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Abstract. The information of global spatially explicit urban extents under scenarios is important to mitigate
future environmental risks caused by global urbanization and climate change. Although future dynamics of
urban extent were commonly modeled with conversion from non-urban to urban extent using cellular-automata
(CA)-based models, gradual changes of impervious surface area (ISA) at the pixel level were limitedly explored
in previous studies. In this paper, we developed a global dataset of urban fractional changes at a 1 km resolution
from 2020 to 2100 (5-year interval), under eight scenarios of socioeconomic pathways and climate change.
First, to quantify the gradual change of ISA within the pixel, we characterized ISA growth patterns over the past
decades (i.e., 1985–2015) using a sigmoid growth model and annual global artificial impervious area (GAIA)
data. Then, by incorporating the ISA-based growth mechanism with the CA model, we calibrated the state-
specific urban CA model with quantitative evaluation at the global scale. Finally, we projected future urban
fractional changes at 1 km resolution under eight development pathways based on the harmonized urban growth
demand from Land Use Harmonization2 (LUH2). The evaluation results show that the ISA-based urban CA
model performs well globally, with an overall R2 of 0.9 and a root mean square error (RMSE) of 0.08 between
modeled and observed ISAs in 2015. With the inclusion of temporal contexts of urban sprawl gained from GAIA,
the dataset of global urban fractional change shows good agreement with 30-year historical observations from
satellites. The dataset can capture spatially explicit variations of ISA and gradual ISA change within pixels.
The dataset of global urban fractional change is of great use in supporting quantitative analysis of urbanization-
induced ecological and environmental change at a fine scale, such as urban heat islands, energy consumption,
and human–nature interactions in the urban system. The developed dataset of global urban fractional change is
available at https://doi.org/10.6084/m9.figshare.20391117.v4 (He et al., 2022).
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1 Introduction

Spatially explicit global urban extents and dynamics play es-
sential roles in assessing future urbanization-induced envi-
ronmental and climate impacts (Acuto et al., 2018; Castán
Broto and Bulkeley, 2013). The latest World Urbanization
Prospects (United Nations, 2019) reveal that the global ur-
ban population has grown rapidly from 750 million in 1950
to 4.5 billion in 2021, and it is anticipated to reach around
7 billion by 2050, with more than 2 billion people migrating
from rural to urban areas. Consequently, the urban expan-
sion growth rates have been higher over the past decades in
rapidly developing regions (e.g., China and India), leading to
a notable urban sprawl with rising concerns for the urban en-
vironment (Güneralp et al., 2017; Alberti et al., 2017), energy
consumption (Li et al., 2019b), and human–environment in-
teractions. As such, the realization of the United Nations
(UN) Sustainable Development Goals (SDGs) is challenging
due to potential urbanization-induced threats from various
environmental issues, such as agriculture land loss (Seto and
Ramankutty, 2016), deforestation (Foley et al., 2005; Defries
et al., 2010), and air pollution (Gong et al., 2012). Long-term
urban extent dynamics are attributable to revealing different
urbanization stages, which can notably reduce uncertainties
of future urban sprawl pathways and are of great potential
to support further decision-making on global urban and en-
vironmental changes (Klein Goldewijk et al., 2010).

Temporal contexts of urban sprawl have not been com-
prehensively used in cellular-automata (CA)-based models,
although various urban CA models have been developed
to model urban sprawl in a spatially explicit manner (Li
and Gong, 2016). Presently, different CA-based models have
been developed for various applications, such as the Logistic-
CA model (Wu, 2009), the Fuzzy-CA model (Liu, 2012; Liu
and Phinn, 2003), the agent-based CA model (Li and Liu,
2007; Liu et al., 2008), and the patch-based CA model (Chen
et al., 2014). Given that the neighborhood is a crucial com-
ponent in the urban CA model, many relevant studies have
been conducted for improvement by configuring the shape
and size of the neighborhood in a spatially explicit manner
(Santé et al., 2010; Chen et al., 2014; Li et al., 2014; Kocabas
and Dragicevic, 2006; Wu et al., 2012). For instance, the im-
pact of neighborhood configuration (e.g., distances and land
use/cover compositions) has been widely explored in many
studies for model development (Wu et al., 2012; Wu et al.,
2019; Liao et al., 2016; Dahal and Chow, 2015). Unfortu-
nately, most of them mainly focused on the spatial configu-
ration of the neighborhood, whereas the temporal contexts of
urban sprawl revealed from long-term and continuous urban
extent time series data had hardly been investigated, espe-
cially at the global scale, although several studies have con-
firmed that those newly developed urban pixels have a greater

impact on the model performance than those developed in
early years (Li et al., 2020; Liu et al., 2017).

Although several global datasets of urban extent dynamic
with conversions from non-urban to urban extent have been
proposed, there is still limited effort to characterize the grad-
ual urban fractional change (i.e., impervious surface area –
ISA) within each grid when projecting future global urban
sprawl (Potere et al., 2009; Huang et al., 2021; Herold et al.,
2003; Seto et al., 2012; Li et al., 2017). However, the spatial
resolution of these global urban products is either relatively
coarse (8 km) (Gao and O’Neill, 2020) or only available in
binary format (1 km) (Zhou et al., 2019; G. Chen et al.,
2020). The temporal contexts of urban sprawl have been lim-
itedly considered in these studies, leading to noticeable un-
certainties regarding the projected global urban extent dy-
namics in the future with long-term historical urban sprawl.
Probably due to the absence of long-term and fine-resolution
annual global urban extent time series data (Li et al., 2015;
Shi et al., 2017; Song et al., 2016; Brown De Colstoun et al.,
2017), characterizing the temporal pattern of urban sprawl
dynamics has not been comprehensively explored, in partic-
ularly coupling with urban CA models. Although urban frac-
tional data with detailed impervious surfaces have been de-
veloped recently, such as the Global Man-made Impervious
Surface (GMIS) data (Brown De Colstoun et al., 2017), infor-
mation on long-term urban fractional dynamics is still very
much required for urban CA model improvement. For in-
stance, the dynamics of historical urban extents derived from
satellite observations can be employed to reveal the allomet-
ric growth of urban lands under diverse urbanization levels,
which is helpful in estimating future urban demand (Li et al.,
2019a). Also, the temporal contexts of urban sprawl can be
used as a proxy in the neighborhood configuration, thereby
improving the model performance in spaces (Li et al., 2020).
It is worth noting that most developed urban CA models for
global application commonly adopted the abrupt conversion
(i.e., from non-urban to urban) to represent the urban sprawl
process during the modeling, which ignores the difference of
urban growth rates across grids (e.g., ≥ 1 km) with diverse
urbanization stages (Liu et al., 2018; Santé et al., 2010; Li
et al., 2014; Chen et al., 2002; Verburg et al., 2006). Despite
the fact that abrupt conversion in urban CA models has lim-
ited impacts when implementing them at a fine resolution
(e.g., 30 m) and at the local scale, it is inevitable that the
model performance is weakened in fringe areas of cities at
the regional and global scale, in which the spatial resolution
of grids is relatively coarse (e.g., ≥ 1 km) (Li et al., 2020;
Gao and O’Neill, 2019).

To fill this research gap, we developed a global dataset of
urban fractional changes (1 km) through 2100 (with a 5-year
interval) under eight scenarios, using an ISA-based urban CA
model. We first characterized state-specific ISA growth pat-
terns over the past decades using historical urban extent data
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Table 1. The adopted spatial proxies in this study.

Spatial proxies Description Source

Land Land cover Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2)
(https://lpdaac.usgs.gov/products/mcd12q2v006/, last access: July 2023)

Protected area The World Database on Protected Areas (WDPA) (http://wcmc.io/WDPA_Manua, last access: July
2023)

Location Major cities World city centers (http://ngcc.sbsm.gov.cn/article/zh/, last access: July 2023)
Traffic World major roads, highways, and local roads (https://www.openstreetmap.org, last access: July

2023)

Terrain Elevation Shuttle Radar Topography Mission – digital elevation model (DEM) (http://earthexplorer.usgs.gov/,
last access: July 2023)

Slope Derived from DEM

and a sigmoid growth model to capture the gradual change
of ISA within each grid. After that, we incorporated the ISA-
based growth mechanism with the urban CA model and cal-
ibrated the ISA-based urban CA model quantitatively with
evaluations at the global scale. Finally, we projected gradual
urban fractional changes within 1 km grid under eight sce-
narios using the developed ISA-based urban CA model. The
remainder of this paper describes the adopted data (Sect. 2),
the proposed simulation approach (Sect. 3), the results and
discussion (Sect. 4), the data availability (Sect. 5), and con-
cluding remarks (Sect. 6).

2 Data

We used the global artificial impervious area (GAIA) as our
primary dataset to capture temporal contexts of urban de-
velopment (Gong et al., 2019, 2020). Given that there are
currently no long-term urban fractional (i.e., ISA) dynamic
products in high spatial resolution (e.g., 1 km) directly ob-
tained from satellite observations (Brown De Colstoun et al.,
2017), here we adopted the commonly used strategy through
spatial aggregation from high-resolution (e.g., 30 m) urban
extent data to derive the ISA time series data for modeling.
The GAIA data record annual global urban extent (i.e., non-
urban and urban) at a 30 m resolution, spanning from 1985
to 2018, with overall mean accuracies above 90 %. In ad-
dition, the derived historical urban extents from GAIA are
temporally consistent (i.e., non-urban to urban) over the past
decades. To characterize the urban fractional changes at the
pixel scale (i.e., 1 km), we aggregated 30 m binary (i.e., ur-
ban and non-urban) results from GAIA into the 1 km urban
fractional maps (i.e., ISA).

We used the Land Use Harmonization 2 (LUH2) data to
derive future urban growth pathways under eight scenar-
ios determined by Shared Socioeconomic Pathways (SSPs)
and Representative Concentration Pathways (RCPs). In the
LUH2 dataset, the gridded-based scenarios (2015–2100) of
multiple land use types (e.g., urban) were developed by inte-
grated assessment models (IAMs), by jointly considering the

socioeconomic development and climate change in the fu-
ture (Mu et al., 2022; Hurtt et al., 2020). The LUH2 dataset
provides detailed fractional information of different land use
types within the relatively coarse grid (0.25◦× 0.25◦) glob-
ally through 2100 with eight SSP–RCP scenarios. Conse-
quently, the LUH dataset has been widely used in various
studies, such as land use cover change and carbon emission
(Hong et al., 2021; Friedlingstein et al., 2020; Borrelli et al.,
2020; G. Chen et al., 2020; Li et al., 2016).

In addition, we collected a variety of spatial proxies to es-
timate the suitability of potential grids for urban develop-
ment when modeling future global urban fractional change
(Li et al., 2020). These spatial proxies reflect different spatial
aspects related to urban sprawl, such as locations (e.g., min-
imum distance to major worldwide cities), traffic networks
(e.g., minimum distance to major roads, minimum distance
to highways, and minimum distance to local roads), and ter-
rain (e.g., digital elevation model and slope), and were used
to train the logistic regression model and land constraints
(e.g., protected areas) (Table 1). For example, some spatial
proxies (e.g., land cover and protected area) were defined as
specific constrains (e.g., suitable or not), while terrain and
location proxies were directly calculated from the DEM and
distance to the nearest roads (or city centers), respectively.
These spatial proxies (Fig. S1 in the Supplement) were used
to reflect the synthesized effect on the suitability (also called
transition rule) of urban sprawl within each pixel, according
to its biophysical and socioeconomic conditions (Li et al.,
2014). In addition, these spatial proxies were normalized at
a spatial resolution of 1 km before the modeling (Li et al.,
2014, 2020).

3 Method

We developed the dataset of global urban fractional change
at a 1 km resolution under eight SSP–RCP scenarios, us-
ing the developed Logistic-Trend-ISA-CA model (He et al.,
2023) (Fig. 1). First, we characterized the ISA growth pat-
terns within each pixel using long-term urban extent data.
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Figure 1. The proposed overall framework of global urban fraction dynamics under future scenarios using the developed ISA-based urban
CA model, including the characterization of urban fraction change with urban CA model (a), the calibration of Logistic-Trend-CA model (b),
and the projection of future global urban fraction changes under eight scenarios (c).

The state-specific ISA growth patterns over the past decades
were quantified using the sigmoid growth model, given that
cities show allometric growth rates during diverse urbaniza-
tion stages (Fig. 1a). Then, we incorporated the ISA-based
growth mechanism with the urban CA model and calibrated
the developed urban CA model with evaluations at the global
scale quantitatively (Fig. 1b). Finally, we projected future ur-
ban fractional changes at 1 km resolution under eight devel-
opment pathways at the global scale (Fig. 1c). The country-
specific future urban area growth (or called urban demands)
trends between LUH2 and GAIA were harmonized before
the modeling. Details of each component in the proposed
framework can be referred to in the following subsections.

3.1 Characterization of urban fractional change with
urban CA model

We characterized urban fractional change across different
states in each country, using the long-term (1985–2015) ur-
ban extent data (i.e., GAIA) and the sigmoid growth model.
Given that the growth rates of urban area notably vary during
different urbanization stages (i.e., indicated by ISA), we used
the sigmoid function to characterize the allometric growth of
urban areas (Eq. 1 and Fig. S2). That is, within each state, the
growth of ISA in 1 km grid in the next iteration can be deter-
mined from its current ISA level and the calibrated sigmoid
growth model. During each iteration, grids with different ur-
banization levels have diverse ISA increments, resulting in
spatially explicit differences in urban sprawl in the form of
urban fractions.

ISAt = a+
b

1+ exp−c·(t−d) , (1)

where ISAt is the mean ISA value in built-up areas in a given
region (e.g., state in our study) in year t , and a, b, c, and d are

four parameters that determine the sigmoid growth curve.
Specifically, a and b represent the ISA level at the base level
and the increment of ISA (e.g., amplitude) during the entire
cycle of urban evolution, respectively, and c and d are two
parameters that jointly determine the shape of the sigmoid
growth curve.

We incorporated the ISA-based growth mechanism with
the Logistic-Trend-CA model (He et al., 2023), which in-
corporates temporal contexts of urban sprawl into the neigh-
borhood configuration. The Logistic-Trend-CA model was
developed from the traditional Logistic-CA model (Hu and
Lo, 2007; Wu, 2002), including the suitability surface (also
known as transition rule), the neighborhood configuration,
the stochastic perturbation, and the land constraint (see texts
in the Supplement). Compared to the Logistic-CA model, the
adopted Logistic-Trend-CA model improved the neighbor-
hood using a trend-adjusted scheme (Eqs. 2 and 3), referring
to the fact that newly developed urban neighbor pixels are
more attributable to urban development than those urbanized
neighbor pixels in earlier years (Li et al., 2020).

W ts
ij = 1−

Nu
ij

N
(2)

�tij =

∑2
mcon(Lij = developed)×W ts

ij

m ·m− 1
, (3)

where� represents the neighborhood that considers the tem-
poral contexts of urban sprawl using a weighting factor of
W ts
ij . Nu

ij is the accumulated year of the cell (i,j ) with the
status as urban from the annual urban time series data with a
temporal interval of N ; m is the window size; and con( ) is a
conditional function, which returns 1 when the status of the
cell (i,j ) is urban.

We obtained the urban development probability at the
pixel scale from Eq. (4). Thus, during each iteration (i.e., 5-
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year interval), all grids were sorted in descending order ac-
cording to their development probabilities, and those ranking
ahead were preferentially considered in the modeling. The
increment of the urban fraction was estimated for each pixel
according to the calibrated sigmoid growth model (Eq. 2).
We iteratively updated urban fractions in these pixels by es-
timating gradual ISA increments per iteration, until the total
urban demand in each state had been allocated.

Pdev = Psuit×�× land ×SP, (4)

where Pdev indicates the development probability, and Psuit,
�, land, and SP represent the suitability surface, neighbor-
hood, land constraint, and stochastic disturbance, respec-
tively. Details of these parameters can be referred to in the
Supplement.

3.2 Calibration and validation of the
Logistic-Trend-ISA-CA model

We calibrated the Logistic-Trend-ISA-CA model at the state
level using historical urban extent time series data (i.e.,
GAIA) from satellite observations (1985–2005). We evalu-
ated the performance of derived global suitability using the
receiver operating characteristic (ROC) approach, which es-
sentially is a threshold-based evaluation approach (Sunde
et al., 2014). That is, the continuous values can be divided
into binary maps using different thresholds to measure the
agreement between threshold-derived results and the refer-
enced urban extent (i.e., identified by their increased ISA
during 1985–2005 with a threshold of 0.5) (Sunde et al.,
2014). In this way, the area under the curve (AUC) is com-
monly used to quantitatively evaluate the performance of de-
rived global suitability (Hosmer et al., 2013). It is worth not-
ing that here we used the traditional ROC approach to eval-
uate the suitability surface, which is only one component of
the adopted urban CA model in this study, despite our model-
ing target being ISA instead of binary urban extent. Addition-
ally, we evaluated the performance of the ISA-based sigmoid
growth model using the coefficient of determination (R2) be-
tween the estimated and observed ISAs (1985–2015) at the
state level.

Furthermore, we validated the model based on the root
mean square error (RMSE) (Eq. 5) and R2 between the mod-
eled and observed ISAs (2005–2015) at the global scale. That
is, we modeled urban sprawl from 2005 to 2015 using the cal-
ibrated Logistic-Trend-ISA-CA model. In general, the rela-
tively low RMSE and high R2 suggest the calibrated urban
CA model can capture urban sprawl well.

RMSE=

√
1
n

∑n

i=1
(ISAmod− ISAobs)2, (5)

where ISAmod and ISAobs are the modeled and observed ISA
results, respectively, and n is the pixel number.

3.3 Projection of future global urban fractional change
under eight scenarios

To mitigate the uncertainty of future urban demand, we har-
monized country-specific future urban area growth (2015–
2100) from LUH2 with the urban area in 2015 obtained from
satellite observations (i.e., GAIA). The harmonization pro-
cess is inevitable because there is a distinct gap in urban areas
in 2015 across different regions between these two datasets.
Given that the GAIA data were derived from satellite ob-
servations with good quality and fine resolution, we harmo-
nized future urban growth trends (2015–2100) from LUH2
under different SSP–RCP scenarios with the derived urban
areas from GAIA in 2015. The harmonization of urban ar-
eas between these two datasets can be formulated as Eqs. (6)
and (7).

areaharm,c,t = areaLUH2,c,t · γ (6)

γ =
areaobs,c,2015

areaLUH2,c,2015
, (7)

where areaharm,c,t is the harmonized urban area of country c
in the year t , areaLUH2,c,t is the original urban area of coun-
try c derived from LUH2 in year t , and γ is the harmonized
rate between LUH2 and observed data (i.e., areaobs,c,2015 and
areaLUH2,c,2015 are urban areas of the country c in 2015, from
satellite observations and LUH2, respectively).

We modeled future global urban fractional changes at
1 km resolution under eight SSP–RCP scenarios. Here we
assumed that the trend of urban sprawl at the state level is
consistent with that at the country level, as population and
GDP change are commonly estimated at the country and re-
gional scale (Doelman et al., 2018). Thus, we implemented
the Logistic-Trend-ISA-CA model with the harmonized ur-
ban area growth from LUH2 and GAIA. Given that the con-
version from non-urban to urban is commonly assumed to
be irreversible (Li et al., 2015), we assumed that the urban
area in regions with projected population decline in the fu-
ture would plateau after reaching its peak. Also, we com-
pared our projected results with similar products regarding
the provided details of gradual urban fractional change under
eight SSP–RCP scenarios in a spatially explicit manner.

3.4 Uncertainty analysis

We calculated the delta harmonization rate, i.e., the quar-
tile coefficient of dispersion (QCD) (Eq. 8) of harmonized
rate γ in each country during the overlap period of LUH2 and
GAIA datasets. Due to the difference of adopted urban ex-
tent baseline in each product, there is a distinct gap regarding
the urban area in these two datasets (i.e., GAIA and LUH2).
Specifically, the urban extents in LUH2 were initially esti-
mated from spatially explicit built-up data of the Data and
Information System global land cover (DISCover) dataset
at 1 km resolution, which was mainly derived from the Ad-
vanced Very High Resolution Radiometer (AVHRR) satellite
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Figure 2. The average urban growth rate (2100/2015) derived from LUH2 at the country level and the comparison between Global South and
North countries, under eight future development pathways. The USA and China are represented as solid dots in box plots, as representative
countries in Global South and North countries. Detailed comparison among eight RCPs in a common SSP scenario can be found in Fig. S3.

observations (Loveland et al., 2000; Klein Goldewijk et al.,
2017). While the definitions of “urban” are similar in both
products, the differences in urban areas across various re-
gions can be attributed mainly to their spatial resolutions and
mapping years. In general, the urban extent in GAIA derived
from Landsat has a longer temporal span and a high accu-
racy, with mean overall accuracies of above 90 % across dif-
ferent years (Gong et al., 2020). Moreover, the harmonized
rate γ can be different across countries and years. We calcu-
lated the QCD using the first (Q1) and third (Q3) quartiles
for the annual harmonized rate γ in each country during the
overlap period, as shown in Eq. (8). The QCD can capture
the variation of harmonized rates within each country and is
also comparable between countries with different deviation
of future projection.

QCD=
Q3−Q1

Q3+Q1
, (8)

where Q1 and Q3 are the first (25th percentile) and third
(75th percentile) quantiles of the annual harmonized rate in
each country, respectively.

4 Results and discussion

4.1 Future global urban fractional change under eight
scenarios

There are distinct spatial variations across countries regard-
ing urban area growth rates during 2015–2100 under eight
SSP–RCP scenarios (Fig. 2). Among these scenarios, Global
South countries located in middle Asia, South America,
and Africa would likely experience more noticeable urban
growth than Global North countries in the future (Fig. 2);
i.e., the average growth rate (i.e., 2100/2015) of Global South
countries is around 5 under various future scenarios, while
the average growth rate in Global North countries is mostly
lower than 3. It is worth to note that the future urban growth
in China is relatively low in these scenarios, mainly due to
the nearly plateaued population growth by 2030, which is
distinctly different from the continuously increasing popula-
tion in other developing countries such as India and Nige-
ria (Y. Chen et al., 2020). In addition, the urban growth
rates in the USA are relatively low among different SSP–
RCP pathways, except for SSP5 with fossil-fueled develop-
ment (Fig. 2) (O’Neill et al., 2017), suggesting that future
socioeconomic development may significantly impact the ur-
ban area growth in different regions and countries.

The country-specific urban sprawl is notably different un-
der eight SSP–RCP scenarios in the future (Fig. 3). Con-
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Figure 3. The modeled urban sprawl in 2100 with urban demand change in Nigeria (Enugu) (a), the USA (Atlanta) (b), and China (Yangtze
River Delta) (c) under typical SSP–RCP scenarios selected by grouping future urban demand in Fig. S4. Please note that the above figure
contains a disputed territory.

Figure 4. The projected spatial patterns of urban sprawl in some typical urbanization regions of Nigeria (a), the USA (b), and China (c)
from 2030 to 2100 under the most fluctuating scenario. Please note that the above figure contains a disputed territory.

sidering different urban development pathways from 2015
to 2100, we selected three specific countries (i.e., the USA,
China, and Nigeria) for illustration. Spatially explicit pat-
terns of urban sprawl were compared under three kinds of
scenarios, low-, median-, and high-growth scenarios, which
were selected from eight SSP–RCP scenarios regarding the
total urban area growth in each country (Fig. S4). To be spe-

cific, the urban growth of the USA is highest in SSP5 and
lowest in SSP4 (Fig. 3b), which is different from Nigeria
(Fig. 3a) and China (Fig. 3c). Apparently, under the high-
growth scenario, more natural lands would be developed as
urban, resulting in a discernible urban sprawl with connected
pixels around urban centers (Fig. 3a–c). In addition, it is
worth noting that China’s urban area will continue to grow
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Figure 5. Change of urban sprawl in China at 1 km spatial resolution from 1985 to 2100 under the SSP5–RCP8.5 scenario. Please note that
the above figure contains a disputed territory.

until around 2050, although the peak of the population is
likely to plateau by around 2030, whereas the per capita ur-
ban area is anticipated to keep growing (Fig. 3c) (Li et al.,
2019a). Our result could also reflect the gradual urban frac-
tional change across years throughout 2100 (Fig. 4). For in-
stance, small human settlements in Nigeria are likely to grow
in the future, and most of them occur in small settlements
(Fig. 4a). In contrast, in the USA, most newly developed ur-
ban areas in the future are likely to occur in or around the city
center (Fig. 4b). The urban fractions both in the urban and
rural areas would increase and plateau around 2050 in China
(Fig. 4c), showing different temporal trends as reflected by
the USA and Nigeria. In addition, the spatially explicit pat-
tern of urban sprawl in our dataset is consistent with histori-
cal observations (i.e., GAIA), as illustrated in China (Fig. 5),
showing the relatively complete urban evolution from early
1985 to 2100. Similar long-term dynamics of urban sprawl in
the form of ISA can be found in Figs. S5 and S6. In addition
to the suitability, the state-based trend of ISA growth from
satellite time series data may also impact the ISA growth
at the pixels, particularly for those with extremely low and
high ISA values. It is worth noting that the ISA-based growth
in our modeling mechanism may underestimate the growth
of pixels with very low ISA values or pixels that are non-
developed, although the stochastic disturbance term has been
involved in our modeling mechanism. Meanwhile, the rate
of urban fractional growth is slow for pixels around the city
centers with relatively high ISA values. Appropriate strate-
gies by constraining the filling of urban inner spaces and the
expansion of urban bound should be developed to improve
the spatial allocation of the urban CA model.

4.2 Model performance

4.2.1 Spatially explicit ISA growth model

The parameters revealed from the sigmoid model show no-
ticeable spatial variations across different states worldwide
(Fig. 6). In total, there are four parameters in characterizing
the urban area growth over the past decades using Eq. (1),
including the initial urbanization level (α), the increment of
ISA during the growth (b) (i.e., amplitude), and the rate of
urban growth (c) during the most rapid growth period (d).
The parameters α, b, and c indicate the corresponding ISA
rate (0–1), while parameter d represents the most urbanized
year. The spatial distribution of urban growth patterns re-
vealed from the sigmoid model is probably caused by vary-
ing ISA growth patterns across spaces. The initial urbaniza-
tion level (α) is steadily around zero, as illustrated in Fig. 6a,
except for those states in North America and Asia with low
urbanization levels (e.g., without distinct growth of urban ar-
eas over the past decades). The increment of ISA (b) fol-
lows the general pattern of urban evolution in the urban cy-
cle of each state, agreeing well with the common urbaniza-
tion level from 60 % to 90 %, especially in countries that
have experienced a fast urbanization process over the past
decades (e.g., China) (Fig. 6b). In addition, the rate of urban
growth (c) (Fig. 6c) changes steadily from 0.1 to 0.25 and the
corresponding year with the fastest growth rates (d) (Fig. 6d)
mainly falls into the range 1995–2015, which jointly deter-
mine the shapes of state-specific sigmoid curves in the mod-
eling process. Such a spatially explicit ISA growth pattern
suggests diverse urban growth stages over the past decades,
mainly gained from the long-term annual urban extent time
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Figure 6. The spatial distribution of the initial urbanization level (a), increment of ISA during the growth (b), the fastest growth rate (c), and
the most rapid growth period (d) of the derived sigmoid growth curve in each state.

Figure 7. The fit performance (R2) of the state-level sigmoid model at the global scale. R2 is the coefficient of determination between the
simulated and referred ISAs over the past decades.

series data (i.e., GAIA). The spatially explicit urban area
growth patterns with parameters can reflect the pathway of
urban development well in regions with different urbaniza-
tion levels. The fit performance (i.e., with R2 above 0.8) of
the sigmoid model at the state level indicates that the cal-
ibrated model can characterize the spatially explicit urban
growth patterns well over the past decades using satellite
observations (Fig. 7). It is worth noting that there are some
states with relatively low performance, probably due to lim-
ited increments with different urbanization stages, e.g., in
highly urbanized regions or developing regions with low ur-
banization levels.

4.2.2 Performance of the suitability surface

The derived suitability surface from the Logistic regression
model can separate the urbanized and persistent regions well
(Fig. 8). Countries in eastern Asia (e.g., China, Mongo-
lia, Thailand), western Europe (e.g., France, Germany), and
North America (e.g., USA) have better performance than
other regions, with AUC values greater than 0.8 (Fig. 8b). For
instance, the AUC in China is above 0.9, suggesting the de-
veloped model can distinguish those urbanized regions from
the spatial proxies well, as China has experienced an un-
precedented urban expansion over the past decades (Gong
et al., 2020). However, the model performances in Canada,
Afghanistan, and East African regions (e.g., Zambia) are rel-
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Figure 8. The model performance of derived suitability surfaces using the indicator of the area under the curve (AUC) at the global scale.
The ROC curves in some representative countries can be found in Fig. S7.

atively worse compared to other regions, probably due to the
poor quality of these spatial proxies (Fig. 8a) or relatively
small urban growth (Fig. 2); i.e., the ROC curves in Sudan
and Zambia are associated with lower AUCs, different from
those in China and USA (Fig. S7). Furthermore, the suitabil-
ity surface performs well in most states with relatively high
AUC values (Fig. S8).

4.2.3 Performance of Logistic-Trend-ISA-CA model

The proposed Logistic-Trend-ISA-CA model can achieve a
good performance at the global scale, with an overall R2

of 0.9 and a RMSE of 0.08 (Fig. 9). Overall, over 30 % of
countries have relatively low ISA differences between ob-
served and modeled results, i.e., with ISA difference rang-
ing from −0.01 to 0.01 (Fig. 9a). Only around 3 % of global
countries are associated with considerable over- or underes-
timations (Fig. 9a). The modeled ISAs in Global South coun-
tries (e.g., India and Bolivia) are slightly overestimated com-
pared to satellite observations, whereas in northern regions
such as Ukraine and Uzbekistan, our modeled results are rel-
atively underestimated. Although the under- and overestima-
tions of modeled ISAs in our results are not so evident, the
reasons behind them are likely related to the relatively low
suitability surface (Fig. S1f) or the low rates of urban sprawl
in these regions over the past decades (Gong et al., 2020).
For example, the modeled ISAs in Global South countries
are slightly underestimated in general due to the initial ur-
banization stages with relatively slow growth rates over the
past decades in these regions (Fig. 9a). Also, patterns of suit-
ability surface (Fig. S1f) and ISA difference are not always
consistent across regions. Although the performance of the
suitability surface is relatively worse in Canada (Fig. 8a),
the modeled ISA difference is small. Moreover, the underes-
timated ISA during the modeling process was considerably
reduced in our results (Fig. 9b) because those overestimated

errors in the traditional urban CA model can be mitigated
due to the fractional increase mechanism in our model, espe-
cially in regions (e.g., China) with a massive discrete urban
landscape.

4.2.4 Harmonized urban demands

The adopted scheme of urban demand harmonization consid-
erably mitigated the gap in urban areas across different coun-
tries between LUH2 and satellite observations (i.e., GAIA),
which was regarded as a reference in our study. Countries
with urban harmonized rates γ less than 1 (i.e., green color
in Fig. 10a) represent that the urban demand derived from
LUH2 is overestimated, especially for those Global South
countries in central Africa and South America, due to the
relatively coarse resolution global urban extent product (i.e.,
the History of the Global Environment database, HYDE).
Similarly, countries with harmonized rates γ above 1 (i.e.,
orange color in Fig. 10a) are likely to be underestimated in
LUH2 regarding the urban demands, such as China, Canada,
the USA, Russia, and most European countries. The un-
certainties caused by LUH2 can be reduced using satellite-
derived urban extent time series data (i.e., GAIA), which are
equipped with fine spatial resolution and have good quality.
Overall, our harmonized urban area results follow the gen-
eral trend of historical urban development; meanwhile they
mitigate the uncertainties of country-specific urban areas in
LUH2. In addition, the harmonized future urban demands at
the global scale vary across different SSPs (Fig. 10b). Ur-
ban sprawl under SSP2 (middle of the road) and SSP3 (re-
gional rivalry) is notably slower than in the observed pe-
riod (1985–2015), while urban sprawl under SSP5 (fossil-
fueled development) is much higher (Fig. 10b). Specifically,
urban expansion under SSP3-RCP7.0 has the lowest urban
demands in the future. In contrast, the urban growth is high-
est in SSP5–RCP8.5 (Fig. 10c), with a relatively large area
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Figure 9. The spatial distribution of the ISA difference between modeled and observed results in 2015 (a) and the scatter plots (b) of these
two datasets at the global scale and for typical countries (i.e., USA, China).

Figure 10. The spatial distribution of harmonized rates at the country level in the base year 2015 (a), trends of global urban demand after
harmonization (b), and the comparison across eight scenarios (c).
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Figure 11. Comparisons of our results with two similar projection products from Gao and O’Neill (2020) and G. Chen et al. (2020) under
SSP2–RCP4.5 in 2100. An overview of urban sprawl at global scale and two typical cases in the USA and China of relatively high-intensity
regions.

difference across different countries. Our results indicate the
QCD is relatively small (0–0.2) in most countries, suggesting
the γ is robust during the overlap period (Fig. S9). The urban
areas in most regions like America, Canada, China, India,
and Australia have similar trends in GAIA and LUH2, while
their gaps (i.e., QCD) are relatively large in those least devel-
oped countries (Fig. S9). It is worth noting that here we di-
rectly inherited the future trend of urban areas from the IAM
under diverse SSP–RCP scenarios (Hurtt et al., 2011) across
different states in each country, harmonized with historical
urban extent dynamics from satellite observations. However,
the urbanization stage was not considered in these IAMs,
which were mainly driven by demographical and socioeco-
nomic factors. In the future, the urbanization stages could be
a weight factor when downscaling urban areas from country
to state.

4.3 Data comparison with similar global urban extent
products

Our results can provide spatially explicit information of ur-
ban fraction compared to other global urban sprawl products,
such as Gao and O’Neill (2020) and G. Chen et al. (2020). It
is worth noting that the spatial patterns were compared with
other global urban products under the SSP2 scenario (i.e.,
middle of the road), under which scenario the urban area
growth follows the historical trend in general (Fig. 11). Over-
all, our modeled results can provide more detailed informa-

tion of urban fractions at 1 km spatial resolution around the
urban core and rural areas (Fig. 11). In the result by Gao and
O’Neill (2020), due to the relatively coarse spatial resolu-
tion, many details of the urban extent and the urban fractional
change have been ignored (Fig. 11). In the result by G. Chen
et al. (2020), the urban pixels in or around the urban fringe in-
deed are associated with relatively low urban fractions com-
pared to those in the urban core (Fig. 11). Supported by
the long-term urban extent time series data and the ISA-
based modeling scheme, our results can maintain many de-
tails of urban intensity (i.e., both high- and low-intensity lev-
els) from the city core to surrounding rural areas in a spatially
explicit manner. Continuous urban fractional changes at a
fine resolution can be better applied in global urban studies
with notably improved spatial details and reduced uncertain-
ties. The overall trends of future global urban sprawl in our
results are similar to those two global urban extent datasets
(G. Chen et al., 2020; Gao and O’Neill, 2020), but their mag-
nitudes are notably different (Fig. S10). These deviations are
mainly attributed to the variation caused by the urban area
growth estimation model adopted in different products. For
instance, the temporal trend of our results was mainly inher-
ited from LUH2, which essentially was estimated from mul-
tiple integrated assessment models. However, for products in
G. Chen et al. (2020) and Gao and O’Neill (2020), their urban
areas were estimated using panel analysis and data-driven ap-
proaches, respectively, based on four-epoch time series data
of Global Human Settlement Layer (GHSL).
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Figure 12. Comparisons of modeled urban patterns in New York City (USA) with our results, Gao and O’Neill (2020), and G. Chen et al.
(2020) under general (SSP2–RCP4.5) (a), low urbanization (SSP4-RCP6.0) (b), and high urbanization (SSP5–RCP8.5) (c) pathways in 2100.
The modeled results under SSP2–RCP4.5 were considered as the base for comparison.

Our dataset can model spatially explicit urban fractional
changes at a 1 km spatial resolution and can capture the dif-
ferent intensity of urban development well (e.g., New York
City in the USA) under eight scenarios (Fig. 12). Under dif-
ferent scenarios in the future, which were selected from dif-
ferent potential magnitudes of urban growth (Fig. S4), the
spatial patterns of urban sprawl in New York City under dif-
ferent scenarios show more spatial details and continuous ur-
ban fractional change in our results than those revealed in
Gao and O’Neill (2020) and G. Chen et al. (2020) (Fig. 12).
Under the low urbanization pathway (SSP4 derived from
Fig. S4), urban sprawl was underestimated around/in the ur-
ban fringe in our result and G. Chen et al. (2020), while Gao
and O’Neill (2020) simulated more intensive urban sprawl
in the urban fringe under this scenario (Fig. 12b). Under the
high urbanization pathway (i.e., SSP5 derived from Fig. S4),
there is some overestimated urban land in the urban fringe in
Gao and O’Neill (2020) and G. Chen et al. (2020); however,
less overestimation occurred around the urban fringe in our
result (Fig. 12c). This is probably due to the mechanism of
sigmoid growth model we selected that corresponds with his-
torical urban development in this region, which differs from
Gao and O’Neill (2020) and G. Chen et al. (2020).

5 Data availability

The gridded dataset of global urban fractional change (2015–
2100, 5-year interval) at 1 km spatial resolution under eight
future development pathways and the global urban develop-
ment probability map can be viewed and downloaded from
https://doi.org/10.6084/m9.figshare.20391117.v4 (He et al.,
2022). The historical annual long-term urban extent data
(30 m resolution) were derived from annual global artificial
impervious area (GAIA) data (http://data.ess.tsinghua.edu.
cn/, last access: July 2023) (Gong et al., 2020). Future ur-
ban area growth trends across different countries were de-
rived from the Land Use Harmonization (LUH2) data (https:
//luh.umd.edu/data.shtml, last access: July 2023) (Hurtt et al.,
2020).

6 Conclusions

In this study, we developed a gridded dataset of global urban
fractional change (2015–2100, 5-year interval) at a 1 km spa-
tial resolution, under eight scenarios of socioeconomic path-
ways and climate change. We first characterized ISA growth
patterns and developed a state-specific ISA-based growth
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model based on long-term observations, using the sigmoid
model to account for different urban growth rates under vary-
ing urbanization levels. Then, through incorporating the ISA-
based growth mechanism with the CA model, we calibrated
the state-specific urban CA model with evaluations at the
global scale quantitatively. Finally, we projected future ur-
ban gradual changes at 1 km resolution under eight future de-
velopment pathways with harmonized urban growth demand
from the GAIA and LUH2 datasets.

Our database can provide temporally consistent and spa-
tially explicit urban fractional changes under eight develop-
ment pathways. It is worth noting that the temporal contexts
of urban evolution were comprehensively considered in our
projected dataset, using long-term and annual urban extent
time series data (i.e., GAIA). The average urban growth rates
derived from the LUH2 dataset at the country level show sig-
nificant differences under eight future SSP–RCP scenarios,
of which Global South regions are primary drivers of future
global urbanization. In addition, the spatially explicit ISA
growth patterns differ across states, reducing the uncertain-
ties in urban sprawl modeling. In addition, the urban demand
harmonization process considerably mitigated the gap of pro-
jected urban areas across different countries between LUH2
and GAIA. Furthermore, the overall R2 and RMSE of mod-
eled and observed ISAs are 0.9 and 0.08, respectively, sug-
gesting an overall good performance of urban sprawl mod-
eling. Compared to other global urban products under future
scenarios, our results can promote future urban land use ef-
ficiency by simulating gradual urban fractional change with
notably improved spatial details (i.e., 1 km) (G. Chen et al.,
2020; Gao and O’Neill, 2020; Li et al., 2019a, 2021).

The global dataset of gridded urban fractional changes un-
der eight SSP–RCP scenarios has great potential to support
various global urban studies. For example, future urban ex-
tents with fractional information can delineate the intensity
gradient from the urban core to rural areas, which is helpful
for relevant studies such as urban heat island estimation and
human–nature interactions in urban ecosystems (Acuto et al.,
2018; Castán Broto and Bulkeley, 2013; Klein Goldewijk
et al., 2010). In addition, our developed dataset can serve as a
base input for global integrated assessments (e.g., urban en-
ergy consumption, inequality evaluation) (Zhou et al., 2022)
and earth system models, in which the anthropogenic activ-
ities within the urban extent can be quantitatively measured
(Li et al., 2014; Li and Gong, 2016).
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