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Abstract. The AnisoVeg product consists of monthly 1 km composites of anisotropy (ANI) and nadir-
normalized (NAD) surface reflectance layers obtained from the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor over the entire South American continent. The satellite data were preprocessed using the multi-
angle implementation atmospheric correction (MAIAC). The AnisoVeg product spans 22 years of observations
(2000 to 2021) and includes the reflectance of MODIS bands 1 to 8 and two vegetation indices (VIs), namely
the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). While the NAD layers
reduce the data variability added by bidirectional effects on the reflectance and VI time series, the unique ANI
layers allow the use of this multi-angular data variability as a source of information for vegetation studies. The
AnisoVeg product has been generated using daily MODIS MAIAC data from both Terra and Aqua satellites,
normalized for a fixed solar zenith angle (SZA = 45◦), modeled for three sensor view directions (nadir, forward,
and backward scattering), and aggregated to monthly composites. The anisotropy was calculated by the subtrac-
tion of modeled backward and forward scattering surface reflectance. The release of the ANI data for open usage
is novel, and the NAD data are at an advanced processing level. We demonstrate the use of such data for vegeta-
tion studies using three types of forests in the eastern Amazon with distinct gradients of vegetation structure and
aboveground biomass (AGB). The gradient of AGB was positively associated with ANI, while NAD values were
related to different canopy structural characteristics. This was further illustrated by the strong and significant
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relationship between EVIANI and forest height observations from the Global Ecosystem Dynamics Investigation
(GEDI) lidar sensor considering a simple linear model (R2

= 0.55). Overall, the time series of the AnisoVeg
product (NAD and ANI) provide distinct information for various applications aiming at understanding vege-
tation structure, dynamics, and disturbance patterns. All data, processing codes, and results are made publicly
available to enable research and the extension of AnisoVeg products for other regions outside of South America.
The code can be found at https://doi.org/10.5281/zenodo.6561351 (Dalagnol and Wagner, 2022), EVIANI and
EVINAD can be found as assets in the Google Earth Engine (GEE; described in the data availability section), and
the full dataset is available from the open repository https://doi.org/10.5281/zenodo.3878879 (Dalagnol et al.,
2022).

1 Introduction

Anisotropy is defined as the departure from Lambertian scat-
tering (isotropic), which is caused by the physical structure
of media through which photons pass. Because most land
covers are not Lambertian (isotropic), the surface reflectance
measured by satellite sensors varies with the view zenith an-
gle (VZA), view direction (backward or forward scattering),
and solar zenith angle (SZA; Galvão et al., 2011). This is es-
pecially valid for images acquired over vegetated surfaces by
large field-of-view (FOV) instruments such as the Moderate
Resolution Imaging Spectroradiometer (MODIS; Bhandari
et al., 2011). MODIS has a wide swath scanning ±55◦ from
nadir on board the Terra and Aqua satellites. For example, a
reflected signal coming from the backward-scattering direc-
tion of MODIS under a large VZA and close-to-zero relative
azimuth angle (RAA) between the satellite and Sun (Sun be-
hind the platform) is generally higher than that coming from
the nadir (VZA= 0◦) or forward-scattering direction (plat-
form facing the Sun at RAA= 180◦). Moreover, the SZA
also varies seasonally and across geographical locations, af-
fecting the number of shadows in the surfaces observed by
satellites (Galvão et al., 2013). Such view illumination ef-
fects are dependent on the land cover types, and their mag-
nitude relates to differences in biophysical properties of the
vegetation (Galvão et al., 2004; Sims et al., 2011). There-
fore, the vegetation anisotropy can be seen antagonistically
as sources of noise and biophysical information in the time
series analysis of vegetation indices (VIs) calculated from
MODIS. As a source of noise, one may consider that the re-
flected signal toward the large FOV satellite sensors varies
with distinct view illumination geometries of data acquisi-
tion over the same surface. As a source of information, one
may highlight that the anisotropy is land-cover-type depen-
dent, showing spectral variations that may be associated, for
instance, with changes in vegetation structure across differ-
ent forests.

To reduce the bidirectional effects as a source of noise,
a nadir-normalized dataset can be created. We can normal-
ize the surface reflectance of the MODIS bands to a specific
set of VZA and SZA, using the bidirectional reflectance dis-
tribution function (BRDF) represented by a model such as

the Ross–Thick Li–Sparse (RTLS; Wanner et al., 1995). To
ensure confidence in the data analysis, we can also use the
multi-angle implementation atmospheric correction (MA-
IAC) for atmospheric correction. MAIAC is a new gener-
ation of cloud screening and atmospheric correction algo-
rithm that uses an adaptive time series analysis and process-
ing of groups of pixels to derive atmospheric aerosol con-
centration, cloud mask, and surface reflectance without typ-
ical empirical assumptions (Lyapustin et al., 2011, 2012).
By mitigating atmospheric interference and advancing the
accuracy of surface reflectance over tropical vegetation by
a factor of 3 to 10, MAIAC offers substantial improvement
over conventional products such as the MOD09 (Hilker et al.,
2012). Because of the better data quality retrieval, MAIAC
is also an alternative to the MCD43A4 16 d Nadir Bidirec-
tional Reflectance Distribution Function (BRDF)-Adjusted
Reflectance (NBAR) product due to the less variable seasonal
signal (3 to 10 times) over evergreen forests resultant from
reduced effects of sun view geometry. While the MCD43A4
NBAR product offers view illumination correction, by us-
ing the MAIAC products, one can also correct for solar illu-
mination effects at the same time. Due to the improvements
in cloud detection, aerosol retrieval, and atmospheric correc-
tion, the MAIAC algorithm provides from 4 % to 25 % more
high-quality retrievals than the traditional MOD09 product,
with the largest estimate being observed for tropical regions
(Lyapustin et al., 2021). Studies have used MODIS MAIAC
observations with nadir-normalized geometry to assess the
Amazon forest structure, functioning, and impacts of envi-
ronmental and climate change (Hilker et al., 2014; Wagner
et al., 2017; Anderson et al., 2018; Dalagnol et al., 2018;
Fonseca et al., 2019; Bontempo et al., 2020; Gonçalves et
al., 2020; Zhang et al., 2021). For instance, such products
have provided a reliable time series of surface reflectance
data that allowed the identification of large-scale communi-
ties of bamboo species and their dynamics in the southwest-
ern Amazon (Dalagnol et al., 2018). Last, by improving the
cloud screening and minimizing BRDF artifacts in compar-
ison to uncorrected data, the MAIAC greatly contributed to
the understanding of the long-standing debate in the Ama-
zon over the possible existence of the green-up phenomenon
observed during the dry season of each year or with severe
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droughts (Morton et al., 2014; Bi et al., 2015; Saleska et al.,
2016; Wu et al., 2018). The existence of this phenomenon
has implications on the comprehension of the resilience of
tropical forests to climate change.

To use the bidirectional effects as a source of information,
we generate an anisotropy dataset that is dependent on land
cover types and captures the variations in sunlit and shaded
canopy components viewed by the sensors (Chen et al., 2003;
Gao et al., 2003). The use of multi-angular information to
obtain the metrics of anisotropy and extract information on
forest structure was suggested 2 decades ago (Gobron et al.,
2002; Diner et al., 2005). One of the early experiments ex-
ploring the use of anisotropy to extract information about
vegetation structure was conducted by calculating the ratio
between backward- and forward-scattering data and generat-
ing the anisotropy index (ANIX) for studying short-stature
grass-type vegetation (Sandmeier et al., 1998). Other indices
have been developed and validated afterwards (Schaaf et al.,
2002; Lacaze et al., 2002; Chen et al., 2005; Pocewicz et
al., 2007; de Moura et al., 2015; Sharma, 2021). However,
this remains an understudied topic, with limited results re-
ported in the literature, especially in tropical regions. For
instance, observations from the Multi-angle Imaging Spec-
troRadiometer (MISR)/Terra in the backward- and forward-
scattering directions facilitated the discrimination of savanna
physiognomies in Brazil (Liesenberg et al., 2007). MODIS
MAIAC data from both directions were also used to calculate
an anisotropic VI that explained part of the large-scale pho-
tosynthetic activity in the Amazon, where higher photosyn-
thetic activity was associated with higher anisotropy values
(de Sousa et al., 2017). De Moura et al. (2015) employed a
more sophisticated approach based on scattering at backward
and forward view directions using multi-temporal and multi-
angular observations of MAIAC MODIS and BRDF mod-
eling. The resultant metrics of anisotropy were further vali-
dated against field and airborne light detection and ranging
(lidar) observations, showing strong linear relationship with
leaf area index (LAI;R2

= 0.70–0.88), canopy heterogeneity
(R2
= 0.54), and photosynthetic activity (R2

= 0.73–0.98;
de Moura et al., 2015, 2016; Hilker et al., 2017). Although
showing great potential in vegetation studies, the aforemen-
tioned anisotropy metrics were never computed over larger
areas of the world as is proposed in this study for South
America.

The objective of this work is to present the AnisoVeg prod-
uct, and how it can be used for vegetation studies. We use
MODIS Collection 6 (C6) MAIAC (Lyapustin et al., 2018)
monthly data (2000–2021) generated at 1 km spatial reso-
lution for the entire South American continent, with two
different types of layers, i.e., (1) nadir-normalized (NAD)
data, for the surface reflectance of MODIS bands 1 to 8 and
two VIs (normalized difference vegetation index, NDVI, and
enhanced vegetation index, EVI), and (2) anisotropy data
(ANI), calculated from the difference between backward-
and forwarding-scattering estimates of bands 1 to 8 and VIs

Table 1. MODIS spectral bands. NIR is for near-infrared, and
SWIR is for shortwave infrared.

Band Band Wavelength
number name (nm)

1 Red 620–670
2 NIR-1 841–876
3 Blue-1 459–479
4 Green 545–565
5 NIR-2 1230–1250
6 SWIR-1 1628–1652
7 SWIR-2 2105–2155
8 Blue-2 405–420

(de Moura et al., 2015). The motivations for generating this
product extend from developing applications of multi-angle
observations for vegetation studies to producing analysis-
ready and openly available datasets of anisotropy and nadir
metrics for a larger community of users. The paper is orga-
nized in several sections to present the processing steps for
generating the AnisoVeg products, a brief evaluation of data
products over experimental areas, and, finally, an example of
its potential application in vegetation studies.

2 Methodology to compute the AnisoVeg product

2.1 Daily MODIS MAIAC surface reflectance data over
South America

Daily surface reflectance data were obtained from the
MODIS product MCD19A1 v006 (collection 6) for the tiles
covering South America (Fig. 1). According to the MODIS
traditional tiling system, these tiles ranged from 9–14 (hori-
zontal) and 7–14 (vertical). The input data consisted of cross-
calibrated surface reflectance from Terra and Aqua satel-
lites on eight spectral bands (Table 1), with 1 km spatial
resolution from 2000 to 2021 (Lyapustin and Wang, 2018;
https://doi.org/10.5067/MODIS/MCD19A1.006). This prod-
uct provides surface reflectance data corrected for atmo-
spheric effects by the MAIAC algorithm and is controlled for
cloud-free and clear-to-moderately-turbid conditions with
aerosol optical depth (AOD) at 0.47 µm below 1.5 (Lya-
pustin et al., 2018). The MAIAC algorithm uses a time se-
ries approach for improved cloud filtering, amongst other
filters such as surface reflectance change, in order to pro-
vide the most accurate surface reflectance estimates. The raw
data were obtained from NASA’s Level-1 and Atmosphere
Archive and Distribution System (LAADS) Distributed Ac-
tive Archive Center (DAAC; available at https://ladsweb.
modaps.eosdis.nasa.gov/archive/allData/6/MCD19A1/, last
access: 16 January 2023).
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Figure 1. AnisoVeg product concept and the area of coverage. (a) Schematic representation showing the observational geometry and the
processing steps for producing NAD and ANI data from MODIS and to provide information on vegetation heterogeneity and structure.
(b) The visualization of the anisotropy EVI (EVIANI) for South America from August 2021 at 1 km spatial resolution, showing the coverage
of the product in South America and the location of three sites used to demonstrate potential applications. The sites are (1) Tapajós National
Forest, (2) São Félix do Xingu, and (3) Xingu Indigenous Park. Red lines indicate the country boundaries.

2.2 The AnisoVeg product

The AnisoVeg product consists of two main types of data,
spanning from 2000 to 2021, in monthly composites at 1 km
spatial resolution, with (a) the nadir-normalized (NAD) data
and (b) the anisotropy (ANI) data. Each data type has 10 lay-
ers, corresponding to the MODIS bands 1 to 8, and two VIs
(NDVI and EVI). Additionally, the product provides auxil-
iary layers of backward scattering and forward scattering, in-
cluding part of the bands (description in Sect. 5).

2.2.1 The nadir-normalized (NAD) data

In order to minimize the differences in sun sensor geometry
between the MODIS scenes and generate the NAD dataset,
the daily surface reflectance data were normalized to a fixed
45◦ SZA and to the nadir observation (VZA= 0◦) using the
BRDF and the RTLS model (Wanner et al., 1995). The pa-
rameters of the RTLS BRDF model are part of the MA-
IAC product suite (MCD19A3 product) reported every 8 d.
The MAIAC algorithm detects significant land cover changes

(e.g., fire and deforestation) within the 8 d period and does
not use those observations for the BRDF inversion (Lya-
pustin et al., 2018). A minimum of three observations in
the 8 d window was required to accurately model the signal.
The closest RTLS parameters in time were used to normal-
ize the daily data. The normalized bidirectional reflectance
factor (BRFn) for the NAD surface reflectance (SZA= 45◦,
VZA= 0◦, and RAA= 0◦) was calculated using Eq. (1) as
follows (Lyapustin et al., 2018):

BRFn= BRF×
kL
+F0V× k

V
+F0G× k

G

kL+FV× kV+FG× kG
, (1)

where kL, kV, and kG are the BRDF isotropic, volumet-
ric, and geometric optical kernel weights, respectively. F0V
and F0G are the BRDF kernel values for the given geom-
etry listed in Table 2. FV and FG are the kernel values of
the RTLS model for the specific MODIS observation, respec-
tively (Lyapustin et al., 2018). FV and FG values are available
at 5 km cells and were resampled to 1 km using the nearest-
neighbors method to match the spatial resolution of the spec-

Earth Syst. Sci. Data, 15, 345–358, 2023 https://doi.org/10.5194/essd-15-345-2023



R. Dalagnol et al.: AnisoVeg 349

tral bands. This resampling step does not create spatial arti-
facts in the data because the geometry changes slowly over
time (Lyapustin et al., 2018).

We aggregated the normalized daily data into monthly
composites by keeping the median values for each pixel. Dur-
ing the temporal aggregation, we also calculated the per-pixel
number of samples (or observations) for each monthly com-
posite, which can be used as auxiliary data to filter pixels
with a low number of observations (less reliable estimates
of surface reflectance). The tiles were mosaicked for the en-
tire South American continent and then re-projected from the
original sinusoidal projection to the geographic coordinates
system (datum WGS 84; EPSG: 4326). The output spatial
resolution corresponded to 0.0091◦, which is approximately
equivalent to 1 km in projected coordinates.

We also calculated two traditional vegetation indices,
namely NDVI (Rouse et al., 1974; Eq. 2) and EVI (Huete
et al., 2002; Eq. 3).

NDVI=
ρNIR− ρRed
ρNIR+ ρRed

(2)

EVI= 2.5×
ρNIR− ρRed

ρNIR+ (6× ρRed− 7.5× ρBlue)+ 1
, (3)

where ρ is the surface reflectance of a MODIS band, ρNIR
is the NIR reflectance (band 2), ρRed is the red reflectance
(band 1), and ρBlue is the blue reflectance (band 3). The
constants in Eq. (3) (bands 6, 7.5, 1, and 2.5) represent the
aerosol coefficient adjustment of the atmosphere for the red
and blue bands, the adjustment factor for the soil, and the
gain factor, respectively (Huete et al., 2002).

2.2.2 The anisotropy (ANI) data

For the ANI data, the daily surface reflectance data
were first normalized to two viewing angles at the
backward (SZA= 45◦, VZA= 35◦, RAA= 180◦) and for-
ward (SZA= 45◦, VZA= 35◦, RAA= 0◦) scattering, us-
ing Eq. (1) and values from Table 2. The VZA was set
to the near-hot spot (VZA= 35◦) instead of the actual hot
spot (VZA= 45◦) to keep VZA closer to the actual range
of MODIS observations across the South American conti-
nent and minimize errors coming from the extrapolation of
the BRDF (de Moura et al., 2015). The standard deviation
for this modeling was thoroughly investigated in a previ-
ous study and determined to be 10 % of the observed vari-
ation in anisotropy (de Moura et al., 2015). Furthermore, we
aggregated the backward- and forward-scattering data tem-
porally into monthly composites following the same proce-
dures as before for the NAD data. We then calculated the
NDVI and EVI for each viewing angle normalization. Fi-
nally, we obtained the difference between backward- and
forward-scattering estimates for each of the eight MODIS
bands, in addition to the NDVI and EVI, effectively generat-

ing the ANI layers as follows (Eq. 4; de Moura et al., 2015):

ANIi = Backwardi −Forwardi, (4)

where i is the spectral band or VI selected in the calculation.

2.3 Algorithm and computation

All data processing was done in R v4.0.2 (R Core Team,
2016), and the code is available from GitHub (https:
//github.com/ricds/maiac_processing, last access: 16 Jan-
uary 2023; Dalagnol and Wagner, 2022). Besides process-
ing the AnisoVeg product from the daily MAIAC MODIS
data, the code can also generate 16 or 8 d temporal com-
posites, mosaics, and VIs. Although we focused on South
America when developing AnisoVeg, the code can readily be
adapted to process data for other parts of the world and gen-
erate corresponding NAD and ANI layers. Below, we provide
the computer specification for anyone who wishes to process
the data independently.

For the presented dataset, the computation was performed
using a HP Z840 workstation with Intel Xeon CPU E5-2640
V3 (2.60 GHz; 32 cores) and 64 GB (gigabytes) RAM. The
daily MODIS data for the whole South American continent
from 2000 to 2021 accounted for 6.69 TB (terabytes). Pro-
cessing monthly composites is computationally intensive due
to loading all of the daily data for each month at once for a
given tile. Thus, the main bottlenecks are for RAM and hard
drive writing speed. For the workstation with 64 GB memory,
the usage of 10 cores running in parallel processing was the
optimal choice. The average processing time of each monthly
composite for one tile was 6 min. Therefore, it took 26.2 h to
process the 262 composites (March 2000 to December 2021)
for each tile. Since we had 31 tiles covering South Amer-
ica, the total amount of time to process one viewing normal-
ization was approximately a month (33.8 d). Consequently,
the total time spent in computation was 101.5 d for process-
ing the three viewing normalizations (nadir, backward, and
forward scattering) and generating the NAD and ANI lay-
ers. Processing can also be done with less potent computers
with a minimum of 16 GB RAM memory and four process-
ing cores.

2.4 Time series availability and uncertainty

The monthly compositing process returned a time series
dataset over all of the South American continent, with an
average of 242± 35 out of a maximum of 262 composites
(period between March 2000 and December 2021) for each
pixel, with some data missing due to a lack of high-quality
observations (Fig. 2). Only 34.3 % of the available pixels
have the full time series (262 composites). The Amazon re-
gion shows a lower mean number of samples in the time se-
ries, with an average of 231± 29 composites, which can be
seen in Fig. 2. This lower number of samples is due to the

https://doi.org/10.5194/essd-15-345-2023 Earth Syst. Sci. Data, 15, 345–358, 2023

https://github.com/ricds/maiac_processing
https://github.com/ricds/maiac_processing


350 R. Dalagnol et al.: AnisoVeg

Table 2. Viewing angle normalizations and corresponding BRDF kernel values.

Viewing angle Solar zenith angle View zenith angle Relative azimuth F0V F0G
(SZA, ◦) (VZA, ◦) angle (RAA, ◦)

Nadir 45 0 0 −0.04578 −1.10003
Backward scattering 45 35 180 0.22930469 0.017440045
Forward scattering 45 35 0 −0.12029795 −1.6218740

innate high cloud cover (Durieux et al., 2003). It is impor-
tant to note that the AnisoVeg product was strictly created
to analyze the land surface and does not cover waterbodies.
Moreover, the period between March 2000 and June 2002
has higher amounts of missing data because it preceded the
launch of the Aqua satellite. When data from both satellites
(Terra and Aqua) were combined to create the product af-
ter 2002, we had a much better pixel-level data availability to
produce dense time series. Although we have a dense time se-
ries across the Amazon Rainforest (Fig. 2a), the mean num-
ber of daily observations within a month for this region is
relatively lower than that observed in more dry and seasonal
regions of South America (Fig. 2b). Thus, we suggest using
a number of sample layers as a proxy for the uncertainty in
the retrieval of monthly composites to filter out pixels with a
low number of samples (e.g., less than three observations per
composite). The lower the number of samples 1 pixel has, the
higher the uncertainty in the data analysis. Although we use
the median values to aggregate observations within months
and mitigate potential land cover changes, stand-replacing
changes may cause inaccurate anisotropy estimates for the
given monthly estimates. Hence, we advise filtering data for
land use and land cover changes before using them to obtain
the most accurate anisotropy estimates.

3 Spatial and temporal distribution of NAD and ANI
data across the Amazon forest

We selected three experimental areas in the Brazilian Ama-
zon Rainforest to show the spatial and temporal distribution
of NAD and ANI data (rectangles in Fig. 1). These areas
show old-growth rainforests with a distinct canopy struc-
ture and aboveground biomass (AGB) stocks. The AGB in-
creases from semi-deciduous forests at Xingu Indigenous
Park (190±19 Mg ha−1) and open ombrophilous forests with
lianas at the São Félix do Xingu (241± 31 Mg ha−1) to
dense ombrophilous forests at the Tapajós National Forest
(288± 38 Mg ha−1), as estimated by the ESA/CCI (Climate
Change Initiative) AGB map from 2017 (Santoro and Car-
tus, 2021). These are large-scale AGB estimates and may
underestimate the true AGB at higher values such as in the
Tapajós site. These three sites are also expected to show dif-
ferent phenological dynamics because their selected pixels
cover distinct phenoregions in the study reported by Xu et
al. (2015).

When compared to the nadir-normalized EVI (EVINAD)
images (Fig. 3a–c), the anisotropy EVI (EVIANI) data
showed different spatial patterns across sites (Fig. 3d–f).
While the forests over the three sites showed approxi-
mately similar EVINAD values (EVINAD ≈ 0.50; Fig. 3a–
c), they showed more variability in EVIANI between the
Xingu Indigenous Park (EVIANI > 0.20), São Félix do
Xingu (EVIANI > 0.24), and Tapajós (EVIANI > 0.27) sites
(Fig. 3d–f). This increase in EVIANI between sites goes into
the same direction of the AGB gradient observed from the
Xingu Indigenous Park to the Tapajós National Forest. This
result may indicate different forest canopy structures that
were not captured in the EVINAD observations but were cap-
tured by the EVIANI. Overall, the EVIANI is high over forests
(0.20 to 0.30) and low over pastures and crops (less than
0.10). This means large anisotropy between the reflected en-
ergy in backward- and forward-scattering MODIS directions
due to the structural complexity of forest canopies. The asso-
ciation between anisotropy and forest canopy structure has
been previously shown for the same region in a previous
work (de Moura et al., 2016).

From the comparison of different sites (triangles in
Fig. 3a), we observed that the mean EVINAD signal over the
time period did not vary much between the selected forests,
while the EVIANI varied greatly (Fig. 4) for Tapajós (mean
EVINAD = 0.49; mean EVIANI = 0.27), São Félix do Xingu
(mean EVINAD = 0.51; mean EVIANI = 0.24), and Xingu
Indigenous Park (mean EVINAD = 0.51; mean EVIANI =

0.22). Moreover, EVINAD and EVIANI values were moder-
ately positively correlated at Tapajós (r =+0.37), weakly
correlated at São Félix do Xingu (r =+0.06), and mod-
erately negatively correlated at the Xingu Indigenous Park
(r =−0.28). The EVINAD and EVIANI seasonal variability
and phase correlation changes from site to site, suggesting
that different canopy dynamics processes are likely being
captured by the two metrics at the three sites. Understanding
exactly what those effects mean for these forests is beyond
the scope of this paper. However, it indicates open avenues
for studying forest functioning using these products. For ex-
ample, previous studies have shown that EVINAD metrics
captured different compositions of leaf ages in the canopies
of the central Amazon (Gonçalves et al., 2020).

To demonstrate the potential of AnisoVeg for a large-scale
forest structure inference, we compared the NAD and ANI
data against forest height measurements from the Global
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Figure 2. AnisoVeg time series availability and uncertainty over South America. (a) The number of composites in the time series representing
pixel availability. The maximum number of composites in the time series is 262 for the period between March 2000 and December 2021.
(b) Mean number of daily observations within a month used to create the monthly composites as a proxy for uncertainty. The maximum daily
observations in a composite is 60 (twice a day every day for a month).

Ecosystem Dynamics Investigation (GEDI) lidar sensor. We
found that EVIANI was able to explain up to 55 % of the
height variability in the Amazon forest, according to a sim-
ple linear relationship (R2

= 0.55; p < 0.01; Fig. 5). This is
a very strong predicting power for a single variable, consid-
ering a simple linear model, especially for satellite passive
optical data which are often underrated for forest structure
estimates in comparison to synthetic aperture radar (SAR)
data. EVINAD was significantly but weakly associated with
height variability (R2

= 0.16; p < 0.01), reinforcing the in-
crease in the explanation power owed to the anisotropy met-
rics built from multi-angle observations. The height data
were derived from the GEDI lidar sensor aboard the Interna-
tional Space Station. They were obtained more specifically
from the product GEDI L2A elevation and height metrics
data version 2 (footprint size 25 m) acquired from April 2019
to October 2020 (available dates at the time of download).
GEDI data were downloaded from Earthdata Cloud ser-
vice system (https://earthdata.nasa.gov, last access: 16 Jan-
uary 2023). We selected the relative height metric at the 98th
percentile (RH98), which represents the top canopy height.
The selected RH98 metric was averaged over each 1 km grid
cell and filtered using a threshold of greater than or equal
to 50 shots per kilometer squared to have a high confidence
of reliable height estimation representing the 1 km mean.
The AnisoVeg data used for this comparison were based
on the same time period as GEDI and filtered for EVINAD

larger than 0.35 to exclude non-forested areas. While we only
showed the plot for the strongest EVIANI :GEDI relationship
in June 2019 (Fig. 5), the other months also showed signif-
icant (p < 0.01) and strong relationships with R2, ranging
from 0.36 to 0.55 (mean R2

= 0.46). Future studies should
explore relationships using ANI from different months and
other indices, either alone or in combination with each other,
to further understand their significance for explaining forest
structure. This is important to determine how the anisotropy
data can contribute to aboveground biomass and carbon esti-
mates in conjunction with other sources of data such as those
from SAR sensors.

Terrain illumination is a factor of spectral variability
which can affect EVINAD determination and its relationship
with biophysical attributes of vegetation, as shown by pre-
vious literature (Huang et al., 2010; Chen and Cao, 2012).
Even at 1 km spatial resolution, EVIANI results of Figs. 3,
4, and 5 can be affected to some extent by terrain illumi-
nation effects observed locally at some sites. For instance,
topographic effects on EVIANI probably occurred at the São
Félix do Xingu site, where topographic roughness, observed
in SRTM (Shuttle Radar Topography Mission) data (results
not shown), was coincident with increased EVIANI values in
Fig. 3e. Furthermore, even in relatively flat terrains, varia-
tions in topographic aspect (surface orientation to the Sun)
can affect the EVI variability in MODIS data because of the
different amounts of energy reflected in the NIR towards the
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Figure 3. The spatial distribution in August 2020 (dry season) of the nadir-normalized enhanced vegetation index (EVINAD) is shown in
panels (a), (b), and (c) for Tapajós National Forest, São Félix do Xingu, and Xingu Indigenous Park, respectively. The corresponding results
for the anisotropy EVI (EVIANI) are shown in panels (d), (e), and (f), respectively. The triangles plotted over panels (a–c) indicate the sites
used to obtain the profiles in Fig. 4.

sensor by inclined surfaces in the forward- and backward-
scattering view directions. Such effects have been observed
in southern Brazil with MODIS at 250 m spatial resolution
and increased in magnitude at higher spatial resolution data
obtained by other sensors (Galvão et al., 2016). Therefore, it
may prove useful to include topographic variables in model-
ing exercises to offset these effects.

In a prospective analysis, we also explored the behavior of
the two EVI AnisoVeg metrics over the Amazonian phenore-
gions mapped by Xu et al. (2015). The EVINAD and EVIANI
monthly means over different phenoregions highlighted the
strong heterogeneity of the Amazon forest (Fig. 6). For in-
stance, the profiles showed strong differences between both
metrics from January to September in a phenoregion with
well-defined dry and wet seasons (phenoregion 1 in Fig. 6a at
Xingu Indigenous Park). Large differences between EVINAD
and EVIANI were also observed in some phenoregions with-
out a very long dry season in the northwestern Amazon (phe-
noregion 5 in Fig. 6e). On the other hand, EVINAD and
EVIANI showed temporal decoupling in phenoregion 3 lo-
cated in the central–eastern Amazon (Fig. 6c). Overall, while
the seasonality of EVINAD has been investigated by many

studies in the past, the seasonality of EVIANI is something to
be further explored with the support of auxiliary data (e.g.,
airborne lidar and field campaigns). This is important to bet-
ter understand the differences in seasonal patterns between
both AnisoVeg metrics.

4 Code and data availability

All code is available from the Zenodo repository
(https://doi.org/10.5281/zenodo.6561350; Dalagnol
and Wagner, 2022). The full dataset can be
found at the official AnisoVeg Zenodo repository
(https://doi.org/10.5281/zenodo.3878879; Dalagnol et
al., 2022). The dataset was organized in compressed files
(*.zip format), sub-divided by years (currently 2000–2021)
and layers (bands 1–8, NDVI, and EVI) for both nadir
normalization (code=NAD) and anisotropy (code = ANI).
The number of sample layers (code=NO_SAMPLES) is
also provided. Inside each compressed file are 12 image files
(*.tif format), with one per month, except for the year 2000,
which starts in March. The storage size for the whole dataset
is 162.6 GB. The data have a scale factor of 10 000 to reduce
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Figure 4. Time series of AnisoVeg’s MODIS enhanced vegetation index (EVI) from 2000 to 2021 for old-growth forests of (a) Tapajós
National Forest, (b) São Félix do Xingu, and (c) Xingu Indigenous Park. The black line indicates the nadir-normalized signal (NAD layer),
while the red line represents the EVI anisotropy (ANI layer). The profiles are the mean value of 3× 3 pixels, whose locations are indicated
by triangles in Fig. 3.

Figure 5. Relationship between forest height (GEDI mean RH98) and two AnisoVeg layers obtained in June 2019 over the Amazon.
(a) EVINAD and (b) EVIANI. The RH98 metric is the relative height at the 98th percentile, which represents the top of canopy height. A
total of 7000 random matching pixels were used in this analysis (1 % of 700 000 total matching pixels available), resulting from the filtering
of both GEDI and AnisoVeg data. The red line indicates the fitted line by a simple linear model.
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Figure 6. Monthly means of EVINAD (black) and EVIANI (red) for nine phenoregions mapped by Xu et al. (2015) in the Amazon. The
phenoregions are shown in increasing order from 1 to 9 in corresponding panels (a) to (i). They represent forests with similar seasonality
and landscape structure. Solid lines and shaded areas represent the mean and 95 % confidence interval around the mean. The values were
extracted from 20 years of data (from 2001 to 2021) for 100 random coordinates within each region and extracted from 3× 3 windows of
pixels.

Table 3. Examples of other multi-angular anisotropy indices that can be further calculated using the layers of the AnisoVeg product. Lambda
represents the selected spectral band or vegetation index. N, B, and F represent nadir view normalization, backward-scattering, and forward-
scattering estimates, respectively.

Anisotropy indices Formula Reference

Anisotropy index (ANIX) λB
λF

Sandmeier et al. (1998)
Nadir BRDF-adjusted NDVI (NDVIISO) NIRN−REDN

NIRN+REDN
Schaaf et al. (2002)

Hot spot and dark spot index (HDSRED) REDB−REDF
REDF

Lacaze et al. (2002)
Normalized difference between hot spot and dark spot index (NDHDNIR) NIRB−NIRF

NIRB+NIRF
Chen et al. (2005)

Hot spot and dark spot NDVI (NDVIHD) NIRB−REDF
NIRB+REDF

Pocewicz et al. (2007)
Hot-spot-incorporated NDVI (NDVIHS) NDVIN× (1−REDB) Pocewicz et al. (2007)
Anisotropy difference (ANI)∗ λB− λF de Moura et al. (2015)
Vegetation structure index (VSI) NDVIF−NDVIB

1−NIRF
Sharma (2021)

∗ ANI is included in the AnisoVeg product. Source adapted from Sharma (2021).
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the file storage size. Thus, to obtain surface reflectance
values of bands or correct the range of values for indices,
you should divide the layers by 10 000. The exception is
the number of samples, which already shows the correct
range of values (from 0 to 60 observations). It is planned
to update the dataset on a yearly basis. Auxiliary data that
allow the calculation of other anisotropy metrics (listed in
Table 3) are included in two separate Zenodo repositories
for backward (https://doi.org/10.5281/zenodo.6040300;
Dalagnol, 2022a) and forward scattering
(https://doi.org/10.5281/10.5281/zenodo.6048785;
Dalagnol, 2022b), including the selected layers (red,
NIR, NDVI, and EVI). The EVIANI and EVINAD layers
were also uploaded to the GEE platform using the geeup
tool v0.5.3 (Roy, 2022). They can be accessed through
the GEE ImageCollection assets (projects/anisoveg/asset-
s/evi_anisotropy and “projects/anisoveg/assets/evi_nadir),
which can be found at https://code.earthengine.google.
com/?asset=projects/anisoveg/assets/evi_anisotropy
(last access: 16 January 2023, Dalagnol, 2022d) and
https://code.earthengine.google.com/?asset=projects/
anisoveg/assets/evi_nadir (last access: 16 January 2023,
Dalagnol, 2022c).

5 Prospective use of the dataset

The NAD layers from the AnisoVeg product have been used
in previous studies to explore the climate drivers of the Ama-
zon forest greening (Wagner et al., 2017), the large-scale
Amazon forest sensitivity to drought (Anderson et al., 2018),
the structure and dominance of bamboo species in the south-
western Amazon (Dalagnol et al., 2018), the productivity in a
flooded forest in the eastern Amazon (Fonseca et al., 2019),
the productivity and relationship with sun-induced fluores-
cence over the Brazilian Caatinga biome (Bontempo et al.,
2020), the relationships in the leaf age demography in cen-
tral Amazon (Gonçalves et al., 2020), and the relationships
between fire disturbance and SAR-based vegetation optical
depth in southern Amazon (Zhang et al., 2021).

The ANI layers from the AnisoVeg product have been
mainly used to characterize the Amazon forest structure
properties (de Moura et al., 2015, 2016). These layers now
open new avenues of investigation for vegetation, including
(but not limited to) the characterization of biophysical at-
tributes of forests, including their seasonality and trends, the
assessment of changes in vegetation structure due to natu-
ral disturbances or degradation (logging, fire, and edge ef-
fects), and the evaluation of forest health and productivity
(greenness and browning). We expect that this dataset con-
tributes to upscaling studies over large areas of key forest
properties, such as the AGB and canopy roughness (Foody
and Curran, 1994; Saatchi et al., 2008). This information is
required for dynamic vegetation models to accurately rep-
resent the carbon cycle. This dataset is not limited to the

study of Amazonian forests and can be used to explore other
biomes of South America, such as the Atlantic Forest, savan-
nas (Cerrado), Caatinga, Chaco, Pantanal, and Pampas. Such
studies could improve our understanding of large-scale veg-
etation functioning, carbon storage, and cycling. Ultimately,
they can contribute to refining global ecosystem models and
obtaining accurate estimates of the carbon cycle in response
to climate and environmental change. Furthermore, auxil-
iary backward- and forward-scattering data are also available
with the dataset. Beyond the use of the provided ANI layers,
this effectively allows the computation of several other multi-
angular anisotropy indices from the literature (Table 3). The
advantage (or disadvantage) of one specific anisotropy index
rather than others is not established in the literature, given
the range of vegetation applications and the lack of available
datasets to date. We calculated and provided only ANI, due
to its demonstrated relationships with Amazon forest struc-
ture and functioning (de Moura et al., 2015, 2016; Hilker et
al., 2017). However, we expect other indices, including ra-
tios and normalized differences between the backward and
forward scattering components and offer additional possibil-
ities for tropical vegetation studies which should be explored
in future studies.
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