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Abstract. Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global
food security. However, there is no high-resolution map of rice covering all of China. This study developed a new
rice-mapping method by combining optical and synthetic aperture radar (SAR) images in cloudy areas based on
the time-weighted dynamic time warping (TWDTW) method and produced distribution maps of single-season
rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy
was examined using 108 195 survey samples and county-level statistical data. On average, the user’s, producer’s,
and overall accuracy values over all investigated provincial administrative regions were 73.08 %, 82.81 %, and
85.23 %, respectively. Compared with the statistical data from 2017 to 2019, the distribution maps explained
83 % of the spatial variation of county-level planting areas on average. The distribution maps can be obtained at
https://doi.org/10.57760/sciencedb.06963 (Shen et al., 2023).

1 Introduction

As the fourth-largest grain crop in the world, rice contributed
8 % to global food production in 2019 (FAO, 2021). Rice is a
staple food for more than half of the world’s population and
plays an important role in ensuring global food security (El-
ert, 2014; Kuenzer and Knauer, 2013). The flooding of rice
paddy fields constitutes a major source of methane emissions
(IPCC, 2023; Mohammadi et al., 2020). Therefore, quickly
and accurately identifying the planting location of rice over
a large area is very important.

Most commonly, large-scale crop mapping takes advan-
tage of satellite data (Dong et al., 2020; Huang et al., 2022;

Xiao et al., 2006, 2005). Popular crop-mapping methods are
various machine learning methods, such as random forest
(Boryan et al., 2011; Fiorillo et al., 2020; You et al., 2021),
support vector machine (Zheng et al., 2015), and deep learn-
ing (Thorp and Drajat, 2021; Zhao et al., 2019; Zhong et
al., 2019). Machine learning methods provide several advan-
tages in crop mapping but require training samples (Belgiu
and Csillik, 2018), commonly of the order of hundreds or
even thousands to obtain a satisfactory accuracy (Millard
and Richardson, 2015; Valero et al., 2016). For example,
the Cropland Data Layer (CDL) products produced by the
United States Department of Agriculture (USDA) use tens of
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thousands of training samples to map the crops of a single
state (Boryan et al., 2011). Therefore, such large-scale inves-
tigations are very time-consuming and labor-intensive.

Another crop-mapping approach is based on the detection
of specific phenological signals. Xiao et al. (2005, 2006) pro-
duced a 500 m resolution rice map of southern China, South-
east Asia, and South Asia using MODIS (Moderate Reso-
lution Imaging Spectroradiometer) data by comparing the
normalized difference vegetation index (NDVI) and the en-
hanced vegetation index (EVI) with the land surface water
index (LSWI). In addition, Dong et al. (2016) also used the
flood-detection method, producing a rice map with a 30 m
spatial resolution in Northeast Asia based on Landsat 8 data.
Because of the short flooding period, the influence of clouds
and rain in a few images will lead to missing the flooding sig-
nal and decreased accuracy; this results in high requirements
with respect to the image quality and time resolution (Dong
et al., 2016).

Additional crop-mapping approaches are the dynamic
time warping (DTW) and the time-weighted dynamic time
warping (TWDTW) methods, which do not consider the crop
characteristics within a certain time period but compare the
signals over an extended period (Belgiu and Csillik, 2018;
Qiu et al., 2017; Skakun et al., 2017; Zheng et al., 2022a).
Guan et al. (2016) mapped rice in Vietnam using the DTW
method based on MODIS NDVI data, reaching an R2 value
of 0.809. The TWDTW method, which is an improvement of
the DTW method, adds a penalty called the “time weight”
to the calculation to characterize the temporal difference,
thereby improving the identification accuracy (Maus et al.,
2016). The TWDTW method has been used in several stud-
ies to produce high-resolution crop maps of many kinds of
crops, including winter wheat, sugar cane, and maize (Dong
et al., 2020; Huang et al., 2022; Zheng et al., 2022b; Shen et
al., 2022). A previous study also used the TWDTW method
to produce a map of double-season paddy rice in China using
the vertical–horizontal (VH) band signal from the Sentinel-1
satellite (Pan et al., 2021).

Because of the flooding during rice planting, the tradi-
tional rice-mapping methods use water indexes derived from
optical images, such as the LSWI (Xiao et al., 2002, 2005).
However, optical images are greatly impacted by clouds,
heavily limiting their availability in cloudy regions (Li and
Chen, 2020; Sudmanns et al., 2020; Zhou et al., 2019). An
alternative is the use of synthetic aperture radar (SAR) im-
ages. Compared with the optical signal, the SAR signal can
penetrate through clouds, completely avoiding their influence
(Oguro et al., 2001; Phan et al., 2018). Several studies have
demonstrated the capability of SAR in rice identification and
obtained good mapping results at the regional scale (Nguyen
et al., 2016; Han et al., 2021; Pan et al., 2021). However,
compared with optical data, SAR data also have more signif-
icant salt-and-pepper noise, which may affect the accuracy
of distribution maps (Oliver and Quegan, 2004).

China is the world’s largest rice producer, and it produced
209.61× 106 t of rice in 2019 (National Bureau of Statistics
of China, 2020). Except for a few provinces in southeastern
China, most of the rice-planting provinces are dominated by
single-season rice. Although there are many previous studies
on mapping rice in China, a high-resolution single-season
rice map is still not available for the entire country. This
study attempts to fill this gap and aims to (1) develop a new
phenology-based method for rice mapping, (2) produce high-
resolution distribution maps of single-season rice in China
from 2017 to 2022, and (3) evaluate the accuracy of the
identified areas using county-level statistical data and survey
samples.

2 Data and methods

2.1 Study area

This study was conducted in 21 provincial administra-
tive regions in mainland China, where the total planting
area of single-season rice was 19.92× 106 ha, accounting
for approximately 99.01 % of the total planting area of
single-season rice in mainland China according to the sta-
tistical data for 2018 (https://data.stats.gov.cn, last access:
25 July 2023). The total production of the single-season rice
in the study area was 150.46× 106 t, accounting for approx-
imately 98.91 % of the total production in mainland China
in 2018. As single-season rice is widely planted in China,
this study further divided the study area into four subregions
(Fig. 1). Subregion I is the northern rice-planting area, in-
cluding Heilongjiang, Jilin, Liaoning, Inner Mongolia, and
Ningxia. Because of temperature limitations, only single-
season rice is planted in this subregion, with the transplan-
tation period generally between late May and the middle of
June. Subregion II is the southern central single-season rice-
planting area, including provinces that only or mainly plant
single-season rice (Jiangsu, Anhui, Hubei, Henan, Shan-
dong, Shaanxi, and Shanghai) and provinces where single-
season and double-season rice are both planted (Hunan
and Jiangxi). The single-season rice in this subregion is
generally transplanted between middle–late May and late
June. Subregion III is the southeastern coastal single-season
rice-planting area, including Zhejiang, Fujian, and Guangxi.
Here, single-season rice may be transplanted later than in
Subregion II, generally between middle–late May and early
July. Subregion IV is the southwestern rice-planting area, in-
cluding Sichuan, Yunnan, Guizhou, and Chongqing. Single-
season rice in this subregion is transplanted much earlier
than in other subregions, generally between late April and
the middle of May.
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Figure 1. The study area includes 21 provincial administrative regions in China and is divided into four subregions (shaded areas). The black
dots indicate the samples obtained from the survey and the green triangles indicate the unoccupied aerial vehicle (UAV) survey sites.

2.2 Data

2.2.1 Satellite data and land cover data

The satellite data used in this study were from the Sentinel
series launched by the European Space Agency (ESA). The
SAR data were obtained from the Ground Range Detected
(GRD, Level-1) product of Sentinel-1A, and the optical data
were obtained from the Level-1C product of Sentinel-2. The
SAR data used in this study were the VH band (dual-band
cross-polarization, vertical transmit–horizontal receive) at a
spatial resolution of 10 m and were composited into a 12 d
temporal resolution by median. Optical data included 10
bands: blue, green, red, and near-infrared (NIR) at a 10 m
spatial resolution and red edge 1 (RE1), red edge 2 (RE2),
red edge 3 (RE3), red edge 4 (RE4), shortwave infrared 1
(SWIR1), and shortwave infrared 2 (SWIR2) at a 20 m spa-
tial resolution. Additionally, two indexes, the NDVI and
LSWI at a 10 m spatial resolution, were calculated using the
following equations:

NDVI=
ρNIR− ρred

ρNIR+ ρred
, (1)

LSWI=
ρNIR− ρSWIR1

ρNIR+ ρSWIR1
. (2)

Here, ρNIR, ρred, and ρSWIR1 are the reflectances of the NIR,
red, and SWIR1 bands of Sentinel-2, respectively.

The Sentinel-2 Cloud Probability (S2C) product
(https://developers.google.com/earth-engine/datasets/
catalog/COPERNICUS_S2_CLOUD_PROBABILITY, last
access: 25 July 2023) was used to eliminate the influence of
clouds. The product provides a cloud probability from 0 to
100 at a 10 m resolution, which has a higher resolution than
the original QA60 band of the Sentinel-2 dataset and is more
flexible and accurate. In this study, the threshold of cloud
probability was set to 50; pixels with a higher probability
were regarded as clouds and removed. Considering the
length of the transplantation period and the number of
cloud-free images of each subregion, the optical data were
composited to a 12 d (Subregion I) or 6 d (subregions II, III,
and IV) temporal resolution by median. Figure 2 shows the
percentage of good optical observations during the study
period of each pixel in the study area. A linear interpolation
was applied to fill the gaps in the time series. To further
eliminate the noise in the time series of Sentinel-1 and
Sentinel-2 images, a Savitzky–Golay (SG) filter with the
order set to two and the window size set to five was applied
to smooth the time series (Chen et al., 2004). All of the
preprocessing was completed on the Google Earth Engine
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Figure 2. (a) The percentage of good Sentinel-2 observations during the 2017–2022 study period. Panels (b)–(g) show the frequencies of
the percentages of good observations in each province during the study period of each year.

(GEE) platform (Gorelick et al., 2017). This study also used
the Finer Resolution Observation and Monitoring of Global
Land Cover (FROM-GLC) product as a mask to exclude
noncultivated areas (Gong et al., 2019).

2.2.2 Field data and agricultural statistical data

The field data were obtained through several field surveys
that we conducted across China during the 2017–2021 pe-
riod, including 37 036 samples of single-season rice and
71 159 samples of other crops (e.g., double-season rice,

Earth Syst. Sci. Data, 15, 3203–3222, 2023 https://doi.org/10.5194/essd-15-3203-2023



R. Shen et al.: High-resolution distribution maps of single-season rice in China 3207

Table 1. Number of available county-level statistical data.

Province Total number 2017 2018 2019
of counties

Heilongjiang 128 0 0 0
Jilin 60 49 50 50
Liaoning 100 20 21 21
Inner Mongolia 102 0 0 0
Ningxia 22 10 10 10
Jiangsu 99 66 71 60
Anhui 104 57 90 68
Hubei 103 78 78 77
Hunan 122 111 119 117
Jiangxi 100 23 22 22
Henan 158 39 50 38
Shandong 137 18 18 18
Shaanxi 107 21 21 21
Shanghai 17 9 9 9
Zhejiang 90 22 17 22
Fujian 85 24 19 20
Guangxi 110 44 29 27
Sichuan 183 95 102 102
Yunnan 129 125 125 125
Guizhou 88 56 56 56
Chongqing 38 37 37 37

maize, soybean, and peanuts), forests, built-up areas, wa-
terbodies, etc. An unoccupied aerial vehicle (UAV; eBee,
senseFly Ltd., Switzerland) was used in some of our sur-
veys to take very high resolution images covering on aver-
age 0.1 km2. The images were visually interpreted to obtain
sample points at a spatial resolution of 20 m. The province-
level agricultural statistical data are published in the statisti-
cal yearbook of each province, and the county-level statisti-
cal data are published sporadically in the statistical yearbook
of each province or city. As the release of data usually lagged
by 2 years or more and the single-season rice-planting areas
were not published in many counties, this study only col-
lected a total of 2748 county-level statistical single-season
rice-planting area data from 2017 to 2019 (Table 1). No
available county-level statistical data were collected for Hei-
longjiang and Inner Mongolia due to the discrepancies be-
tween the administrative division and statistical caliber.

2.3 Method

Figure 3 shows the flow of the single-season rice-mapping
method proposed in this study, including the following four
steps: (1) preprocessing of the Sentinel data, (2) calcula-
tion of the distances of SAR and optical bands separately
using the TWDTW method with translation and stretching,
(3) combination of the distances of the two bands using a
weighted sum, and (4) generation of a distribution map using
a threshold determined by the provincial-level statistics.

Figure 3. The conceptual flowchart of the method.

2.3.1 Time-weighted dynamic time warping method

This study generated a single-season rice distribution map by
comparing the dissimilarity of the time series of each pixel
with the standard time series of rice. The TWDTW method
was used to calculate the dissimilarity (Petitjean et al., 2012;
Dong et al., 2020). In this method, the unknown time series
is nonlinearly stretched or compressed to align with the stan-
dard single-season rice time series, and an accumulated dis-
tance is then calculated by cumulating the distance of the
alignment path. The accumulated distance of all possible
alignments is calculated, and the minimum accumulated dis-
tance is used to represent the dissimilarity of two time series.
Considering the phenophases of crops, a penalty called the
time weight is added to the calculation (Maus et al., 2016).
When the time series is stretched or compressed, the differ-
ence caused by the dislocation of time axes is calculated, and
a function (e.g., logistic function) is used to convert the time
difference into a time weight. As a result, the TWDTW mea-
sures the difference between two time series by considering
both shape and phenological information. Parameters of the
TWDTW employed in this study were suggested by Belgiu
and Csillik (2018), using a logistic function with α and β set
to 0.1 and 50, respectively. Finally, the single-season rice was
identified via a threshold of dissimilarity determined by the
province-level statistical area. The total area of pixels with a
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dissimilarity lower than the threshold was equal to the statis-
tical area.

2.3.2 Optical band selection

The common method of rice establishment is transplanta-
tion. Rice seeds are first planted in a small field or a nursery
and then subsequently transplanted to the main field after the
rice seedlings reach the three-leaf stage. The transplantation
method can be divided into machine transplanting, manual
transplanting, and seedling throwing. All of the transplan-
tation methods require the field to be flooded, which is the
main feature that distinguishes rice from other crops. Fig-
ure 4 shows the time series of all 10 optical bands or in-
dexes of four main crops in Jilin Province in 2019. It can
be seen that the time series of rice for three moisture-related
bands or indexes, including the SWIR1, SWIR2, and LSWI,
are significantly different from those of other crops during
the transplantation period (day of the year, DOY, 133–181).
The LSWI is designed to characterize land surface moisture,
and its value positively correlates with land surface moisture,
showing a high value during the transplantation period. In
contrast, the two SWIR bands show the opposite: they first
decrease and then increase during the transplantation period,
following a “V” shape. As the aim of this study was to map
the distribution of single-season rice, the time series did not
necessarily need to be able to characterize a certain land sur-
face parameter like the LSWI. The priority was whether a
band or index could distinguish rice from other crops. As the
LSWI is calculated as the normalized difference between the
NIR and SWIR1 and the NIR of rice also decreases slightly
during the transplantation period, offsetting the LSWI in-
crease caused by the decrease in the SWIR1 erases some dif-
ferences and information. The change in the SWIR2 was less
pronounced than that in the SWIR1; therefore, the SWIR1
was selected to calculate the dissimilarity in this study.

The standard time series were generated using survey sam-
ples. A total of 50 single-season rice survey samples were
randomly selected from all single-season rice points in each
province. The SWIR1 time series of these samples were ex-
tracted, aligned according to the time when the minimum
value appears, and averaged to obtain the standard time se-
ries of each province. The standard time series of 21 provin-
cial administrative regions in four subregions all showed a
V shape (Fig. 5). The time period of the standard time se-
ries was limited to the transplantation period, and the length
of the standard time series was five values in Subregion I
and seven values in other subregions. Because the method is
transferable between years, the standard time series retrieved
from 1 year was used in all 6 years.

2.3.3 TWDTW with translation and stretching

Although the transplantation period of rice is short, farm-
ers may transplant single-season rice over a longer period.

Therefore, the V shape may appear earlier or later. In this
study, the standard time series was translated and stretched
along the time axis to match any possible period in which
transplantation might have occurred. To reduce the computa-
tional effort as well as to prevent overstretching, the standard
time series was allowed to stretch once at most. Taking Sub-
region I as an example, where rice is generally transplanted
from late May to the middle of June, the study period was set
to DOY 121–193, with a total of seven observations to take
decreasing and increasing phases of the V curve into consid-
eration. The length of the standard time series was five val-
ues, and time series within the study period with a length of
five or six values were selected to calculate the distance with
the standard time series using the TWDTW method (Fig. 6).
The minimum of all distances was selected to represent the
dissimilarity of the pixel. The study periods of subregions II,
III, and IV were set to DOY 121–199, DOY 121–211, and
DOY 97–163, respectively.

2.3.4 Combining SAR images in southern China

Compared with northern China, southern China is more
heavily affected by clouds and rain, resulting in worse-
quality optical observations (Fig. 2). This study introduced
SAR observations as auxiliary information in subregions II,
III, and IV, as SAR can pass through clouds. Specifically,
the VH band was used, as studies have shown that VH po-
larization is more sensitive than vertical–vertical (VV) po-
larization with respect to detecting field flooding (Nguyen
et al., 2016; Wakabayashi et al., 2019). The VH time series
of rice in the transplantation period also shows a V shape
(Fig. 7). Although the shape of the rice curve differs from
that of the other crops, their values partly overlap. As a co-
herent radar system, SAR images will inevitably carry salt-
and-pepper noise (Veloso et al., 2017). Therefore, VH was
only used when the quality of optical observations was ex-
tremely poor.

First, the dissimilarity between an unknown VH time se-
ries and the standard VH time series was calculated at each
pixel using the TWDTW method. The standard VH time se-
ries was generated using the same procedure as for SWIR1
(Sect. 2.3.2). The VH study periods of subregions II, III, and
IV were set to DOY 121–193, DOY 121–205, and DOY 97–
169, respectively (Fig. 8). Second, as the distances calculated
from different bands (SWIR1 and VH) were related to their
values, SWIR1 is the reflectance and has a value ranging
from 0 to 1, whereas VH is the backscattering coefficient
and has a value ranging from −50 to 1 dB. Therefore, the
distances calculated from these two bands are not compara-
ble. In order to combine the distances of the two bands, the
distance was replaced by the ranking of the pixel by sorting
the distance. Specifically, the distances calculated from the
two bands were sorted separately, and the ranking of pixels
ranged from one to the total number of cropland pixels. No-
tice that the area of a 20 m resolution SWIR1 pixel is equiv-
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Figure 4. Time series of 10 optical bands or indexes over four main crop types in Jilin Province in 2019. Solid lines indicate the average
time series and the shaded error bands represent the standard deviations.

alent to four 10 m resolution VH pixels. That means the to-
tal number of SWIR1 pixels is one-fourth of VH. Therefore,
the ranking of SWIR1 needed to be multiplied by 4 on each
pixel and resampled to a 10 m resolution. By following this
process, the rankings of two bands would be comparable and
the pixel sizes would correspond. Third, the combined dis-
similarity of each pixel was calculated by a weighted sum

of the rankings of two bands. As a weighted sum has been
used, the sum of the two weights should be equal to 1. There-
fore, only the weight of SWIR1 needs to be set here, and the
weight of VH can be calculated accordingly. In this study,
the weight of SWIR1 was determined based on the quality
of the optical images. Specifically, the times of good ob-
servations of the optical images were used to calculate the
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Figure 5. Standard SWIR1 time series of single-season rice in 21 provincial administrative regions in four subregions.

weight of SWIR1. Because the TWDTW method with trans-
lation stretching was used, the times of good observations
referred to the times of good observations during the period
corresponding to the minimum TWDTW distance of SWIR1
(Sect. 2.3.3). As the weight w needs to be between zero and
one, a function is required to map the number of good obser-
vations to a value between zero and one. The logistic function
is commonly used to perform this type of mapping in various
studies. This function was used to calculate the time weights
mentioned previously, and its special form, the sigmoid func-
tion, has also been utilized as an activation function in some
artificial neural networks (Maus et al., 2016; Han and Mor-
aga, 1995). The formula of the logistic function is as follows:

w =
1

1+ e−α(x−β) , (3)

where x represents the times of good observations and α and
β are parameters. Through a small range of tests, α and β
were set to 2 and 2.5, respectively. By setting the parameters,
w was close to 1 when x was greater than 3, and close to 0
when x was less than 2 (Fig. 9). A higher weight would only
be given to VH in the case of very poor optical observations.

The combined dissimilarity d was calculated as follows:

d = rSWIR1×w+ rVH× (1−w), (4)

where rSWIR1 and rVH are the ranking of SWIR1 and VH,
respectively.

A distribution map was generated from the combined dis-
similarity using the threshold mentioned in Sect. 2.3.1.
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Figure 6. A time series of SWIR1 in Jilin Province. The period be-
tween the dashed lines (DOY 121–193) is the study period. The five
green curves are the time series selected to calculate the distance
with the standard time series using the TWDTW method.

Figure 7. Time series of the VH band over four main crop types in
Henan Province in 2019. Solid lines indicate the average time series
and the shaded error bands represent the standard deviations.

2.3.5 Accuracy assessment

The study assessed the accuracy of distribution maps using
field data and county-level statistical areas. In this study, a
confusion matrix was used to show the classification of the
distribution map on the survey samples, and three accura-
cies were calculated, including the producer’s accuracy (PA),

user’s accuracy, and overall accuracy (OA), which were cal-
culated as follows:

PA=
TP

TP+FP
× 100%, (5)

UA=
TP

TP+FN
× 100%, (6)

OA=
TP+TN

TP+TN+FP+FN
× 100%. (7)

Here, TP is the number of correctly classified single-season
rice samples, TN is the number of correctly classified non-
single-season rice samples, FP is the number of non-single-
season rice samples classified as single-season rice, and FN
is the number of single-season rice samples classified as non-
single-season rice.

The county-level statistical planting areas from statistical
yearbooks were also used to verify the accuracy of distri-
bution maps by comparing them with the identified planting
area at the county level. The relationships between the iden-
tified areas and the statistical areas were evaluated by linear
regression. The coefficient of determination (R2) and the rel-
ative mean absolute error (RMAE) are calculated. The calcu-
lation equation of the RMAE is as follows:

RMAE=
∑n
i=1 |SAi − IAi |∑n

i=1SAi
, (8)

where SAi and IAi are the statistical area and identified area
of the ith county, respectively, and n indicates the number of
counties.

3 Results

This study generated distribution maps of single-season rice
from 2017 to 2022 in 21 provincial administrative regions
in China, and these maps reproduced the distribution of
single-season rice in China well (Fig. 10). The Northeast
China Plain, the Yangtze Plain, and the Sichuan Basin are
three major single-season rice production areas in China,
and single-season rice is planted most frequently in North-
east China Plain (Fig. 10). To show the distribution maps’
ability to represent the details of rice fields, we chose three
UAV sites and compared the distribution maps with very
high resolution UAV images (Fig. 11). Figure 11a and c
were taken in July and show single-season rice fields in
dark green (light green areas represent other planted vegeta-
tion). Figure 11b was taken in October, when single-season
rice was about to be harvested, and shows single-season rice
fields in yellow-green shades. Despite some noise, the single-
season rice fields were well classified in our distribution
maps (Fig. 11d, e, f).

The distribution maps show good performance in most of
the provincial administrative regions. On average, the user’s,
producer’s, and overall accuracy over all 21 provincial ad-
ministrative regions were 73.08 %, 82.81 %, and 85.23 %,
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Table 2. Confusion matrices of the distribution maps in 21 provincial administrative regions.

Province Class SRa Other UA (%) PA (%) OA (%)

Heilongjiang
SRb 164 5 89.13 97.04

95.70
Other 20 393 98.74 95.16

Jilin
SR 5598 16 90.32 99.71

96.77
Other 600 12 840 99.88 95.54

Liaoning
SR 5890 15 92.41 99.75

96.87
Other 484 9541 99.84 95.17

Inner Mongolia
SR 84 10 97.67 89.36

98.09
Other 2 531 98.15 99.62

Ningxia
SR 47 5 69.12 90.38

91.03
Other 21 217 97.75 91.18

Jiangsu
SR 2249 58 62.42 97.49

67.14
Other 1354 636 91.64 31.96

Anhui
SR 1133 168 54.55 87.09

63.88
Other 944 834 83.23 46.91

Hubei
SR 2034 206 87.18 90.8

87.31
Other 299 1441 87.49 82.82

Hunan
SR 397 62 62.92 86.49

83.77
Other 234 1131 94.80 82.86

Jiangxi
SR 603 622 70.2 49.22

67.18
Other 256 1194 65.75 82.34

Henan
SR 2694 57 95.80 97.93

99.13
Other 118 17 315 99.67 99.32

Shandong
SR 1977 241 72.47 89.13

89.60
Other 751 6566 96.46 89.74

Shaanxi
SR 454 43 71.50 91.35

84.18
Other 181 738 94.49 80.30

Shanghai
SR 128 7 83.12 94.81

88.13
Other 26 117 94.35 81.82

Zhejiang
SR 900 200 85.88 81.82

90.67
Other 148 2480 92.54 94.37

Fujian
SR 530 108 94.81 83.07

90.36
Other 29 754 87.47 96.30

Guangxi
SR 108 25 46.96 81.2

79.21
Other 122 452 94.76 78.75

Sichuan
SR 2031 353 62.51 85.19

77.16
Other 1218 3275 90.27 72.89

Yunnan
SR 78 72 69.64 52.00

88.87
Other 34 768 91.43 95.76

Guizhou
SR 1836 477 83.42 79.38

89.39
Other 365 5257 91.68 93.51

Chongqing
SR 486 408 54.30 54.36

71.07
Other 409 1521 78.85 78.81

a Number of field-surveyed single-season rice (SR) samples. b Number of identified SR samples.
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Figure 8. Standard VH time series of single-season rice in 16 provincial administrative regions in subregions II, III, and IV.

Figure 9. Times of good observations x and the corresponding
weights w of SWIR1.

respectively (Table 2). The average overall accuracies in
the four subregions were 95.69 %, 81.15 %, 86.75 %, and
80.18 %, respectively (Table 2). Subregion I (i.e., the north-
ern provinces) had higher accuracy, whereas the southern
provinces, especially the provinces in subregion IV (south-
west), had poor accuracy. The user’s and producer’s accu-
racies varied more between provinces than overall accu-
racy. The best user’s and producer’s accuracy all appeared
in the northern provinces. The best user’s accuracy was ob-
tained for Inner Mongolia (97.67 %), whereas the best pro-
ducer’s accuracy was found for Liaoning (99.75 %) (Table 2).
The lowest user’s accuracy appeared in Guangxi (46.96 %),
whereas the lowest producer’s accuracy appeared in Jiangxi
(49.22 %) (Table 2).

The county-level comparison with the statistical data
showed good performance. The identified area and statisti-
cal area had a very strong correlation, and the regression line
was very close to the 1 : 1 line over all 3 years (Fig. 12). The
slope ranged from 0.86 to 0.90, and the R2 values ranged
from 0.78 to 0.86.

Comparing each province, theR2 values of the distribution
maps compared with the statistical data ranged from 0.15 to
0.94, the slope ranged from 0.24 to 1.44, and the relative er-
ror ranged from 0.24 to 0.56 (Fig. 13). Subregion I had the
highest accuracy with an average R2 value of 0.92, followed
by Subregion II with an average R2 value of 0.70, and subre-
gions III and IV had poorer precision (both with an average
R2 value of 0.55). Several provinces with more mountainous
areas (Fujian, Guangxi, and Guizhou) had lower accuracies,
whereas plain and main production provinces (Jilin, Liaon-
ing, Jiangsu, Anhui, and Hubei) had higher accuracies.

4 Discussion

Paddy rice is the second most widely planted crop in China.
Its planting area has been relatively stable for many years
(National Bureau of Statistics of China, 2020). From 1978
to 2005, the planting area of paddy rice decreased slowly,
from 34.4×106 to 28.9×106 ha, and it has been maintained
at about 30× 106 ha since 2005 (National Bureau of Statis-
tics of China, 2020). The planting area of single-season rice
accounted for two-thirds of all rice in China, and single-
season rice production accounted for three-quarters of all rice
(https://data.stats.gov.cn, last access: 25 July 2023). Despite
the importance of single-season rice, rice mapping on a re-
gional scale is still difficult.

4.1 Advantages of the TWDTW method

Many efforts have been made to map rice with a moder-
ate or high spatial resolution at the provincial and regional
scale using machine learning methods and phenology-based
methods (Pan et al., 2021; Xiao et al., 2006, 2005; You
et al., 2021). However, these mapping methods have some
limitations. Compared with machine learning methods, the
TWDTW method has the advantage of requiring fewer train-
ing samples. In this study, the number of samples used to ob-
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Figure 10. Planting frequency of single-season rice in China from 2017 to 2022.

tain the standard time series was only 50. Many studies have
reported that using machine learning methods to achieve high
accuracy requires a large volume of training samples, and ob-
taining samples is both time-consuming and labor-intensive
(Millard and Richardson, 2015; Valero et al., 2016). There-
fore, the TWDTW method can be easily extended to regions
or years with limited survey data compared with machine
learning methods. For example, You et al. (2021) mapped
three crops, including rice, in Northeast China from 2017 to
2020 using a machine learning method (random forest) and
achieved a producer’s and user’s accuracy for rice of greater
than 90 %, except for the user’s accuracy in 2017 (87 %).
However, their study used more than 8000 training samples
per year that needed to be updated every year. In contrast,
this study achieved a similar accuracy with only 50 sample
points per province in Northeast China.

Compared with the flood-detection method developed by
Xiao et al. (2005), the TWDTW method uses signals in
a certain period before and after rice flooding, including
more phenological information. Flood-detection methods are
deeply affected by clouds and rain. Thus, the accuracy of a
moderate-resolution rice map based on MODIS data can be
relatively high due to the high temporal resolution and the
lower number of cloudy pixels in the MODIS data (Xiao
et al., 2006, 2005). However, when based on Landsat data,

the accuracy of such a high-resolution product was not sat-
isfactory due to the influence of cloudy images (Dong et
al., 2016). Furthermore, good observations in the southern
areas of China are extremely scarce, especially in Subre-
gion IV (southwestern China), where the 6-year average of
the frequency of good observations is only between 25 % and
40 % during the transplantation period, making it impossi-
ble to map rice in these provinces using only optical images
(Fig. 2). Therefore, SAR images were introduced in cloudy
areas in this study, making it possible to map rice in these
areas.

4.2 Uncertainty analysis

The introduction of SAR images has made rice identification
possible in these areas. However, the quality of SAR images
is somewhat worse than that of optical images, which makes
the accuracy of the distribution maps in these areas lower
than the accuracy in less cloudy areas. The optical data for
2017 have the poorest observation quality: the number of ob-
servations corresponding to the minimum distance on each
pixel averaged only 1.16 (Fig. 14). This number of observa-
tions determines the high weight of the distances calculated
from the SAR images, which explains the lowest R2 value
in 2017 (Fig. 12). Comparing the R2 value of the identifica-
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Figure 11. Distribution maps of three UAV sites in Hubei (31◦1′11′′ N, 114◦47′49′′ E), Zhejiang (29◦57′14′′ N, 120◦32′33′′ E), and Sichuan
(30◦19′5′′ N, 106◦44′15′′ E). Panels (a)–(c) are very high resolution UAV images taken at three sites on 8 July 2018, 12 October 2018, and
13 July 2018, respectively. Panels (d)–(f) show the overlaid distribution maps with identified single-season rice pixels indicated in red.

tion accuracies (county-level comparison with the statistical
planting area) with the frequencies of optical observations
during the study period shows a positive correlation, with an
R2 value ranging from 0.35 to 0.57 (Fig. 15). That is, in areas
where the optical observations are heavily affected by clouds,

the accuracy remains low to some extent, even if SAR images
are used as auxiliary information.

Another important factor that affects identification accu-
racy is the fragmentation of planted areas. In mountainous
provinces, such as Guizhou, Chongqing, and Yunnan, there
are many terraced rice fields, which are very narrow and frag-
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Figure 12. County-level comparison of identified and statistical planting areas for 2017–2019. Solid lines are 1 : 1 lines and dashed lines are
regression lines. The confidence intervals are shaded in gray.

Figure 13. Comparison between identified and statistical planting areas at the county-level for 2017–2020 in 19 provincial administrative
regions.

mented (Cao et al., 2021; Yan et al., 2016). In the afore-
mentioned areas, rice fields may be less than 10 m wide,
resulting in mixed pixels at a 10 m resolution. In addition,
as a side-looking radar system, SAR has a terrain effect,
which produces more errors in mountainous areas (Beaudoin
et al., 1995). To quantify the fragmentation of the distribu-
tion maps, we regarded adjacent single-season rice pixels as

a patch and then counted the size of each patch. The fragmen-
tation of the distribution maps in the same province varied lit-
tle from year to year (Fig. 16). Guangxi, Guizhou, Shaanxi,
Yunnan, and Fujian were the most fragmented provinces,
with more than half of the pixels belonging to patches smaller
than 100 pixels (about 1 ha). The most fragmented province
was Guangxi, where, each year, an average of 85.45 %
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Figure 14. Times of good Sentinel-2 observations during the time period corresponding to the minimum TWDTW distance in identified
single-season rice pixels in 19 provincial administrative regions in subregions II, III, and IV in 2019. Panels (b)–(g) show the times of good
observations in each province during the time period corresponding to the minimum TWDTW distance of each year.

of the pixels belonged to patches smaller than 100 pixels
(Fig. 16). Although there are plains in Guangxi, the plains
are mostly planted with double-season rice, whereas single-
season rice is mostly planted in mountainous areas, result-
ing in extremely fragmented single-season rice cultivation.
Using the percentage of pixels belonging to patches smaller
than 100 pixels as an indicator of fragmentation and compar-
ing this value with the identification accuracy, a significant
negative correlation can be found (Fig. 17). The R2 value

of the fragmentation and identification accuracy ranged from
0.51 to 0.72, confirming that the fragmentation of single-
season rice fields has a strong negative effect on the identifi-
cation accuracy and is an important source of identification
error (Fig. 17).

In recent years, due to the shortage of rural labor, direct-
seeded rice (DSR) has been increasingly used in China
(Chakraborty et al., 2017). Unlike transplantation, DSR does
not require the raising and transplanting of seedlings. Instead,
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Figure 15. Relationship between the identification accuracies (R2 of the county-level comparison with the statistical planting area) and the
provincial mean of good observation frequencies in 19 provincial administrative regions from 2017 to 2020. Dashed lines are regression lines
and the confidence intervals are shaded in gray.

Figure 16. Distribution of the number of single patches.

the seeds are sown directly in the main field. Depending on
the field conditions, there are three types of DSR: wet di-
rect seeding, water direct seeding, and dry direct seeding
(Farooq et al., 2011). Wet direct seeding refers to a regime
in which seeds are sown in a puddled soil surface, whereas
water direct seeding refers to a practice in which seeds are
sown in flooded fields. Most DSR belongs to these two afore-
mentioned types. In contrast, when using dry direct seeding,
seeds are sown in a dry field. Therefore, our method can be
used to identify rice fields resulting from wet or water direct
seeding by capturing the moisture or flood signal, whereas
rice fields using a dry direct seeding regime cannot be iden-
tified using our method. Some studies have also pointed out

that certain types of DSR may have a weak flooding signal
compared with transplantation, making it difficult to distin-
guish them from other crops using traditional classification
methods (Guo et al., 2019). At present, the proportion of dry
direct seeding in China is small, and it has a limited impact
on the accuracy of the distribution maps. However, as dry di-
rect seeding continues to spread, its impact on rice mapping
will become difficult to ignore. Therefore, new methods for
rice mapping must be developed in the future.
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Figure 17. Relationship between the identification accuracies (R2 of the county-level comparison with the statistical planting area) and the
percentage of patches with a size less than or equal to 100 in 19 provincial administrative regions from 2017 to 2020. Dashed lines are
regression lines and the confidence intervals are shaded in gray.

4.3 Future development

Rice mapping strongly depends on the distinctive spectral
characteristics of the flooding period. The spectral charac-
teristics of rice in the growing and harvesting periods are
very similar to those of other summer crops. Therefore, pre-
vious studies have all chosen to capture the characteristics of
the flooding period. However, optical and SAR images have
their own limits during this short period. In this study, we
combined two sources of satellite images in order to over-
come the limitations of each source of satellite data. How-
ever, this combination was still relatively simple. Some re-
cent data fusion studies use machine learning methods to
reconstruct high-quality optical data with both high spatial
and temporal resolutions. We hope that these kinds of recon-
structed datasets will help solve the limitations of optical im-
ages and help to produce more accurate single-season rice
maps.

5 Data availability

The distribution maps of single-season rice of 21 provin-
cial administrative regions in China from 2017 to 2022 are
available at https://doi.org/10.57760/sciencedb.06963 (Shen
et al., 2023). The file format of the product is GeoTIFF with
the spatial reference of WGS84 (EPSG:4326). The distribu-
tion maps of single-season rice will be updated annually at
the end of each year.

6 Conclusions

This study proposed a new rice-mapping method based
on the time-weighted dynamic time warping (TWDTW)
method. The TWDTW distances of the shortwave infrared 1
(SWIR1) band from optical images and of the VH band from

synthetic aperture radar (SAR) images were combined ac-
cording to a weight, and the number of good optical observa-
tions was used to determine the weight. Using this method,
this study produced distribution maps of single-season rice
in China from 2017 to 2022 at a 10 or 20 m resolution. The
overall accuracy over 21 provincial administrative regions
averaged 85.23 % based on 108 195 samples; the average R2

value was 0.83 over 3 years compared with county-level sta-
tistical planting areas. However, the method did not fully re-
solve the limitations of optical and SAR images, as clouds
and the fragmentation of the rice fields still affected the ac-
curacy of the distribution maps. In general, this study pro-
duced high-resolution single-season rice maps of China. This
method can be easily applied to other regions, and the maps
can be updated annually.
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