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Abstract. High-quality, freely accessible, long-term precipitation estimates with fine spatiotemporal resolution
play essential roles in hydrologic, climatic, and numerical modeling applications. However, the existing daily
gridded precipitation datasets over China are either constructed with insufficient gauge observations or neglect
topographic effects and boundary effects on interpolation. Using daily observations from 2839 gauges located
across China and nearby regions from 1961 to the present, this study compared eight different interpolation
schemes that adjusted the climatology based on a monthly precipitation constraint and topographic character-
istic correction, using an algorithm that combined the daily climatology field with a precipitation ratio field.
Results from these eight interpolation schemes were validated using 45 992 high-density daily gauge observa-
tions from 2015 to 2019 across China. Of these eight schemes, the one with the best performance merges the
Parameter-elevation Regression on Independent Slopes Model (PRISM) in the daily climatology field and in-
terpolates station observations into the ratio field using an inverse-distance weighting method. This scheme had
median values of 0.78 for the correlation coefficient, 8.8 mm d−1 for the root-mean-square deviation, and 0.69
for the Kling–Gupta efficiency for comparisons between the 45 992 high-density gauge observations and the
best interpolation scheme for the 0.1◦ latitude× longitude grid cells from 2015 to 2019. This scheme had the
best overall performance, as it fully considers topographic effects in the daily climatology field and it balances
local data fidelity and global fitting smoothness in the interpolation of the precipitation ratio field. Therefore,
this scheme was used to construct a new long-term, gauge-based gridded precipitation dataset for the Chinese
mainland (called CHM_PRE, as a member of the China Hydro-Meteorology dataset) with spatial resolutions of
0.5, 0.25, and 0.1◦ from 1961 to the present. This precipitation dataset is expected to facilitate the advancement
of drought monitoring, flood forecasting, and hydrological modeling. Free access to the dataset can be found at
https://doi.org/10.6084/m9.figshare.21432123.v4 (Han and Miao, 2022).

1 Introduction

As one of the key components of the hydrological cycle, pre-
cipitation can influence the distribution of water resources
(Rodell et al., 2018), sustain agriculture (Beck et al., 2020;
Zou et al., 2022), replenish aquifers (Fischer and Knutti,
2016; Kucera et al., 2013), and enable economic prosper-
ity (Trenberth et al., 2003; Kirschbaum et al., 2017). Each
of the last 3 decades has been successively warmer at the
Earth’s surface than any preceding decade since 1850 (IPCC,
2021). With an ever-warming climate, the Earth’s water cy-

cle has been amplified, resulting in frequent severe extreme
precipitation events (Fischer and Knutti, 2016; Myhre et al.,
2018). The intensification of water transport and exchanges
between the atmosphere and land surface is having profound
impacts on the redistribution of water resources by moisture
flux, which exaggerates the contrast between wet and dry me-
teorological regimes, seasons, and events (Allen and Ingram,
2002; Allan et al., 2020; Han et al., 2021). Constructing a
high-quality, long-term daily precipitation dataset is essen-
tial for hydrometeorological research (Sun et al., 2018; Beck
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et al., 2019). However, due to the spatial heterogeneity and
temporal variability in daily precipitation, it is challenging
to derive accurate spatiotemporal patterns of daily precipita-
tion.

Collection of precipitation data relies mainly on measure-
ments using ground-based rain gauges and estimates us-
ing remote-sensing technologies such as weather radar and
satellite (Shen et al., 2014; Beck et al., 2019; Sun et al.,
2018). Among these approaches, rain-gauge observations are
the most reliable and widely used tool for directly measur-
ing precipitation. However, precipitation data measured with
gauges are point observations only, and the uneven distri-
bution of gauges increases the limitations of gauge applica-
tions over a region. It is vital to interpolate these spatially
irregular gauge observations to areal averages, since multi-
ple scientific and operational applications (e.g., estimating
local climate variables in data-sparse regions, monitoring cli-
mate change at the regional or global scale, and validating
climate models with observations) require good-quality, high
spatiotemporal-resolution precipitation datasets (Haylock et
al., 2008; Xie et al., 2007; Harris et al., 2020). Spatial inter-
polation methods are usually applied to irregular point ob-
servations to produce an evenly distributed precipitation grid
for the application in hydrological and meteorological stud-
ies (Ahrens, 2006; Schamm et al., 2014; Golian et al., 2019).

In China, the original gauge observations used as the
benchmark of various precipitation datasets mainly come
from two suites of gauge observations provided by the China
Meteorological Administration (CMA): ∼ 700 benchmark
stations and ∼ 2400 gauges comprising other ordinary na-
tional automatic weather stations (Shen and Xiong, 2016).
Using observations from the former (the ∼ 700 stations),
a monthly precipitation dataset has been established over
China that covers the period of 1901–2017 (Peng et al.,
2019). To achieve a higher temporal resolution, a daily grid-
ded precipitation dataset has been produced for China using
the same raw precipitation data for the same period, from
1961 to 2019 (Qin et al., 2022). Through a fusion of remote-
sensing products, reanalysis datasets, and in situ station data,
the China Meteorological Forcing Dataset (CMFD) has been
produced to serve as a high-resolution (3 h, 0.1◦× 0.1◦) in-
put forcing dataset for hydrological and ecosystem models
beginning in 1979 (He et al., 2020). Generally, the quantita-
tive accuracy of a gauge-based dataset can be improved by
enhancing the density of gauge observations (Merino et al.,
2021; Hofstra and New, 2009). Xie et al. (2007) developed a
widely used gauge-based analysis of daily precipitation over
East Asia (EA05) with a collection of daily precipitation ob-
servations from over 700 stations from CMA and about 1000
hydrological station observations from the Chinese Yellow
River Conservation Commission. Using observations from
approximately 2400 gauges from 1961 to the present, Wu and
Gao (2013) created a daily gridded dataset with a resolution
of 0.25◦× 0.25◦ over China (CN05.1), and Zhao et al. (2014)
constructed the second version of a 0.5◦× 0.5◦ gridded daily

precipitation dataset over China (CMA V2.0). Further ac-
counting for topographic effects, including elevation, slope,
proximity to coastlines, and the locations of temperature in-
versions, Shen et al. (2010) developed the China Gauge-
based Daily Precipitation Analysis (CGDPA) with spatial
resolutions of 0.5◦× 0.5◦ and 0.25◦× 0.25◦ using a topo-
graphic correction algorithm. The aforementioned datasets
only involve gauges inside China’s boundaries, except for
EA05, which covers the East Asia domain. This limitation
can lead to boundary effects such that grid cells near the
boundaries suffer positioning inaccuracy in relation to inte-
rior grid cells (Ahrens, 2006). In addition, different interpo-
lation algorithms can produce different results even with the
same inputs. Comparing the performance of different inter-
polation techniques is crucial to determining the best inter-
polation method. A summary of these gridded precipitation
datasets is shown in Table 1.

Given these limitations and the important role these
datasets play in many applications, it is of great urgency
to establish long-term, continuously updated daily precipi-
tation series with multiple spatial resolutions that are free
to use. Therefore, this study aimed to construct a long-
term (from 1961 to the present) daily precipitation dataset
with different spatial resolutions (0.5◦× 0.5◦, 0.25◦× 0.25◦,
and 0.1◦× 0.1◦) based on 2839 gauge observations in and
around China (2419 gauges located across the Chinese main-
land and 420 gauges from nearby regions). Eight interpo-
lation schemes were considered and validated using 45 992
gauge observations for the period of 2015–2019 over China.
Finally, we produced a new gridded precipitation dataset
for the Chinese mainland (a member of the China Hydro-
Meteorology datasets, hereinafter called CHM_PRE) cover-
ing the period 1961–2022, with spatial resolutions of 0.5,
0.25, and 0.1◦, which is available in the public domain and
will be updated yearly.

2 Data

2.1 Raw gauge data used for interpolation

Daily rain-gauge datasets (from 1961 to the present) from
2419 stations across the Chinese mainland and 420 sta-
tions just outside China’s boundaries were collected from
the China Meteorological Administration (CMA, http://data.
cma.cn, last access: 24 July 2023) and Global Historical
Climatology Network-Daily Version 3 (GHCND, https://
www.ncei.noaa.gov, last access: 24 July 2023), respectively
(Fig. 1a). The CMA gauge dataset is available for the Chi-
nese mainland (data in Hong Kong, Macao, and Taiwan
are currently not accessible for use). Stations are sparsely
distributed in northwestern China and the Tibetan Plateau
compared with eastern and southern China. The daily pre-
cipitation is the accumulated precipitation amount between
20:00 and 20:00 (local time in Beijing). This dataset has
been subjected to strict quality controls, including (1) an
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Table 1. Gauge-based gridded precipitation datasets for China.

Name Spatial resolu-
tion

Domain Temporal reso-
lution

Time period Reference Number of stations Interpolation
method

1 km monthly temper-
ature and precipitation
dataset for China from
1901 to 2017

1 km China Monthly 1901 to the
present

Peng et al.
(2019)

∼ 700 Bilinear inter-
polation

HRLT 1 km China Daily 1961–2019 Qin et al.
(2022)

∼ 700 Machine learn-
ing, the gener-
alized additive
model, and thin
plate spline

CMFD 0.1◦× 0.1◦ China 3 h 1979 to the
present

He et al. (2020) ∼ 700 Thin plate
spline

EA05 0.5◦× 0.5◦ East Asia Daily 1978–2003 Xie et al.
(2007)

∼ 1700 Optimal inter-
polation

CN05.1 0.25◦× 0.25◦ China Daily 1961 to the
present

Wu and Gao
(2013)

∼ 2400 Angular-
distance weight

CMA V2.0 0.5◦× 0.5◦ China Daily 1961–2019 Zhao et al.
(2014)

∼ 2400 Thin plate
spline

CGDPA 0.25◦× 0.25◦,
0.5◦× 0.5◦

China Daily 2008–2015 Shen et al.
(2010)

∼ 2400 Optimal inter-
polation

extreme-values check, (2) an internal consistency check of
daily values, (3) a spatial and temporal consistency check,
and (4) manual verification (Zhang et al., 2020). The gauge
observations from neighboring countries come from the
GHCND dataset, which contains records from over 80 000
stations in 180 countries and territories. Quality controls
are routinely applied to assure the basic consistency of the
dataset (Menne et al., 2012). Stations with less than 5 % of
calendar days missing in an individual year were used for in-
terpolation. Changes in the number of stations over time are
shown in Fig. 1c.

2.2 High-density gauge observations used for validation

High-density daily observations from nearly 68 000 auto-
matic weather stations for the period 2015–2019 in China are
provided by the National Meteorological Information Center
of CMA (Li et al., 2018). Once stations with more than 20 %
missing data were removed, there were 45 992 good-quality
stations available for validation (Fig. 1b).

2.3 SRTM-DEM

The 3 arcsec (90 m resolution) digital elevation model
(DEM) applied in this study was acquired from the Shuttle
Radar Topography Mission (SRTM) data (https://cmr.
earthdata.nasa.gov/search/concepts/C1214622194-SCIOPS,
last access: 24 July 2023). SRTM uses dual radar antennas
to acquire interferometric radar data and process digital
topographic data (Farr et al., 2007). We resampled the
SRTM-DEM into 0.05◦× 0.05◦ grid cells using the bilinear
interpolation method.

2.4 PRISM

The monthly climatology generated by the Parameter-
elevation Regression on Independent Slopes Model (PRISM)
was used for the monthly precipitation constraint and
topographic characteristic correction of the daily cli-
matology field (https://prism.oregonstate.edu/, last access:
24 July 2023). PRISM incorporates local climate–elevation
relationships, topographic features, proximity to coastlines,
and several measures of terrain complexity, and it is the most
widely used climatology dataset in the world (Daly et al.,
1994, 2002). The original spatial resolution is 0.04◦× 0.04◦

for the monthly climatology of PRISM between 1961 and
1990; we used bilinear interpolation to regrid the spatial res-
olution into 0.05◦× 0.05◦ grid cells for adjustment based on
climatology.

3 Methodology

3.1 Interpolation scheme

Due to the high spatial variability in precipitation relative to
other climate variables, directly interpolating the daily rain-
gauge observations into grid cells could produce a dataset
with misleading daily precipitation characteristics (Xie et al.,
2007; Chen et al., 2002; Shen et al., 2010). To avoid this and
reduce introduced errors, the overall strategy for establishing
a daily gridded precipitation dataset is to construct a rela-
tively continuous daily climatology field (Shen et al., 2010).
Then, we would build an intermediate field of the interpo-
lated variable based on this daily climatology field, such as
a daily precipitation anomalies field or a field of the ratio
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Figure 1. (a) Distribution of 2839 stations used in interpolation and (b) 45 992 stations used for validation. (c) Quality-controlled number of
stations for interpolation over time.

between daily precipitation and daily climatology. Previous
studies have demonstrated that interpolating the ratio (be-
tween daily precipitation and daily climatology) yields bet-
ter performance than interpolating anomalies for construct-
ing daily gridded precipitation (Xie et al., 2007; Yatagai et
al., 2012; Di Luzio et al., 2008). Therefore, the “daily clima-
tology field (Cd)×field of the ratio between daily precipi-
tation and daily climatology (P/Cd)” was employed as the
interpolation scheme for constructing the new gridded pre-
cipitation dataset in this study (Fig. 2), as developed by Xie
et al. (2007). Figure 3 shows a flowchart of the gridding anal-
ysis system.

3.2 Building the daily climatology field (Cd)

First, the gauge-based climatology of daily precipitation
was calculated using gauge observations. The definition of
gauge-based climatology of daily precipitation is the Fourier-
truncated 30-year mean daily precipitation series produced
from gauge observations for the period of 1971–2000 for
each of the 365 calendar days (Fig. 4). We used Fourier trun-
cation to remove the high-frequency noise of the 30-year
mean daily precipitation series for each station and retained
the accumulation of the first six harmonic components as the
gauge-based climatology of daily precipitation (Xie et al.,
2007). After Fourier truncation, approximately 75 % of all

stations preserve a variation of 40 % to 75 % in the truncated
mean daily precipitation series relative to the total variation
in the mean daily precipitation. The unadjusted 0.05◦× 0.05◦

gridded daily climatology field (Cd0 ) was then interpolated
from the gauge-based climatology of daily precipitation with
SRTM-DEM as a covariate using the ANUSPLIN software
(Hutchinson and Xu, 2004). To minimize systematic bias
from the unadjusted 0.05◦× 0.05◦ gridded daily climatology
field in the monthly climatology field (Cm), the monthly ac-
cumulation of the unadjusted 0.05◦× 0.05◦ gridded daily cli-
matology field was then constrained by the monthly climatol-
ogy field. This produced an adjusted gridded daily climatol-
ogy field that uses a monthly precipitation constraint and to-
pographic characteristic correction. We compared two types
of gridded monthly climatology fields to determine which ad-
justs better for the systematic bias: (1) an ANUSPLIN-type
gridded monthly climatology field or (2) a PRISM-type grid-
ded monthly climatology field. The ANUSPLIN-type grid-
ded monthly climatology field was produced by interpolat-
ing monthly precipitation climatology (1971–2000) from sta-
tions to the 0.05◦ latitude× longitude grids with a covari-
ate of SRTM-DEM, using the ANUSPLIN software. The
0.05◦× 0.05◦ regridded monthly climatology of PRISM was
used as the PRISM-type monthly climatology field.

The climatology adjustment steps for one grid cell were as
follows:
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Figure 2. Interpolation strategy for generating the daily gridded precipitation dataset (CHM_PRE) in this study.

1. Calculate Cd0_(m,j ) (m= 1, 2, 3, . . . , 12; j = 1, 2, 3, . . . ,
365; m is the corresponding month for day j ), which is
the monthly total of the unadjusted 0.05◦× 0.05◦ grid-
ded daily climatology field, derived by taking the sum of
the unadjusted 0.05◦× 0.05◦ gridded daily climatology
field for the month.

2. Match the monthly total series derived using the unad-
justed 0.05◦× 0.05◦ gridded daily climatology field to
the gridded monthly climatology field month by month.

3. Compute the scaling factor SF(m,j ) for the individual
calendar day of the unadjusted 0.05◦× 0.05◦ daily cli-
matology field to the gridded monthly climatology field:

SF(m,j )

=
C(m, j )

w(m−1, j )Cd0_(m−1,j ) +w(m,j )Cd0_(m,j ) +w(m+1,j )Cd0_(m+1,j )

(m= 1, 2, 3, . . .,11, 12; j = 1, 2, 3, . . ., 365;
m is the corresponding month for day j ), (1)

where C(m,j ) is the gridded monthly climatology field
for the corresponding month m of day j ; Cd0_(m−1,j ) ,
Cd0_(m,j ) , and Cd0_(m+1,j ) are the monthly total of months
m− 1, m, and m+ 1, respectively, which are calculated
from the unadjusted 0.05◦× 0.05◦ gridded daily clima-
tology field; w(m−1,j ), w(m,j ), and w(m+1,j ) are the cor-
responding weights for months m− 1, m, and m+ 1,
respectively, which are inversely proportional to the in-
terval between the calendar day j and the center of the
month (Xie et al., 2007). Note that the weight w(m−1,j )
is 0 when m= 1 and so is the weight w(m+1,j ) when
m= 12.

4. The adjusted gridded daily climatology field (Cd(m, j ) ) is
defined as

Cd(m,j ) = Cd0_(m,j )SF(m,j )

(m= 1, 2, 3, . . .,11, 12; j = 1, 2, 3, . . ., 365;
m is the corresponding month for day j ). (2)

3.3 Constructing a field of the ratio between daily
precipitation and daily climatology (P/Cd)

The ratio of daily precipitation to the spatiotemporally corre-
sponding daily climatology field was calculated for each sta-
tion. To compare the performances of different interpolation
methods, four widely used interpolation approaches for pre-
cipitation were adopted. The four interpolation methods used
in this study were angular-distance weighting (ADW) (Shep-
ard, 1968; Caesar et al., 2006), inverse-distance weighting
(IDW) (Shepard, 1984; Eischeid et al., 2000), thin plate
spline (TPS) (Hutchinson, 1995; Camera et al., 2014), and
triangulation-based nearest neighbor interpolation (TNNI)
(Thiessen, 1911; Sibson, 1978). A brief overview of the main
characteristics of the four methods is given below.

3.3.1 ADW

The ADW interpolation method used for this study was the
modified Shepard’s algorithm, which introduces the concept
of correlation decay distance (CDD), also called correlation
length scale or decorrelation length (Shepard, 1984; Dunn et
al., 2020). The CDD is defined as the distance at which the
correlation between one station and all other stations decays
below 1/e, approximately corresponding to the significance
level of 0.05 for the correlation within large samples (Jones
et al., 1997; Harris et al., 2020). The number of stations for
interpolating the target grid cell is well constrained by the
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Figure 3. Flowchart of the gridding analysis system. Gray shading represents gauge data; blue shading represents gridded data. Approaches
used for generating daily climatology fields (using the ANUSPLIN software or PRISM data) are marked in red, and interpolation methods
used for producing ratio fields are marked in green.

CDD, thus improving the interpolation precision (New et al.,
2000; Mitchell and Jones, 2005; Hofstra and New, 2009).

For every station, correlations (r) and distances (x) with
the other 2838 stations are shown in Fig. 5, and the ordinary
least-squares method was used to fit an exponential decay
function:

r = e−x/CDD. (3)

The estimated CDD is 244.7 km (95 % confidence interval:
244.5–244.8 km) at the 0.05 significance level.

The ADW method accounts for the importance of both dis-
tance and the isolation of stations in interpolation (New et
al., 2000). Only stations within the range of the CDD for the
center of the target grid cell (L) were involved in the interpo-
lation. The weight for each involved station (i) is a function
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Figure 4. Time series of 30-year (1971–2000) mean daily precip-
itation (blue lines) and the gauge-based climatology of daily pre-
cipitation derived using Fourier truncation (black lines) for three
randomly selected stations in southern China (a), northeastern
China (b), and northwestern China (c).

of the distance weight (Di) and angular weight (Ai):

Di =
(
e−xi/CDD

)n
, (4)

where xi is the distance between station i and the center of
target grid cell L; n is a constant and usually set to 4, in
accordance with previous studies (Harris et al., 2020; Dunn
et al., 2020; Efthymiadis et al., 2006).

Ai = 1+

∑
k

Dk [1− cos(θk − θi)]∑
k

Dk
(i 6= k), (5)

where k represents the surrounding stations relative to sta-
tion i; Dk is the distance weight for the surrounding stations
k; and θi and θk are the angles relative to the north of the
center of target grid cell L for station i and the surround-
ing stations k. Here, “surrounding stations” refers to all other

Figure 5. Estimation of correlation decay distance (CDD) for daily
precipitation series for all stations in the interpolated domain. Black
points show the distance–correlation pair for each station. The blue
line is the exponential curve fitted to the data by ordinary least
squares. The red dashed line marks where correlation equals 1/e.

stations except for station i. Finally, the weights for all con-
tributing stations were standardized to sum to 1.0.

The angular-distance weight (Wi) equals

Wi =DiAi . (6)

3.3.2 IDW

We introduced the concept of CDD to the IDW method for
interpolation. We set CDD1= 244.7 km, which represents
the boundary at which the search radius has a good correla-
tion between stations and the target grid cell. The minimum
distance satisfying the condition that at least three stations
are included in the search radius is around 1336 km. There-
fore, CDD2= 1336 km was used as a second choice of search
radius if there were not at least three stations located within
the range of CDD1. We employed S0 representing the target
grid cell, i representing the surrounding stations that fall in
the search radius of the target grid cell, y (si) denoting the
station observations, and d0i denoting the distance between
S0 and i. The estimation of daily precipitation in grid cell S0
is ŷ (s0):

ŷ (s0)=
n∑
i=1

λiy (si) , (7)

λi = d
−α
0i /

∑n

i
d−α0i , (8)

n∑
i

λi = 1, (9)

where λi is the distance weight for the interpolated stations;
n is the number of stations involved in the interpolation; and
the parameter α is the geometric form of weight. A high mag-
nitude of α represents a strong correlation decay per unit of
distance; thus the stations that are close to the target grid cell
would be assigned a greater weight (Lu and Wong, 2008). In
this study, we used α = 2, which is widely used for the IDW
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method to show the Euclidean distance between the centers
of grid cells and the interpolated stations (Ly et al., 2013;
Ahrens, 2006).

3.3.3 TPS

Splines are developed with the use of spatial covariate func-
tions (Wahba and Wendelberger, 1980; Camera et al., 2014).
TPS regards the spatial distribution as simply a function of
observations, and there is no need to first estimate a covari-
ate function (Hutchinson, 1995). Thus, the interpolation pre-
cision is improved. The TPS function offers a trade-off be-
tween data fidelity and smoothness of fit (Tait et al., 2006;
Haylock et al., 2008). The degree of smoothing is deter-
mined by minimizing generalized cross validation (Hutchin-
son, 1998).

3.3.4 TNNI

The Delaunay triangulation net is built by location of ver-
tices of triangulations with rainfall amount as the third di-
mension (Delaunay, 1934). Within finite point sets, the De-
launay triangulation is demonstrated to be the only optimal
method (Sibson, 1978). This uniqueness guarantees the sta-
bility of interpolation. TNNI estimates the value of the target
grid cell as a value of the nearest sample, and this can reflect
the characteristic of regional precipitation (Vivoni Enrique et
al., 2004).

3.4 Eight combination schemes for the daily climatology
field and ratio field

The two types of daily climatology fields and four types of
ratio fields constitute eight combination schemes of interpo-
lation strategies (Table 2). We compared the performances of
the eight combination schemes to choose the best scheme to
construct the dataset.

3.5 Validation

To improve the validation efficiency, 45 992 high-density
gauge observations from China were used to evaluate the
eight interpolation schemes with a spatial resolution of
0.1◦× 0.1◦. The validation steps are as follows:

1. Remove the 2839 gauge stations used for interpolation
from the 45 992 stations; the observations of the remain-
ing stations are employed as the “true values”.

2. Distribute the remaining stations into the corresponding
0.1◦× 0.1◦ grid cells according to their longitudes and
latitudes.

3. Apply the validation only for the grid cells where sta-
tions are located. The average of station observations
is calculated as the validation value for the 0.1◦× 0.1◦

grid cells where multiple stations are located. The

correlation coefficient (CC), root-mean-square error
(RMSE), and Kling–Gupta efficiency (KGE) between
validation value (Vn) and estimation value (Yn) are used
as evaluation indicators for validation:

CC=
1
N

∑N
n=1

(
Vn− V̄

)(
Yn− Ȳ

)
σV σY

, (10)

RMSE=

√√√√ 1
N

N∑
n=1

(Vn−Yn)2, (11)

KGE= 1−
√

(CC− 1)2
+ (α− 1)2

+ (β − 1)2, (12)

α =
σY

σV
, β =

Ȳ

V̄
, (13)

where N is the length of the daily precipitation series
for 2015–2019; σV and V̄ are the standard deviation and
mean value for the validated daily precipitation series,
respectively; σY and Ȳ are the standard deviation and
mean value for the estimated daily precipitation series,
respectively; α is a variability bias term; and β is a mea-
sure of mean bias (Gupta et al., 2009).

4 Results and discussion

4.1 Best interpolation scheme derived by validation

Generally, the performances of CC, RMSE, and KGE in
southeast China were all better than those in northwest
China and the Tibetan Plateau, where the density of sta-
tions is relatively sparse (Figs. 6, 7, 8). The interpolated
grid values were closer to gauge observations in simple
terrain (e.g., the North China Plain) compared with com-
plex terrain (e.g., the Yungui Plateau, the Loess Plateau,
and the Tibetan Plateau). In terms of CC, the perfor-
mances of scheme 3 (ANUSPLIN+ IDW) and scheme 4
(PRISM+ IDW) were best among the eight schemes, both
with median CC values of 0.78. The median CC values
for scheme 7 (ANUSPLIN+TNNI; 0.76) and scheme 8
(PRISM+TNNI; 0.76) were a little smaller than those for
schemes 3 and 4. Scheme 1 (ANUSPLIN+ADW) and
scheme 2 (PRISM+ADW) shared the same median CC
value of 0.71. The lowest median CC value (0.63) was
calculated for scheme 5 (ANUSPLIN+TPS) and scheme 6
(PRISM+TPS). For the median RMSE values, the order of
the eight interpolation schemes was as follows: scheme 4
(8.8 mm d−1)< scheme 3 (8.83 mm d−1)< scheme 1
(10.09 mm d−1)= scheme 2 (10.09 mm d−1)< scheme 7
(10.14 mm d−1)< scheme 8 (10.23 mm d−1)< scheme 5
(11.16 mm d−1)< scheme 6 (11.17 mm d−1). The results for
the comprehensive index, KGE, combining the characteris-
tics of correlation, variability bias, and mean bias show that
using scheme 4 would obtain the best interpolation results,
at a median KGE value of 0.69 for China. Schemes 3, 7,
and 8 performed slightly worse than scheme 4, all with the
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Table 2. An overview of eight combination schemes for daily climatology fields and ratio fields.

No. Scheme name Interpolation method
for unadjusted daily
climatology field

Monthly climatology
field type

Interpolation method
used for ratio field

1 ANUSPLIN+ADW ANUSPLIN ANUSPLIN ADW
2 PRISM+ADW ANUSPLIN PRISM ADW
3 ANUSPLIN+ IDW ANUSPLIN ANUSPLIN IDW
4 PRISM+ IDW ANUSPLIN PRISM IDW
5 ANUSPLIN+TPS ANUSPLIN ANUSPLIN TPS
6 PRISM+TPS ANUSPLIN PRISM TPS
7 ANUSPLIN+TNNI ANUSPLIN ANUSPLIN TNNI
8 PRISM+TNNI ANUSPLIN PRISM TNNI

same value of 0.68. The median KGE values for scheme 1
(0.56) and scheme 2 (0.57) were a little worse than those
listed above. Using scheme 5 and scheme 6 would result in
the worst performance based on KGE values; their median
KGE values were about 0.49 and 0.5, respectively. Overall,
using scheme 4, which applies PRISM monthly climatology
to adjust the daily climatology field, combined with an
IDW-interpolated ratio field, achieved the best performance
among these validation indices. Therefore, the best scheme
(PRISM+ IDW) was used to construct the new 62-year
CHM_PRE dataset for the Chinese mainland. The gridded
data are the areal average precipitation over the grid cell.

Scheme 4 had better performance than the other schemes
because it considers the impact of topography more deeply
and holds an appropriate balance between local data fidelity
and global fitting smoothness. The overall interpolation strat-
egy was to combine the daily climatology field (Cd) with the
field of the ratio between daily precipitation and daily cli-
matology (P/Cd). With respect to Cd, the PRISM-type daily
climatology field incorporates topographic features, proxim-
ity to coastlines, and several measures of terrain complex-
ity, which goes beyond the climate–elevation relationships
that the ANUSPLIN-type daily climatology field considers.
As for P/Cd, we selected the four alternative interpolation
methods (ADW, IDW, TPS, and TNNI) to consider the bal-
ance between local data fidelity and global fitting smooth-
ness in addition to the popularity, authority, and simplicity of
the interpolation methods. Specifically, the ADW and IDW
methods were chosen due to their high local data fidelity.
Both are local interpolation methods (Liszka, 1984). Unlike
the IDW method, the ADW method assigns a tiny weight
to far distant gauge observations to promote global fitting
smoothness. This impacts the local accuracy of interpolation.
The TPS and TNNI methods, on the other hand, were cho-
sen for their high global fitting smoothness. Both TPS and
TNNI are global interpolation methods (Liszka, 1984). The
TPS method is based on a mathematical model for surface
estimation that fits a minimum-curvature surface through all
input points, while TNNI constructs a Delaunay triangula-
tion of three stations locations. So TNNI tends to assign more

Figure 6. (a–h) Spatial pattern of the correlation coefficient (CC)
for eight combination schemes. Numbers in each subplot represent
the median of CC values across all grid cells involved in validation.

weights to maintain local data fidelity but has weaker fitting
smoothness. To sum up, the combination of PRISM-type Cd
and IDW-type P/Cd yielded the best performance among the
selected schemes. This was not simply due to chance. This
best-performing interpolation scheme could be applied in
other regions, but further validation would be needed to con-
firm whether it is the best-performing interpolation scheme
there.
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Figure 7. The same as Fig. 6 but for root-mean-square error
(RMSE). The unit is millimeters per day.

Due to a high rate of missing daily observations from 1961
to 1980, up to 15 % of stations could not reach the threshold
for quality control (i.e., a rate of missing daily precipitation
not greater than 5 %) and were removed. With the vigorous
development of hydrometeorological observation in China
since the 1980s, precipitation data quality has been improv-
ing, which caused a jump in the number of stations that met
quality control requirements beginning in 1981 (Shen et al.,
2014). If we had kept the number of gauges used for interpo-
lation steady over the full 62-year span, about 300 gauges
available for the period 1981–2022 would have been ex-
cluded, which would have been a great loss of real observed
precipitation information. Therefore, the strategy adopted in
this study was that all observational data that met the quality
control conditions were used for data interpolation, which led
to some differences in the number of sites used every year.
These slight differences could be partly compensated for by
using correlation decay distance (CDD1 and CDD2), which
confirmed there were at least three stations involved in the
interpolation for each grid cell so that there would not be a
sharp change in the number of stations used for interpolation
for each grid cell.

Figure 8. The same as Fig. 6 but for Kling–Gupta efficiency (KGE).

Figure 9. Monthly precipitation series from 1 January 2008 to
31 December 2015 for the CGDPA, CN05.1, CMA V2.0, and
CHM_PRE datasets.

4.2 Comparison with other gauge-based datasets

We compared the performance of the CHM_PRE dataset
with three other datasets – CGDPA (Shen et al., 2010),
CN05.1 (Wu and Gao, 2013), and CMA V2.0 (Zhao et al.,
2014) (Figs. 9–12). To derive a uniform time span among
the different datasets, monthly precipitation series for the pe-
riod of 1 January 2008 to 31 December 2015, were calcu-
lated in the CHM_PRE, CGDPA, CN05.1, and CMA V2.0

Earth Syst. Sci. Data, 15, 3147–3161, 2023 https://doi.org/10.5194/essd-15-3147-2023



J. Han et al.: A new daily gridded precipitation dataset for the Chinese mainland 3157

Figure 10. Spatial pattern of average annual wet-day (> 1 mm d−1) precipitation amount during the period of 2008 to 2015 for the
(a) CGDPA, (b) CN05.1, (c) CMA V2.0, and (d) CHM_PRE datasets.

Figure 11. Spatial pattern of mean annual wet-day (> 1 mm d−1) frequency from 2008 to 2015 for the (a) CGDPA, (b) CN05.1, (c) CMA
V2.0, and (d) CHM_PRE datasets.

datasets. Results showed that the temporal pattern of the
monthly precipitation series was generally consistent among
different datasets, with a maximum bias of 5 mm per month
for the dry (December–January–February) and wet (June–
July–August) seasons (Fig. 9). The average annual wet-day
(> 1 mm d−1) precipitation amount and frequency between
2008 and 2015 for different datasets shared similar spatial
patterns, with a general decrease from southeastern China to
northwestern China (Figs. 10, 11). The median differences in
the multi-year annual wet-day precipitation amount across all

grid cells for CHM_PRE−CGDPA, CHM_PRE−CN05.1,
and CHM_PRE−CMA V2.0 were −24.79, −7.43, and
13.87 mm yr−1, respectively. The multi-year annual wet-day
frequency was higher in CGDPA and CMA V2.0 than in
the CHM_PRE dataset, with median differences of 6.38 and
3.25 d yr−1 across grid cells, respectively. The mean annual
wet-day frequency in CN05.1 was 9.63 d yr−1 less than in
the CHM_PRE dataset. The broad features of mean annual
maximum 1 d precipitation amount (Rx1day) were compara-
ble among the four datasets from 2008 to 2015 (Fig. 12). The
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Figure 12. Spatial pattern of mean Rx1day from 2008 to 2015 for the (a) CGDPA, (b) CN05.1, (c) CMA V2.0, and (d) CHM_PRE datasets.

8-year average Rx1day values for China were 48.19, 35.29,
39.72, and 40.19 mm d−1 for the CGDPA, CN05.1, CMA
V2.0, and CHM_PRE datasets, respectively. Generally, the
differences in spatial pattern among different datasets were a
combined effect of the gauge density involved and whether
or not orographic effects and boundary effects were consid-
ered in the interpolation algorithm. The spatial patterns of
mean precipitation (Figs. 10, 11) and extreme precipitation
(Fig. 12) agreed well among the different datasets in east-
ern and southern China, where gauge density is relatively
high. This indicates that the density of input gauges could
be a dominant factor affecting interpolation output (Morris-
sey et al., 1995). Agreement in spatial patterns of mean and
extreme precipitation was poorer in northwestern China and
the Tibetan Plateau, which was driven by interpolation al-
gorithms. In particular, the heavy precipitation in the south-
ern Tibetan Plateau was well captured by the CGDPA and
CHM_PRE datasets, but the CN05.1 and CMA V2.0 datasets
failed to capture it. This suggests the importance of oro-
graphic effects and boundary effects in interpolation pro-
cesses because heavier rainfall appears over mountainous re-
gions than nearby plains.

5 Data availability

This high-resolution long-term gauge-based daily precipita-
tion dataset covers the period of 1961–2022, and it will con-
tinue to be updated annually. It contains data for three spa-
tial resolutions: 0.1◦× 0.1◦, 0.25◦× 0.25◦, and 0.5◦× 0.5◦

covering the domain of 18–54◦ N, 72–136◦ E. The NetCDF-
formatted output files of the CHM_PRE dataset are freely ac-
cessible at https://doi.org/10.6084/m9.figshare.21432123.v4
(Han and Miao, 2022).

6 Conclusions

Based on a recent 62-year time series of daily observa-
tions from 2839 gauges across the Chinese mainland and
the areas just outside China’s boundaries, this study com-
pared eight different interpolation schemes that used an al-
gorithm combining the daily climatology field with a pre-
cipitation ratio field. A validation method was used to evalu-
ate the eight interpolation schemes using 45 992 high-density
gauge observations from China. The results indicate that
the best-performing scheme was scheme 4, which com-
bined a monthly precipitation constraint and correction for
topographic characteristics with the daily climatology field
and interpolated station observations of precipitation ratio
into grid cells using an inverse-distance weighting method.
The median CC, RMSE, and KGE values for the interpo-
lation scheme that performed the best among the selected
metrics (in comparison with the high-density gauge obser-
vations used for validation) were 0.78, 8.8 mm d−1, and
0.69, respectively. Using the best-performing interpolation
scheme, we constructed a new gridded precipitation dataset
(CHM_PRE) for the Chinese mainland with a daily tempo-
ral resolution and at multiple spatial resolutions (0.1◦× 0.1◦,
0.25◦× 0.25◦, and 0.5◦× 0.5◦) for the period of 1961–2022.
The CHM_PRE dataset showed reliable quality compared
with other available precipitation products.
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