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Abstract. Human-perceived thermal comfort (known as human-perceived temperature) measures the combined
effects of multiple meteorological factors (e.g., temperature, humidity, and wind speed) and can be aggravated
under the influences of global warming and local human activities. With the most rapid urbanization and the
largest population, China is being severely threatened by aggravating human thermal stress. However, the vari-
ations of thermal stress in China at a fine scale have not been fully understood. This gap is mainly due to the
lack of a high-resolution gridded dataset of human thermal indices. Here, we generated the first high spatial
resolution (1 km) dataset of monthly human thermal index collection (HiTIC-Monthly) over China during 2003–
2020. In this collection, 12 commonly used thermal indices were generated by the Light Gradient Boosting
Machine (LightGBM) learning algorithm from multi-source data, including land surface temperature, topogra-
phy, land cover, population density, and impervious surface fraction. Their accuracies were comprehensively
assessed based on the observations at 2419 weather stations across the mainland of China. The results show
that our dataset has desirable accuracies, with the mean R2, root mean square error, and mean absolute error of
0.996, 0.693 ◦C, and 0.512 ◦C, respectively, by averaging the 12 indices. Moreover, the data exhibit high agree-
ments with the observations across spatial and temporal dimensions, demonstrating the broad applicability of
our dataset. A comparison with two existing datasets also suggests that our high-resolution dataset can describe
a more explicit spatial distribution of the thermal information, showing great potentials in fine-scale (e.g., intra-
urban) studies. Further investigation reveals that nearly all thermal indices exhibit increasing trends in most parts
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of China during 2003–2020. The increase is especially significant in North China, Southwest China, the Ti-
betan Plateau, and parts of Northwest China, during spring and summer. The HiTIC-Monthly dataset is publicly
available from Zenodo at https://doi.org/10.5281/zenodo.6895533 (Zhang et al., 2022a).

1 Introduction

Global climate change has brought significant challenges to
human society and natural systems (Arias et al., 2021; Haines
and Ebi, 2019) by inducing higher air temperature and more
frequent extreme weather and climate events around the
world (Arias et al., 2021; Schwingshackl et al., 2021). Heat-
related disasters, e.g., heatwaves, droughts, and wildfires, are
occurring more frequently and becoming more intense (Tong
et al., 2021; Arias et al., 2021; Luo et al., 2022), exacerbating
the thermal environment and threatening the tolerance lim-
its of humans, animals, and plants (Raymond et al., 2020).
Substantial warming and increasing extreme weather and cli-
mate events aggravate human thermal comfort and increase
the exposures to uncomfortable thermal environments (Brim-
icombe et al., 2021), thus posing adverse impacts on public
health, socio-economy, and agricultural productivities (Bud-
hathoki and Zander, 2019; Moda et al., 2019; Tuholske et al.,
2021; Sun et al., 2019; Zhao et al., 2017).

The thermal stress that human beings actually perceive
is not only related to air temperature, but also jointly in-
fluenced by other environmental variables such as humid-
ity, wind, and/or direct sunlight (Mistry, 2020; Djongyang et
al., 2010). These variables alter the heat balance that main-
tains the core temperature of human bodies by influencing
the heat exchange (e.g., radiation, convection, conduction,
and evaporation) between humans and the surrounding en-
vironment (Periard et al., 2021; Stolwijk, 1975). High atmo-
spheric humidity can exacerbate the thermal stress on human
bodies by reducing evaporation from the skin through sweat-
ing when the air temperature is high (Li et al., 2018; Rogers
et al., 2021; Luo and Lau, 2021). Furthermore, abnormal
weather with a combination of extremely high air temper-
ature, humidity, and/or wind can reduce labor capacity and
human performance (Roghanchi and Kocsis, 2018; Lazaro
and Momayez, 2020; Enander and Hygge, 1990), leading to
temperature-related discomfort, stress, morbidity, and even
death (Di Napoli et al., 2018; Kuchcik, 2021; Nastos and
Matzarakis, 2011), particularly during heatwaves. For ex-
ample, in the summer of 2017, 2018, and 2019, there were
1489, 1700, and 161 heatwave-related deaths, respectively,
in the United Kingdom (Rustemeyer and Howells, 2021).
Additionally, vulnerable groups including children, the el-
derly, chronic patients, and poor communities are at higher
risk of being affected by thermal stress (Patz et al., 2005;
Wang et al., 2019), which is likely to be further exacerbated
as global population aging and climate warming (United Na-
tions, 2017).

The changes and impacts of human thermal stress have at-
tracted increasing attention in recent years (Schwingshackl
et al., 2021; Krzysztof et al., 2021; Li et al., 2018; Rah-
man et al., 2022; Ren et al., 2022; Luo and Lau, 2021).
For instance, Szer et al. (2022) estimated the impact of heat
stress on construction workers based on the Universal Ther-
mal Climate Index (UTCI). Ren et al. (2022) and Luo and
Lau (2021) quantified the contribution of urbanization and
climate change to urban human thermal comfort in China.
Schwingshackl et al. (2021) assessed the future severity and
trend of global heat stress based on Coupled Model Inter-
comparison Project phase 6 (CMIP6). These studies were
mainly based on meteorological stations or coarse-gridded
data. However, the meteorological stations are sparsely dis-
tributed (Peng et al., 2019), particularly in undeveloped and
mountainous areas, which cannot reveal continuously spatial
distributions of air temperature and thermal stress conditions
(He et al., 2022). Additionally, existing low spatial resolu-
tion image products (Mistry, 2020; Di Napoli et al., 2020)
cannot be applied to fine-scale studies because they cannot
provide information with spatial details and variations. How-
ever, the changes in human thermal stress at a fine scale (e.g.,
1km×1km) remain much less understood. This research gap
is mainly inhabited by the unavailability of a high spatial res-
olution (high-resolution) gridded dataset of human thermal
stress.

Although extensive studies have been conducted to gen-
erate high-resolution land surface temperature (LST) (such
as the Land Surface Temperature in China LSTC; Zhao et
al., 2020 and the global seamless land surface temperature
dataset, Zhang et al., 2022b; Hong et al., 2022), or near sur-
face air temperatures (SAT) products (such as ERA5, Coper-
nicus Climate Change Service, 2017, TerraClimate, Abat-
zoglou et al., 2018, and GPRChinaTemp1km, He et al.,
2022), human thermal stress datasets were generally pro-
duced at low-resolution levels, such as ERA5-HEAT (Di
Napoli et al., 2020), HDI_0p25_1970_2018 (hereafter, HDI)
(Mistry, 2020), and HiTiSEA (Yan et al., 2021). ERA5-
HEAT was derived from ERA5 and includes two global
hourly human thermal stress indices (UTCI and mean radi-
ant temperature (MRT)) from January 1979 to the present (Di
Napoli et al., 2020). The HDI dataset was generated using 3 h
climate variables of the global land data assimilation system
(GLDAS), and it contains 10 daily indices with a spatial res-
olution of 0.25◦× 0.25◦, covering 90◦ N–60◦ S from 1970
to 2018 (Mistry, 2020). HiTiSEA contains 10 daily human
thermal stress indices from 1981 to 2017, with a spatial res-
olution of 0.1◦× 0.1◦ over South and East Asia (Yan et al.,
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2021), which was derived from the ERA5-Land and ERA5
reanalysis products. However, these existing thermal index
datasets have very coarse spatial resolutions. There is an ur-
gent need for a high-resolution (e.g., 1 km) data collection of
multiple human thermal stress indices.

Various indices have been proposed to measure human
thermal stress, but there is no universal thermal stress in-
dex that works in all climate zones (Schwingshackl et al.,
2021; Brake and Bates, 2002; Roghanchi and Kocsis, 2018;
Luo and Lau, 2021). Existing human thermal stress indices
considered different climate conditions, direct or indirect ex-
posures to weather elements, human metabolism, and the
local working environment (Di Napoli et al., 2020), which
were designed to evaluate or quantify the comprehensive en-
vironmental pressure of meteorological factors (e.g., temper-
ature, humidity, wind) on human bodies (Epstein and Moran,
2006). These indices are based on the thermal exchange be-
tween the human and surrounding environments or empirical
relationships gained by studying human responses to various
environmental factors, varying in complexity, applicability,
and capacity (Staiger et al., 2019). For example, the heat in-
dex (HI) is used for meteorological service (NWS, 2011);
wet-bulb temperature (WBT) is used to measure the upper
physiological limit of human beings (Raymond et al., 2020);
physiologically equivalent temperature (PET) and UTCI are
used to estimate human thermal comfort (Varentsov et al.,
2020). Therefore, a high-resolution dataset that contains dif-
ferent commonly used human thermal stress indices is ur-
gently called for in global and regional studies, particularly
for those with complex climate conditions (e.g., China).

China has been threatened by deteriorating thermal envi-
ronments under global climate change and rapid local ur-
banization over the past decades (Ren et al., 2022; Luo
and Lau, 2019). The changes and characteristics of human
thermal stress across China have attracted extensive atten-
tion in recent years (Yan, 2013; Tian et al., 2022; Li et al.,
2022). Wang et al. (2021) found that the frequency of ex-
treme human-perceived temperature events increases in sum-
mer and decreases in winter in most urban agglomerations
(UAs) of China. Li et al. (2022) showed that the frequency
of thermal discomfort days in China exhibits a significant in-
creasing trend from 1961 to 2014, and there will be more
threats from thermal discomfort in the future. Therefore, a
long-term and high-resolution dataset with multiple human
thermal stress indices in China is of great importance for in-
vestigating detailed spatial and temporal variations of human
thermal stress across the country. Such a dataset has the po-
tential to (1) assess population exposure to extreme thermal
conditions and heat-related health risks, (2) reveal the spa-
tiotemporal evolution of human thermal stress and its influ-
ence on public health, tourism, industries, military, epidemi-
ology, and biometeorology at a fine scale, and (3) provide
policymakers with data in manipulating targeted strategies to
mitigate heat stress and protect vulnerable people.

In this study, we produced a high-resolution (1km×1km)
thermal index collection at a monthly scale (HiTIC-Monthly)
in China over a long period (2003–2020). This collection
contains 12 widely used human thermal indices, including
surface air temperature (SAT), indoor apparent temperature
(ATin), outdoor shaded apparent temperature (ATout), dis-
comfort index (DI), effective temperature (ET), heat index
(HI), humidex (HMI), modified discomfort index (MDI), net
effective temperature (NET), wet-bulb temperature (WBT),
simplified wet-bulb globe temperature (sWBGT), and wind
chill temperature (WCT). The remainder of this paper
is structured as follows. Sections 2 and 3 describe the
data sources and the methodology, respectively. Section 4
presents a comprehensive analysis of the accuracies and
trends of the human thermal indices. Comparisons on our
products with two existing datasets are in Sect. 5, data avail-
ability is provided in Sect. 6. The main findings of this paper
are summarized in Sect. 7.

2 Data

2.1 Meteorological data

Daily mean surface air temperature, relative humidity, and
wind speed recorded at the 2419 weather stations across
China (Fig. 1) during 2003–2020 were collected from the
China Meteorological Data Service Center (CMDC) at http:
//data.cma.cn/en (last access: 16 November 2021). All sta-
tion records were subjected to strict quality control and eval-
uation, including homogenization based on a statistical ap-
proach (Xu et al., 2013) and evaluation of temporal inhomo-
geneity based on the Easterling–Peterson method (Li et al.,
2004).

2.2 Covariates

Human thermal stress is related to temperature, topography,
land cover, population density, surface water, and vegetation
(Wang et al., 2020; Rahman et al., 2022; Krzysztof et al.,
2021). In this study, eight variables reflecting the changes and
spatial distribution characteristics of temperature were used
to predict human thermal indices (Table 1) in addition to the
meteorological variables. As LST is one of the most essential
parameters for predicting human thermal indices, the seam-
less LST dataset created by Zhang et al. (2022b) was intro-
duced into our model training. This LST dataset used a spa-
tiotemporal gap-filling algorithm to fill the missing or invalid
value caused by clouds in the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) LST dataset (MOD11A1
and MYD11A1). It includes daily mid-daytime (13:30) and
mid-nighttime (01:30) LST with 1 km spatial resolution.
The mean root mean squared errors (RMSEs) of daytime
and nighttime LST are 1.88 and 1.33 ◦C, respectively. We
used monthly LST as one of the inputs to predict the spa-
tial distribution of 12 thermal indices. Monthly LST values
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Table 1. Gridded datasets used in this study.

Category Dataset Spatial resolution Temporal resolution Variables Data source

Land A global seamless 1 km 1 km Daily Land surface Zhang et al.
surface resolution daily temperature (2022b)
temperature land surface

temperature dataset)
(2003–2020)

Land cover MCD12Q1.006 500 m Annual Land cover Sulla-
classes in 1 km Menashe and
grids Friedl (2019)

Elevation MERIT DEM: Multi- 90 m – Aggregated Yamazaki et
Error-Removed elevation and al. (2017)
Improved-Terrain slope in 1 km
DEM grids

Impervious Tsinghua/FROM- 30 m Annual Proportion of Gong et
surface GLC/GAIA/v10 impervious al. (2020)

surface in 1 km
grids

Population WorldPop 1 km Annual Population Gaughan et
density density al. (2013)

Temporal – – – Year, month –
variation

Figure 1. Spatial distribution of meteorological stations in the
mainland of China, with color shadings indicating the elevation in
meters.

were calculated by averaging daily LST, which was obtained
by averaging four observations in a day, including mid-
daytime and mid-nighttime observations from ascending and
descending orbits of MOD11A1 (Terra) and MYD11A1
(Aqua). More details about the LST data are described in
Zhang et al. (2022b). The land cover dataset (MCD12Q1

Version 6) developed by Sulla-Menashe and Friedl (2019)
based on a supervised classification method was downloaded
via Google Earth Engine (GEE). The Multi-Error-Removed
Improved-Terrain (MERIT) elevation dataset developed by
Yamazaki et al. (2017) was downloaded from GEE. This
dataset was generated after removing the errors from exist-
ing digital elevation models (DEMs), such as SRTM3 and
AW3D-30m, based on multi-source satellite data and filter-
ing algorithms. The spatial resolution of this dataset is 3 s
(i.e., ∼ 90 m at the Equator). In addition, the slope was also
extracted from the elevation data to act as the topography
predictor. As the artificial surface is closely related to human
activities (Zhao and Zhu, 2022), the dataset of global artifi-
cial impervious area (GAIA) produced by Gong et al. (2020)
from the Google Earth Engine (GEE) was used to delineate
human footprints. The overall accuracy of GAIA is greater
than 90 % (Gong et al., 2020). The population dataset was
downloaded from the WorldPop Project (Gaughan et al.,
2013). Then, the abovementioned eight datasets were pre-
processed to have the same spatial extent, projection, and
spatial resolution (1 km) through image mosaicking, repro-
jection, resampling, clipping, aggregating, and monthly syn-
thesizing. Moreover, year and month of the year were also
used as covariates. Note that we did not include precipitation
as a covariate because the precipitation data are not normally
distributed. More importantly, they exhibit many zero val-
ues in many regions of China (especially in the dry season),
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Table 2. Equations of the human thermal indices for each station.

Abbreviation Human thermal index Computation model Reference

ATin Apparent ATin =−1.3+ 0.92×SAT+ 2.2×Ea Steadman
temperature (1979)
(indoors)

ATout Apparent ATout =−2.7+ 1.04×SAT+ 2×Ea− 0.65×V Steadman
temperature (1984)
(outdoors, in
the shade)

DI Discomfort DI= 0.5×WBT+ 0.5×SAT Sohar et al.
index (1963)

ET Effective ET= SAT− 0.4× (SAT− 10)× (1− 0.001×RH) Gagge et al.
temperature (1972)

HI Heat index∗ HI∗ =−8.784695+ 1.61139411×SAT− 2.338549×RH Rothfusz and
−0.14611605×SAT×RH Headquarters
−1.2308094× 10−2

×SAT2 (1990)
−1.6424828× 10−2

×RH2

+2.211732× 10−3
×SAT2

×RH
+7.2546× 10−4

×SAT×RH2

+3.582× 10−6
×SAT2

×RH2

HMI Humidex HMI= SAT+ 0.5555× (0.1×Ea − 10) Masterton and Richardson (1979)

MDI Modified MDI = 0.75×WBT+ 0.38×SAT Moran et al.
discomfort (1998)
index

NET Net effective NET= 37− 37−SAT
0.68−0.0014×RH+ 1

1.76+1.4×V 0.75
Houghton and Yaglou

temperature −0.29×SAT× (1− 0.01×RH) (1923)

sWBGT Simplified wet- sWBGT = 0.567×SAT+ 0.0393×Ea+ 3.94 Gagge and Nishi
bulb globe (1976)
temperature

WBT Wet-bulb WBT = SAT× atan
(

0.151977× (RH+ 8.313659)0.5
)

Stull (2011)
temperature +atan(T +RH)− atan(RH− 1.676331)

+0.00391838×RH1.5

×atan(0.02301×RH)− 4.686035

WCT Wind chill WCT = 13.12+ 0.6215×SAT− 11.37× (V × 3.6)0.16 Osczevski and
temperature +0.3965×SAT× (V × 3.6)0.16 Bluestein

(2005)

SAT is observed air temperature (◦C), RH is relative humidity (%), V is wind speed (m s−1), and Ea is actual water vapor pressure (kPa). Asterisk means that an adjustment is
needed. ∗ All units of human thermal indices in this study are in degrees Celsius (◦C).

which would increase the uncertainty of the spatial predic-
tion.

3 Methodology

3.1 Calculation of human thermal indices

In addition to SAT, the calculation of human thermal indices
used in this study is described in Table 2. These indices are
first calculated based on SAT (also simply denoted as T ), rel-

ative humidity (RH), wind speed (V ), and actual vapor pres-
sure (Ea) at daily scale. Ea is derived from T and RH rather
than directly observed at meteorological stations (Eqs. 1–2;
Bolton, 1980). Furthermore, monthly human thermal indices
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Figure 2. Scatter plots of predictions versus observations of the 12 human thermal indices over the mainland of China during 2003–2020.
(a) SAT, (b) ATin, (c) ATout, (d) DI, (e) ET, (f) HI, (g) HMI, (h) MDI, (i) NET, (j) sWBGT, (k) WBT, and (l) WCT.

were derived by averaging daily values in each month.

Es = 6.112× exp(17.67×T/(T+243.5)) (1)

Ea =
RH
100
× Es (2)

Here Es is saturation vapor pressure (hPa) near the surface,
T (◦C) is air temperature at 2 m above the ground, and RH
(%) is relative humidity at 2 m above the ground.

3.2 Prediction of human thermal indices using
LightGBM

The Light Gradient Boosting Machine (LightGBM) algo-
rithm was employed to predict human thermal indices dur-
ing 2003–2020. LightGBM is one of the gradient boosting
decision tree (GBDT) algorithms developed by Microsoft
Research (Ke et al., 2017). This algorithm has become a
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Figure 3. Overall prediction accuracies of the 12 human thermal
indices over the mainland of China during 2003–2020. (a) R2,
(b) MAE, (c) RMSE, and (d) bias.

Table 3. Overall prediction accuracies of the 12 human thermal in-
dices over the mainland of China during 2003–2020.

Indices R2 RMSE (◦C) MAE (◦C) Bias (◦C)

SAT 0.9969 0.603 0.451 −0.001
ATin 0.9971 0.635 0.478 0.002
ATout 0.9969 0.724 0.544 0.000
DI 0.9971 0.579 0.429 0.002
ET 0.9970 0.377 0.281 0.001
HI 0.9966 0.733 0.541 0.002
HMI 0.9968 0.859 0.645 0.000
MDI 0.9969 0.664 0.493 0.002
NET 0.9949 0.856 0.620 0.001
sWBGT 0.9967 0.535 0.401 −0.001
WBT 0.9964 0.629 0.469 0.000
WCT 0.9959 0.807 0.579 0.002

very popular nonlinear machine learning algorithm due to
its superior performance in machine learning competitions
and efficiency (Candido et al., 2021). Its performance has
been evaluated and shows desirable results in different ap-
plications, such as evapotranspiration estimation (Fan et al.,
2019), land cover classification (Candido et al., 2021; Mc-
carty et al., 2020), air quality prediction (Su, 2020; Zeng et
al., 2021; Tian et al., 2021), subsurface temperature recon-
struction (Su et al., 2021), and above-ground biomass esti-
mation (Tamiminia et al., 2021).

Furthermore, LightGBM adopts the Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB) algorithms to improve the training speed (Su et al.,
2021). Here, GOSS is used to select data instances with
larger gradients and to exclude a considerable proportion
of small gradient data instances (Ke et al., 2017), and EFB

is used to merge features (Ke et al., 2017). Compared
with traditional GBDT algorithms including eXtreme gra-
dient boosting (XGBoost) and Stochastic Gradient Boost-
ing (SGB), LightGBM effectively decreases the training time
without reducing the accuracy (Los et al., 2021; Ke et al.,
2017).

We used the Python package Scikit-Learn to perform
the LightGBM training, and hyperparameters of LightGBM
were tuned based on grid search methods. The observed
monthly human thermal indices at the 2419 weather stations
across the mainland of China during 2003–2020 were ran-
domly classified into a training set (80 %) for hyperparam-
eters tuning and model training and a testing set (20 %) for
model evaluation.

3.3 Accuracy assessment

Four statistic metrics – namely, determination coefficient
(R2), mean absolute error (MAE), RMSE, and bias (Rice,
2006) – were used to evaluate the prediction accuracy of the
human thermal indices. Ranging from 0 to 1, R2 measures
the proportion of variance explained by the model, repre-
senting how well the human thermal indices were predicted
compared to the observations. MAE represents the average
absolute error between the predictions and the observations.
RMSE is the standard deviation of the residuals and is sensi-
tive to outliers. Bias describes the differences between the
predictions and the observations. These metrics are com-
puted as follows.

MAE=
1
N
×

∑N

i=1

∣∣yi − ŷ
∣∣ (3)

RMSE=

√
1
N
×

∑N

i=1
(yi − ŷ)2 (4)

R2
= 1−

∑N
i=1(yi − ŷ)2∑N
i=1(yi − y)2

(5)

bias=
1
N
×

∑N

i=1
(yi − ŷ), (6)

where ŷ is the predicted value of human thermal indices, y is
the mean of the observed human thermal indices calculated
from meteorological stations, and N is the number of sam-
ples.

4 Results

4.1 Evaluation of the predicted human thermal indices

4.1.1 Overall accuracy

The prediction accuracies of the 12 human thermal indices
were evaluated based on the validation data introduced in
Sect. 3.2. All predicted human thermal indices exhibit high
accuracies. Figure 2 shows the scatter plots of the observed
versus the predicted values of the 12 human thermal in-
dices. As the figure displays, the data points of all indices
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Figure 4. Spatial distribution of R2 of the 12 human thermal index predictions at individual meteorological stations over the mainland of
China during 2003–2020.

are concentrated around the corresponding 1 : 1 line, indicat-
ing a good consistency between the observed and the pre-
dicted values. Figure 3 and Table 3 present the R2, MAE,
RMSE, and bias values of 12 thermal indices during 2003–
2020. The R2 values of the 12 indices are all higher than
0.99, and their RMSE, MAE, and bias are lower than 0.9, 0.7,
and 0.003 ◦C, respectively. Particularly, HMI has the largest
RMSE (0.859 ◦C) and MAE (0.645 ◦C), while ET shows the
smallest RMSE (0.377 ◦C) and MAE (0.281 ◦C). The larger
errors of NET are likely caused by the incorporation of wind
speed during the computation (see Table 2). Overall, the ac-
curacy metrics demonstrate that the 12 predicted human ther-
mal indices are of good quality.

The spatial distributions of R2, MAE, RMSE, and bias
at individual stations across the mainland of China are de-
picted in Figs. 4–7, respectively. The predicted indices have
high R2 values (i.e., > 0.98, Fig. 4) at almost all stations
across China, demonstrating the superiority of LightGBM.
Better predictions (with higher R2) are distributed in eastern
China, particularly in the North China Plain (NCP) and the
Yangtze River Delta (YRD), while southwestern China (e.g.,
the Yunnan–Guizhou Plateau (YGP)) has relatively lower R2

values (< 0.98). For MAE and RMSE, all indices have small
values < 1 ◦C at most stations across China. HMI has the
largest MAE and RMSE values (Figs. 5g and 6g), followed
by NET and WCT, and ET has the smallest MAE and RMSE
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Figure 5. As Fig. 4 but for MAE.

values (i.e., < 0.4 ◦C, Figs. 5e and 6e). The MAE and RMSE
of NET and WCT decrease from northwestern to southeast-
ern China (Figs. 5i, 5l, 6i, 6l). For other indices, small MAE
and RMSE values are mainly observed in plains including
NCP, while large values tend to appear in regions with com-
plex topography, such as arid Northwest China, mountain-
ous Northeast and South China, and the Hengduan Moun-
tains. These differences are related to the uneven distribu-
tion of weather stations, i.e., dense in plains and coarse in
complex terrain areas. The bias values range from −0.3 to
0.3 ◦C (Fig. 7). Positive bias values tend to be distributed in
northern China while negative values are mainly located in
the south. This spatial variability is likely caused by the gen-
erally lower temperatures in the north and higher tempera-

tures in the south. In particular, the extremely small values
in the north and the extremely large values in the south may
be overestimated and underestimated to some extent, respec-
tively, due to limited samples of extremely small and large
values (compared with the rest of the samples) when training
the machine learning model. The overestimation and under-
estimation issues caused by limited training samples of ex-
treme values are quite common in machine learning (Wu et
al., 2022; Li et al., 2020; Uddin et al., 2022; Cho et al., 2020).

4.1.2 Annual and monthly accuracies

The annual accuracies regarding RMSE, MAE, and bias of
the 12 human thermal indices during 2003–2020 are shown
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Figure 6. As Fig. 4 but for RMSE.

in Fig. 8. RMSEs and MAEs of all indices in nearly all years
are less than 1.0 ◦C (Fig. 8a–b). Yearly RMSE (MAE) of
ET fluctuates around 0.3 ◦C (0.2 ◦C) during 2003–2020. RM-
SEs (MAEs) of other indices range from 0.5 to 1.1 ◦C (0.4–
0.8 ◦C) with marginal variations from year to year. Biases
vary between −0.04 and 0.04 ◦C across all years. This tem-
poral variability of the bias is related to the yearly climate
variations and is characterized by a marginal overestimation
of lower temperatures that mainly appeared in early periods
(e.g., 2003–2005) and the underestimation of higher temper-
atures mostly in recent periods (e.g., 2016–2019). Under cli-
matic warming over the past decades, the lower temperatures
tended to appear in early periods while relatively higher tem-
peratures more likely occurred in more recent periods. Ex-

tremely small values of temperature in earlier periods and
the large values in the later periods may be slightly overes-
timated (i.e., with positive bias values) and underestimated
(i.e., with negative bias values), respectively, thereby charac-
terizing the temporal variations of the bias. Moreover, Fig. S1
in the Supplement displays the monthly RMSEs, MAEs, and
biases of all human thermal indices. For RMSE, all the in-
dices in 12 months are lower than 1.4 ◦C, and their MAEs are
less than 1 ◦C. HI and HMI have relatively higher RMSE and
MAE values in summer than in other seasons, whereas other
indices tend to have larger errors in winter than in summer.
Additionally, the magnitude of bias is smaller than 0.03 ◦C
for all the indices in 12 months.
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Figure 7. As Fig. 4 but for bias.

4.1.3 Accuracies in major urban agglomerations

More than half of the national population in China lives in
cities, particularly in UAs (i.e., also known as city clusters).
Here we assessed the prediction accuracies in 20 major UAs
in China, which hold 62.83 % and 80.57 % of the total pop-
ulation and gross domestic product (GDP) of the country
(Fang and Yu, 2016). These accuracy assessments are pre-
sented in Tables S1–S4 in the Supplement. As shown in Ta-
ble S1, all UAs have R2 values higher than 0.9837, with an
average of 0.9947. Table S2 also shows that these UAs have
small RMSE values, most of which are smaller than 1 ◦C,
except for the UA of northern Tian Shan in arid Northwest
China. As the biggest UA in China, YRD has the lowest

RMSE of 0.288 ◦C among all 20 UAs. The MAEs of the
thermal indices in all UAs are smaller than 1 ◦C and with
an average value of 0.477 ◦C (Table S3). The biases in the 20
UAs range from−0.160 to 0.123 ◦C (Table S4). These results
suggest that all predicted human thermal indices in different
UAs across China are of good quality at the local scale. It
implies that our prediction model and results have great po-
tential in evaluating local thermal environment changes (e.g.,
in urban areas or cities).

4.2 Spatial variations of the human thermal indices

The abovementioned assessments show that our model based
on LightGBM can yield high-accuracy predictions at both
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Figure 8. Annual prediction accuracies of the 12 human thermal indices over the mainland of China during 2003–2020: (a) RMSE, (b) MAE,
and (c) bias.

national and local scales. Therefore, this model is employed
to generate a high-resolution human thermal index collec-
tion at a monthly scale over China (HiTIC-Monthly) during
2003–2020. By taking monthly ET in 2020 as an example,
we examined the monthly evolution of spatial patterns of the
HiTIC-Monthly dataset in this subsection.

Figure 9 shows the monthly distribution of the predicted
ET in 2020, which exhibits obvious seasonality with higher
temperatures in summer and lower in winter. The temper-
ature shows a significant zonal difference with colder tem-
peratures in northern than in southern China. The tempera-
ture has a close relationship with topography and decreases
with elevation, varying from plateaus to plains. The Qinghai–
Tibet Plateau (TP) has the lowest temperature, while south-
ern China, the Sichuan Basin, and the Gobi regions in North-
west China witness the highest temperatures. The distribu-

tion of temperature exhibits different patterns among the four
seasons, especially between winter (e.g., January) and sum-
mer (e.g., July). In winter, the temperature increases from
northern to southern areas and is the coldest in Northeast and
Northwest China and the warmest on the island of Hainan. In
the summer, the hottest temperature appears in the Tarim and
Junggar basins of Xinjiang. The NCP region also has a high
temperature in summer, which might be related to local ur-
banization (Liu et al., 2008) and irrigation (Kang and Eltahir,
2018).

The spatial variations of the predicted human thermal in-
dices in summer (which is often characterized by severe heat
stress) are examined in Fig. 10 by taking July 2020 as an
example. As it shows, the 12 indices exhibit similar distri-
bution patterns. There are significant differences in tempera-
ture among Northwest, northeastern, and southeastern China.
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Figure 9. Spatial distributions of the monthly mean ET over the mainland of China in 2020.

Generally, the temperature decreases from the southeast to
the northwest, and the southeast and northwest parts have the
highest and lowest temperatures, respectively.

HMI exhibits the highest temperature while NET shows
the lowest in July 2020. The dominant modes of these in-
dices are further examined by applying the empirical orthog-
onal function (EOF) analysis (Figs. S10–S13). As Fig. S10
shows, the leading EOF (EOF1) of all 12 thermal indices ex-
hibit highly consistent spatial distribution with higher values
in the northern region and lower values in the south. Their
temporal variations are also similar to each other (Fig. S11).
The second and third EOF modes (EOF2 and EOF3) are
also similar among different thermal indices (except EOF3

of NET, Figs. S11–S13). These results demonstrate the de-
sirable quality of our products.

4.3 Temporal changes in the human thermal indices

The yearly evolutions of the annual mean human thermal in-
dices during 2003–2020 are displayed in Fig. 11. Despite
the interannual fluctuation in the time series, all indices ex-
hibit upward trends except for NET and WCT, of which
the decreasing trends are mainly affected by the recovering
wind speed in the recent decade (Zeng et al., 2019). The
fastest warming appears in HMI (0.303 ◦C per decade), and
the slowest is in ET (0.111 ◦C per decade). These warming
trends are stronger than the rising rate of global mean near-
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Figure 10. Spatial distributions of the 12 human thermal indices over the mainland of China in July 2020.

surface temperature (IPCC, 2021), demonstrating China as
one of the severest hotspots suffering from dramatic climate
warming under global change. The detailed spatial variations
regarding the trends of the human thermal indices across
China are further depicted in Fig. 12. Most parts of China
are seen with increases in nearly all the indices during 2003–
2020. These increases are especially more profound in North
China, Southwest China, TP, and parts of Northwest China.
The possible reasons for the prominent warming trends in
North China are explained as follows. The urbanization pro-
cess has been prevailing in this area, with rapid growth in
the economy and population. This process is accompanied
by dramatic increases in impervious surfaces and decreases
in green spaces. These changes lead to warmer surface and

near-surface air temperature, known as urban heat islands
(UHIs), thus increasing thermal stress in this region. The
urbanization effects on local heat stress have also been re-
ported by Luo and Lau (2021). Moreover, North China has
a large number of croplands with prominent irrigation activ-
ities, which may increase air humidity near the surface and
exacerbate the combined effects of temperature and humid-
ity, leading to increased heat stress (Kang and Eltahir, 2018).
In addition, this area has experienced a weakening of sur-
face wind speed (Zhang et al., 2021), which also exacerbates
thermal stress, especially in NET and WCT.

Furthermore, different indices have different degrees of in-
creasing trends. HMI has the largest increasing magnitude
(Fig. 12h), and ET is seen with relatively slight increases
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Figure 11. Temporal changes of the 12 annually averaged human thermal indices over the mainland of China during 2003–2020. The line
illustrates the linear trend, the number in the square bracket means the corresponding trend per decade, and the asterisk next to the number
indicates that the trends are significant at the 0.05 level.

across China (Fig. 12f). The trends of NET and WCT have
similar spatial distribution patterns, with large proportions
having cooling trends since 2003 (Fig. 12j and l). Most parts
of Xinjiang, northeastern and southern China have obvious
decreasing trends, and the Inner Mongolia Plateau (IMP),
NCP, eastern TP, YRD, and YGP have slightly increasing
trends.

The temporal trends of the human thermal indices in dif-
ferent seasons were also examined (Fig. 13). The fastest
warming tendency is observed in the spring season. The ris-
ing trends of spring HMI, HI, MDI, ATin, and ATout exceed
0.4 ◦C per decade, and the trends of other indices (except ET
and NET) are larger than 0.3 ◦C per decade (Fig. S2). Sum-
mer also has been experiencing significant increasing trends
in all indices, i.e., at a rate of > 0.2 ◦C per decade (except ET
and NET). The trends in summer HMI, HI, WBT, MDI, DI,
sWBGT, ATin, and ATout exceed 0.3 ◦C per decade (Fig. S3).
Differing from spring and summer, the human thermal in-
dices (except WCT and NET) in the autumn season show
slightly cooling trends (Fig. S4). Autumn WCT and NET
have significantly strong decreasing trends, i.e., −0.349 and

−0.507 ◦C per decade, respectively. Similarly strong cooling
trends of WCT and NET appear in winter, i.e., −0.661 and
−0.453 ◦C per decade, respectively, while other indices ex-
perience marginal long-term changes (Fig. S5).

Figure S6 maps the spatial patterns of the trends of sum-
mer mean human thermal indices over the mainland of China
during 2003–2020. All indices show warming trends in most
parts of China, particularly in NCP and TP. As one of the
most densely populated regions in China, the prominent in-
creases in thermal indices in NCP indicate that the local
has been experiencing increasing threats of intensifying heat
stress. Among the 12 indices, ATout, HI, NET and WCT tend
to have a slight cooling trend in southeastern China. This
cooling trend is consistent with the corresponding summer
SAT.

The spatial distributions of the changing trends in win-
ter across the mainland of China during 2003–2020 are de-
picted in Fig. S7. The trend patterns in winter are similar
to that in summer to some degree. The warming trends are
concentrated in Southwest China, most parts of Northwest
China, and parts of East China (e.g., YRD). The cooling
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Figure 12. Spatial distributions of the linear trends (unit: ◦C per decade) in the 12 annually averaged human thermal indices over the
mainland of China during 2003–2020.

trends are located in TP, parts of Northeast and South China.
The cooling tendencies are especially significant in Northeast
China and most parts of Northwest and South China (Fig. S7j
and m). Parts of central China are seen with even stronger
cooling thermal comfort.

In the spring, increases in all thermal indices are observed
in most parts of China (Fig. S8), particularly in northern re-
gions, such as central Inner Mongolia, parts of NCP, and
Northeast China, while parts of southern China have slight
decreases. These decreases are noticeable in NET and WCT
(Fig. S8j and m). In contrast to spring, the autumn season
is observed with decreased thermal temperature in the north
and increases in the south (e.g., Southwest China, Fig. S9).

5 Discussion

5.1 Comparison with existing human thermal index
datasets

We compared our HiTIC-Monthly with two existing datasets,
i.e., HDI (Mistry, 2020) and HiTiSEA (Yan et al., 2021),
which have coarser spatial resolutions of 0.25◦× 0.25◦ and
0.1◦×0.1◦ (Table 4), respectively. We derived monthly mean
ATin in July 2018 from HDI and HiTiSEA and compared
them with HiTIC-Monthly over the mainland of China, with
a particular highlight in the four largest UAs, including
Beijing–Tianjin–Hebei (BTH), YRD, middle Yangtze River
Valley (mYRV) and Pearl River Delta (PRD) (Fig. 14). The
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Figure 13. Temporal trends of the 12 annually and seasonally averaged human thermal indices over the mainland of China during 2003–
2020. The number means linear trend per decade. The asterisk indicates that the trends are significant at the 0.05 level.

Table 4. Comparisons of the four thermal index datasets.

ERA5-HEAT HDI HiTiSEA HiTIC-Monthly

Spatial resolution 0.25◦× 0.25◦ 0.25◦× 0.25◦ 0.1◦× 0.1◦ 1km× 1km

Temporal resolution Hourly Daily Daily Monthly

Spatial coverage Global Global South and East
Asia

Mainland of China

Period 1979–present 1970–2018 1981–2019 2003–2020

Thermal indices Mean radiant tem-
perature (MRT),
Universal Ther-
mal Climate Index
(UTCI)

Apparent temperature indoors
(ATind),
two variants of apparent tem-
perature outdoors in shade
(ATot),
heat index (HI),
humidex (HDEX),
wet-bulb temperature (WBT),
two variants of wet-bulb globe
temperature (WBGT),
Thom discomfort index (DI),
wind chill temperature (WCT)

UTCI,
indoor UTCI,
outdoor shaded
UTCI,
MRT,
environment stress
index (ESI),
HI,
humidex,
WBGT,
WBT,
WCT,
AT,
NET

SAT,
ATin,
ATout,
DI,
ET,
HI,
HMI,
MDI,
NET,
sWBGT,
WBT,
WCT

summer of 2018 was selected because it was included in
all three datasets and frequent heat events occurred in this
summer (Zhou et al., 2020). Generally, the three datasets de-
pict similar spatial patterns. However, our HiTIC-Monthly
dataset obviously provides more detailed and clearer spatial
information on human thermal stress than the other two. Ad-
ditionally, the observed ATin values at individual weather sta-
tions are also compared (Fig. 14). It can be seen that HDI and
HiTISEA overestimate ATin, and such an overestimation is
especially severe for HDI, while our dataset is in good agree-
ment with the observed ATin at individual weather stations.
Therefore, our predicted temperature can describe the spa-

tial variations in the city areas well, thereby providing funda-
mental support for fine-scale climate studies, such as urban
climate research.

5.2 Limitations and future works

There are 12 commonly used human thermal indices in the
HiTIC-Monthly dataset produced in this study. Nine of these
indices were computed from temperature and humidity (or
water vapor) and the other three (i.e., ATout, NET, and WCT)
were derived from temperature, humidity, and wind speed.
In addition, other indices considering the combined effect of
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Figure 14. Comparison of the spatial patterns among HDI_0p25_1970_2018 (HDI), HiTiSEA, and HiTIC-Monthly for ATin over the
mainland of China and its four largest UAs in July 2018: Beijing–Tianjin–Hebei (BTH), Yangtze River Delta (YRD), middle Yangtze
River Valley (mYRV) and Pearl River Delta (PRD). Colored circles indicate the observed ATin values at individual meteorological stations.

environmental variables such as sunlight (Blazejczyk, 1994;
Fanger, 1970; Höppe, 1999; Yaglou and Minaed, 1957) were
proposed, including wet-bulb globe temperature (WBGT),
predicted mean vote (PMV), UTCI, physiological equivalent
temperature (PET), etc. These thermal indices were not in-

cluded in our study due to the lack of sunshine and radiative
flux data.

Since LST is the most important variable for predicting the
11 human thermal indices, the uncertainty in the LST dataset
may influence the accuracy of the human thermal indices.
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The LST variable in our prediction is collected from a global
seamless 1 km resolution daily LST dataset (Zhang et al.,
2022b). This dataset was generated based on spatiotemporal
gap-filling algorithms and the MODIS LST data. It may over-
estimate LST in some cases because the LST under cloudy
weather was filled based on the data in clear sky conditions
(Zhang et al., 2022b). A high-quality LST dataset would fur-
ther improve the prediction accuracy of the human thermal
indices.

The human thermal indices dataset is at a monthly scale,
but the temporal resolution may not be sufficient for the re-
search of extreme weather events (e.g., heatwaves and cold
spells) and related environmental health (e.g., heat-related
mortality). A daily high-resolution human thermal index col-
lection (HiTIC-Daily) will be produced and released in our
future studies. In the current study, we provided the first
national-level dataset over the mainland of China with mul-
tiple high-resolution human thermal indices in a monthly in-
terval, which shows high prediction accuracies in all climate
regimes across China. A global dataset of multiple human
thermal indices dataset is also expected in the near future.

6 Data availability

The high spatial resolution monthly human ther-
mal index collection (HiTIC-Monthly) gener-
ated in this study is freely available to the pub-
lic in network common data form (NetCDF) from
Zenodo at https://doi.org/10.5281/zenodo.6895533
and the National Tibetan Plateau Data Center
(TPDC) of China at https://data.tpdc.ac.cn/disallow/
036e67b7-7a3a-4229-956f-40b8cd11871d (last access:
7 November 2022) (Zhang et al., 2022a). The human
thermal indices include surface air temperature (SAT),
indoor apparent temperature (ATin), outdoor shaded appar-
ent temperature (ATout), discomfort index (DI), effective
temperature (ET), heat index (HI), humidex (HMI), modified
discomfort index (MDI), net effective temperature (NET),
simplified wet-bulb globe temperature (sWBGT), wet-bulb
temperature (WBT), and wind chill temperature (WCT).
This dataset has a spatial resolution of 1km× 1km and
covers the mainland of China from 2003 to 2020, stacking by
year. Each stack is composed of 12 monthly images. The unit
of the dataset is 0.01 degrees Celsius (◦C), and the values
are stored in an integer type (Int16) to save storage space
and need to be divided by 100 to get the values in degrees
Celsius when in use. The projection coordinate system is
Albers equal-area conic projection. The naming rule and
other detailed information can be found in “README.pdf”.

7 Conclusions

A long-term and high-resolution dataset of multiple human
thermal indices is of great significance for monitoring de-

tailed spatiotemporal changes of human thermal stress in dif-
ferent climate regions across China and assessing the health
risks of people exposed to extreme heat at a fine scale. How-
ever, the current datasets of human thermal indices (e.g., HDI
and HiTiSEA) only have coarse spatial resolutions (> 0.1◦).
In this study, we generated a dataset of monthly human ther-
mal index collection with a high spatial resolution of 1 km
over the mainland of China (HiTIC-Monthly). In this collec-
tion, 12 human thermal indices from 2003 to 2020 were pre-
dicted, including SAT, ATin, ATout, DI, ET, HI, HMI, MDI,
NET, sWBGT, WBT, and WCT.

The HiTIC-Monthly dataset was produced by LightGBM
based on multi-source data, including MODIS LST, DEM,
land cover, population density, and impervious surface frac-
tion. This dataset shows a desirable performance, with mean
R2, RMSE, MAE, and bias of 0.996, 0.693 ◦C, 0.512 ◦C,
and 0.003 ◦C, respectively. Our predictions also exhibit good
agreements with the observations in both spatial and tem-
poral dimensions. Moreover, the comparison with two exist-
ing datasets (i.e., HDI and HiTiSEA) suggests that HiTIC-
Monthly has more detailed spatial information. Further in-
vestigation shows that almost all the indices show warming
trends in most parts of China during 2003–2020, particularly
for North China, Southwest China, TP, and parts of North-
west China. Additionally, the warming tendency is faster in
spring and summer. WCT and NET show similar and strong
cooling trends in autumn and winter, while other indices ex-
hibit slight long-term changes. HiTIC-Monthly has broad ap-
plicability due to its high spatiotemporal prediction accuracy.
Moreover, HiTIC-Monthly can offer significant support for
studies that require fine-scale human thermal information.
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