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Abstract. Globally, northern peatlands are major carbon deposits with important implications for the climate
system. It is therefore crucial to understand their spatial occurrence, especially in the context of peatland degra-
dation by land cover change and climate change. This study was aimed at mapping peatlands in the forested land-
scape of Sweden by modelling soil data against lidar-based terrain indices. Machine learning methods were used
to produce nationwide raster maps at 10 m spatial resolution indicating the presence or not of peatlands. Four dif-
ferent definitions of peatlands were examined: 30, 40, 50 and 100 cm thickness of the organic horizon. Depending
on peatland definition, testing with a hold-out dataset indicated an accuracy of 0.89–0.91 and Matthew’s corre-
lation coefficient of 0.79–0.81. The final maps showed a national forest peatland extent of 60 292–71 996 km2,
estimates which are in the range of previous studies employing traditional soil maps. In conclusion, these results
emphasize the possibilities of mapping boreal peatlands with lidar-based terrain indices. The final peatland maps
are publicly available at https://doi.org/10.17043/rimondini-2023-peatlands-2 (Rimondini et al., 2023) and may
be employed for spatial planning, estimating carbon stocks and evaluating climate change mitigation strategies.

1 Introduction

Peatlands support biodiversity, buffer hydrological cycles,
and sequester and store atmospheric carbon (C). They have
historically been important C sinks, and it is estimated that
peatlands in the Northern Hemisphere hold 415± 150 PgC
(Hugelius et al., 2020). As peatlands are degraded by climate
and land cover change, this long-term C sink is, however,
becoming a substantial source of greenhouse gases (GHGs).
Peatland draining for agricultural purposes is a large contrib-
utor to carbon dioxide emissions (e.g. Günther et al., 2020),
and permafrost thaw in peatlands is projected to lead to large
methane emissions (e.g. Hugelius et al., 2020). Peatlands are
thus key environments for climate change mitigation strate-
gies, and there is an urgent need to implement global peat-
land restoration and protection policies (Beaulne et al., 2021;
Günther et al., 2020; Humpenöder et al., 2020). High-quality
data on the extent and depth of peatlands are crucial to sup-

port decision-making and reach the international goals for
sustainable development.

Traditionally, landscape-scale peat mapping has been con-
ducted through aerial image interpretation combined with lo-
gistically challenging field inventories. Today, automated al-
gorithms for digital mapping with remotely sensed data have
made it possible to circumvent these limitations (Minasny et
al., 2019). Optical and synthetic aperture radar (SAR) satel-
lite imagery and lidar-based terrain indices are used for peat-
land delineation and depth estimation, often together with
auxiliary data on climate and soil. Limitations for these mod-
ern techniques are instead set by data availability, especially
lidar-based elevation data and field data for model develop-
ment.

Sweden presents a good case study for digital mapping of
peatlands as lidar-based elevation data are readily available,
and field data on soil properties have been collected by long-
standing nationwide surveys. In addition, the large extent of
Swedish peatlands and their considerable share of drainage,
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especially in productive forest areas, lead to important GHG
emissions warranting further research and mitigation policies
(Lindgren and Lundblad, 2014; Skogsstyrelsen, 2021).

Swedish peatlands have been mapped with both tradi-
tional and modern methods, with estimates ranging between
15 % and 20 % of the total land area (e.g. Barthelmes et al.,
2015; Joosten, 2010; Pahkakangas et al., 2016; Tanneberger
et al., 2017; Ågren et al., 2022). Ågren et al. (2022) pro-
duced a series of digital Swedish peatland maps at 2 m spa-
tial resolution representing different peat depths. These maps
are reported to perform better than traditionally produced
maps. Generated by fitting a cubic relationship between O-
horizon thickness and a soil moisture product, these maps
show greater total peatland cover than traditional maps due
to the inclusion of previously unmapped smaller peatlands.
In this study we used partly overlapping O-horizon data but
employed multiple independent variables and machine learn-
ing modelling methods to map Swedish forest peatlands.

Study aim

We aimed at mapping the extent of forest peatlands in Swe-
den, by analysing O-horizon thickness measurements against
lidar-based terrain indices. Machine learning methods were
applied to construct models able to binary classify shallow
peatlands with ≥ 30, 40 or 50 cm O-horizon thickness and
deeper peatlands with ≥ 100 cm O-horizon thickness. Maps
of the classifications were produced as 10 m raster grids at a
national scale.

2 Materials and methods

2.1 Study area

This study was limited to the forested landscapes within the
country of Sweden, located on the Scandinavian Peninsula.
Sweden has a land area of 407 284 km2, of which approxi-
mately 69 % is covered by forest (Statistiska Centralbyrån,
2022). The country has a pronounced south–north gradi-
ent between 55◦20′ N and 69◦3′ N, with the consequent ef-
fect on the climate ranging between temperate and subarctic.
The vicinity to the Gulf Stream and continental west coast
setting of Sweden enforce a warmer climate than other ar-
eas at similar latitudes. The annual rainfall generally varies
between 500 and 800 mm with local extremes of 400 and
2000 mm (Sveriges Meteorologiska och Hydrologiska Insti-
tut, 2009). The topography in Sweden is mainly influenced
by the Caledonian orogeny, pre-glacial deep-weathering and
Quaternary glaciations. The bedrock is generally igneous
and metamorphic except in the southernmost parts of Sca-
nia County, Öland, Gotland and various isolated pockets in
mainland Sweden. Soils are predominately of Quaternary
origins and mostly till, with coastal areas having been influ-
enced by wave action due to isostatic depression (Fredén et
al., 2009).

In this study we only produced maps of peatlands in
Swedish forests and treeless wetlands, as the employed O-
horizon thickness data were not available in non-forested
areas (see Sect. 2.2.1). A forest mask was used to delin-
eate areas of interest, consisting of a reclassified version of
the Swedish land cover dataset from 2018, Nationella Mark-
täckedata 2018 (NMD2018), by the Swedish Environmental
Protection Agency. See Sect. 2.2.3 for further descriptions.

2.2 Data

2.2.1 Dependent variable: O-horizon thickness

A Swedish dataset on O-horizon thickness was constructed
by merging two data sources. The first source, the Swedish
Forest Soil Inventory (SFSI), is a nationally covering soil sur-
vey for which O-horizon thickness has been measured in the
range 0–99 cm (Olsson, 1999). The O horizon is defined as
a layer of organic material with ≥ 20 % organic carbon. The
SFSI inventories are designed to cover forested land across
Sweden and exclude agricultural areas, urban land, infras-
tructure and mountain regions.

The second data source was the peat archive of the Ge-
ological Survey of Sweden (SGU). Peat core measurements
collected by peat experts over the past 100 years are stored
in this archive, with varying methods and data quality. Unlike
the SFSI, no lower limit in peat depth is set.

The accuracy of the geographical positioning is 5–10 m in
the SFSI (Olsson, 1999), while for the peat core data from
SGU it depends on the measurement period and method.
In total, the merged dataset includes 10 115 data points, of
which 7175 are from the SFSI and 2940 from the SGU peat
archive; their spatial distribution can be viewed in Fig. 1.

Four thresholds were used to divide the O-horizon thick-
ness dataset into separate binary variables. The first three
thresholds were set to 30, 40 and 50 cm. This is the mini-
mum O-horizon thickness of peatlands according to a num-
ber of national and international soil classification systems
(Lourenco et al., 2022). The last threshold was set to 100 cm,
based on the measurement range limitations of SFSI (no data
reported ≥ 100 cm). These binary variables (peat deeper or
shallower than 30, 40, 50 or 100 cm, respectively) were used
separately as dependent variables in machine learning work-
flows, with the final goal to produce four different geospa-
tial products: maps over peatlands with O-horizon thickness
≥ 30, 40 and 50 cm and a map over deeper peatlands with
O-horizon thickness ≥ 100 cm.

2.2.2 Features

The independent variables tested for prediction of peatland
occurrence, hereby referred to as features, can be seen in
Table 1. We hypothesized that these features indicate peat-
land occurrence at the landscape scale in Sweden and made
the assumption that only lidar-based variables were sufficient
for prediction. Nonetheless, peat formation and thickness are
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Figure 1. Locations of the O-horizon thickness sampling points in-
cluded in this study. Black points are part of the Swedish Forest
Soil Inventory (SFSI), whereas the red points are from the peat core
archive by the Geological Survey of Sweden (SGU).

complexly controlled by climate, hydrology, topography, soil
and vegetation (Limpens et al., 2008). In earlier versions of
the models presented in this article, some variables on cli-
mate and vegetation were thus included, but these did not
enhance the classification performance and were removed.

Table 1. Raster datasets tested as features in this study. Features
denoted with an asterisk were included in the final models used for
peatland mapping; the others were excluded during pre-processing
or feature selection (see Sect. 2.3.2).

Feature Designation

Digital elevation model DEM10*
Topographic position index TPI*
Topographic ruggedness index TRI
Roughness Rough*
Slope Slope
Standard deviation of slope SDSlope*
Depth to water, 1 ha DTW1ha*
Depth to water, 5 ha DTW5ha
Depth to water, 10 ha DTW10ha*
Depth to water, 20 ha DTW20ha
NMD Markfuktighetsindex MarkFuktIDX*

DEM10 is a lidar-based digital elevation model (DEM)
with a spatial resolution of 10 m in the geographical coordi-
nate system SWEREF99 (EPSG: 3006). DEM10 is the base-
layer of all the other features, except MarkFuktIDX.

Topographic position index (TPI; Weiss, 2001), Topo-
graphic ruggedness index (TRI; Riley et al., 1999) and
Roughness (Dartnell, 2000) describe the elevation hetero-
geneity of a landscape. TPI is the elevation difference be-
tween a DEM pixel and the mean of a determined pixel
neighbourhood surrounding it; TRI is defined as the square
root of the sum of the squared difference between a DEM
pixel and each pixel in its eight-cell neighbourhood; the term
Roughness describes the largest elevation difference between
a DEM pixel and a determined pixel neighbourhood.

The term Slope describes the inclination in a DEM neigh-
bourhood, in our case computed using an algorithm by Horn
(1981).

DTW is a topographic index developed by Murphy et al.
(2007), approximating the elevation difference between a
pixel in a DEM and a hydrological source. The hydrologi-
cal sources are defined as pixels with an upslope area larger
or equal to a set threshold, the so-called flow initiation area,
generally ranging between 0.5–40 ha. Source pixels are allo-
cated for each pixel in a slope raster, applying a least-cost-
path algorithm; the accumulated slope values along the path
are multiplied by the resolution of the raster to obtain the
DTW index. Mathematically, DTW is defined as

DTW=
[∑ dzi

dxi

a

]
xc, (1)

where dzi and dxi are the vertical and horizontal distance
(in metres) between two cells; a is a constant of 1 or

√
2

depending on whether two adjacent cells connect parallelly
or diagonally; xc is the raster cell size (in metres).

DTW has been used to identify wet areas with the ad-
vantage of being independent of spatial scale (Ågren et al.,
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2014). The optimal threshold for flow initiation area is, how-
ever, dependent on soil characteristics, as areas with higher
hydraulic conductivity are better examined with a higher flow
initiation area, and vice versa.

MarkFuktIDX is a Swedish soil moisture index product
created to support delineation of wetlands in the national land
cover dataset (NMD2018). It was created by merging DTW
rasters with topographic wetness index (TWI) rasters, with
an unbalanced weight towards DTW. The DTW raster was
calculated using a 2 ha flow initiation area threshold, and the
TWI raster included information on soil permeability where
this was available.

2.2.3 Forest and treeless wetland mask

The forest and treeless wetland mask used to limit the extent
of the analyses in this study consisted of a binary reclassi-
fied version of NMD2018. The positive class included forest
classes (codes 111–128) and open wetland (code 2); the neg-
ative class (where no analyses were made) includes arable
land (code 3), open land (codes 41 and 42) and artificial sur-
faces (codes 51–53).

2.3 Data processing

2.3.1 Raster processing

The topographic variables were calculated using a 10 m res-
olution DEM (DEM10; see Table 1), originally resampled
with the bilinear method from the 2 m resolution Höjddata
2+ grid DEM from Lantmäteriet.

TPI, TRI, Rough and Slope were calculated using the
gdaldem utility (GDAL/OGR contributors, 2022). TPI, TRI,
Rough and Standard deviation of slope (SDSlope) were cal-
culated on an eight-cell neighbourhood basis.

DTW was calculated with a Python script using tools
from the Python packages RichDEM (Barnes, 2016) and
Whitebox (Lindsay, 2014). Four different flow initiation area
thresholds were used: 1, 5, 10 and 20 ha. These were sub-
jectively chosen but fall within the range of thresholds used
in previous studies at similar scale (e.g. Oltean et al., 2016;
Ågren et al., 2014, 2021).

2.3.2 Machine learning workflow

The rasters which constituted the features (see Table 1) were
sampled at the geographical position of each O-horizon data
point. In total, 10 115 data points were extracted. Of these,
4230 were labelled as “peatland” using the 40 cm threshold
and 3686 as “deeper peatland” (≥ 100 cm).

The labelled dataset was pre-processed by data imputation,
feature correlation analysis, undersampling, dataset splitting
and standardization. Most utilities are from the scikit-learn
Python package (Pedregosa et al., 2012), hereafter referred
to as Sklearn.

Sklearn SimpleImputer was employed for imputation, re-
placing missing values in the features with their respective
mean. This process was applied to avoid data loss, and be-
cause some machine learning algorithms cannot handle miss-
ing values.

Features with a Pearson correlation coefficient ≥ 0.8 be-
tween them were then removed from the labelled dataset, as
highly correlated features can negatively affect the perfor-
mance of machine learning algorithms, and redundant data
enhance processing times and computational costs.

RandomUnderSampler from the imbalanced-learn Python
package (Lemaitre et al., 2016) was applied to avoid detri-
mental class imbalance caused by overemphasizing of the
most populous class. This algorithm removes randomly se-
lected samples from the over-represented class to reach com-
plete class balance.

The Sklearn train_test_split algorithm was used to ran-
domly split the labelled dataset into a training and a test-
ing dataset, with a 70/30 split ratio. A standardization al-
gorithm, Sklearn StandardScaler, was lastly fitted to the fea-
tures of the training dataset and used to transform the features
of all datasets by mean removal and data scaling.

In machine learning, feature selection is performed to find
a balance between computational cost, model interpretability
and model performance (Brank et al., 2011). In this study,
the feature selection algorithm RFECV from Sklearn was
run following pre-processing and prior to model training.
RFECV is a wrapper method testing recursively smaller sub-
sets of features by cross-validation and eliminating the weak-
est feature at each iteration.

Four machine learning algorithms from the Sklearn li-
brary were tested: support vector classifier (SVC), logistic re-
gression (LR), random forest classifier (RF) and multi-layer
perceptron classifier (MLP). Sklearn RandomizedSearchCV
was used for hyperparameter tuning, which randomly tests
subsets of parameters by cross-validation and selects the
best-performing configuration.

Model configurations were evaluated using accuracy, pre-
cision, recall and Matthew’s correlation coefficient (MCC) as
performance metrics, all computed on the test dataset. These
performance metrics were used to identify the most suited
model configurations for final prediction mapping, referred
to as Peat30 (O-layer thickness ≥ 30 cm), Peat40 (O-layer
thickness ≥ 40 cm), Peat50 (O-layer thickness ≥ 50 cm) and
Peat100 (O-layer thickness ≥ 100 cm). We regarded high
precision as a positive model trait, as for peatland manage-
ment we believe it is relatively more important to minimize
false positives rather than false negatives. Therefore, if two
models had similar accuracy and MCC, we prioritized the
one with higher precision.

Permutation feature importance was calculated for each fi-
nal model, which is a measure of the impact of each feature
on predictive power. Permutation feature importance is cal-
culated as performance lost, in our case accuracy loss, as the
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feature is permuted (i.e. shuffled) in the test dataset. Here-
after it is referred to as feature importance.

2.3.3 Final prediction mapping

Final predictions were executed with Peat30, Peat40, Peat50
and Peat100 on a raster grid of 10 m resolution, correspond-
ing to the raster variables used as features (see Table 1). Four
maps were thus produced: three for peatlands (O-layer thick-
ness ≥ 30, 40 or 50 cm) and one for deeper peatlands (O-
layer thickness ≥ 100 cm). Some areas in the mountainous
regions are missing in the final products, as lidar data are not
available there.

Gotland and Öland were also excluded in the final maps.
These islands were scarcely sampled with 64 sampling points
in Gotland and 16 points in Öland, of which only 1 point
per island was classified as peatland using O-layer thickness
≥ 40 cm as definition. The signal from the sampling on main-
land Sweden could therefore have adverse influence on the
quality of prediction on these islands, which have relatively
distinct geological characteristics.

Non-forested land was masked in the final maps using the
mask described in Sect. 2.2.3. The maps were compressed
using the gdal_translate Lempel–Ziv–Welch compression al-
gorithm, and overview images were built internally using
gdaladdo (GDAL/OGR contributors, 2022).

Map visualizations were created using ESRI ArcGIS Pro
2.9.2.

3 Results

Prior to model training, the same features were selected by
the selection algorithm RFECV in all classification tasks:
DEM10, DTW1ha, DTW10ha, Rough, SDSlope, TPI, Mark-
FuktIDX.

The test results are shown in Table 2, demonstrating that
RF and MLP have marginally higher accuracy and MCC than
LR and SVC in most cases.

In the 30 cm classification task, the RF model scored the
highest MCC and accuracy values with balanced precision
and recall values, thus being selected as Peat30 (Table 2a). In
the 40 and 100 cm classification tasks, the RF and MLP mod-
els scored the same performance metrics (Table 2b and d);
however, for the sake of consistency between the final maps,
the RF models were selected as Peat40 and Peat100. In the
50 cm classification task, the SVC and RF models scored
the same accuracy and MCC values; however, the RF model
scored higher precision, thus being selected as Peat50 (Ta-
ble 2c).

Permutation feature importance for all final models can be
viewed in Fig. 2. The two most prominent features were the
same in all models, MarkFuktIDX and Rough. In Peat100,
MarkFuktIDX and Rough showed highly similar results
compared to the other models showing larger gaps between
them (Fig. 2). It is worth noting that a low feature impor-

tance does not necessarily mean that the feature is insignifi-
cant for a given classification task. Features with low feature
importance in one model can be of greater importance in a
differently configured model trained on the same data.

The final prediction maps are available at
https://doi.org/10.17043/rimondini-2023-peatlands-2
(Rimondini et al., 2023) and excerpts of Peat40 can be
viewed in Figs. 3 and 4 (Rimondini et al., 2023). Peat areas
clearly follow topographic basins, and shallow peat often
surrounds areas of deeper peat or is found in smaller patches
and furrows. The estimated national extent of peatlands
according to Peat30, Peat40, Peat50 and Peat100 can be
viewed in Table 3.

4 Discussions

This a product-driven study, with the aim to map the extent
of peatlands in the forested landscape of Sweden. The perfor-
mance metrics (Table 3) indicate that the models we devel-
oped have good predictive power and that the resulting maps
are of adequate quality.

Some errors in the features may have been caused by the
spatial inaccuracies of the soil data, especially in the case
of the SGU peat archive which is a collection of historical
data with varying quality. However, we believe that this has
had a minor effect on our results, as the data from the SGU
archive mostly include points from the inner parts of peat-
lands with an O-layer depth > 100 cm and a relatively narrow
value range in the geodata used as features. Only a minority
of the SGU archive data points around Stockholm part from
this pattern, meaning that a small portion of the points may
lead to any important errors in the features.

It would have been beneficial to have extensive O-layer
thickness measurements from all land cover types, in which
case a land cover-based mask would not have been needed,
and the resulting maps could include all land cover types. We
also note that a mask of forest areas based on SFSI would
have been more consistent with the utilized soil data than a
reclassified version of NMD2018, but it was unavailable at
the time of this study.

We hypothesize that the greater importance attributed to
Rough in Peat100 (Fig. 2) is due to deeper peat being gen-
erally more concentrated in the inner and flat parts of peat-
lands. The overarching importance of MarkFuktIDX (Fig. 2),
we believe, is caused by it being a high-quality descriptor of
soil moisture, an essential edaphic factor for peat formation.

Our estimates of national forest peatland extent are within
the range of studies employing traditional peatland maps
for data merging and upscaling (Barthelmes et al., 2015;
Pahkakangas et al., 2016; Tanneberger et al., 2017). These
studies were based on maps of Quaternary deposits by SGU
and estimated that 62 073–69 155 km2 of Sweden is covered
by peat; the range is caused by the utilization of different
techniques to fill the gaps in the SGU maps and by using
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Table 2. Performance metrics computed on the test set for the models operating on the various binary O-layer thickness thresholds: (a) 30,
(b) 40, (c) 50 and (d) 100 cm. Asterisk and bold numbers denote the models selected for final prediction mapping, i.e. Peat30, Peat40, Peat50
and Peat100. LR= logistic regression, SVC= support vector classifier, RF = random forest and MLP=multi-layer perceptron.

(a) LR SVC RF* MLP (b) LR SVC RF* MLP

Accuracy 0.89 0.89 0.90 0.89 Accuracy 0.90 0.90 0.91 0.91
Precision 0.86 0.87 0.90 0.89 Precision 0.88 0.89 0.91 0.91
Recall 0.93 0.91 0.90 0.89 Recall 0.93 0.92 0.91 0.91
MCC 0.78 0.78 0.79 0.78 MCC 0.80 0.81 0.81 0.81

(c) LR SVC RF* MLP (d) LR SVC RF* MLP

Accuracy 0.89 0.90 0.90 0.89 Accuracy 0.88 0.89 0.89 0.89
Precision 0.86 0.88 0.90 0.89 Precision 0.83 0.85 0.87 0.87
Recall 0.92 0.93 0.91 0.90 Recall 0.94 0.94 0.92 0.92
MCC 0.78 0.80 0.80 0.79 MCC 0.76 0.78 0.79 0.79

Figure 2. Boxplots showing the permutation feature importance of (a) Peat30, (b) Peat40, (c) Peat50 and (d) Peat100. Permutation feature
importance is calculated as the loss of accuracy when a feature is permuted, in this case iterated 10 times. The boxes represent the lower and
upper quartiles with an orange line at the median; whiskers indicate data ranges, and isolated point are outliers.

Table 3. Estimated national extent of peatlands in forested and tree-
less wetland areas according to the models developed in this study.
%Tot is the percentage of extent compared to the total Swedish land
area (407 284 km2; Statistiska Centralbyrån, 2022); %Forest is the
percentage of extent compared to the Swedish forested and tree-
less wetlands area (NMD2018 Forest and treeless wetland mask;
see Sect. 2.2.3).

Extent Peat30 Peat40 Peat50 Peat100

km2 71 996 66 729 65 906 60 292
%Tot 17.7 16.4 16.2 14.8
%Forest 23.3 21.6 21.4 19.5

(or not) the SGU map with coarsest resolution. These esti-
mates are, however, not entirely comparable to ours, as SGU
does not exclude non-forested land as we did. Also, the SGU
maps often exclude smaller peatlands by instead reporting
the dominant soil type in a given area (Karlsson et al., 2021),
probably leading to an overall underestimation of peatland
extent.

Assuming that agricultural land on peat is around 2300–
2500 km2 (Berglund and Berglund, 2010; Lindahl and Lund-
blad, 2021) and that the area of wetlands in the mountain-
ous areas with no lidar scans is approximately 650 km2 (and
on Gotland and Öland 150 km2 together) (Wetland class in
NMD2018, Naturvårdsverket), our national peatland extent
estimates are similar to the higher end in the range of the
traditional maps (e.g. Barthelmes et al., 2015).

On the other hand, Ågren et al. (2022) produced 2 m res-
olution peatland maps using modern automated mapping
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Figure 3. Excerpt from the final Peat40 map. Orange areas are classified as having an O horizon≥ 40 cm. The map covers an area with exten-
sive aapa mire complexes in Udtja, Norrbotten County, Sweden. Base map: Ortofoto, 0.5 RGB Tiles 735_67_50_2014 and 736_67_00_2014
© Lantmäteriet.

methods. They estimated that 70 000–94 000 km2 of Swe-
den is covered by peat, depending on peatland definition,
of which 68 000–88 000 km2 is in forests. If defining peat
as having an O-layer thickness ≥ 40 cm, the study estimated
79 000 km2 total peatland extent and 76 000 km2 forest peat-
land extent, considerably higher estimates than ours. The
authors concluded that the difference in estimates between
their study and previous ones was caused by the inclusion of
smaller peatlands associated with streams and narrow pits not
included in the SGU maps. The difference between our esti-
mates of total peatland extent and those of Ågren et al. (2022)
is mainly because they do not exclude agricultural land from
their final products, as we did.

On our test dataset, the 40 cm peatland map by Ågren et
al. (2022) achieved accuracy, precision, recall and MCC val-
ues of 0.93, 0.93, 0.93 and 0.86, respectively. Comparatively,

Ågren et al. (2022) employed a simpler model algorithm as
us but obtained better performance metrics. We believe that
these results can be deduced to a high-quality soil moisture
map being the foundation of their model, supported by our
results indicating that soil moisture datasets are the most im-
portant DEM-derived products for peatland delineation. Fur-
thermore, the considerably higher performance metrics re-
ported in this paper compared to Ågren et al. (2022) are prob-
ably due to the inclusion of the SGU peat core archive as in-
put dataset, which is skewed towards easily classifiable areas
of deep peatland.

5 Data availability

The peatland maps Peat30, Peat40, Peat50 and Peat100 are
available as GeoTIFF files in the Bolin Centre Database
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Figure 4. Excerpt from the final Peat40 map. Orange areas are classified as having an O horizon ≥ 40 cm. In the centre of the map is
an area with an extensive fen complex in Kråketorp, Kronoberg County, Sweden. Base map: Ortofoto, 0.5 RGB Tile 634_48_05_2011
© Lantmäteriet.

(Rimondini et al., 2023; https://doi.org/10.17043/rimondini-
2023-peatlands-2).

6 Conclusions

Peatland area, as mapped in this study, is a crucial variable
for estimating C stock (Yu, 2012). In turn, such estimates
are important for understanding global C cycles and calcu-
lating GHG emissions from peatlands (Beaulne et al., 2021;
Hugelius et al., 2020). Our peatland maps may, therefore, be
used for estimating the C stock of Swedish peatlands, e.g.
by coupling them with information on peat thickness and C
density. This is especially important in the context of land
cover and climate change, which may further contribute to
peatland degradation and oxidation (Hugelius et al., 2020;
Humpenöder et al., 2020).

In conclusion, our results highlight the possibilities of pro-
ducing boreal peatland maps using lidar-based terrain indices
and spatially and numerically extensive field data. We have
demonstrated that an approach such as ours, readily replica-
ble and using only open-source software, can yield accurate
and uniform products surmounting the limitations of tradi-
tional mapping techniques. Ågren et al. (2022) and Karlson
et al. (2019) also concluded that terrain indices are highly
valuable for peatland mapping in Sweden; we therefore em-
phasize that the availability of high-quality lidar and field
data is a cornerstone to improve mapping of boreal peatlands.
Such advancements could in turn reduce the uncertainties in
C stock estimations attributed to poor data on peatland ex-
tent, and thus improve estimates of GHG fluxes. Informa-
tion on the location and depth of peatlands is also crucial
for protection and restoration initiatives, making high-quality

Earth Syst. Sci. Data, 15, 3473–3482, 2023 https://doi.org/10.5194/essd-15-3473-2023
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geospatial products essential for climate change mitigation
strategies and decision-making.
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