-
dom sample of natural gas compressor stations (n = 550 for
randomly selected locations in Canada, the United States, Ar-
gentina, Mexico, Nigeria, and the Russian Federation), pro-
cessing facilities (n = 245 for randomly selected facilities
in Argentina, Canada, Mexico, and the United States), and
crude oil refineries (n = 301 for randomly selected facilities
in Argentina, Australia, China, and the United States).

https://doi.org/10.5194/essd-15-3761-2023
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3 Results and discussion

3.1 Global overview

We acquired over 450 publicly available geospatial datasets
of oil and gas infrastructure from 202 unique data sources.
These datasets include all major oil and gas infrastructure
types of interest (Table 1), although the total count and
dataset availability for specific oil and gas infrastructure
types exhibit wide variability among countries (Fig. 4a).
Among the major oil- and gas-producing countries rep-
resenting the top 80 % of global oil and gas production
(EIA, 2022), publicly available government-sourced geospa-
tial datasets accounted for two-thirds of the total, with coun-
tries in North America, South America (Brazil, Argentina),
Norway, and Australia being notable for a large fraction of
open-source government data in our consolidated database
(Fig. 4b). In contrast, nearly 80 % of the acquired datasets
for the bottom 20 % of oil- and gas-producing countries came
from non-government sources, reflecting a general paucity of
reliable, open-source government-based oil and gas infras-
tructure datasets in these countries.

We acquired a total of ~ 6 million geospatial data records,
which includes point-based facility locations, oil and gas pro-
duction, oil and natural gas pipelines, and fields and sedimen-
tary basins. The vast majority of these records (~ 2.5 million
records) are for oil and gas well locations, and roughly 85 %
of the records were sourced from countries in North America
(Fig. 5a). LNG facilities (n = 338) and crude oil refineries
(n =712) have the smallest representation in the database,
although both show broad coverage globally (Fig. 5a).

In addition to point features, we acquired over 2.6 x 10° km
of oil and natural gas pipeline data globally, with a sub-
stantial proportion distributed in North and South American
countries (Fig. 5b).

3.2 Gilobal spatial distribution of major oil and gas
infrastructure data

The oil and natural gas well data show extensive coverage
and significant overlap with major oil and natural gas basins
for countries in North and South America, Europe (offshore
regions), Australia, and New Zealand (Fig. 6a). However,
there is sparse open-source data availability for oil and nat-
ural gas well locations in several countries in Africa, the
Middle East, Eurasia, and parts of the Asia Pacific region
(Fig. 6a). In addition, we find the largest density of open-
source geospatial data for the major midstream oil and gas
infrastructure, namely, natural gas compressor stations and
oil and natural gas gathering and processing facilities, in
countries in North and South America and parts of Eurasia
(Fig. 6b).

The natural gas flaring detection layer adds important spa-
tial information on global upstream, midstream, and down-
stream natural gas flaring, revealing flaring hotspots in major

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Figure 3. Schematic illustrating the semi-automated labeling of a random sample of oil and gas well locations in high-resolution Google
basemap imagery (© Google Earth). The widgets are used to specify and automatically annotate the spatial accuracy of the randomly sampled
facility location from the OGIM database (e.g., directly on a facility footprint, within 10 m of the facility footprint).

oil- and gas-producing countries, including those for which
limited open-source data on oil and natural gas well loca-
tions are available (Fig. 6¢c and a). With reported detections
at over 10000 facilities or facility clusters globally in 2021
(Figs. 5a, 6c¢), the available data allow for further methane
source attribution as well as regional-scale emission charac-
terization, as has been demonstrated in recent studies (Zhang
et al., 2020; Lyon et al., 2021; Shen et al., 2022). How-
ever, because the spatial resolution of the VIIRS instrument
is ~750m x 750 m at nadir (Elvidge et al., 2015), linking

Earth Syst. Sci. Data, 15, 3761-3790, 2023

VIIRS detections to individual oil and gas facilities presents
certain challenges, particularly in oil- and gas-producing re-
gions with spatially dense oil and gas facilities, such as in
the Permian Basin in southern New Mexico and western
Texas (United States). Such facility attribution requires fur-
ther studies.

Globally, open-source data for oil and natural gas pipelines
show broad coverage in North America, where spatial data
for both gathering and transmission pipelines are available in
several jurisdictions (Fig. 6d). Outside of North America, the
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Figure 4. Summary statistics for acquired datasets for countries in the OGIM_v1 database. (a) Total count of acquired records for each oil
and gas infrastructure type (bar plots) in each of the major producing countries that account for the top 80 % of global oil and gas production.
The right y axis shows the percent contribution of country-level oil and gas production to global oil and gas production totals, based on
EIA data for 2019 (EIA, 2022). (b) Total number of datasets and breakdown by government and non-government sources for the major
producing countries that account for the top 80 % of global oil and gas production. For these countries, government sources accounted for
two-thirds (68 %) of the total acquired datasets. For the remaining countries accounting for the bottom 20 % of global oil and gas production,
government sources made up roughly one-quarter (23 %) of the acquired datasets.
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majority of acquired open-source data are for transmission
oil and natural gas pipelines (Fig. 6d).

We assessed the spatial density of all acquired oil and
gas infrastructure datasets (excluding fields and basins), in-
cluding natural gas flaring detections and oil and natural gas
pipelines, at two spatial resolutions, namely, a regularly grid-
ded, relatively granular spatial scale (25 km x 25 km; Fig. 7a)
and at the country scale (Fig. 7b). On both spatial scales, we
find the highest density of open-source geospatial records in
North America, specifically the United States and Canada,
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with more than 2.5 million features (Fig. 7b). In these coun-
tries, as well as in other countries with relatively high spatial
density of open oil and gas infrastructure datasets (e.g., Mex-
ico, Brazil, Argentina, Norway, Australia; Fig. 7a and b), we
can draw two broad conclusions: (i) most available datasets
originate from authoritative government sources (Fig. 4b),
suggesting overall dataset reliability, and (ii) the highest den-
sity of oil and gas infrastructure locations is collocated with
major oil- and gas-producing regions in these countries (e.g.,
the Neuquén Basin in Argentina, Permian Basin in the United

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Figure 6. Spatial distribution of global oil and gas infrastructure locations in the OGIM_v1 database. (a) Spatial distribution of oil and
natural gas wells, shown as blue points. The major oil and gas sedimentary basins accounting for the top 80 % of global oil and gas pro-
duction in 2019 are shown as red polygons. Countries for which there were limited or no public data acquired are shaded grey. (b) Spatial
distribution of other major oil and natural gas infrastructure types, including natural gas compressor stations, gathering and processing facili-
ties, petroleum terminals, offshore platforms, crude oil refineries, and LNG facilities. (¢) Spatial distribution of natural gas flaring detections,
based on VIIRS-derived datasets (Elvidge et al., 2015), highlighting global natural gas flaring hotspots based on estimated flared gas volumes.
(d) Spatial distribution of acquired publicly available datasets for oil and natural gas pipelines.

States, and the North Sea; Fig. 7a), suggesting broad open-
source geospatial data coverage in support of comprehensive
methane source attribution in such key oil and gas production
basins.

Among the countries that account for the top 80 % of
global oil and gas production, countries with the lowest
spatial densities of open-source geospatial oil and gas in-
frastructure data include the Middle Eastern countries (e.g.,
Saudi Arabia, Iraq, Iran, Qatar, Kuwait, United Arab Emi-
rates), Algeria, the Russian Federation, China, and Kaza-
khstan (Fig. 7a and b). We note that these are also countries
for which we acquired limited or no open spatial data on oil
and gas well locations (Fig. 6a), suggesting that the low spa-
tial densities quantified in Fig. 7 indeed reflect locational data
gaps in our database and not that such oil and gas infrastruc-
ture is absent in these countries. Equally of note is the pre-
dominance of centralized national oil company (NOC) oper-
ations, where public oil and gas data reporting policies vary
widely and where general oil and gas data transparency has
been previously described as “deficient” (Heller and Mihalyi,
2019). We discuss further below a quantitative assessment of

Earth Syst. Sci. Data, 15, 3761-3790, 2023

the data gaps on a country-by-country basis, focusing on the
major oil- and gas-producing countries accounting for the top
80 % of global production.

3.3 Characterizing geospatial oil and gas data quality
and spatial accuracy

The acquired datasets, which originate from 202 unique data
sources, are expected to exhibit various levels of data accu-
racy, richness of data attributes, and frequency of data up-
dates. We developed data quality scores for each feature in
our database, quantifying richness of data attributes (‘“‘at-
tribute score”, range: 1-6), reliability of data source (“data
source score”, range: 1-5), and frequency of data updates
(“update frequency score”, range 1-5) to generate a nor-
malized aggregate data quality score at the country level
(range: 0—1; see Methods). We focus on country-scale aggre-
gate data quality metrics for oil and natural gas wells and for
midstream infrastructure, specifically, natural gas compres-
sor stations and oil and natural gas gathering and processing
facilities. We quantitatively assess data quality in each coun-
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Figure 7. Spatial trends in acquired open oil and gas infrastructure datasets in the OGIM_v1 database. (a) Spatial densities of oil and gas
infrastructure data on a regular grid of 25 km x 25 km. The bar chart represents the legend for the heatmap and shows the total count of
features within each grid cell, ranging from 1 to 32 000. The x axis and the numbers on top of each bar show the frequency of grids cells with
such feature counts; for example, there are 53 grid cells (25 km x 25 km each) that have between 5000 and 32 000 features each. (b) Spatial
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such feature counts; for example, only one country (the United States) has over 3 million features. The graduated circles with black edges
show the total oil and gas production for the countries that account for the top 80 % of global oil and gas production (n = 17; EIA, 2022).

Countries with no data are shown in grey.

try for which open oil and gas data for these facilities are
available in the OGIM_v1 database.

Following a similar trend to the spatial data trends (Fig. 7),
we find the highest normalized aggregate data quality scores
(> 0.7) for countries in North America, South America (e.g.,
Brazil), Australia, and Europe (e.g., Norway; Fig. 8a). The
defining characteristics of datasets in these countries that
contribute to an overall high data quality score include the
following: (i) data are sourced from transparent government
sources; (ii) data are updated frequently (e.g., on a daily to
monthly basis); and (iii) each feature includes several key at-
tributes such as facility name, activity status, facility opera-
tor, installation dates, and production capacity or throughput
information. In contrast, countries with low aggregate data
quality scores < 0.5 (e.g., the Russian Federation, Saudi Ara-
bia, Iraq, Libya, Kazakhstan; Fig. 8a) are defined by a gen-
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eral paucity of open geospatial oil and gas data from official
government sources (Fig. 4b), which is further compounded
by infrequent data updates and limited attributes in available
datasets from non-government sources. Even so, we note that
each feature in OGIM_v1 is identified by its facility category
which, in addition to location information, represents the
minimum attributional information necessary for methane
source identification (Cusworth et al., 2021; Irakulis-Loitxate
et al., 2021).

Given the importance of accurate locational information
in facility-scale methane source attribution, we quantify the
spatial accuracy of a subset of oil and gas facility locations
in the OGIM database, based on semi-automated inspection
of a random sample of 2935 active oil and gas well loca-
tions in 11 major oil- and gas-producing basins against high-
resolution Google basemap imagery (see Methods section).

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Figure 8. Characterizing geospatial oil and gas data quality and gap metrics. (a) The heatmap shows the normalized aggregate data quality
scores at the country level, focusing on the top 80 % oil- and gas-producing countries and incorporating “attribute score”, “data source score,”
and “update frequency score” (see Methods) for oil and gas wells and other major infrastructure types (i.e., natural gas compressor stations,
oil and gas gathering and processing facilities, refineries, and LNG facilities). Spatial datasets of high data quality have high normalized
aggregate data quality scores. (b) OGIM_v1 global data gap metric, focusing on the top 80 % oil- and gas-producing countries. The gap
metric aggregates the estimated data gaps for oil and gas wells, missing datasets for specific oil and gas infrastructure types, and gaps in
data attributes, frequency of data updates, and reliability of data sources. Data-rich countries have very low scores of less than 0.1, while
data-limited countries have high data gap metrics greater than 0.5-0.7, on a scale of 0—1.

We find that, on average, 85 % of this random sample of
well locations had locational information that was accurate
to within 20 m of actual oil and gas well pad footprint as con-
firmed in high-resolution satellite imagery (Fig. 9), suggest-
ing high spatial accuracy. Similarly, the percent of facilities
that were located directly on the facility footprint or within
20 m of the actual facility footprint is 70 %, 80 %, and 83 %
for natural gas compressor stations, natural gas processing

Earth Syst. Sci. Data, 15, 3761-3790, 2023

facilities, and crude oil refineries, respectively (Fig. 9). The
relatively low score for natural gas compressor stations is at-
tributable to low location accuracy for facilities in western
Canada, where facility locations are reported based on le-
gal subdivision grids (e.g., the Dominion Land Survey grids,
where each legal subdivision is ~ 400 m x 400 m). A small
proportion of random samples (~ 2 % to 5 %) could not be
quantified for spatial accuracy because no facility footprint
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Figure 9. Characterizing spatial accuracy of oil and gas data. For each facility category, the box plots show the basin- or country-scale
distribution of the percent of labeled sites (random sample size shown in brackets in the top x axis) located directly on the facility footprint or
offset within x m of actual facility footprint as seen in high-resolution satellite imagery. For example, for oil and gas wells, the first box plot
indicates that among 11 basins, the median spatial accuracy is 76 % for facility locations that were assessed to be located directly on a facility
footprint as seen in high-resolution imagery. The colored circles show the total percentage of all facilities with combined spatial accuracy of
< 20, < 50, and < 100 m. For example, for all 2935 locations of wells, 85 % are located directly on or within 20 m of actual facility footprint
as seen in high-resolution satellite imagery. A small fraction of facility locations (of roughly 2 % to 5 % of randomly sampled locations)
were not visible in satellite imagery, likely because of outdated imagery (these are not shown in the figure). See Supplement for additional

assessment of the OGIM data coverage and spatial accuracy in the Permian Basin.

was visible in satellite imagery, which may reflect the lo-
cations of recently constructed facilities assessed against an
out-of-date satellite image.

3.4 OGIM database gap assessment

Given our focus on acquiring public-domain datasets on oil
and gas infrastructure, we acknowledge we are limited by
open-access availability of geospatial datasets in regions and
countries of interest. In general, we find wide availability of
open-access oil and gas infrastructure datasets reported by
governments in North America, parts of South America (es-
pecially Argentina and Brazil), parts of Europe (e.g., United
Kingdom, Norway), and Australia. We quantify data gaps
in the top 80 % of oil- and gas-producing countries by as-
sessing the following: (i) the expected number of oil- and
gas-producing wells (the largest oil and gas infrastructure
category in terms of total number of facilities); (ii) account-
ing for missing datasets for specific infrastructure categories;
and (iii) the aggregate data quality score, which incorporates
existing gaps in the databases based on factors such as fre-
quency of data updates and richness of data attributes.

We begin by analyzing basin-level oil and gas production
data and assessing correlations with the total number of pro-
ducing wells and oil and gas productivity per well (barrels
of oil equivalent per well) based on data for 52 basins in
the Enverus Drillinginfo database (Enverus, 2021). We find
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a significant correlation between log-normalized oil and gas
production (boe) and log-normalized well productivity (boe
per well; R =0.48, p < 0.0001) and use this correlation to
estimate the expected number of wells in each country in the
top 80 % of global oil and gas production based on EIA data
(EIA, 2022). We assume data gaps exist if the estimated ex-
pected number of wells is more than the total feature count in
the OGIM database. We then normalize the gap metric score
from O to 1 such that a country with no publicly available
data on wells gets a score of 0, while those countries with
more well records than expected (as estimated above) get a
score of 1.

In addition, we develop a presence—absence metric for the
following seven major oil and gas infrastructure categories,
including wells, compressor stations, processing facilities,
refineries, LNG facilities, oil and gas offshore platforms, and
storage facilities. For each country, we normalize this score
from O to 1, such that any country for which the relevant data
for all seven facility categories were acquired gets the high-
est score of 1. Finally, we incorporate the normalized aggre-
gate data quality score (as previously discussed) to assess the
overall data gap metric for each country, which we compute
as the average of the three scores above.

Our gap assessment findings mirror the results of our
aggregate data quality scores: we estimate few data gaps
in oil- and gas-producing countries in North and South
America compared to countries in North Africa, the Middle
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East, Eurasia, and parts of Asia Pacific where public-domain
geospatial datasets on oil and gas infrastructure are of lim-
ited availability. Emerging approaches to fill in these data
gaps involve the application of deep learning methods on
high-resolution satellite imagery to automatically detect the
locations of oil and gas infrastructure and classify by facility
categories (Sheng et al., 2020). Further studies are needed to
characterize the effectiveness of this approach for major oil
and gas facilities, which are highly diverse in feature charac-
teristics across global production regions.

4 OGIM database analytics

4.1 Tracking temporal changes in regional oil and gas
activity

A global, open-source, and regularly updated database of oil
and gas infrastructure with detailed attributes is important for
understanding temporal changes in regional oil and gas ac-
tivity, which in turn supports measurement-based character-
ization of regional methane emissions and emission trends.
Where available, OGIM_v1 includes feature attributes such
as spud and completion dates and oil and gas production for
wells, which allows for tracking new well development and
production trends (Fig. 10a and b). For example, sustained
growth in o0il and gas production can be seen in the Marcel-
lus (NE Pennsylvania, United States) and the Neuquén Basin
(Argentina), despite a general declining trend in the number
of newly spudded wells between 2015 and 2021 (Fig. 10a
and b).

Natural gas flaring in oil and gas production, gathering,
and processing has emerged in recent years as a crucial
waste management issue with significant greenhouse gas,
air quality, public health, and environmental justice impli-
cations (Zhang et al., 2020; Zhizhin et al., 2021; Plant et al.,
2022; Blundell and Kokoza, 2022; Cushing et al., 2020). The
open-source availability of quantitative data on the frequency
of detected gas flaring and estimated flared gas volumes at
global oil and gas infrastructure locations based on VIIRS
remote sensing observations (Elvidge et al., 2015) and in-
cluded in OGIM_v1 allows for the assessment of the tempo-
ral evolution of flaring activity in major production regions
(Fig. 6¢) as well as progress toward global natural gas flaring
reduction (World Bank, 2022; OGCI, 2021).

4.2 Development of policy-relevant analytics and
insights for methane emission assessment and
mitigation

The availability of open geospatial oil and gas pro-
duction data in OGIM_vl supports the characterization
of measurement-based area-, regional-, or national-scale
methane loss rates (Alvarez et al., 2018; Zhang et al., 2020;
Zavala-Araiza et al., 2021; Schneising et al., 2020; Omara
et al., 2022b; Shen et al., 2021) relative to production. The
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assessment of measurement-based methane loss rate or in-
tensity metrics is critically important for the evaluation of
progress toward methane reduction targets such as the tar-
gets advanced by a consortium of major oil and gas com-
panies (OGCI, 2021). For example, with a measurement-
based methane loss rate of > 3 % of gross natural produc-
tion (Zhang et al., 2020; Lyon et al., 2021; Chen et al., 2022;
Shen et al., 2022), the Permian Basin in western Texas and
southern New Mexico is one of the largest methane-emitting
oil and gas basins globally for which substantial methane re-
ductions are needed if methane intensity targets of < 0.25 %
are to be achieved (OGCI, 2021).

While measurement-based facility-scale methane emis-
sion data or regional methane emission inventories are not
included in the current version of the OGIM database, the
available geospatial oil and gas infrastructure data can sup-
port the development of other policy-relevant analytics and
insights that are crucial for targeted methane emission miti-
gation. The field- or basin-level characteristics regarding ma-
jor oil and gas infrastructure (e.g., age of wells, distribution
of well-level production, and type and density of other ma-
jor oil and gas infrastructure), oil and gas production profiles
(e.g., oil-dominant, gas-dominant, or mixed oil and gas), and
operational practices (e.g., asset consolidation by national oil
companies or voluntary methane emission reduction mea-
sures put in place by specific operators) have the potential to
influence the magnitude of measured methane emissions. As
an example, Shen et al. (2021) report extremely high methane
loss rates of 13 % relative to gross natural gas production in
the Sureste oil and gas production region of southern Mex-
ico. The authors leverage detailed oil and gas activity data to
postulate plausible mechanisms for high methane emissions
observations, including (i) the potential venting of produced
associated natural gas in a region with the largest density
of newly drilled oil wells in Mexico, (ii) a concentration of
central processing facilities previously identified with high
potential for large methane emissions (Zavala-Araiza et al.,
2021), and (iii) unique operational practices characterized by
transportation and distribution of natural gas produced off-
shore to onshore oil and gas infrastructure and partial gas
utilization with potential for large releases. Such analytical
insights, derived in part based on detailed oil and gas activity
data, can help inform policy actions toward effective methane
mitigation.

To further illustrate this use case, we compare, in Fig. 11,
based on OGIM_v1 data, the distribution of well age (based
on reported spud dates as of 31 December 2021), well-level
oil and gas production, and operator production character-
istics among three different oil- and gas-producing regions:
(i) the New Mexico portion of the Permian Basin, (ii) the
Sureste region in southern Mexico, and (iii) the Neuquén
Basin in Argentina. Among these regions, the number of
newly spudded wells per year (Fig. 10a), well-level oil and
gas (O&G) productivity (Fig. 11b), and the number of unique
operators and their oil and gas production (Fig. 11c) are
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Figure 10. Temporal evolution of oil and gas activity indicators in select regions based on available data in OGIM_v1. (a) Number of new
wells spudded per year. (b) Total oil and gas production per year. (¢) Natural gas flaring activity per year. The top chart (left y axis) shows
the VIIRS-derived number of flaring detections per year, while the bottom chart (right y axis) shows the estimated annual gas-flared volumes
(based on Elvidge et al., 2015). The map shows the approximate locations of select regions plotted in (a)—(c).
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Figure 11. Examples of analytical insights derived from OGIM_v1 database. (a) Violin plots showing the distribution of the age of active
wells in the Sureste, Neuquén, and NM Permian (in 2021). The numbers at the bottom show the total number of active wells in each region.
(b) Cumulative distribution functions of well-level productivity, showing low well-level productivity in the Sureste region (~ 90 % of wells
produce < 1boed) and high well-level productivity in the NM Permian (~ 10 % of wells produce > 100 boed). (¢) Lorenz curves showing
the distribution of regional oil and gas operators and their contribution to cumulative regional oil and gas production (e.g., the largest operator
in the NM Permian accounts for 10 % of regional production).

greater in the New Mexico portion of the Permian Basin, the NM Permian, Neuquén, and Sureste regions, respectively.
even though the median age of active wells appears older These variabilities in regional density of oil and gas infras-
than in the other two basins (Fig. 11a). Furthermore, based on tructure, production, and operational characteristics suggest
total oil and gas production, the largest operator accounts for that variabilities in underlying drivers of methane emissions
10 %, 60 %, and 90 % of regional oil and gas production in can be expected across various production regions and that
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a tailored, rather than a one-size-fits-all strategy for methane
emissions mitigation may be required across international re-
gions.

4.3 QOil and gas methane point source attribution using
airborne remote sensing

In recent years, the growing constellation and advance-
ment in capabilities of methane remote sensing satellites
has helped provide unprecedented insights into regional and
point source methane emissions (Jacob et al., 2022). For
example, recent research has underscored the importance
of a small fraction of “super-emitting” and “ultra-emitting”
methane point sources as important contributors to global oil
and gas methane emissions with significant potential for cost-
effective methane abatement (Varon et al., 2019; Cusworth
et al., 2021, 2022; Irakulis-Loitxate et al., 2021; Lauvaux
et al., 2022). Source attribution of these extreme methane
point source emitters has largely relied on facility type iden-
tification in high-resolution satellite imagery, with limited
detailed characterization of individual facility-scale sources.
The available data attributes in the OGIM database — in-
cluding facility names, activity status, operator information,
completion or installation dates, and production or through-
put data — support further source attribution analytics beyond
facility type identification. Such source attribution analytics
have the potential to provide further key insights into the
characteristics of high-emitting point sources across oil and
gas production regions. For example, by assessing the age of
extreme methane emitters, Irakulis-Loitxate et al. (2022) re-
ported the detection of more extreme emissions from newer
facilities < 2 years old in the Permian Basin and estimated
that newer facilities contribute 2 times more methane than
older facilities.

In Fig. 12 and Table 3, we show five examples of de-
tailed methane source attribution for high-emitting point
sources detected in the Permian Basin based on observa-
tions from an August 2021 deployment of MethaneAlIR,
an airborne precursor mission for MethaneSAT (Staebell et
al., 2021), which is an upcoming satellite mission managed
by MethaneSAT LLC — a wholly owned subsidiary of En-
vironmental Defense Fund. For each example of a high-
emitting point source, we query and retrieve key attributes
from the OGIM_v1 database (e.g., facility age, operator,
production, and throughput capacity) that further improve
our understanding of the methane-emitting source. In addi-
tion to location information, facility ownership attribution
is possible, where such data are available, potentially en-
abling rapid abatement of detected extreme methane emis-
sions when near-real time intelligence on high emissions is
transmitted to the known responsible operator. However, we
note that several other factors can influence the ability for
facility-scale methane source attribution, including the spa-
tial resolution of methane plume detection, the density of oil
and gas infrastructure, and collocation or lack thereof, with

Earth Syst. Sci. Data, 15, 3761-3790, 2023

M. Omara et al.: Developing a spatially explicit global oil and gas infrastructure database

other non-oil and gas methane-emitting sources within an in-
dividual remotely sensed methane footprint.

5 Improvements to bottom-up oil and gas methane
emission inventories

Bottom-up oil and gas methane emission inventories are im-
portant for assessing regional and country-specific trends
in methane emissions and form the basis for regulatory
measures designed to mitigate methane emissions from key
sources in oil and gas operations (EPA, 2022). Typical meth-
ods for the development of these inventories involve the ap-
plication of methane emission factors (e.g., methane emit-
ted per unit of activity) to activity data (e.g., total number
of producing wells; EPA, 2022). The accuracy and com-
pleteness of these inventories are dependent, in part, on
the representativeness of the methane emission factors and
the comprehensiveness of the oil and gas activity data. As
methane remote sensing has advanced in recent years, an im-
portant need for accurate, spatially representative, and high-
resolution bottom-up methane inventories has emerged, since
these inventories can function as a priori information re-
quired for the Bayesian inversion modeling framework typi-
cally used for methane flux rate quantification (Jacob et al.,
2016).

The OGIM database supports improvements and updates
to existing bottom-up methane emission inventory estimates
by providing open-access spatially explicit data on facility
locations and their attributes (activity data). We suggest that,
where available, these detailed open-access oil and gas in-
frastructure data and attributes can be integrated with em-
pirical or modeled facility-scale methane emissions/emission
distributions (based on measurements at representative sites)
to update and improve current estimates of total oil and gas
methane emissions, in addition to providing high-resolution
gridded methane inventories needed for Bayesian inference
of satellite observations. Below, we discuss the application
of these principles to the development of a gridded bottom-
up oil and gas methane emissions inventory for the Permian
Basin, which updates a previous inventory reported in Zhang
et al. (2020) using similar methodologies described therein
but with updated activity data and site-level methane emis-
sions characterization, modeling, and extrapolation to the full
population of facilities in this region in 2021.

We begin by compiling oil and gas activity data in the
Permian Basin, based on OGIM data, and supplementing,
where needed, with proprietary data, particularly for well-
level oil and gas production (Enverus, 2021), which is cur-
rently not publicly reported for the state of Texas. To estimate
site-level methane emissions for oil and gas production well
sites, we estimate the total number of actively producing well
sites following the geospatial clustering approaches outlined
in Omara et al. (2022b). Table 4 shows the summary of the
activity data for the Permian region for 2021, while Fig. 13
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Figure 12. Detailed methane source attribution of high-emitting point sources based on OGIM_v1 data as visualized in high-resolution
Google basemap imagery (© Google Earth). The high-resolution xCHy4 data shown here are from an August 2021 deployment of MethaneAIR
(an airborne precursor instrument for MethaneSAT), geo-rectified and regularly gridded on a 25 m x 25 m grid. Detailed source attribution for
each plume is provided in Table 3. (a) Source identification of an oil well pad with four horizontally drilled oil wells. (b) Source identification
of a 200 MMcfd natural gas processing plant. (¢) Source identification of a methane high-emission event at a natural gas gathering pipeline
segment. For this site, we also reviewed Sentinel-2 imagery at 10 m spatial resolution (acquired in August 2021) and found no other major
oil and gas infrastructure was located or was actively being developed in the area close to the plume origin. We supplement OGIM_v1 data
with operator-reported emission incident report to the New Mexico Oil Conservation Division (NM OCD, 2021), which identified a major
natural gas release due to a rupture at a weld along the pipeline segment at this location. The operator estimated a total natural gas release
of 9620 Mcf over a duration of 18 h. Based on this information, we estimate a methane vent rate of 8.2th~! at the time of observation,
assuming 80 % methane content in gathered natural gas. (d) Source identification of an oil well pad with one horizontally drilled well in the
Permian Basin. (e) Source identification of methane emissions from a central gathering facility servicing three well pads with five wells. The

gathering pipelines connecting the wellheads to the facility are shown in green.

shows the spatial distribution of oil and gas infrastructure,
production, and gas flaring in this region.

We leverage existing site-level methane emission data and
develop representative methane emission models to estimate
total regional methane emissions, given the total population
of operational oil and gas facilities in the region. Briefly, for
oil and gas well sites, we use the site-level emissions data
and the emission models developed by Omara et al. (2022b)
to estimate total methane emissions for low-producing well
sites (n = 104 100), defined as well sites that produce fewer
than 15 barrels of oil equivalent per day per site. For non-
low-production well sites (n = 27 171), we develop an emis-
sion factor of 3.6 % (95 % confidence interval (CI): 2.2 %—
6.2 %) methane loss rate relative to site-level methane pro-
duction based on a lognormal fit (EF =exp(u + 0.502),
where 4 =—1.76 (—1.9, —1.5) and 0 =2.4 (2.3-2.6)) to
site-level methane loss rate measurements taken at 753 non-
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low-production well sites and reported in previous studies
(Caulton et al., 2019; Brantley et al., 2014; Robertson et al.,
2017, 2020; Omara et al., 2016, 2018). To be conservatively
low, we report our estimate of total well site emissions based
on the lower bound of the modeled methane emission loss
rate of 2.2 %. For natural gas gathering and boosting com-
pressor stations, we generate site-average methane loss rates
of 0.25 % of natural gas gathered based on an updated na-
tional estimate of gathering compressor station emissions by
Zimmerle et al. (2020). We assume an upper bound of +50 %
on the total number of natural gas gathering compressor sta-
tions in the Permian Basin and model their methane emis-
sions assuming a triangular distribution for station count,
with the mode and minimum set at 837 stations and maxi-
mum at 1256 stations. For natural gas processing plants and
transmission compressor stations, we use the emissions dis-
tributions and emission factors as modeled by Alvarez et

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Table 3. Methane source attribution of high-emitting point sources in the Permian Basin (as shown in Fig. 12). Mcf: 1000 cubic feet. MMcfd:

million cubic feet per day. bpd: barrels per day.

Methane-emitting oil and gas facility  (a) (b) (c) (d) (e)
Facility type Oil well pad Natural gas Natural gas Oil well pad Central gathering
processing plant gathering pipeline facility
Facility name Haag Hz unit Mi Vida Gas Plant Lotus Lateral Poly  Nash Unit Rustler
g’
Operator name Earthstone Energy Transfer Lucid Energy XTO EOG
Facility status Producing Operational Operational Producing Producing
Other facility attributes Age: 2 years Installed capacity: Reported emissions  Facility age: No. of wells: five

200 MMcfd event: 9 years
24 August 2021
No. of wells: four No. of compressor Reported vented Gas production: Drill type:
units: eight gas: 9620 Mcf over 160 Mcfd Horizontal
18h
Drill type: Facility age: Oil production: Gas production:
horizontal 7 years 22 bpd 1200 Mcfd
Gas production: No. of wells: one Oil production:
1000 Mcfd 660 bpd
Oil production: Drill type:
550 bpd horizontal

Table 4. Summary of activity data and facility-scale methane emissions data sources or models.

Oil and gas methane source or facility category

Activity data (2021)

Facility-scale methane emission data,
models and emission factors

Oil and gas production well sites

131271 well sites

Methane emission models for low- and
non-low-production well sites based on
over 900 previous site-level measure-
ment data (see main text)

Gathering and boosting compressor stations

837 stations; 96 000 pipeline miles

Zimmerle et al. (2020); EPA GHGI

Gas processing facilities 163 facilities Mitchell et al. (2015), Marchese et
al. (2015), Alvarez et al. (2018), EPA
GHGI

Flaring related emissions 1560 detections Elvidge et al. (2015); Lyon et al. (2021)

Transmission and distribution
miles

30 compressor stations; 44 480 pipeline

Subramanian et al. (2015); Zimmerle et
al. (2015); Alvarez et al. (2018), Weller
et al. (2020)

Abandoned wells 218 155 wells

Williams et al. (2021); EPA GHGI

Well completions and workovers 4797 wells

EPA Greenhouse Gas Reporting Pro-
gram (GHGRP)

al. (2018) based on facility-level methane emission measure-
ments from Mitchell et al. (2015), Marchese et al. (2015),
and Zimmerle et al. (2015). For gathering, transmission, and
distribution pipelines, we use the EPA’s GHGI emission fac-
tors of 0.19, 0.46, and 0.31 tyr’l km’l, respectively (EPA,
2022). For abandoned wells, we apply the measurement-
based methane distributions for plugged and unplugged wells

Earth Syst. Sci. Data, 15, 3761-3790, 2023

as modeled by Williams et al. (2021). We estimate methane
emissions due to well completions and workovers based on
the EPA Greenhouse Gas Reporting Program (GHGRP) data
for the Permian region (GHGRP, 2022), accounting for hy-
draulically fractured and non-hydraulically fractured well
completions and workovers. Finally, we follow the proce-
dure in Elvidge et al. (2015) to estimate a total of 106 bcf
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Figure 13. Permian Basin oil and gas activity data (Permian Basin boundary shown in red). (a) Density of oil and gas wells (5 km x 5km
grids). (b) Density of oil and gas production (MMboe; 5km x 5km grids). (¢) Locations of major oil and gas infrastructure. (d) VIIRS-
derived gas flaring detections. Data sources: OGIM_v1 and Enverus (2021).

of gas flared in the Permian Basin in 2021, based on VIIRS
detections. For each flaring detection at a facility or cluster
of facilities, we assume an average methane content of 80 %
in flared gas and a methane combustion efficiency of 91 %
(Plant et al., 2022).

Our estimate for total Permian methane emissions is
3.1Tg (95% CI: 2.6-3.6) in 2021. The uncertainty in our
estimates reflects uncertainties in the mean facility-level
methane emissions distributions as well as uncertainties in
activity data. Based on the total methane production of
100 Tg, and assuming 80 % methane content in produced nat-
ural gas, we estimate the Permian methane emissions rep-
resent a mean methane loss rate of 3.1 % (95 % CI: 2.6 %—
3.6 %) in 2021. Our estimate of total oil and gas Permian

https://doi.org/10.5194/essd-15-3761-2023

methane emissions, leveraging measurement-based methane
emissions data, is approximately a factor of 3 higher than
estimates from the EPA’s gridded methane emission inven-
tory (Zhang et al., 2020; Maasakkers et al., 2016; Shen et
al., 2022) and ~ 16 % higher than our previous estimate of
~ 2.7 Tg using 2018 activity data (Zhang et al., 2020), sug-
gesting increasing methane emissions due to increasing oil
and gas activity in the intervening years (e.g., new oil and
gas development and natural gas flaring related emissions).
Our bottom-up methane emissions estimate for each of the
major oil and gas sectors in the Permian are based on mea-
surements collected using facility-scale, ground-based mea-
surement approaches, such as the EPA Other Test Meth-
ods (OTM-33A; e.g., Robertson et al., 2020) and dual-

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Figure 14. Bottom-up estimates of Permian Basin oil and gas methane emissions, based on measurement data. (a) Estimated total methane
emissions for major oil and gas methane sources. The circle symbols (right y axis) show the cumulative percentages of total methane emis-
sions, indicating approximately 77 % of estimated total methane emissions arise from oil and gas production activities, including methane
slip from inefficient natural gas flaring. Error bars show the 95 % confidence intervals on the mean total estimates for each sector, reflecting
model uncertainty in the mean distribution of site-level methane emissions and activity data. (b) Cumulative percentages of total methane
emissions as functions of modeled site-level methane emission rates for all facilities shown in (a). The mean distribution for all sites is shown
in solid dark-blue line while the light-blue lines show the uncertainty in the distributions obtained from 500 Monte-Carlo realizations of each
site’s modeled methane emissions. (¢) High-resolution (~ 1 km x 1 km) spatial distribution of oil and gas methane emissions in the Permian

Basin, based on facility-scale measurements.

tracer flux measurements (Mitchell et al., 2015). Additional
facility-scale emissions datasets include measurements col-
lected using point source aerial measurement platforms (e.g.,
Cusworth et al., 2021, 2022), with higher minimum detec-
tion limits (e.g., ~ 10-20kgh~!; Cusworth et al., 2021)
and detections of low-probability and intermittent high-
magnitude emissions events. Further studies are needed to
develop statistically robust methods for integrating facility-
scale ground-based datasets with such “top-down” datasets.
Because of the paucity of facility-scale measurements for
gathering and transmission pipelines, our use of the EPA
Greenhouse Gas Inventory methane emission factors may
represent a low bound on total estimated emissions for these
sectors, as recent studies suggest the EPA emission factors
could be significantly biased low (Yu et al., 2021).

Our high-resolution bottom-up methane inventory pro-
vides a first-order estimate of the predominant sources of
basin-level oil and gas methane emissions, as well as detailed
spatial distribution of modeled emissions, which supports
further methane source attribution at the regional or basin-
level, beyond attribution to individual high-emitting point
sources. For example, our work suggests that oil and gas pro-
duction facilities are the predominant methane sources in the
Permian Basin, accounting for about 80 % of total emissions
(Fig. 14). Our analysis shows clear methane hotspots concen-
trated in the Delaware (western half of the basin) and Mid-
land (eastern half of the Permian; Fig. 14) sub-basins, which

Earth Syst. Sci. Data, 15, 3761-3790, 2023

closely aligns with the density of infrastructure, flaring, and
production (Fig. 13b—d). Improved bottom-up methane in-
ventories also allow for the assessment of the distribution of
facility-scale methane emissions, revealing the relative con-
tributions of both the high-emitting and low-emitting sources
(Fig. 14b). For example, in Fig. 14b, we estimate that up
to 90 % of the mean total methane emissions in the Per-
mian Basin arise from sources that individually emit less
than 100kgh~! per site, based on 2021 oil and gas activity,
underscoring the importance of a large number of relatively
low-emitting facilities in this region accounting for the vast
majority of total Permian Basin-wide methane emissions.

6 Data availability

OGIM_vl1 can be accessed at
https://doi.org/10.5281/zenodo.7466757 (Omara et al.,
2022a) in an open-access GeoPackage file format.
OGIM_v1l was developed and tested using open-access
software (Python 3.7 and QGIS). The current version of
the publicly available OGIM database does not include
compressor station locations for the Russian Federation
(shown in the map on Fig. 6). Future updates to the OGIM
database may include these datasets when appropriate
permissions to make them publicly accessible are obtained.
The updated bottom-up oil and gas methane emission
inventory for the Permian Basin (for 2021) is available

https://doi.org/10.5194/essd-15-3761-2023


https://doi.org/10.5281/zenodo.7466757

M. Omara et al.: Developing a spatially explicit global oil and gas infrastructure database 3781

at https://doi.org/10.5281/zenodo.7466607 (Omara and
Gautam, 2022) as a NetCDF file.

7 Code availability

Python 3.7 code used for database integration and visualiza-
tion is available upon reasonable request.

8 Conclusions

Advances in satellite methane remote sensing hold the
promise of rapidly detecting and quantifying global oil and
gas methane emissions across multiple spatial scales, from
area-aggregate sources to facility-scale assessment. How-
ever, effective characterization of remotely sensed oil and
gas methane emissions in support of mitigation of avoid-
able emissions requires a comprehensive global geolocated
oil and gas infrastructure inventory with detailed facility
attributes. Such a comprehensive, granular, and global-in-
context infrastructure database is also needed for develop-
ing and updating bottom-up oil and gas methane emissions
inventories which are used as a priori data for Bayesian in-
verse analysis of satellite observations for quantifying and
attributing methane emissions. This work focuses on public-
domain oil and gas datasets for all major facility categories
that are significant methane emitters in order to develop a
spatially explicit global database of oil and gas infrastruc-
ture. We acquired approximately 6 million features repre-
senting locational-based information for major oil and gas
infrastructure categories, including oil and gas wells, natural
gas compressor stations, gathering and processing facilities,
LNG facilities, refineries, storage facilities, oil and gas pro-
duction data, and transportation pipelines. We further present
an updated framework to develop improvements to bottom-
up emission inventories using our infrastructure database,
with inputs from other multi-scale empirical data and model-
ing, to demonstrate a high-resolution emissions inventory for
the entire Permian Basin, which accounts for over 40 % US
annual oil production. In addition, we show various exam-
ples of the applications of this database, including (i) track-
ing temporal changes in oil and gas activity in specific oil-
and gas-producing basins, (ii) supporting the development of
policy-relevant analytics and insights for effective methane
mitigation, and (iii) enabling methane source attribution at
the facility scale and at the regional scale. We finally pro-
vide an assessment of data gaps in the current version of the
database, given our focus on acquisition and integration of
public-domain datasets, which can be limited in certain oil-
and gas-producing countries especially in Asia and Africa.
Further efforts are needed to help fill in these data gaps, par-
ticularly the gaps in the locational information of major oil
and gas facilities and gaps in the availability of relevant fa-
cility attributes. Such efforts could include the development
of deep-learning methods for automatically identifying and
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classifying oil and gas features in high-resolution satellite
imagery. The OGIM database, which we anticipate updat-
ing on a regular cadence (that is, at least once annually) as
new datasets become available, fulfills a crucial oil and gas
geospatial data need, in support of the assessment, attribu-
tion, and mitigation of global oil and gas methane emissions.

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Appendix A: OGIM database schema

Table A1. Attributes present in all layers.

: Developing a spatially explicit global oil and gas infrastructure database

Attribute name Datatype Allow nulls?  Description Valid values and/or ex-  Notes

ample (ex.) values

CATEGORY string no Category of oil and gas ex.: “OIL AND NAT- Within a GeoPackage
infrastructure to which URAL GAS WELLS”; layer, all values for
the record belongs “NATURAL GAS CATEGORY are the

COMPRESSOR STA- same (and the CATE-
TIONS”; “OIL AND GORY value is identi-
NATURAL GAS cal to the layer name).
PIPELINES”

COUNTRY string no Country in which the e.g., “"GERMANY”; LineString and Poly-
record resides. Where “AFGHANISTAN, gon features may fall
possible, country name ~TURKMENISTAN” in multiple countries;
matches the name in the in these cases, COUN-
UN Member State list. TRY field contains a

comma-separated  list
of these countries in
alphabetical order.

OGIM_ID integer no Unique identifier for
each record in the
GeoPackage. Values
do not “reset” for each
layer.

ON_OFFSHORE string no Indicates whether the valid values: Only LineString and
asset lies onshore, off- “ONSHORE”; Polygon features may
shore, or both. “OFFSHORE”; fall both on and off-

“ONSHORE, shore, so only these

OFFSHORE” geometries may have
the value “ONSHORE,
OFFSHORE”.

REGION string no World region in which  valid: “AFRICA”;
the record lies. When “ASIA PACIFIC”;
possible, region aligns “CENTRAL AND
with the IEA’s Energy SOUTH AMERICA”;

Region classifications. “EURASIA™;
“EUROPE”;
“NORTH AMERICA”

SRC_DATE string no Date on which the ex.: “2014-06-01"
record’s original source
was published.

SRC_REF_ID string no ID number(s) linking ex.: “227; “89, 927 There are some
the record to its corre- records that list two
sponding source in the SRC_REF_IDs
“Data_Catalog” table. separated by a comma

in this column if that
infrastructure category
was derived from multi-
ple data sources; for ex-
ample, “89, 92”.

STATE_PROV string yes State or province in ex.: “TEXAS”;
which the record re- “ALBERTA”
sides.

geometry geometry  no Vertices of the fea- ex.: “POINT
ture’s geometry. For- (67.42378
matted as well-known 37.21161)”

text (WKT) representa-
tions of the geometries.

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Table A2. Attributes present in all oil and natural gas wells and other major oil and gas infrastructure layers.

Attribute name Data type  Allow nulls?  Description Valid values and/or example Notes
(ex.) values
FAC_ID string yes Unique ID used by the ex.: “BGBR0230”; “126162”;
original source agency.  “5609/10-01”
FAC_NAME string yes Name of the infrastruc-
ture asset.
FAC_STATUS string yes Operational status of  ex.: “ACTIVE”; FAC_STATUS of
the infrastructure asset, “SUSPENDED”; “N/A” means facility
according to the origi- “TEMPORARILY CLOSED” status information not
nal source. reported or available in
the original dataset.
FAC_TYPE string yes Detailed information ex.: “EXPORT FACILITY”;
on type of facility. “NGL FRACTIONATION FA-
CILITY”
INSTL_DATE*  date yes Date the facility or asset ~ ex.: 1994-02-17 Some data sources only
was installed, in included an installation
YYYY-MM-DD year or a month—year
format. combo. We fill these
values with their month
or date values as “01”.
For example, if installa-
tion was reported only
as 2012, we standard-
ize this value in the IN-
STL_DATE attribute as
“2012-01-01".
LATITUDE float no Latitude of point fea- ex.:30.11438
tures (decimal degrees,
WGS 1984).
LONGITUDE float no Longitude of point fea-  ex.: —93.29659
tures (decimal degrees,
WGS 1984).
OGIM_STATUS  string yes Standardized version of  valid: “PERMITTING”;
FAC_STATUS, created “UNDER CONSTRUCTION";
by OGIM team to sort “OPERATIONAL”;
and simplify statuses “PROPOSED”; “DRILLING”;
reported by the original “COMPLETED”;
source. “PRODUCING™;
“INACTIVE”;
“ABANDONED”;
“INJECTING”;
“STORAGE,
MAINTENACE, OR OBSER-
VATION”; *OTHER’
OPERATOR string yes Name of the infras- ex.. “YSUR ENERGIA AR- Operator names are re-

tructure’s operator, ac-
cording to the original
source.

GENTINA S.R.L”; “PETRO-
BRAS”; “DCP MIDSTREAM,
LpP”

ported as in the original
datasets, and no modifi-
cations have been made
to standardize opera-
tor names or associate
subsidiaries with parent
companies.

* Attribute not present for wells.
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Attribute name  Data type  Allow nulls?  Description Valid values and/or ex- Notes
ample (ex.) values
COMP_DATE  string yes Date well construction ex.: 2019-12-13
was completed.
DRILL_TYPE  string yes Drilling direction of the  ex.: “Conventional”  indi-
well. “HORIZONTAL”; cates a vertical well,
“VERTICAL”; and “Unconventional”
“DIRECTIONAL”; indicates a horizontal
or “hydrofracking”
well
SPUD_DATE  string yes Date well was first ex.: 2019-04-11
spudded.
Table A4. Attributes present in the oil and natural gas pipelines layer only.
Attribute name Data type  Allow nulls?  Description Valid  values Notes
and/or example
(ex.) values
PIPE_DIAMETER_MM float yes Pipe diameter in mil- ex.: 88;114
limeters.
PIPE_LENGTH_KM float no Length of pipeline seg- ex.: 4.45; 90.4;  Pipeline length is calcu-
ment in kilometers. 1130 lated and standardized
(in units of km) for each
feature in the OGIM
data, even if the origi-
nal data source reports a
length value.
PIPE_MATERIAL float yes Material pipeline is ex.: “STEEL”;
made of. “POLYETHY-
LENE”; “CAR-
BON STEEL
5L GRADE X

65”

Earth Syst. Sci. Data, 15, 3761-3790, 2023
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Table A5. Attributes present in basins, fields, and license blocks layers only.
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Attribute name Datatype  Allow nulls?  Description Valid values and/or ex- Notes
ample (ex.) values
NAME string yes The name of the basin, ex.: “PERMIAN”
field, or license
block.
AREA_KM2 float no Area of polygon in sq. ex.: 37200; 186000 Area is calculated and
kilometers. standardized (in units
of krn2) for each fea-
ture in the OGIM data,
even if the original data
source reports an area
value.
RESERVOIR_TYPE  string yes Hydrocarbon(s) ex.: “OIL”; “OIL
produced by the reser- AND GAS”;
voir or the phase of pro- “CONDENSATE”;
duction the reservoir is “EXPLORATION
in. AND
EXPLOITATION™;
“COALBED
METHANE”
Table A6. Attributes present in the flaring detections layer only.
Attribute name Datatype  Allow nulls?  Description Valid values and/or ex-
ample (ex.) values
AVERAGE_FLARE_TEMP_K integer no Average flare tempera- ex.: 1020, 2119
ture in kelvin.
DAYS_CLEAR_OBSERVATIONS integer no Number of clear days ex.: 123, 381
for which flares were
detected.
FLARE_YEAR integer no Year for which detec- valid: 2021
tions occurred.
GAS_FLARED_MMCF float no Estimated volume of
gas flared in million cu-
bic feet per year.
SEGMENT_TYPE string yes Oil and gas industry valid: “GAS DOWN-

segment to which
the flaring detection be-
longs.

STREAM”; “OIL
DOWNSTREAM”;
“UPSTREAM”
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Table A7. Additional attributes in infrastructure layers.

Attribute name Datatype  Allow nulls?  Description In which layer(s) is attribute
present?

OIL_BBL float yes Oil production in barrels per PR
year

GAS_MCF float yes Gas production in thousands of PR
cubic feet per year

WATER_BBL float yes Water production in barrels per PR
year

CONDENSATE_BBL float yes Condensate production in bar- PR
rels per year

GAS_CAPACITY_MMCFD float yes Facility capacity for natural CS, GP, ID, LNG, PL, TM
gas, in million cubic feet per
day

GAS_THROUGHPUT_MMCFD float yes Facility throughput for natural CS, GP, ID, LNG, PL, TM
gas, in million cubic feet per
day

LIQ_CAPACITY_BPD float yes Facility capacity for O&G lig- CS, GP, ID, LNG, PL, R, TM
uids, in barrels per day

LIQ_THROUGHPUT_BPD float yes Facility throughput for O&G CS, GP, ID, LNG, PF, PL, R,
liquids, in barrels per day ™

NUM_STORAGE_TANKS integer yes Number of storage tanks at the CS, GP, ID, LNG, PF, R, TM
facility

NUM_COMPR_UNITS integer yes Number of compressor units CS, GP, TM
present at facility

SITE_HP float yes Horsepower of the facility CS, GP

COMMODITY string yes Hydrocarbon(s) contained in PL, TM

the infrastructure

CS: compressor stations. GP: gathering and processing. ID: injection and disposal. LNG: liquified natural gas facilities. PL: pipelines. PR: production well sites. R: refineries.

TM: petroleum terminals.
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-3761-2023-supplement.
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