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Abstract. Precise and continuous monitoring of long-term carbon dioxide (CO2) and methane (CH4) over the
globe is of great importance, which can help study global warming and achieve the goal of carbon neutral-
ity. Nevertheless, the available observations of CO2 and CH4 from satellites are generally sparse, and current
fusion methods to reconstruct their long-term values on a global scale are few. To address this problem, we
propose a novel spatiotemporally self-supervised fusion method to establish long-term daily seamless XCO2
and XCH4 products from 2010 to 2020 over the globe on grids of 0.25◦. A total of three datasets are applied
in our study, including the Greenhouse Gases Observing Satellite (GOSAT), the Orbiting Carbon Observatory
2 (OCO-2), and CAMS global greenhouse gas reanalysis (CAMS-EGG4). Attributed to the significant sparsity
of data from GOSAT and OCO-2, the spatiotemporal discrete cosine transform is considered for our fusion
task. Validation results show that the proposed method achieves a satisfactory accuracy, with standard devia-
tions of bias (σ ) of ∼ 1.18 ppm for XCO2 and 11.3 ppb for XCH4 against Total Carbon Column Observing
Network (TCCON) measurements from 2010 to 2020. Meanwhile, the determination coefficients (R2) of XCO2
and XCH4 reach 0.91 or 0.95 (2010–2014 or 2015–2020) and 0.9 (2010–2020), respectively, after fusion. Over-
all, the performance of fused results distinctly exceeds that of CAMS-EGG4, which is also superior or close to
those of GOSAT and OCO-2. In particular, our fusion method can effectively correct the large biases in CAMS-
EGG4 due to the issues from assimilation data, such as the unadjusted anthropogenic emission inventories for
COVID-19 lockdowns in 2020. Moreover, the fused results present coincident spatial patterns with GOSAT
and OCO-2, which accurately display the long-term and seasonal changes in globally distributed XCO2 and
XCH4. The daily global seamless gridded (0.25◦) XCO2 and XCH4 from 2010 to 2020 can be freely accessed at
https://doi.org/10.5281/zenodo.7388893 (Wang et al., 2022a).
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1 Introduction

As the most abundant greenhouse gases (GHGs) due to
human activities, atmospheric carbon dioxide (CO2) and
methane (CH4) play significant roles in climate change and
directly contribute to global warming (Meinshausen et al.,
2009; Montzka et al., 2011; Solomon et al., 2010; Yoro
and Daramola, 2020; Shine et al., 2005). For decades, the
rising anthropogenic surface emissions of CO2 and CH4
have resulted in their long-term rapid uptrends (Choulga
et al., 2021; Moran et al., 2022; Lin et al., 2021; Pe-
trescu et al., 2021), which have greatly affected the car-
bon cycle (Battin et al., 2009; Sjögersten et al., 2014) and
ecosystem balance (Liu and Greaver, 2009; Hotchkiss et al.,
2015). According to measurements from the Global Green-
house Gas Reference Network (https://gml.noaa.gov/ccgg/,
last access: 10 November 2022), annual surface CO2 and
CH4 mole fractions break 412 parts per million (ppm) and
1878 parts per billion (ppb) in 2020, with increases of
∼ 68 ppm and 222 ppb since 1985, respectively. To miti-
gate global warming, the Paris Agreement (https://unfccc.
int/process-and-meetings/the-paris-agreement/, last access:
10 November 2022) has indicated that the increment of tem-
perature should not exceed 2◦ (preferably 1.5◦) by compari-
son with the preindustrial level. This requires all efforts from
the whole of society to reach the global peak of GHG surface
emissions as early as possible, especially for CO2 and CH4,
to eventually create a carbon-neutral world by mid-century.
Therefore, there is an urgent need to precisely and continu-
ously monitor atmospheric CO2 and CH4 on a global scale.

To date, remote-sensing observations have been exten-
sively adopted in plenty of domains (J. He et al., 2022, 2023;
Wang et al., 2021, 2022b; Xiao et al., 2022, 2023; Zhou
et al., 2022), which also emerged as regular techniques to
acquire globe-scale atmospheric CO2 and CH4 spatial pat-
terns (He et al., 2022a; Buchwitz et al., 2015; Bergamaschi
et al., 2013). For instance, the Environmental Satellite (En-
visat) can provide global column-mean dry-air mole frac-
tions of CO2 (XCO2) and CH4 (XCH4) at a coarse resolution
of 30×60 km2 with the payload of the Scanning Imaging Ab-
sorption Spectrometer for Atmospheric Cartography (Bur-
rows et al., 1995; Beirle et al., 2018). The Thermal and Near-
Infrared Sensor for carbon Observations – Fourier Trans-
form Spectrometer on board the Greenhouse Gases Observ-
ing Satellite (GOSAT) (Hamazaki et al., 2005; Velazco et al.,
2019) can produce∼ 10 km XCO2 and XCH4 over the globe
based on three spectral bands. Orbiting Carbon Observatory
2 and 3 (OCO-2 and OCO-3) (Crisp et al., 2017; Doughty et
al., 2022) carry three-channel grating spectrometers to gen-
erate globally covered XCO2 at a much finer spatial resolu-
tion of 1.29× 2.25 km2. The Carbon Dioxide Spectrometer
named CarbonSpec on board the TanSat (Liu et al., 2018)

of China was launched in 2016 and can accurately map the
high-resolution (∼ 2 km) global XCO2 spatial distribution.

As for long-term observations of XCO2 and XCH4, the op-
erational products from GOSAT and OCO-2 are widely ap-
plied in carbon-related applications, such as computing car-
bon fluxes (Fraser et al., 2013; Wang et al., 2019), inferring
carbon sources and sinks (Deng et al., 2014; Houweling et
al., 2015), quantifying CO2 and CH4 emissions (Turner et al.,
2015; Hakkarainen et al., 2016), and estimating terrestrial net
ecosystem exchange (Jiang et al., 2022). Nevertheless, large-
scale missing data consist of the XCO2 and XCH4 products
from GOSAT and OCO-2, which is attributed to the narrow
swath of their observations (Crisp et al., 2017) and contam-
ination of cloud and aerosol (Taylor et al., 2016). Seamless
information on XCO2 and XCH4 can help better understand
the driving factors of long-term variations of CO2 and CH4
due to surface emissions and atmospheric transport (Kenea et
al., 2023; Liu et al., 2020). In addition, full-coverage XCO2
and XCH4 products are more useful for analyzing carbon
source–sink dynamics (Reithmaier et al., 2021; Crosswell
et al., 2017) and impacts on climate changes caused by the
elevated CO2 and CH4 (Chen et al., 2021; Le Quéré et al.,
2019). Hence, it is significant and essential to ensure the spa-
tiotemporal continuity of XCO2 and XCH4 products from
GOSAT and OCO-2, which is conducive to achieving the
goal of carbon neutrality.

A lot of efforts have been made to generate seamless
XCO2 and XCH4 products for GOSAT and OCO-2. Ini-
tially, interpolation-based methods are widely utilized, such
as fixed-rank kriging interpolation (Katzfuss and Cressie,
2011), semantic kriging interpolation (Bhattacharjee et al.,
2014), and space–time kriging interpolation (He et al., 2020;
Li et al., 2022). However, the interpolated results are usually
performed at coarse spatial resolutions (e.g., 1◦) and tend to
show high uncertainties and an overly smoothed distribution
due to the extreme sparsity of original data. At present, data
fusion techniques (He et al., 2022a, b; Zhang et al., 2022;
Zhang and Liu, 2023; Siabi et al., 2019) have emerged as new
methods to acquire full-coverage products for GOSAT and
OCO-2 at a high spatial resolution, which absorb advantages
from multi-source data. Generally, these methods exploited
machine-learning algorithms to train an end-to-end fusion
function with multiple seamless data (e.g., model and reanal-
ysis) as inputs. For example, Siabi et al. (2019) employed
a multi-layer perceptron and eight environmental variables
(e.g., net primary productivity and leaf area index) to map
full-coverage XCO2 in Iran. He et al. (2022b) established
seamless results over China using the OCO-2 XCO2 product,
CarbonTracker model data, and auxiliary co-variates based
on the light-gradient-boosting machine. Zhang et al. (2022)
proposed a geographically weighted neural network to pro-
duce a full-coverage XCO2 product across China by fusing
the datasets from OCO-2, CAMS global greenhouse gas re-
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Figure 1. An example of daily spatial footprints for (a) GOSAT XCO2, (b) OCO-2 XCO2, and (c) GOSAT XCH4. Red points signify the
available data. Background maps are naturally shaded reliefs over the globe.

Table 1. Detailed information on the datasets considered in this study.

Source Scientific data record Version Spatial resolution Temporal resolution Period

GOSAT

XCO2
V9r

10.5 km (diameter) Daily (∼ 13:00 local time)
2010–2014

XCO2 Quality Flag

XCH4
V9 2010–2020

XCH4 Quality Flag

OCO-2

XCO2
V10r

1.29× 2.25 km2 Daily (∼ 13:36 local time)
2015–2017

XCO2 Quality Flag

XCO2
V11r 2018–2020

XCO2 Quality Flag

CAMS-EGG4
CO2 column-mean molar fraction

– 0.75◦ 3 h 2010–2020
CH4 column-mean molar fraction

analysis (CAMS-EGG4), (reanalysis), and ERA5. Zhang and
Liu (2023) adopted multiple datasets, e.g., Envisat, GOSAT,
OCO-2, CarbonTracker, and ERA5, and obtained a long-
term seamless XCO2 product in China through a finely de-
vised neural network.

These data fusion approaches provided high-quality re-
sults with seamless distribution and greatly enhance the data
availability for GOSAT and OCO-2. Nevertheless, the appli-
cation areas of currently fused products merely target local or
national scales, which are insufficient for globe-scale studies.
Meanwhile, existing data fusion frameworks are regarded as
end-to-end functions that lack consideration for spatiotempo-
ral self-correlation of original data (e.g., OCO-2). They nor-
mally require massive auxiliary co-variates (e.g., ERA5) as
inputs and consume a large amount of time in training pro-
cedures. Moreover, only XCO2 products are taken into ac-
count, while the data fusion studies for XCH4 products are
scarce. In conclusion, it is valuable and imperative to gener-
ate long-term globally distributed seamless XCO2 and XCH4
products for GOSAT and OCO-2 with an efficient data fusion
method that considers the knowledge of their spatiotemporal
self-correlation.

The present study focuses on generating long-term daily
global seamless XCO2 and XCH4 products from 2010 to
2020 on grids of 0.25◦ via a spatiotemporally self-supervised
fusion method. A total of three datasets are utilized in our

study without any auxiliary co-variates, including GOSAT,
OCO-2, and CAMS-EGG4. CAMS-EGG4 can provide long-
term gridded full-coverage XCO2 and XCH4 datasets over
the globe, which is suitable for our fusion task. Since the
data from GOSAT and OCO-2 are significantly sparse in
the space–time domain (see Fig. 1), the fusion procedures
are difficult to perform. By contrast, the frequency domain
contains comprehensive information due to its more concen-
trated signal distribution. Discrete cosine transform (DCT)
(Rao and Yip, 2014) is an efficient algorithm to convert sig-
nals into the frequency domain. In this study, a novel self-
supervised fusion method based on spatiotemporal DCT (S-
STDCT) is developed for the fusion task. Details of the S-
STDCT fusion method are presented in Sect. 3. Validation
results show that the S-STDCT fusion method achieves a
satisfactory performance. Generally, the accuracy of fused
results largely exceeds that of CAMS-EGG4, which is also
better than or close to those of GOSAT and OCO-2.

This paper arranges the remaining sections as follows.
Section 2 describes the data records employed in our study,
including the XCO2 and XCH4 from in situ stations, GOSAT,
and CAMS-EGG4 and the XCO2 from OCO-2. Section 3
provides the specification of the developed S-STDCT fusion
method. Section 4 presents the experiment results, which
consist of elaborative validations against in situ measure-
ments and assessments of the spatial distribution on multi-

https://doi.org/10.5194/essd-15-3597-2023 Earth Syst. Sci. Data, 15, 3597–3622, 2023



3600 Y. Wang et al.: Global long-term fused daily XCO2 and XCH4

Figure 2. Spatial locations of in situ stations from TCCON used in the present study. The background map is a naturally shaded relief over
the globe.

Table 2. Detailed information on the TCCON in situ stations adopted in our study. No.: number.

No. Site name Latitude Longitude Location Start date End date

1 bremen01 53.10 8.85 Europe 01/01/2010 31/12/2020
2 burgos01 18.53 120.65 Asia 03/03/2017 30/04/2020
3 easttroutlake01 54.36 −104.99 North America 03/10/2016 31/12/2020
4 edwards01 34.96 −117.88 North America 20/07/2013 31/12/2020
5 eureka01 80.05 −86.42 North America 24/07/2010 07/07/2020
6 fourcorners01 36.80 −108.48 North America 16/03/2013 03/10/2013
7 garmisch01 47.48 11.06 Europe 01/01/2010 31/12/2020
8 hefei01 31.90 119.17 Asia 08/01/2016 31/12/2020
9 indianapolis01 39.86 −86.00 North America 23/08/2012 01/12/2012
10 izana01 28.31 −16.50 Atlantic Ocean 02/01/2014 31/12/2020
11 jpl02 34.20 −118.18 North America 19/05/2011 14/05/2018
12 karlsruhe01 49.10 8.44 Europe 15/01/2014 31/12/2020
13 lauder01 36.60 −97.49 Oceania 01/01/2010 19/02/2010
14 lauder02 −45.04 169.68 Oceania 02/01/2013 30/09/2018
15 lauder03 −45.04 169.68 Oceania 02/10/2018 31/12/2020
16 lamont01 −45.04 169.68 North America 01/01/2010 31/12/2020
17 manaus01 −3.21 −60.60 South America 30/09/2014 27/07/2015
18 nicosia01 35.14 33.38 Asia 03/09/2019 31/12/2020
19 nyalesund01 78.92 11.92 Arctic Ocean 01/01/2010 31/12/2020
20 orleans01 47.96 2.11 Europe 01/01/2010 31/12/2020
21 paris01 48.85 2.36 Europe 23/09/2014 31/12/2020
22 parkfalls01 45.94 −90.27 North America 01/01/2010 31/12/2020
23 pasadena01 34.14 −118.13 North America 20/09/2012 31/12/2020
24 reunion01 −20.90 55.48 Indian Ocean 01/03/2015 18/07/2020
25 rikubetsu01 43.46 143.77 Asia 24/06/2014 31/12/2020
26 saga01 33.24 130.29 Asia 28/07/2011 31/12/2020
27 sodankyla01 67.37 26.63 Europe 05/03/2018 31/12/2020
28 tsukuba02 36.05 140.12 Asia 28/03/2014 31/12/2020
29 xianghe01 39.80 116.96 Asia 14/06/2018 31/12/2020
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Figure 3. Density scatterplots of the in situ validation results for (a, d, g) CAMS-EGG4, (b, h) GOSAT, (e) OCO-2, and (c, f, i) fused results.
Black dotted and red full lines stand for the 1 : 1 and fitted lines, respectively. Color ramps show the normalized densities of data points.
X: TCCON data; Y: CAMS-EGG4, GOSAT, OCO-2, and fused data. Unit: parts per million and parts per billion for XCO2 and XCH4,
respectively, for RMSE, µ, and σ .

temporal scales. Finally, conclusions and future works are
summarized in Sect. 5.

2 Data description

2.1 GOSAT XCO2 and XCH4 products

A famous XCO2 retrieval algorithm devised for GOSAT
(Taylor et al., 2022), i.e., the Atmospheric CO2 Observa-
tions from Space (ACOS), employs three infrared spectral
bands at ∼ 0.76, 1.6, and 2.0 µm, which are denoted as
Oxygen-A, CO2 weak, and CO2 strong, respectively. Regard-
ing XCH4, the latest retrieval algorithm for GOSAT from
the University of Leicester was recently updated, which con-
siders the ratio of XCH4 : XCO2 as a proxy (Parker et al.,
2020). It is based on the theory that the impacts from atmo-

spheric scattering and sensors are mostly similar for XCH4
and XCO2 in a shared absorption band at ∼ 1.6 µm. The
GOSAT XCO2 and XCH4 products are both performed at
spatial resolutions of 10.5 km (diameter) over the globe with
revisit times of 3 d. In our study, the scientific data records of
“XCO2” in ACOS_L2_Lite_FP (level 2, bias-corrected, V9r)
and “XCH4” in UoL-GHG-L2-CH4-GOSAT-OCPR (level 2,
V9) are adopted. Furthermore, the quality assurance (QA)
records of “XCO2 Quality Flag” and “XCH4 Quality Flag”
are exploited to filter bad data. Relevant information on the
XCO2 and XCH4 products from GOSAT is shown in Table 1.

2.2 OCO-2 XCO2 product

Apart from GOSAT, the ACOS XCO2 retrieval algorithm is
also applied to OCO-2 observations (Kiel et al., 2019), which
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Figure 4. Scatterplots of the in situ validation results for (a, d, g) CAMS-EGG4, (b, h) GOSAT, (e) OCO-2, and (c, f, i) fused results on
edwards01. Black dotted and red full lines stand for the 1 : 1 and fitted lines, respectively. X: TCCON data; Y: CAMS-EGG4, GOSAT,
OCO-2, and fused data. Unit: parts per million and parts per billion for XCO2 and XCH4, respectively, for RMSE, µ, and σ .

utilizes the same bands of Oxygen-A, CO2 weak, and CO2
strong. OCO-2 provides a global XCO2 product at a high
spatial resolution of 1.29× 2.25 km2 with a revisit time of
16 d. After 2015, the XCO2 product from OCO-2 is used for
fusion instead of GOSAT due to its greater number of obser-
vation counts and better accuracy. In this study, the scientific
data record of XCO2 in OCO2_L2_Lite_FP (level 2, bias-
corrected) is applied in the fusion with CAMS-EGG4 using
the developed method. Moreover, the QA record of XCO2
Quality Flag is adopted to filter bad data. Since the OCO-2
XCO2 product of the latest version (V11r) is still being pro-
cessed, data of both V10r and V11r are considered in our

study. Related information on the XCO2 product from OCO-
2 is given in Table 1.

2.3 CAMS-EGG4 GHG reanalysis datasets

CAMS-EGG4 has recent globally distributed operational
GHG reanalysis datasets supported by the European Cen-
tre for Medium-Range Weather Forecasts (Agusti-Panareda
et al., 2023). It assimilates the forecasts from the Integrated
Forecasting System with multiple satellite products, which
include Envisat, GOSAT, Metop-A, and Metop-B (August
et al., 2012), via physical and chemistry principles. CAMS-
EGG4 can generate long-term gridded seamless XCO2 and
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Figure 5. Scatterplots of the in situ validation results for (a, d, g) CAMS-EGG4, (b, h) GOSAT, (e) OCO-2, and (c, f, i) fused results on
sodankyla01. Black dotted and red full lines stand for the 1 : 1 and fitted lines, respectively. X: TCCON data; Y: CAMS-EGG4, GOSAT,
OCO-2, and fused data. Unit: parts per million and parts per billion for XCO2 and XCH4, respectively, for RMSE, µ, and σ .

XCH4 datasets and related fields at spatial and temporal res-
olutions of 0.75◦ and 3 h, respectively. Unfortunately, there
are a few limitations in CAMS-EGG4, such as the uncor-
rected anthropogenic emissions for COronaVIrus Disease
2019 (COVID-19) lockdowns, which are scheduled to be
fixed by the official team in the future (Agusti-Panareda et
al., 2023). It is worth noting that the XCO2 and XCH4 prod-
ucts from GOSAT and OCO-2 employed in this paper are not
assimilated in CAMS-EGG4. In our study, the scientific data
records of “CO2 column-mean molar fraction” and “CH4
column-mean molar fraction” are exploited for the fusion
with GOSAT and OCO-2 through the developed method. De-
tails of the CAMS-EGG4 datasets are provided in Table 1.

2.4 Total Carbon Column Observing Network (TCCON)
measurements

In our study, the XCO2 and XCH4 measurements provided
by an international in situ network, which is named after
TCCON (Wunch et al., 2011) (https://tccondata.org/, last ac-
cess: 18 November 2022), are utilized to validate the fused
results. The in situ measurements of TCCON are exten-
sively used in the validation for the XCO2 and XCH4 prod-
ucts from GOSAT, OCO-2, and CAMS-EGG4 (Hong et al.,
2022; Yoshida et al., 2013; Wunch et al., 2017; Wu et al.,
2018; Agusti-Panareda et al., 2023). Figure 2 depicts the spa-
tial locations of TCCON stations with the marks of white-
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Figure 6. Scatterplots of the time series for daily CAMS-EGG4, GOSAT, OCO-2, fused, and TCCON data on garmisch01. The first and
second numbers in the parentheses represent µ and σ , respectively. Unit: parts per million and parts per billion for XCO2 and XCH4,
respectively, for µ and σ .

edged red circles. The measurements of version GGG2020
(Laughner et al., 2023) from 29 stations around the world
are adopted. Specific information on the stations is listed in
Table 2.

3 Methodology

3.1 Data preprocessing

Data preprocessing is an important procedure for ensuring
the rationality and reliability of fused results. In this study,
the value of QA = 0 in XCO2 and XCH4 from GOSAT
and OCO-2 is discarded, which filters the bad data. In ad-
dition, the CAMS-EGG4 XCO2 and XCH4 at a temporal
resolution of 3 h are averaged in a single day to produce
daily datasets. Finally, the spatial resolutions of XCO2 and
XCH4 from GOSAT, OCO-2, and CAMS-EGG4 ought to

be adjusted to the same value. A globally covered grid of
721×1441 (0.25◦) is employed in our study. The XCO2 and
XCH4 from GOSAT, OCO-2, and CAMS-EGG4 are regrid-
ded to 0.25◦ using area-weighted aggregation (Wang et al.,
2021) and inverse-distance-weighted interpolation (Mueller
et al., 2004), respectively.

3.2 Spatiotemporally self-supervised fusion method

Since the sparsity of data from GOSAT and OCO-2 is sig-
nificant in the space–time domain (see Fig. 1), it is difficult
to perform fusion procedures for them. In contrast, the fre-
quency domain is more suitable because of its concentrated
signal distribution. DCT is an efficient algorithm to transform
the signal into the frequency domain (Rao and Yip, 2014)
that has been widely applied in image compression (Cintra
and Bayer, 2011), geophysical data filtering (El-Mahallawy
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Figure 7. Scatterplots of the time series for daily CAMS-EGG4, GOSAT, OCO-2, fused, and TCCON data on lauder02. The first and second
numbers in the parentheses represent µ and σ , respectively. Unit: parts per million and parts per billion for XCO2 and XCH4, respectively,
for µ and σ .

and Hashim, 2013), and remote-sensing data reconstruction
(Wang et al., 2012; T. Wang et al., 2022a; Fredj et al., 2016;
Pham et al., 2019). In our study, a novel self-supervised fu-
sion method based on S-STDCT is developed for the fusion
task, which fully adopts the spatiotemporal knowledge of
self-correlation in GOSAT and OCO-2 products.

3.2.1 Spatiotemporal DCT

A total of eight types of DCT are proposed, among which
the second type (type II) is commonly utilized due to its sim-
ple calculation and broad application range (Rao and Yip,
2014). Hence, the type-II DCT is considered in this study.
The spatiotemporal DCT is a three-dimensional form (here-
after STDCT), which can be expressed as Eq. (1):

X (u,v,w)= c (u)c (v)c (w)
M−1∑
i=0

N−1∑
j=0

P−1∑
t=0

x(i,j, t)

cos
[

(i+ 0.5)π
M

u

]
cos

[
(j + 0.5)π

N
v

]
cos

[
(t + 0.5)π

P
w

]
, (1)

where c (u)=


√

1
M
,u= 0√

2
M
,u 6= 0

, c (v)=


√

1
N
,v = 0√

2
N
,v 6= 0

,

c (w)=


√

1
P
,w = 0√

2
P
,w 6= 0

. x indicates the original three-

dimensional tensor. M , N , and P stand for the counts of
rows (latitude), columns (longitude), and temporal sequences
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Figure 8. Heat maps of the biases between daily (a) CAMS-EGG4, (b) fused, and (c) GOSAT and TCCON XCO2 over time and latitude.
Color ramps stand for the biases of XCO2. Background colors (grey) indicate the missing data.
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Figure 9. Heat maps of the biases between daily (a) CAMS-EGG4, (b) fused, and (c) OCO-2 and TCCON XCO2 over time and latitude.
Color ramps stand for the biases of XCO2. Background colors (grey) indicate the missing data.
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Figure 10. Heat maps of the biases between daily (a) CAMS-EGG4, (b) fused, and (c) GOSAT and TCCON XCH4 over time and latitude.
Color ramps stand for the biases of XCO2. Background colors (grey) indicate the missing data.
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Figure 11. Annual (a, g) GOSAT, (d) OCO-2, (b, e, h) CAMS-EGG4, and (c, f, i) fused XCO2 and XCH4 over the globe. Color ramps stand
for the values of XCO2 and XCH4.

(d), which equal 721 (0.25◦, global grids), 1441 (0.25◦,
global grids), and days of a year (365 or 366), respectively. i,
j , and t represent the row, column, and temporal sequence,
respectively (i ∈ [0, M − 1], j ∈ [0, N − 1], and t ∈ [0,
P − 1]). X signifies the transformed three-dimensional
tensor. u, v, and w denote the transformed coordinates in
the frequency domain, which share the same ranges with
i, j , and t (e.g., u ∈ [0, M − 1]), respectively. The inverse
transformation of STDCT (hereafter ISTDCT) is provided
in Eq. (2):

x (i,j, t)= c (u)c (v)c (w)
M−1∑
u=0

N−1∑
v=0

P−1∑
w=0

X(u,v,w)

cos
[

(i+ 0.5)π
M

u

]
cos

[
(j + 0.5)π

N
v

]
cos

[
(t + 0.5)π

P
w

]
. (2)

3.2.2 Self-supervised fusion scheme with
spatiotemporal knowledge

It has been documented that the XCO2 and XCH4 prod-
ucts derived from remote-sensing satellites generally present
better accuracy compared to reanalysis datasets (Agusti-
Panareda et al., 2023; He et al., 2022a; Parker et al., 2020).
Therefore, the brand-new XCO2 and XCH4 products from
GOSAT and OCO-2 are regarded as the criteria (or ground
truths) that will be fused with the CAMS-EGG4 datasets. At
first, a spatially and temporally varying function relationship
(see Eq. 3) is hypothesized between GOSAT or OCO-2 and
CAMS-EGG4 XCO2 and XCH4 values.

XGs = f (XGc,Row, Col, Time) , (3)

where XGs denotes the XCO2 and XCH4 values from
GOSAT or OCO-2; XGc indicates the XCO2 and XCH4 val-
ues from CAMS-EGG4; and Row, Col, and Time represent
the row (or latitude), column (or longitude), and temporal
sequence, respectively. To conveniently solve this problem,
Eq. (3) is simplified into the scalar product form of XGc and
a spatially and temporally varying tensor (defined as δ) as
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Figure 12. Daily fused (a–f) XCO2 and (g–i) XCH4 over the globe. Color ramps stand for the values of XCO2 and XCH4.

shown in Eq. (4):

XGs = XGc∗δ (Row, Col, Time) . (4)

Afterward, the factor (i.e., δ) can be acquired using the XCO2
and XCH4 values on the grids where the GOSAT or OCO-2
and CAMS-EGG4 data are available. In our study, a self-
supervised fusion scheme is introduced to solve Eq. (4) based
on the spatiotemporal knowledge of self-correlation in the
GOSAT and OCO-2 products. Due to the large sparsity of
data from GOSAT and OCO-2 in the space–time domain, the
STDCT is applied for the fusion task.

Inspired by previous studies adopting the STDCT (Gar-
cia, 2010; Wang et al., 2012; T. Wang et al., 2022a; Fredj et
al., 2016; Pham et al., 2019), the S-STDCT fusion method
searches for the spatially and temporally varying tensor, i.e.,
δ̂, that minimizes Eq. (5), including a residual (left) term and
a smoothing (right) term.

E
(
δ̂
)
=

∥∥∥ϕ 1
2 ∗(δ̂− δ)

∥∥∥2
+ ε

∥∥∥∇2δ̂

∥∥∥2
, (5)

where ‖‖ signifies the Euclidean norm; ϕ represents the bi-
nary mask showing whether the data are available or not; and

ε and ∇2 indicate a smoothing factor and the Laplace oper-
ator, respectively. This equation can be solved by iterations
via Eq. (6):

δ̂ = γ ISTDCT
(
ρ∗STDCT(ϕ∗

(
δ− δ̂

)
+ δ̂)

)
+ (1− γ ) δ̂, (6)

where γ is a relaxation factor to accelerate convergence. ρ
indicates a three-dimensional filter related to the smoothing
term, which is defined in Eq. (7):

ρ (d1,d2,d3)=
1

1+ ε
3∑
k=1

2
[
1− cos (dk−1)π

nk

] . (7)

Here, dk represents the dth value along the kth dimension
(k = 1, 2, and 3), and nk denotes the size of δ along the kth
dimension. This means that d1, d2, and d3 stand for u, v, and
w (see Eq. 1), respectively. In this study, the number of total
iterations, γ , and ε are empirically configured to 100, 1.5,
and a range from 103 to 10−1 (spaced with 100 intervals),
respectively. It is worth noting that δ̂ is initialized through the
spatiotemporal nearest-neighbor interpolation. More details
of the solution steps can be found in Garcia (2010).
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Figure 13. Daily (a–c) GOSAT XCO2, (d–f) OCO-2 XCO2, and (g–i) GOSAT XCH4 over the globe. Color ramps stand for the values of
XCO2 and XCH4.

Figure 14. Multi-year mean fused (a) XCO2 and (b) XCH4 from 2010 to 2020 over the globe. Color ramps stand for the values of XCO2
and XCH4.

3.3 Evaluation schemes

In our study, the evaluation schemes include in situ valida-
tions and assessments of spatial distribution. To be specific,
the GOSAT, OCO-2, CAMS-EGG4, and fused XCO2 and
XCH4 are validated against TCCON measurements, which
consist of the comparisons for overall and individual in situ

stations. The spatial distributions of the GOSAT, OCO-2,
CAMS-EGG4, and fused XCO2 and XCH4 are assessed on
multi-temporal scales, i.e., multi-year-mean, seasonal, and
annual. A total of four metrics is exploited covering the deter-
mination coefficient (R2), root-mean-square error (RMSE),
mean bias (µ), and standard deviation of bias (σ ). The sig-
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Figure 15. Seasonal fused XCO2 from 2010 to 2020 over the globe. The color ramp stands for the value of XCO2. (a) DJF, (b) MAM,
(c) JJA, and (d) SON denote December to February, March to May, June to August, and September to November, respectively.

Figure 16. Seasonal fused XCH4 from 2010 to 2020 over the globe. The color ramp stands for the value of XCH4. (a) DJF, (b) MAM,
(c) JJA, and (d) SON.
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Figure 17. Annual fused (a–k) XCO2 and (l) its trend from 2010 to 2020 over the globe. Color ramps stand for the values of XCO2 and its
trend (“ppm / yr” means parts per million per year).

nificance levels of p < 0.01 are applied in the computations
of all the metrics.

4 Experiment results and discussions

4.1 Overall in situ validation

As displayed in Fig. 2, the XCO2 and XCH4 measurements
from 29 TCCON in situ stations are adopted for the val-
idation and are evenly distributed over the globe. In this
study, TCCON measurements of ±1 h on the satellite over-
pass times (∼ 13:00 and 13:36 local time; see Table 2) are
co-matched with the CAMS-EGG4, GOSAT, OCO-2, and
fused data around each station with a diameter of 2◦. Figure 3
depicts the overall in situ validation results for the CAMS-
EGG4, GOSAT, OCO-2, and fused results. The number of

data points (N ) is sufficient (e.g., 1337 for OCO-2 XCO2
and 5402 for GOSAT XCH4) to support the reliability of the
validation results.

As shown in Fig. 3, the XCO2 from OCO-2 and XCH4
from GOSAT perform better than those from CAMS-EGG4,
with a larger R2, smaller RMSE, and smaller σ . After fusion,
the XCO2 (2015–2020) and XCH4 (2010–2020) present a
greatly superior accuracy compared to CAMS-EGG4, of
which the RMSE (σ ) improvements are 0.443 (0.444) ppm
and 3.752 (1.792) ppb for XCO2 and XCH4, respectively.
Meanwhile, the accuracy of the fused results is higher than
and close to those of the OCO-2 XCO2 and GOSAT XCH4,
respectively. This suggests that the proposed fusion method
achieves a satisfactory result. Furthermore, the performance
of XCO2 from GOSAT is similar to that of CAMS-EGG4.
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Figure 18. Annual fused (a–k) XCH4 and (l) its trend from 2010 to 2020 over the globe. Color ramps stand for the values of XCH4 and its
trend (“ppb / yr” means parts per billion per year).

However, the fused XCO2 (2010–2014) shows higher accu-
racy by comparison with both CAMS-EGG4 and GOSAT,
indicating the spatiotemporally local fusion ability of S-
STDCT. In conclusion, our fusion method can successfully
fuse the data from CAMS-EGG4 and satellites, which effec-
tively generates GOSAT-like and OCO-2-like values.

4.2 Individual in situ validation and time series

Figures 4 and 5 and Tables 3–5 show the individual in
situ validation results for the CAMS-EGG4, GOSAT, OCO-
2, and fused results on each TCCON in situ station. It is
worth noting that only the stations where the individual val-
idation results are significant (p level < 0.01) for all the
datasets (i.e., the CAMS-EGG4, GOSAT, OCO-2, and fused
results) are presented. Since the space of this paper is lim-

ited, the two stations named edwards01 and sodankyla01 are
selected as examples (see Figs. 4 and 5), which are located
in North America and Europe, respectively. As can be seen,
the fused results achieve the best performance compared to
CAMS-EGG4, GOSAT, and OCO-2 on edwards01 and so-
dankyla01, with the R2 ranging from 0.87 to 0.97. In par-
ticular, the large overestimation of XCO2 for CAMS-EGG4
on sodankyla01 (µ= 2.071 ppm) is well mitigated after fu-
sion (µ= 0.377 ppm), even for the poor data availability of
GOSAT (N = 11). This indicates the strong universality of
the proposed fusion method. The valid individual validation
results of all the stations are given in Tables 3–5. It can be
observed that the performance of the fused results exceeds
those of CAMS-EGG4 and GOSAT and/or OCO-2 for al-
most all the stations and ∼ 70% of the stations, respectively.
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Table 3. Metrics of the individual in situ validation results for CAMS-EGG4, GOSAT, and fused XCO2. The best and second metrics are
denoted with bold and underlined fonts, respectively. CAMS: CAMS-EGG4; AF: after fusion. Unit: parts per million for RMSE and σ .

R2 RMSE σ

Site name CAMS GOSAT AF CAMS GOSAT AF CAMS GOSAT AF

bremen01 0.91 0.85 0.92 2.810 1.732 1.533 1.376 1.757 1.189
edwards01 0.87 0.66 0.89 0.974 1.669 0.826 0.833 1.400 0.774
fourcorners01 0.88 0.91 0.86 1.237 0.867 0.844 0.848 0.590 0.801
garmisch01 0.91 0.86 0.93 2.141 1.575 1.070 1.275 1.592 1.067
jpl02 0.89 0.86 0.90 1.535 1.299 1.075 0.961 1.299 0.918
saga01 0.90 0.91 0.93 1.362 1.494 1.333 1.313 1.201 1.065
lauder02 0.83 0.70 0.87 0.584 1.095 0.606 0.585 1.088 0.600
lamont01 0.79 0.88 0.88 1.928 0.986 0.976 1.327 0.973 0.976
orleans01 0.89 0.75 0.91 2.105 1.666 0.964 1.144 1.440 0.964
parkfalls01 0.92 0.86 0.93 2.088 1.703 1.138 1.309 1.697 1.137
pasadena01 0.70 0.74 0.75 1.260 1.296 1.642 1.261 1.287 1.177
sodankyla01 0.96 0.81 0.96 2.308 1.678 0.998 1.018 1.619 0.925
tsukuba02 0.80 0.82 0.78 1.179 1.651 1.494 1.157 1.263 1.202

Table 4. Metrics of the individual in situ validation results for CAMS-EGG4, OCO-2, and fused XCO2. The best and second metrics are
denoted with bold and underlined fonts, respectively. CAMS: CAMS-EGG4; AF: after fusion. Unit: parts per million for RMSE and σ .

R2 RMSE σ

Site name CAMS OCO-2 AF CAMS OCO-2 AF CAMS OCO-2 AF

bremen01 0.91 0.99 0.93 1.718 1.126 1.476 1.678 1.066 1.459
burgos01 0.91 0.95 0.94 1.324 0.715 0.933 1.144 0.709 0.823
edwards01 0.94 0.95 0.97 1.551 1.194 0.880 1.413 1.067 0.792
easttroutlake01 0.92 0.87 0.94 1.334 1.802 1.195 1.303 1.812 1.196
eureka01 0.94 0.93 0.97 2.081 2.224 1.427 1.436 1.555 1.171
garmisch01 0.91 0.93 0.96 1.586 1.569 1.019 1.579 1.354 1.010
hefei01 0.88 0.97 0.91 1.447 1.163 1.283 1.450 0.735 1.192
izana01 0.96 0.88 0.99 1.215 1.413 0.576 1.209 1.417 0.555
jpl02 0.75 0.89 0.76 2.151 1.146 1.525 1.221 0.885 1.174
saga01 0.89 0.95 0.94 1.890 1.087 1.263 1.873 1.090 1.254
karlsruhe01 0.89 0.93 0.93 1.747 1.327 1.375 1.749 1.318 1.376
lauder02 0.96 0.89 0.97 1.213 1.000 0.492 0.518 0.993 0.469
lauder03 0.94 0.72 0.94 1.288 1.064 0.565 0.863 1.070 0.538
nicosia01 0.79 0.91 0.94 2.319 0.731 0.862 1.133 0.661 0.641
nyalesund01 0.94 0.93 0.97 1.942 2.233 1.664 1.573 1.707 1.446
lamont01 0.92 0.97 0.96 1.505 0.956 0.964 1.489 0.794 0.929
orleans01 0.92 0.93 0.96 1.450 1.144 1.108 1.361 1.121 1.007
parkfalls01 0.93 0.96 0.95 1.518 1.210 1.160 1.518 1.211 1.160
pasadena01 0.91 0.93 0.95 1.689 1.543 1.382 1.581 1.329 1.160
paris01 0.89 0.92 0.93 1.910 1.418 1.451 1.867 1.433 1.437
reunion01 0.96 0.97 0.97 1.276 0.878 0.874 0.827 0.886 0.812
rikubetsu01 0.90 0.96 0.93 1.688 1.023 1.320 1.667 1.033 1.293
sodankyla01 0.94 0.90 0.97 1.539 1.674 1.241 1.427 1.669 1.232
tsukuba02 0.92 0.94 0.93 1.429 1.169 1.276 1.322 1.134 1.265
xianghe01 0.61 0.89 0.73 2.513 1.411 1.960 2.487 1.430 1.959
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Table 5. Metrics of the individual in situ validation results for CAMS-EGG4, GOSAT, and fused XCH4. The best and second metrics are
denoted with bold and underlined fonts, respectively. CAMS: CAMS-EGG4; AF: after fusion. Unit: parts per billion for RMSE and σ .

R2 RMSE σ

Site name CAMS GOSAT AF CAMS GOSAT AF CAMS GOSAT AF

bremen01 0.84 0.90 0.87 19.397 15.328 14.969 12.507 9.868 10.938
burgos01 0.80 0.89 0.89 10.981 10.455 8.096 9.194 6.136 7.216
edwards01 0.83 0.88 0.89 15.170 13.413 11.173 9.960 9.099 8.049
fourcorners01 0.40 0.71 0.51 14.732 7.714 9.847 9.711 6.710 8.777
garmisch01 0.83 0.85 0.89 16.693 13.258 12.267 11.568 11.643 9.577
hefei01 0.54 0.56 0.66 22.072 15.377 16.814 16.165 13.370 13.826
jpl02 0.81 0.88 0.86 16.989 9.679 9.788 11.288 8.840 9.604
saga01 0.85 0.92 0.89 11.299 9.089 9.311 10.091 8.422 9.147
karlsruhe01 0.70 0.80 0.81 13.688 11.913 10.042 11.564 11.370 9.177
lauder02 0.66 0.84 0.65 18.460 8.632 11.323 11.390 6.923 10.189
lauder03 0.46 0.76 0.57 16.568 8.531 12.166 10.965 6.491 9.347
lamont01 0.82 0.94 0.88 11.762 12.204 9.497 11.494 7.015 9.460
orleans01 0.80 0.88 0.88 18.341 13.734 13.305 12.038 9.690 9.395
parkfalls01 0.79 0.87 0.84 17.107 14.892 13.784 13.396 10.548 11.519
pasadena01 0.82 0.90 0.88 12.658 8.396 8.845 10.544 8.094 8.802
paris01 0.75 0.73 0.84 12.313 13.077 9.578 10.319 11.437 8.383
reunion01 0.51 0.41 0.73 18.245 13.846 10.092 10.221 11.427 7.432
rikubetsu01 0.60 0.81 0.72 21.166 20.160 18.250 15.263 11.481 12.759
sodankyla01 0.84 0.83 0.87 23.494 15.701 18.806 12.164 12.682 10.917
tsukuba02 0.77 0.86 0.83 11.726 8.165 8.704 9.401 7.623 8.424
xianghe01 0.63 0.69 0.63 14.851 15.840 15.266 14.734 13.752 14.736

Figures 6 and 7 demonstrate the time series for daily
CAMS-EGG4, GOSAT, OCO-2, fused, and TCCON data
on individual in situ stations. Similarly, two stations, i.e.,
garmisch01 and lauder02, are regarded as examples located
in Europe and Oceania, respectively. As depicted in Fig. 6,
the XCO2 from CAMS-EGG4 is markedly overestimated on
garmisch01 from 2010 to 2014 and in 2020. After fusion,
XCO2 presents an equal trend compared to TCCON mea-
surements over time, with smaller µ (0.096 and 0.139 ppm)
and σ (1.067 and 1.01 ppm). Meanwhile, the overestima-
tion of CAMS-EGG4 XCH4 is also mitigated on garmisch01
through our fusion method. Regarding lauder02, Fig. 7 shows
that CAMS-EGG4 generates underestimated XCO2 (2015–
2019) and overestimated XCH4. The µ and σ of the fused re-
sults (e.g., 4.952 and 10.189 ppb for XCH4) are significantly
improved on lauder02.

4.3 Uncertainty analyses

Figures 8–10 display the biases between daily CAMS-
EGG4, fused, GOSAT, OCO-2, and TCCON data over time
and latitude. As observed in Figs. 8 and 9, a large overestima-
tion generally exists in the CAMS-EGG4 XCO2 from 2010
to 2014 and in 2020, especially before 2013 and in 2020
(> 3 ppm). This is attributed to the considerable errors in
the satellite data assimilated (2010–2014) and anthropogenic
emissions not being modified for COVID-19 lockdowns in

2020 (Agusti-Panareda et al., 2023). After fusion, the biases
of XCO2 are improved well for most TCCON in situ stations
from 2010 to 2014 and in 2020, whose patterns are similar
to those of the GOSAT and OCO-2 XCO2, respectively. This
indicates that the proposed fusion method can effectively cor-
rect the biases in CAMS-EGG4 due to the issues from assim-
ilation data. Meanwhile, CAMS-EGG4 generates distinctly
underestimated XCO2 from 2016 to 2019 on the stations of
latitude < 40◦ N, which is also mitigated by the S-STDCT
fusion method (see Fig. 10). Moreover, the CAMS-EGG4
XCH4 frequently presents a large positive bias (> 30 ppb),
while the fused XCH4 only enhances the performance on the
stations of latitude < 50◦ N. Improvements for the other sta-
tions require our further efforts in the future.

4.4 Assessment of spatial distribution on multi-temporal
scales

Figure 11 demonstrates the comparisons of the annual
GOSAT, OCO-2, CAMS-EGG4, and fused XCO2 and XCH4
over the globe. Three years are selected, i.e., 2011, 2017,
and 2016. As can be seen, the fused results present coinci-
dent spatial patterns with GOSAT and OCO-2, even if the
annual GOSAT and OCO-2 data are very sparse. In par-
ticular, the large overestimation and underestimation of the
CAMS-EGG4 XCO2 in 2011 and 2017, respectively, are sig-
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nificantly modified after fusion, which is mutually confirmed
with the descriptions in Sect. 4.3.

Figure 12 illustrates the examples of daily fused XCO2 and
XCH4 over the globe, consisting of 3 d in 3 years. As shown,
the fused results display detailed information on atmospheric
CO2 and CH4 that clearly indicates their regional and global
spatial patterns. In addition, incoherent or factitious spatial
distributions are not observed in the fused XCO2 and XCH4.
Figure 13 then provides the corresponding daily XCO2 and
XCH4 from GOSAT and OCO-2 over the globe. It is worth
noting that the daily satellite XCO2 and XCH4 are mapped
via footprints due to their significant sparse coverage and are
nearly invisible on grids of 0.25◦. As expected, the fused re-
sults present identical spatial distributions compared to the
XCO2 and XCH4 from GOSAT and OCO-2. This suggests
the robustness and reliability of the proposed fusion method.

Figure 14 depicts the multi-year mean fused global XCO2
and XCH4 from 2010 to 2020. Generally, the spatial pat-
terns of XCO2 and XCH4 are divided by the Equator. The
high values of XCO2 and XCH4 are mainly distributed over
Asia, e.g., China and India, which is attributed to large an-
thropogenic emissions (Kenea et al., 2023; Liu et al., 2020;
Turner et al., 2015; Hotchkiss et al., 2015). In the mean-
time, considerable natural emissions, e.g., wildfires (Arora
and Melton, 2018), can also obviously increase the XCO2
values, such as in central Africa and northern South Amer-
ica. Figures 15 and 16 illustrate the seasonal fused XCO2
and XCH4, respectively, from 2010 to 2020 over the globe.
As shown, seasonal changes in global XCO2 and XCH4 spa-
tial patterns are clearly reflected in the fused results. Com-
pared to XCH4, the global spatial patterns of XCO2 vary
more drastically. This is likely driven by the spatiotemporal
heterogeneity of meteorological fields (Liu et al., 2011) and
different emission sources of CO2 and CH4.

Figures 17 and 18 map the annual fused global XCO2
and XCH4 from 2010 to 2020, respectively, including their
trends. As observed in Fig. 17, the CO2 levels continu-
ously increase from 2010 to 2020, with the mean XCO2
values ranging from ≤ 386 to ≥ 416 ppm. However, the
trends of XCO2 only present small spatial differences (∼
0.2 ppm yr−1), of which the large growth rates are pri-
marily distributed along the Equator, especially for China
(≥ 2.5 ppm yr−1). It is worth noting that the growth rates
of XCO2 are relatively slight (≤ 2.3 ppm yr−1) in northern
South America compared to the other regions. This is likely
caused by the effects from the carbon sequestration of forests
(Chazdon et al., 2016). In addition, the XCH4 values also no-
tably rise from 2010 to 2020, of which the maximum is not
less than 2008 ppb in 2020 (see Fig. 18). The large growth
rates of XCH4 are mostly discovered over southern Asia and
northern Europe.

5 Data availability

The fused results can be freely accessed at
https://doi.org/10.5281/zenodo.7388893 (Wang et al.,
2022a). The daily global seamless gridded (0.25◦) XCO2
and XCH4 from 2010 to 2020 are stored in netCDF4 format
with a file size of ∼ 3.5 MB for each day. The units of
XCO2 and XCH4 are parts per million and parts per billion,
respectively.

6 Conclusions

In our study, a novel spatiotemporally self-supervised fu-
sion method, i.e., S-STDCT, is proposed to acquire long-
term daily seamless globally distributed XCO2 and XCH4
products from 2010 to 2020 on grids of 0.25◦. A total of
three datasets are adopted, i.e., GOSAT, OCO-2, and CAMS-
EGG4. Since the data from GOSAT and OCO-2 are very
sparse in the space–time domain, the algorithm for the fre-
quency domain (the STDCT) is applied in the fusion task.
Validation results show that the S-STDCT fusion method
performs well over the globe, with σ values of ∼ 1.18 ppm
for XCO2 and 11.3 ppb for XCH4 against TCCON measure-
ments during 2010–2020. Meanwhile, the R2 of the fused
XCO2 and XCH4 reach 0.91 or 0.95 (2010–2014 or 2015–
2020) and 0.9 (2010–2020), respectively. Generally, the ac-
curacy of fused results is distinctly superior to that of CAMS-
EGG4 and also exceeds or equals those of GOSAT and
OCO-2. In particular, the proposed fusion method effectively
modifies the large biases in CAMS-EGG4 caused by the is-
sues from assimilation data, such as the uncorrected anthro-
pogenic emission inventories for COVID-19 lockdowns in
2020. In addition, the spatial patterns of fused results remain
coincident with GOSAT and OCO-2, which can accurately
display the long-term and seasonal changes in global XCO2
and XCH4 spatial distributions. The long-term (2010–2020)
daily global seamless gridded (0.25◦) fused results are avail-
able at https://doi.org/10.5281/zenodo.7388893 (Wang et al.,
2022a).

Overall, the developed fusion method generates high-
quality full-coverage XCO2 and XCH4 datasets over the
globe from 2010 to 2020. However, it only considers the
global spatiotemporal knowledge of self-correlation in the
GOSAT and OCO-2 products, without attention to local spa-
tiotemporal information. Meanwhile, the spatial resolution
and available period of fused results should be further en-
hanced and are devised as 0.1◦ and more than 20 years (e.g.,
2000–2020), respectively. To fix these issues, we will spare
no effort to work on our future studies.
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