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Abstract. We present a long-term data set of 1◦× 1◦ monthly mean total column water vapour (TCWV) based
on global measurements of the Ozone Monitoring Instrument (OMI) covering the time range from January 2005
to December 2020.

In comparison to the retrieval algorithm of Borger et al. (2020), several modifications and filters have been
applied accounting for instrumental issues (such as OMI’s “row anomaly”) or the inferior quality of solar refer-
ence spectra. For instance, to overcome issues related to low-quality reference spectra, the daily solar irradiance
spectrum is replaced by an annually varying mean earthshine radiance obtained in December over Antarctica.
For the TCWV data set, we only consider measurements with an effective cloud fraction less than 20 %, an air
mass factor (AMF) greater than 0.1, a snow- and ice-free ground pixel, and an OMI row that is not affected by
the row anomaly over the complete time range of the data set. The individual TCWV measurements are then
gridded to a regular 1◦× 1◦ lattice, from which the monthly means are calculated.

The investigation of sampling errors in the OMI TCWV data set shows that these are dominated by the clear-
sky bias and cause on average deviations of around −10 %, which is consistent with the findings of previous
studies. However, the spatiotemporal sampling errors and those due to the row-anomaly filter are negligible.

In a comprehensive intercomparison study, we demonstrate that the OMI TCWV data set is in good agree-
ment with the global reference data sets of ERA5 (fifth-generation ECMWF atmospheric reanalysis), RSS SS-
M/I (Remote Sensing Systems Special Sensor Microwave Imager), and CM SAF/CCI TCWV-global (COMBI):
over ocean the orthogonal distance regressions indicate slopes close to unity with very small offsets and high
coefficients of determination of around 0.96. However, over land, distinctive positive deviations of more than
+10 kg m−2 are obtained for high TCWV values. These overestimations are mainly due to extreme overesti-
mations of high TCWV values in the tropics, likely caused by uncertainties in the retrieval input data (surface
albedo, cloud information) due to frequent cloud contamination in these regions. Similar results are found from
intercomparisons with in situ radiosonde measurements from version 2 of the Integrated Global Radiosonde
Archive (IGRA2) data set. Nevertheless, for TCWV values smaller than 25 kg m−2, the OMI TCWV data set
shows very good agreement with the global reference data sets. Furthermore, a temporal stability analysis proves
that the OMI TCWV data set is consistent with the temporal changes in the reference data sets and shows no
significant deviation trends.

As the TCWV retrieval can be easily applied to further satellite missions, additional TCWV data sets can
be created from past missions, such as the Global Ozone Monitoring Experiment-1 (GOME-1) or the SCan-
ning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY); under consideration of
systematic differences (e.g. due to different observation times), these data sets can be combined with the OMI
TCWV data set in order to create a data record that would cover a time span from 1995 to the present. More-
over, the TCWV retrieval will also work for all missions dedicated to NO2 in the future, such as Sentinel-5 on
MetOp-SG.
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The Max Planck Institute for Chemistry (MPIC) OMI total column water vapour (TCWV) climate data record
(CDR) is available at https://doi.org/10.5281/zenodo.7973889 (Borger et al., 2023).

1 Introduction

Water vapour is the most important natural greenhouse gas
in Earth’s atmosphere: it alters the Earth’s energy balance by
playing a dominant role in the atmospheric thermal opacity
and has a major amplifying influence on several factors of an-
thropogenic climate change through various feedback mech-
anisms (Kiehl and Trenberth, 1997; Randall et al., 2007;
Trenberth et al., 2009). Although water vapour is of great
importance for processes at a global and climate scale, the
complex interactions between the components of the hydro-
logical cycle (including water vapour) and the atmosphere
are still one of major challenges of climate modelling and
for a better understanding of the Earth’s climate system in
general (Stevens and Bony, 2013). Moreover, the amount
and distribution of water vapour are highly variable; thus,
for global observations, these must also be measured with
high spatiotemporal resolution. Considering that changes in
water vapour are closely linked to changes in temperature
via the Clausius–Clapeyron equation (i.e. for typical atmo-
spheric conditions, a temperature increase of 1 K yields an
increase in the water vapour concentration of approximately
6 %–7 %; Held and Soden, 2000), it is essential to accurately
monitor the variability and change in the amount and distri-
bution of water vapour on a global scale.

To observe the water vapour distribution on a global scale,
satellite measurements provide invaluable information. Due
to its spectroscopic absorption properties, water vapour can
be retrieved from satellite spectra in various different spectral
ranges, ranging from the radio (e.g. Kursinski et al., 1997),
microwave (e.g. Rosenkranz, 2001), thermal infrared (e.g.
Susskind et al., 2003; Schlüssel et al., 2005; Schneider and
Hase, 2011), short, and near-infrared (e.g. Bennartz and Fis-
cher, 2001; Gao and Kaufman, 2003; Schrijver et al., 2009;
Dupuy et al., 2016; Schneider et al., 2020) to the visible spec-
tral region (e.g. Noël et al., 1999; Lang et al., 2003; Wagner
et al., 2003; Grossi et al., 2015).

Within the past decade, substantial progress has been made
to retrieve total column water vapour (TCWV) within the
visible blue spectral range (e.g. Wagner et al., 2013; Wang
et al., 2019; Borger et al., 2020; Chan et al., 2020), en-
abling the use of measurements from satellite instruments
like the TROPOspheric Monitoring Instrument (TROPOMI;
Veefkind et al., 2012) and even the Global Ozone Monitor-
ing Experiment-2 (GOME-2; Munro et al., 2016) for which
so far only retrievals in the visible red and near-infrared spec-
tral range have been available. In comparison to these afore-
mentioned spectral ranges, TCWV retrievals in the visible
“blue” have several advantages, such as similar sensitivity

for the near-surface layers over land and ocean due to a more
homogenous surface albedo distribution than at longer wave-
lengths (Koelemeijer et al., 2003; Wagner et al., 2013; Tilstra
et al., 2017). Moreover, any satellite mission dedicated to
NO2 monitoring covers this spectral range.

For investigations of climate change or global warm-
ing, the Ozone Monitoring Instrument (OMI; Levelt et al.,
2006, 2018) onboard NASA’s Aura satellite is particularly in-
teresting; launched in July 2004, OMI offers an almost con-
tinuous measurement data record of more than 16 years up
until today. In this study, we make use of this long-term data
record and retrieve total column water vapour (TCWV) from
OMI’s measurements in the visible blue spectral range in or-
der to generate a climate data set.

The paper is structured as follows: in Sect. 2, we de-
scribe the data set generation and briefly explain the retrieval
methodology and the applied modifications in comparison to
the TCWV retrieval from Borger et al. (2020); in Sect. 3, we
investigate potential sampling errors and how the limitation
to clear-sky satellite observations influences the representa-
tiveness of the TCWV values of the data set; in Sect. 4 and
Sect. 5, we characterize the data set via an intercomparison
with the various global reference TCWV data sets and with
IGRA2 radiosonde observations, respectively; in Sect. 6, we
analyse the temporal stability of the OMI TCWV data set;
and, finally, we briefly summarize our results in Sect. 8 and
draw conclusions.

2 The Max Planck Institute for Chemistry (MPIC)
OMI TCWV data set

2.1 Ozone Monitoring Instrument (OMI)

OMI (Levelt et al., 2006, 2018), onboard NASA’s Aura satel-
lite, is a nadir-looking UV–Vis push-broom spectrometer that
measures the Earth’s radiance spectrum from 270 to 500 nm
with a spectral resolution of approximately 0.5 nm follow-
ing a Sun-synchronous orbit with an Equator crossing time
of around 13:30 LT. The instrument employs a 2D charge-
coupled device (CCD) consisting of 60 across-track rows that
cover a total swath width of approximately 2600 km with
a spatial resolution of 24km× 13km at nadir increasing to
24km×160km towards the edges of the swath. Launched in
July 2004, OMI provides an almost continuous measurement
record until today with more than 100 000 orbits.

However, since July 2007 OMI has suffered from the so-
called “row anomaly” (RA), a dynamic artefact causing ab-
normally low radiance readings in the across-track rows, i.e.
several rows of the CCD detector receive less light from
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the Earth, whereas some other rows appear to receive sun-
light scattered off a peeling piece of spacecraft insulation.
One plausible explanation for these effects is a partial ob-
scuration of the entrance port by insulating layer material
that may have come loose on the outside of the instrument
(Schenkeveld et al., 2017; Boersma et al., 2018). Thus, in
this study, the affected measurements are excluded for the
entire period of the data set.

2.2 Methodology and modifications of the spectral
analysis

To retrieve total column water vapour (TCWV) from UV–Vis
spectra from OMI, we apply the TCWV retrieval of Borger
et al. (2020) developed for TROPOMI onboard Sentinel-5P.
The retrieval is based on the principles of differential opti-
cal absorption spectroscopy (DOAS; Platt and Stutz, 2008)
with a fit window between 430 and 450 nm, and it consists of
the common two-step DOAS approach. In the first step, the
absorption along the light path is calculated as follows:

ln
(
I

I0

)
≈−

∑
i

σi(λ) ·SCDi +9 +8. (1)

Here, I0 and I represent the solar irradiance and the radi-
ance backscattered from Earth, respectively; i denotes the in-
dex of a trace gas of interest; σi(λ) is the respective molecu-
lar absorption cross-section of the aforementioned trace gas;
SCDi =

∫
s
cids is the aforementioned trace gas’s concentra-

tion integrated along the light path s (the so-called “slant col-
umn density”); 9 represents summarizing terms accounting
for the Ring effect and additional pseudo-absorbers; and8 is
a closure polynomial accounting for Mie and Rayleigh scat-
tering as well as parts of the low-frequency contributions of
the trace gas cross sections.

In the second step, to convert the slant column density
(SCD) to a vertical column density (VCD), we apply the so-
called air mass factor (AMF):

VCD=
SCD
AMF

. (2)

The AMF accounts for the non-trivial effects of atmospheric
radiative transfer and depends on the conditions of the re-
trieval scenario (i.e. aerosol and cloud effects, viewing ge-
ometry, and surface properties) as well as the profile shape
of the trace gas of interest. The algorithm of Borger et al.
(2020) makes use of the relation between the H2O VCD and
the profile shape, and it iteratively finds the optimal VCD by
assuming an exponential water vapour profile shape.

For the application of the algorithm to OMI measure-
ments, several modifications had to be applied to the algo-
rithm of Borger et al. (2020). For climate studies such as
trend analyses, it is necessary to provide a consistent data
record. Thus, all rows that have ever been affected by the so-
called row anomaly are excluded from the data set for the

complete time series, which corresponds to approximately
half of the OMI swath. Furthermore, instead of a daily so-
lar irradiance, an earthshine radiance is used as the reference
spectrum within the DOAS analysis. The rationale for using
an earthshine radiance over a solar irradiance is as follows:

– The daily OMI solar irradiance spectra (OML1BIRR
version 3) are very noisy and have several gaps, causing
high H2O SCD fit errors and, thus, leading to an overall
poor quality of the H2O VCD data set.

– By using an annual mean solar irradiance spectrum from
the year 2005 (also used during the QA4ECV project;
Boersma et al., 2018), a good fit quality can be obtained;
however, OMI is also suffering from degradation effects
(Schenkeveld et al., 2017). Thus, for the case of climate
trend analyses, it will be almost impossible to disentan-
gle if a trend signal originates from the spectral degra-
dation of OMI or indeed from a geophysical trend (see
also Fig. A1). By using an earthshine radiance as the ref-
erence spectrum, these degradation effects will largely
cancel out.

– When using an earthshine radiance as the reference
spectrum, the across-track biases within the OMI swath
are also strongly reduced (see Fig. 1c); consequently, no
destriping is necessary during post-processing (see also
Anand et al., 2015).

– However, a disadvantage of the use of earthshine spectra
is that the retrieved H2O slant columns do not represent
absolute slant columns, as the earthshine reference spec-
tra also contain H2O absorptions. Hence, a slant column
representative of the chosen reference sector has to be
added to the retrieved values.

For the creation of annual earthshine reference spectra, we
selected the Antarctic continent as the reference sector (high
surface albedo due to snow and ice cover) and the time pe-
riod of December (i.e. during austral summer), yielding a rel-
atively high signal-to-noise ratio for our radiance measure-
ments despite large solar zenith angles. Furthermore, only
pixels above an altitude of 2000 m above sea level were se-
lected; as the air temperatures are very low in this altitude
range, the water vapour concentrations are very low as well,
thereby representing a reference atmosphere that is as dry as
possible (i.e. the reference SCD or rather the absolute value
of its uncertainty has to be as low as possible). Moreover,
to avoid the inclusion of noisy measurements (in particular
from the descending part of the OMI orbit), only pixels with
a solar zenith angle (SZA) below 80 ◦ are considered. From
these measurements, we calculate the monthly mean radiance
for December for each year for every OMI row and then use
the resulting reference spectra for the retrievals of the up-
coming year.

Figure 1 illustrates the effect of different reference spec-
tra on the H2O SCD distribution for an exemplary orbit.
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In particular, distinctive stripe patterns are prominent when
using the daily solar irradiance as the reference spectrum
(Fig. 1a). Although the usage of the annual mean solar ir-
radiance (Fig. 1b) can reduce the strength of the stripes, they
are still clearly visible. In contrast, no across-track stripes
are detectable for the case of the earthshine reference, and
the SCDs are also lower overall due to the H2O absorption in
the earthshine reference (Fig. 1c).

Further details about destriping in general and a compar-
ison of the temporal behaviour of the irradiance-based and
earthshine SCD are available in Appendix A.

2.3 VCD conversion and data set generation

To account for the potential water vapour contamination
within the earthshine reference spectra, the SCDs based on
the earthshine reference have to be corrected for the cor-
responding offset. In this study, we determine this offset,
1SCD, for each row based on the difference between the
earthshine-based SCDs and solar-irradiance-based SCDs for
the first 5 years of OMI operation (see Appendix A). Equa-
tion (2) can then be rewritten as follows:

VCD=
eSCD+1SCD

AMF
, (3)

where eSCD denotes the SCD derived using the earthshine
reference.

The AMFs are calculated as described in Borger et al.
(2020). For the determination of the AMF, additional in-
formation about the retrieval scenario, like cloud cover and
surface properties, is necessary. We use the cloud infor-
mation from the OMI L2 NO2 product (OMNO2; Lamsal
et al., 2021) and the modified OMI surface albedo version of
Kleipool et al. (2008) as described in Borger et al. (2020). We
also tested the surface albedo information from the OMNO2
product; however, within the framework of a trend analysis
study (Borger et al., 2022), we observed spatial artefacts in
the surface albedo trends that likely arise from the use of an
older version of the MODIS data for the albedo calculation
(Lok Lamsal, personal communication, 2021). The distribu-
tion of TCWV trends is mainly determined by the trends in
the SCD. The albedo or AMF trends usually only determine
whether the trend signal becomes stronger or weaker, but
this only affects trends over land, as an albedo climatology
from Kleipool et al. (2008) is used over ocean. As the ice
flags from the OMI processor sometimes indicate snow/ice-
free surfaces over Antarctica or Greenland, we additionally
use the monthly mean sea-ice cover information from ERA5
(fifth-generation ECMWF atmospheric reanalysis; Hersbach
et al., 2020) and the annual mean land cover information
from MODIS Aqua (Sulla-Menashe et al., 2019).

To create the OMI TCWV data set, we have chosen the
time range from January 2005 to December 2020 and only
include observations with an effective cloud fraction< 20 %
and AMF> 0.1. Furthermore, the pixels have to be free of

snow and ice and must not be affected by the row anomaly.
Hence, while about 50 % of the orbit is missing because of
the RA filter, the remaining data still cover an “effective”
swath of about 1300 km; this is larger than the swaths of
GOME-1, the SCanning Imaging Absorption spectroMeter
for Atmospheric CartograpHY (SCIAMACHY), or GOME-
2A (all about 1300 km) and of the order of the Special Sen-
sor Microwave/Imager (SSM/I; about 1394 km). Thus, OMI
still achieves complete coverage of the Earth about every 2 to
3 calendar days, which should provide enough observational
data for good representativeness in the case of a monthly
mean (see also Appendix C and the good agreement with
the reference data in Sect. 4). In total, this leaves about 30 %
of TCWV data from an RA-filtered orbit and about 12 % of
data from a complete orbit. The results of every orbit are
then gridded to a 1◦× 1◦ lattice for every day. From these
daily grids, the monthly mean H2O VCD distributions are
then calculated, ensuring that a continuous TCWV time se-
ries is available for as many grid cells as possible.

Figure 2 shows the global mean OMI H2O VCD averaged
over the complete time range of the TCWV data set. The re-
sulting distribution demonstrates that the retrieval is capable
of capturing the macroscale water vapour patterns, like high
VCD values in the tropics (in particular over the Maritime
Continent) and low values towards the polar regions, but also
characteristic regional patterns, like the South Pacific conver-
gence zone.

3 Sampling errors and clear-sky bias

Although satellite observations enable the analysis of trace
gas concentrations on a global scale, a fundamental prob-
lem is that a satellite measurement is typically only taken
once a day for one location. Furthermore, satellite measure-
ments are usually only available under cloud-free conditions,
especially in the visible or infrared spectral range, and thus
no continuous time series is guaranteed. Consequently, they
cannot provide a complete picture of geophysical variability,
which leads to sampling errors in the calculation of averaged
values (e.g. monthly means).

Moreover, the following question arises: to what extent
does the limitation to cloud-free pixels influence the monthly
averages determined from the OMI satellite measurements
(i.e. whether a so-called “clear-sky bias” exists in the OMI
TCWV data set)? Gaffen and Elliott (1993) investigated this
bias using radiosonde ascents and found that the TCWV is
about 0 %–15 % lower under cloud-free conditions than un-
der cloudy conditions. Similarly, Sohn and Bennartz (2008)
found a clear-sky bias of about 10 % between the Medium
Resolution Imaging Spectrometer (MERIS) and the Ad-
vanced Microwave Scanning Radiometer for EOS (AMSR-
E).

To estimate the sampling errors, we follow the methods of
Xue et al. (2019) and Gleisner et al. (2020): we choose hourly
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Figure 1. Exemplary orbit (Orbit 34382, 1 January 2011) showing the impact of different reference spectra on the OMI H2O SCD distribu-
tion: (a) daily solar irradiance, (b) annual mean solar irradiance, and (c) monthly mean earthshine reference.

Figure 2. Global mean OMI H2O VCD distribution from 2005 to
2020 based on the OMI analysis using earthshine reference spectra
and corrected for the H2O SCD bias. Areas with no valid values are
coloured grey.

resolved ERA5 data with a spatial resolution of 0.25◦×0.25◦

as the reference data and collocate the ERA5 data with OMI
overpass times. These data are then resampled to the 1◦× 1◦

resolution of the OMI TCWV data set and the monthly av-
erages are calculated (TCWVsampled). We then take the com-
plete, original ERA5 data, resample them to the same spa-
tial resolution, and calculate monthly means from these data
(TCWVtrue). The difference between the two data sets then
represents the sampling error:

εsampling = TCWVsampled−TCWVtrue. (4)

With this definition, the sampling error summarizes the un-
certainties due to gaps in the swath, temporal differences, or
missing data (e.g. due to clouds) (Xue et al., 2019).

Figure 3 shows the mean absolute and relative sampling
errors for the complete time range of the OMI TCWV data
set (January 2005 to December 2020). Overall, it can be
seen that most deviations are negative, i.e. the actual TCWV
is underestimated. Regarding the absolute deviations, the
strongest deviations can be seen in the area of storm tracks
in the mid-latitudes (e.g. North Atlantic) and the polar re-
gions, with values of around −5 kg m−2. The smallest devia-
tions are found in the quasi-permanent cloud-free regions in
the subtropics. As expected, the relative differences increase
from the Equator towards the poles due to the decreasing
TCWV values and reach values stronger than −30 %.

To investigate the extent to which these deviations are re-
lated to the clear-sky bias, we proceed similarly to the calcu-
lation of the sampling error: we collocate the ERA5 data to
the OMI overpass time and once apply a cloud filter (effec-
tive cloud fraction< 20 %) and once not. We then resample
both data sets to 1◦× 1◦ and calculate monthly means. The
difference between both data sets then represents the clear-
sky bias:

εclear = TCWVclear−TCWVall. (5)

To determine seasonal structures, the global distributions
of the absolute and relative clear-sky bias for the different
seasons were determined from the monthly differences (see
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Figure 3. Global distributions of the mean sampling errors derived from monthly mean sampling differences for the time range from
January 2005 to December 2020. Panel (a) depicts absolute sampling error (i.e. εsampling) and panel (b) shows relative sampling error (i.e.
εsampling/TCWVtrue). Grid cells for which no data are available are coloured grey.

Figure 4. Global distributions of the absolute differences (εclear; a, c, e, g) and relative differences (εclear/TCWVall; b, d, f, h) of the mean
differences between clear-sky and all-sky ERA5 based on the OMI cloud information for winter (DJF; a, b), spring (MAM; c, d), summer
(JJA; e, f), and autumn (SON; g, h) for the time range from January 2005 to December 2020. Grid cells for which no data are available are
coloured grey
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Fig. 4). Overall, the distributions of the clear-sky bias corre-
spond very closely to the distributions of the sampling error,
with respect to both strength and pattern. Moreover, the abso-
lute and relative deviations show only slight changes between
the different seasons.

Figures 5 and 6 summarize the sampling error and clear-
sky bias distributions, respectively. For the sampling er-
ror, we obtain a mean absolute deviation of −1.6 kg m−2

(median of −1.4 kg m−2) and a mean relative deviation of
−9.5 % (median of −6.2 %); for the clear-sky bias, we
get a mean absolute deviation of −1.7 kg m−2 (median of
−1.3 kg m−2) and a mean relative deviation of−10.0 % (me-
dian of −5.9 %). However, the distributions of the absolute
and relative deviations for the sampling error and the clear-
sky bias are highly left-skewed; thus, in particular, the mean
value is influenced by the long tails of the distributions. Nev-
ertheless, for the clear-sky bias, the obtained values agree
well with the findings of Gaffen and Elliott (1993) and Sohn
and Bennartz (2008).

As the effect of the clear-sky bias is already included in the
sampling error and the results for both errors are very simi-
lar, it can be assumed that the spatial and temporal sampling
errors play only a minor or negligible role in comparison to
the clear-sky bias.

In addition to the sampling error and the clear-sky bias, we
also examined the extent to which the monthly means would
change if no RA filter was applied, i.e. if all of the data of
the complete OMI swath were available (see Appendix C).
We found that, although deviations arise due to the RA filter,
these deviations are almost an order of magnitude smaller
than those of the clear-sky bias, and the global distribution of
the deviations is mostly noisy. Due to this small influence of
the RA filter, we conclude that the filtered OMI TCWV data
are a good representation of the actual TCWV values.

4 Intercomparison with existing water vapour
climate data records

To evaluate the overall quality of the OMI TCWV data
set, we conducted an intercomparison study with various
reference data sets of monthly mean TCWV products. For
this purpose, we use the merged 1◦ total precipitable wa-
ter (TPW) data set version 7 from Remote Sensing Systems
(RSS) (Mears et al., 2015; Wentz, 2015), TCWV data from
the ERA5 reanalysis model (Hersbach et al., 2019, 2020),
and the CM SAF/CCI TCWV-global (COMBI) data set
(Schröder et al., 2023) from the European Space Agency
(ESA) Climate Change Initiative (CCI) as reference.

The RSS data set consists of merged geophysical ocean
products, the values of which are retrieved from various pas-
sive satellite microwave radiometers. These microwave ra-
diometers have been intercalibrated at the brightness temper-
ature level, and the ocean products have been produced using
a consistent processing methodology for all sensors (more

details in Wentz, 2015; Mears et al., 2015). The major ad-
vantages of microwave TCWV retrievals are their high pre-
cision and accuracy and that they are insensitive to clouds;
therefore, TCWV values can also be retrieved even under
cloudy-sky conditions. A disadvantage, however, is that these
retrievals are (mostly) only available over the ocean surface.

Thus, we also compare the OMI TCWV data to the CM
SAF/CCI TCWV-global (COMBI) data set provided by ESA
WV_CCI (Schröder et al., 2023). The climate data record
(CDR) combines microwave and near-infrared imager based
TCWV over the ice-free ocean as well as over land, coastal
ocean, and sea ice. The data record relies on microwave ob-
servations from the SSM/I, the Special Sensor Microwave
Imager/Sounder (SSMIS) , the AMSR-E, and the Tropi-
cal Rainfall Measuring Mission Microwave Imager (TMI),
partly based on a fundamental climate data record (Fennig
et al., 2020) and on near-infrared observations from MERIS,
MODIS Terra, and the Ocean and Land Colour Instrument
(OLCI) (Danne et al., 2022). Hence, it is one of the few
(satellite) measurement data sets that provide global cov-
erage over ocean and land surface. Moreover, the data set
has been extensively validated with respect to global refer-
ence data sets (e.g. ERA5), satellite products, GPS measure-
ments from SuomiNet, and radiosonde observations from
the Global Climate Observing System Reference Upper-Air
Network (GRUAN) (more details in the validation report of
Schröder et al., 2023).

Within comparisons between different satellite data sets,
a major drawback is the influence of sampling errors due to
different observation times, pixel footprint sizes, or orbit pat-
terns. To minimize this source of error, data from reanalysis
models are useful. ERA5 is the fifth-generation ECMWF re-
analysis (Hersbach et al., 2020) and combines model data
with in situ and remote sensing observations from various
different measurement platforms. For our purpose, we use
the “monthly averaged reanalysis by hour of day” from the
Copernicus Climate Data Store on a 1◦×1◦ grid. To account
for OMI’s observation time (around 13:30 LT), we first cal-
culate the local time for each longitude in the ERA5 data set,
select the TCWV data for the time period between 13:00 and
14:00 LT, and finally merge the selected data. For the inter-
comparison, it is also important to consider that the reference
data sets are not perfect nor error-free; thus, we perform an
orthogonal distance regression (ODR; Cantrell, 2008).

In the case of the ODR, it is necessary to use reasonable ra-
tios of the relative errors of the compared data sets, instead of
using absolute errors, in order to obtain meaningful results.
In a comprehensive uncertainty analysis, Wentz (1997) deter-
mined a typical error of 1.22 kg m−2 for SSM/I observations.
Mears et al. (2015) found that the uncertainty of daily mi-
crowave TCWV observations for TCWV = 10 kg m−2 was
around 1 kg m−2 with respect to Global Navigation Satel-
lite System (GNSS) measurements, whereas this value for
TCWV = 60 kg m−2 was around 2–4 kg m−2. Hence, we as-
sume that the uncertainty of the RSS data set is 5 % or at least
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Figure 5. Distributions of the absolute differences (εsampling; a) and relative differences (εsampling/TCWVtrue; b) of the monthly mean
differences between clear-sky and all-sky ERA5 data based on the OMI cloud information. The solid and dashed orange lines indicate the
mean and the median of the distributions, respectively.

Figure 6. Distributions of the absolute differences (εclear; a) and relative differences (εclear/TCWVall; b) of the monthly mean differences
between clear-sky and all-sky ERA5 data based on the OMI cloud information. The solid and dashed orange lines indicate the mean and the
median of the distributions, respectively.

1 kg m−2. For ERA5 and COMBI, we can assume similar un-
certainties over ocean, as the TCWV values there are also
mainly based on microwave observations. Unfortunately, no
uncertainties are provided for TCWV over land. Thus, for the
sake of simplicity, we assume that the relative errors in the
reference data sets over land are twice as high as over ocean,
i.e. 10 % or at least 2 kg m−2. For the OMI TCWV data set,
we assume an uncertainty of 20 % (Borger et al., 2020) but
at least 2 kg m−2. We also tested other error assumptions and
found that the exact choice of errors is negligible for the re-
gression results as long as the ratio of uncertainties remains
similar.

First comparisons with the reference data over land indi-
cated that the OMI data set shows different levels of agree-
ment for low and high TCWV values, with high deviations
being particularly prominent for high TCWV values. To be
able to estimate the quality of the OMI data set for low and
high TCWV, a piecewise linear regression (PWLR) is addi-
tionally performed for data over land. For the PWLR, a func-

tion of the form

f (x)=
{
a0 · x+ b0 x < x0,

a1 · x+ b1 x > x0
(6)

is assumed, whereby the function parameters (including x0)
are determined via a non-linear least-squares fit.

4.1 Intercomparison with RSS SSM/I

The results of the intercomparison between OMI and the
RSS TCWV data set are summarized in Fig. 7. Figure 7a
depicts the 2D histogram from the comparison between the
monthly mean values from RSS and the OMI TCWV data
set. The data are distributed closely along the 1-to-1 diag-
onal (dashed black line), and the results of the orthogonal
distance regression (ODR, solid red line) indicate an overall
very good agreement with slopes of around 1.01 and a coef-
ficient of determination of R2

ODR = 0.96. If only the TCWV
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anomalies are compared (i.e. the seasonal cycle is removed),
we obtain correlations of R2

= 0.50.
Figure 7b illustrates the zonally averaged monthly mean

difference of OMI minus RSS TCWV within the latitude–
time space. In general, the deviations between OMI and
RSS are quite low with a positive bias of +1.0± 1.5 kg m−2.
Within the tropics (i.e. between −20 and 20◦ N), we ob-
tain a mean deviation of+2.0± 1.6 kg m−2, whereas we find
values of +0.6± 1.3 kg m−2 in the extratropics. However,
within the tropics, distinctive periodic patterns of positive de-
viations are also observable.

Figure 8 shows the global mean TCWV difference be-
tween OMI and RSS SSM/I over the complete time period of
the OMI TCWV data set. Consistent with the findings from
Fig. 7, the highest positive deviations can be found in the
tropical Pacific Ocean and near the coastlines of South Amer-
ica, Africa, and Indonesia, whereas the strongest negative de-
viations are obtained around the South Pacific convergence
zone and the East Siberian Sea. In the case of the tropical Pa-
cific Ocean, the distribution of the systematic positive devia-
tions matches regions of cold water or of the so-called “cold
tongue”, which is frequently affected by low clouds, quite
well. As the highest water vapour concentrations occur in the
lower troposphere, small deviations of a few hundred metres
in cloud top height can have relatively large effects on the
AMF (and thus on the retrieved TCWV). In the case of Cen-
tral America or the Atlantic Ocean, an overly low albedo due
to additional absorption by phytoplankton (Kleipool et al.,
2008) could explain the systematic positive deviations.

Additional comparisons considering only valid grid cells
according to the “common mask” from the COMBI data set
are presented in Appendix B. This mask filters regions where
no continuous time series of data is available or where the
data are affected by high uncertainties, e.g. due to frequent
cloud cover. Therefore only high-quality measurements are
compared to each other. However, as mainly regions over
land surface are affected, the comparisons with the filtered
data are almost identical to the unfiltered data.

4.2 Intercomparison with ERA5

The results of the intercomparison with ERA5 are depicted in
Fig. 9. To investigate potential dependencies on the surface
type, we separated the data into data over ocean (Fig. 9a, b)
and data over land (Fig. 9c, d). The intercomparison for data
over ocean reveals similar results to the intercomparison be-
tween OMI and RSS: the ODR results indicate a slight over-
estimation (slopes of around 1.03) and a coefficient of deter-
mination close to unity (R2

ODR of around 0.96). Moreover, the
periodic pattern of positive deviations in the tropics occurs
again. Overall, a small positive bias of +1.7± 1.7 kg m−2 is
observed, which increases to +3.4± 1.7 kg m−2 in the trop-
ics (−20 to 20◦ N) but is around +1.1± 1.3 kg m−2 in the
extratropics. In addition, the correlation of the anomalies is
approximately R2

= 0.49.

For data over land, the picture is different: although
the ODR gives similar results for the slope as for data
over ocean, the distribution in the 2D histogram (Fig. 9c)
shows particularly strong positive deviations of approxi-
mately+10 kg m−2 at high TCWV values and an overall sys-
tematic offset of around +1.43 kg m−2. Within the PWLR
analysis, we find a good agreement with the reference data
for TCWV values up to about 25 kg m−2 (which represents
approximately 74 % of all data points) with slopes of around
0.96. However, for higher TCWV values, we find distinctive
positive overestimations of up to 24 %. Nevertheless, even
for low TCWV values, a systematic offset of approximately
+2.52 kg m−2 is obtained. Furthermore, the correlation of
the TCWV anomalies is only around R2

= 0.40.
According to the corresponding latitude–time differ-

ence plot (Fig. 9d), the systematic positive deviation in
the tropics is now much stronger with values of around
+6.2± 3.4 kg m−2 (for latitudes< 20◦); however, in the ex-
tratropics, the positive deviation is around+1.7± 1.2 kg m−2

on average and thus of similar magnitude as for the ocean
comparisons.

Closer inspection of the mean TCWV difference between
OMI and ERA5 (see Fig. 10) reveals that the strong devia-
tions over the tropical landmasses mainly occur in the regions
that are affected by frequent cloud cover, such as the Ama-
zon Basin, Central Africa, and the Maritime Continent. In
part, these overestimations are further amplified by sampling
errors due to complex topography or high mountains (which
are also associated with high snow/ice cover and, thus, fewer
valid observations).

Hence, the reasons for the distinctive positive deviations
with respect to ERA5 may arise from different causes. For
the case of the OMI TCWV retrieval, two main uncertainty
sources may cause the strong, systematic positive deviations.
First, there is the possibility that the used land surface albedo
from Borger et al. (2020) is too low, leading to an underesti-
mation of the AMF and, consequently, to an overestimation
of the H2O VCD. However, Borger et al. (2020) also showed
that their modified albedo map led to overall better results
for the case of the TROPOMI TCWV retrieval. On the other
hand, there may also be uncertainties in the retrieval input
data of the cloud information from the L2 NO2 product; for
example, if the surface albedo is underestimated in the in-
put of the cloud algorithm, this leads to an overestimation of
the cloud top height and, thus, to an underestimation of the
AMF and, finally, to an overestimation of the H2O VCD. For
the case of ERA5, the frequent cloud cover can be also ma-
jor source of uncertainty, as only few satellite measurements
(or none at all in the thermal infrared) are available due to
frequent cloud contamination. This might lead to clear-sky
dry biases in the cloud-affected regions and increased uncer-
tainties within the assimilation process due to the complex
radiative transfer in cloudy scenarios (e.g. Li et al., 2016).
Likewise, these remote regions are affected by an overall
sparseness in the observation density of in situ measure-
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Figure 7. Intercomparison between monthly mean TCWV from the OMI and RSS merged SSM/I data set for data over ocean. Panel (a)
illustrates a 2D histogram in which the colour indicates the count density; the solid red line represents the results of the orthogonal distance
regression (ODR). The results of the respective fits are given in the bottom right box and the correlation coefficient is presented in the top left
corner. The dashed black line indicates the 1-to-1 diagonal. Panel (b) depicts the TCWV difference of OMI minus RSS within the latitude–
time space; reddish colours indicate an overestimation of the OMI TCWV data set, whereas blueish colours denote an underestimation.

Figure 8. Global mean TCWV difference of OMI minus RSS SS-
M/I for the time range from January 2005 to December 2020. Areas
with no valid values are coloured grey.

ments; therefore, the ERA5 TCWV values are likely to be
based mainly on modelled data. Thus, overall, the strong pos-
itive deviation of the OMI TCWV data set likely results from
the combination of an overestimation of the OMI TCWV re-
trieval and an underestimation of the ERA5 data.

One way to address these errors would be to develop an
independent albedo and cloud product, but this is far beyond
the scope of this paper. Moreover, considering the demise
of OMI in the near future (probably in 1–2 years) and the
ongoing reprocessing of L1 data, the development of such an
algorithm would not be worthwhile at the moment of writing
this paper.

Hence, considering these large uncertainties in the OMI
retrieval and that the uncertainties in ERA5 for data over
tropical landmasses are not negligible anymore, we conclude

that the OMI TCWV data set can represent the global distri-
bution of the atmospheric water vapour content well, at least
over ocean. Over land, however, the data set should be treated
with caution due to the systematic positive deviations from
the reference data sets, especially in areas of high TCWV
values (i.e. above 25 kg m−2).

An additional comparison in which particularly critical re-
gions were filtered using the common mask from the COMBI
data set (see Fig. B1) is given in Appendix B. When this
mask is applied, only high-quality measurements are taken
into account for the intercomparison. As a result, the extreme
overestimations are filtered out and the distribution in the 2D
histogram for the comparison over land improves consider-
ably (see Fig. B6a). The slope of the ODR is now around
0.96, which is closer to the results of the PWLR regression
for TCWV< 25 kg m−2.

4.3 Intercomparison with COMBI

For the intercomparison with the COMBI data set, we resam-
pled the CDR from its native spatial resolution (0.5◦× 0.5◦)
to the lattice of the OMI TCWV data set. Furthermore, al-
though COMBI covers a time span from July 2002 to Decem-
ber 2017, we focus on the time period from January 2005 to
March 2016, as the CDR’s difference relative to ERA5 over
land is only stable over the MERIS and MODIS period, i.e.
from July 2002 to March 2016 if looking at clear-sky data.
For the sake of completeness, the results for the comparison
over the complete time range are depicted in Figs. E1 and E2
in the Appendix.

Figure 11 summarizes the results of the intercomparison.
Not surprisingly, the results for data over ocean (Fig. 11a)
are similar to the findings of the RSS SSM/I and ERA5 com-
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Figure 9. Same as Fig. 7 but with ERA5 data over ocean (a, b) and over land (c, d). In panel (c), the solid red line represents the results of
the orthogonal distance regression (ODR) and the solid black line presents the results of the piecewise linear regression (PWLR).

Figure 10. Same as Fig. 8 but for ERA5.

parison, as measurements from the same (or similar) sensors
have been considered: the ODR results indicate slight overes-
timations of around 2 % with a coefficient of determination
of around 0.95, and the latitude–time diagram indicates an

average deviation of +1.3± 1.7 kg m−2 (+2.5± 2.0 kg m−2

in the tropics and +0.8± 1.4 kg m−2 in the extratropics).
However, the correlation of the TCWV anomalies is slightly
lower compared to the other data sets, with values of around
R2
= 0.45 over ocean.

Similar to the intercomparison with ERA5, the intercom-
parison over land (Fig. 11c) shows roughly similar ODR fit
results to those over ocean, but we also find striking positive
deviations for high TCWV values and an overall positive off-
set of 2.23 kg m−2. Again, when applying a PWLR analysis,
we obtain good agreement, with slopes of around 0.95 for
TCWV values to about 25 kg m−2, but still a distinctive posi-
tive offset of 3.51 kg m−2 for low TCWV values and distinc-
tive overestimations of up to 33 % for higher TCWV values,
which is even higher than for the comparison to ERA5. Con-
sequently, the systematic deviations are also much stronger
(see Fig. 11d) and reach values of around +7.2± 3.6 kg m−2

in the tropics, around +2.7± 1.4 kg m−2 in the extratrop-
ics, and a global average of +4.1± 3.1 kg m−2. These even
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Figure 11. Same as Fig. 7 but with COMBI data for data over ocean (a, b) and for data over land (c, d). In panel (c), the solid red line
represents the results of the ODR and the solid black line presents the results of the PWLR.

higher deviations compared with the analysis with ERA5
could be due to the different observation times of the data
sets: MERIS on Envisat and MODIS on Terra have overpass
times of 10:00 and 10:30 LT, respectively, and follow a de-
scending orbit, whereas OMI measures at 13:30 LT in an as-
cending orbit. This might also explain the worse correlation
of anomalies (R2

= 0.32) for data over land.
Overall, similar to the comparison to ERA5, the strongest

positive deviations again occur over the tropical landmasses
that are mostly affected by frequent cloud cover (see Fig. 12).
Likewise, further overestimations appear in areas with com-
plex high topography (e.g. Indonesia, the Andes, and the Hi-
malayas), suggesting sampling errors when merging the spa-
tial resolutions of the data sets and missing observations due
to snow/ice cover.

In Appendix B, we present a comparison in which criti-
cal regions were filtered using the common mask from the
COMBI data record. When this mask is applied, there are
clear improvements for the comparison over land: the promi-

Figure 12. Same as Fig. 8 but for COMBI.

nent overestimates at high TCWV values are filtered out and
the distribution is now closer to the 1-to-1 diagonal (see
Fig. B6b). For the ODR, the slope is around 0.98, which
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Figure 13. Global distribution of radiosonde stations used for the
TCWV intercomparison to the MPIC OMI data set. Colours indi-
cate the number of data pairs used for the intercomparison.

agrees quite well with the slopes obtained for the PWLR for
TCWV< 25 kg m−2.

5 Intercomparison with IGRA2 radiosonde
observations

For further comparisons besides reanalysis and satellite data,
in situ measurements from radiosondes are invaluable, as
these measurements can provide information on the verti-
cal water vapour distribution with high accuracy (Dirksen
et al., 2014). Here, the Integrated Global Radiosonde Archive
(IGRA) is particularly well suited for global intercompar-
isons: IGRA is a collection of historical and near-real-time
radiosonde and pilot balloon observations from around the
globe (Durre et al., 2006, 2018) provided by the National
Centers for Environmental Information (NCEI) of the Na-
tional Oceanic and Atmospheric Administration (NOAA).
For IGRA version 2 (IGRA2; Durre et al., 2016, 2018), 40
data sources were converted into a common data format and
merged into one coherent data set which then went through
a quality-assurance system. While, to our knowledge, no ex-
plicit uncertainty estimates have been conducted for water
vapour measurements, the IGRA2 humidity measurements
are subject to rigorous quality control (Durre et al., 2018)
and the completeness of the IGRA2 humidity observations
has also been checked by Ferreira et al. (2019).

Although IGRA2 also provides TCWV data, these are
calculated from the surface up to only 500 hPa. Typically,
this pressure level is at about 5 km above mean sea level;
therefore, if one assumes a typical scale height of the wa-
ter vapour of 2.1 km (Weaver and Ramanathan, 1995), a low
bias of 10 % could be introduced. Thus, to ensure a consistent
calculation of the TCWV monthly means from the IGRA2
data, the following criteria were applied to the individual ra-
diosonde ascents:

1. Only radiosonde ascents that have reached an altitude
of at least 300 hPa were considered for the calculation
of the TCWV. This pressure level corresponds to a typi-
cal geometric altitude of around 9 km. This ensures that
the radiosondes covered a large part of the troposphere
and, thus, captured the majority of the TCWV without
introducing non-negligible low biases.

2. For the calculation of the monthly means, valid ra-
diosonde ascents of at least 10 different days in the
month must have taken place in order to achieve a good
temporal coverage of the month.

3. Only stations with at least 12 valid data pairs between
the monthly means of IGRA2 and Max Planck Institute
for Chemistry (MPIC) OMI TCWV data set were con-
sidered for the statistical analysis.

Figure 13 shows the global distribution of the locations of
the radio sounding stations as well as the numbers of valid
data pairs used for the comparison. Altogether, 731 different
radiosonde stations are considered for this comparison study.
In addition to a high density of measurement stations, there
is a general good temporal coverage in the northern mid-
latitudes (especially in North America and Europe) and, thus,
good temporal collocation between MPIC OMI and IGRA2
data. For the other parts of the world, however, the measure-
ment network is much less dense; hence, the number of tem-
poral collocations of the two data sets do not reach the val-
ues from the northern mid-latitudes. Thus, due to the limited
sample size at many stations, the median of the deviation is
now used instead of the mean deviation for the comparisons.

The distribution of these median deviations is given in
Fig. 14. Overall, the results are consistent with the find-
ings from the previous comparisons with the global satel-
lite and reanalysis data sets (see Sect. 4), in which a good
to very good agreement was found for the extratropics and
an overestimation was observed for the tropics. On average,
the median deviation is about +1.6± 3.4 kg m−2, with about
+0.9± 2.0 kg m−2 in the extratropics and+4.3± 5.5 kg m−2

in the tropics.
Nevertheless, this comparison to radiosonde measure-

ments demonstrates that the MPIC OMI TCWV data set is
also in good to very good agreement with in situ reference
data sets but tends to be systematically overestimated in the
tropical landmass regions; this is in line with the previous
findings from the comparisons with reanalysis and satellite
data (Sect. 4).

6 Temporal stability

In addition to a good agreement with existing reference data
sets, the temporal stability is an important property of a cli-
mate data record. As the COMBI data set only covers the
time range up to December 2017, we focus on the compari-
son to the RSS SSM/I and ERA5 data sets, as these two cover
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Figure 14. Global distribution of the median TCWV difference between the monthly means of the MPIC OMI TCWV data set and those
derived from the IGRA2 radiosoundings.

the complete time range of the OMI TCWV data set. For the
sake of completeness, however, we also show the results for
COMBI.

To assess the stability of the OMI TCWV data set, the
global mean relative deviation 〈ε〉 is first derived for every
time step:

〈ε〉 =
〈OMI−TCWVref〉

〈TCWVref〉
. (7)

For the calculation of global means, only data points or grid
cells are considered for which data are available in both
the OMI TCWV and the reference data sets for every time
step (i.e. no gaps in the time series). In the case of the
COMBI data set, a common mask has been provided (see
also Fig. B1).

The temporal linear trends of these deviations are then cal-
culated using a generalized least-squares (GLS) regression
for the fit function:

Y t =m+ b ·Xt =Mx+N t (8)

with the intercept m, the trend b, and the increasing time in-
dex Xt (in months), which can all be summarized in a ma-
trix Mt . The term N t stands for the fit residuals with respect
to the time series. To account for the temporal autocorrela-
tion of the fit residuals N t of the GLS, the Prais–Winsten
transformation (Prais and Winsten, 1954; Greene, 2019) is
used, assuming that the residuals follow an autoregressive
(AR) process. For this purpose, the autocorrelation function
(ACF) is estimated using the Gaussian-kernel-based cross-
correlation function algorithm, as described in Rehfeld et al.

(2011). For the estimation of the order of the AR model, we
use the partial autocorrelation function (PACF) and investi-
gate after which lag all values of the PACF lie within a con-
fidence interval ±δ. Assuming that the PACF values for high
lags follow a white noise, the confidence interval is defined
by the Z score (in our case, of a significance level of 95 %)
and the length of the time series L according to the following
formula (Box et al., 2015):

δ =
Z
√
L
. (9)

An AR model can then be created from the determined
AR order, which is then used to transform the GLS using the
transformation matrix P:

PY t = Y ′t = P(Mtx+N t )=M′tx+ εt . (10)

For details about the construction of the transformation ma-
trix, we refer to Weatherhead et al. (1998), Mieruch et al.
(2008), and Borger et al. (2022). The trends are then deter-
mined from the transformed system in Eq. (10) by simple lin-
ear algebra. The results and their uncertainties then already
include the effect of the temporal autocorrelation.

Figure 15 illustrates the temporal variability of the rela-
tive differences between the OMI TCWV data set and RSS
SSM/I, ERA5, and COMBI for the time range from Jan-
uary 2005 to March 2016 (dashed blue lines) and from Jan-
uary 2005 to the end of the respective data set (solid blue
lines). For all three data sets and all time ranges, the PACF
analyses showed that an AR(3) model is the most appropri-
ate choice. For the time series until March 2016, we find
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Figure 15. Stability analyses of the global mean relative deviations
between the OMI TCWV data set with respect to (a) RSS SSM/I,
(b) ERA5, and (c) COMBI. The red line presents the global mean
relative deviation, the blue line shows the results of the transformed
GLS regression, the dotted black line denotes the respective 25th
and 75th percentiles, the dashed lines represent data for the time
range from January 2005 to March 2016, and the solid lines rep-
resent data for the time range from January 2005 to the end of the
respective data set. The bias and root-mean-square (RMS) values
provided in the legends correspond to the time series of the global
mean deviation for the respective time range.

trends of +0.21± 1.20 % per decade for the comparison to
RSS SSM/I, +0.21± 1.28 % per decade for the comparison
to ERA5, and−1.74± 1.50 % per decade for the comparison
to the COMBI data.

For the time series until the end of the reference data set,
one finds trends of +0.01± 0.70 % per decade for the com-
parison to RSS SSM/I and−0.09± 0.71 % per decade for the
comparison to ERA5. Moreover, the statistical analyses re-
veal that these trends are not significantly different from 0 %
per decade. For the comparison to the COMBI data, there is a
stronger trend (around −0.43± 1.16 % per decade) than for
the other two data sets; however, the time range is also much
shorter and does not cover the complete time range of the
OMI TCWV data set. Altogether, the obtained trends of the
relative deviations are in line with typical stability require-
ments for climate data products of ±1 % per decade (see
e.g. Beirle et al., 2018, and references therein or the ESA
WV_cci user requirements; https://climate.esa.int/media/
documents/Water_Vapour_cci_D1.1_URD_v3.0.pdf, last ac-

Figure 16. Same as Fig. 15 but only for (a) ERA5 and (b) COMBI
and only for data over ocean.

cess: 23 May 2023). Moreover, these trends are also in line
with the recently published stability requirements for Essen-
tial Climate Variables (ECV) according to the Global Climate
Observing System (GCOS) implementation plan with stabil-
ities of ±0.1 % per decade as “goal”, ±0.2 % per decade as
“breakthrough”, and ±0.5 % per decade as “target” stabil-
ity (see GCOS-245; https://library.wmo.int/doc_num.php?
explnum_id=11318, last access: 23 May 2023).

To understand the extent to which the temporal stability
differs over land and over ocean, the data were separated and
analysed. The results of this separate analyses are shown in
Fig. 16 (over ocean) and Fig. 17 (over land). The RSS data
set was not investigated again, as it is only available over
ocean; therefore, it is redundant to re-examine it here. The
PACF analyses revealed that an AR(3) model and an AR(2)
model are the most appropriate choices over ocean and over
land, respectively, for all stability analyses.

Over ocean, the OMI data set also meets the 1 % per
decade stability criterion (as well as various GCOS stability
criteria) for both the long and short periods for the case with
ERA5 as the reference (+0.01± 1.17 % and−0.28± 0.67 %
per decade, respectively). In contrast, no stability criterion
for the comparison with the COMBI data set is fulfilled for
both time periods any more (−0.87± 1.08 % per decade for
the longer and −1.78± 1.39 % per decade for the shorter
time period). This is surprising, as both reference data sets
should consist largely of similar measurement data from
mainly microwave satellites. ERA5 is possibly better con-
strained again due to its larger volume of assimilated obser-
vation data.

Over land, the situation is even more complicated: whereas
the 1 % stability criterion is still met at +0.62± 0.96 % per
decade for the period from 2005 to 2020 for ERA5, this is
no longer the case for the shorter period at +1.24± 1.75 %
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Figure 17. Same as Fig. 15 but only for (a) ERA5 and (b) COMBI
and only for data over land.

per decade. In the case of the COMBI data set, the stability
criterion is not even close to being fulfilled for the period
from 2005 to 2017 (+3.36± 2.04 % per decade) nor for the
period from 2005 to 2016 (−0.79± 2.39 % per decade).

Considering the obtained results, it seems that both sta-
bility trends over land and ocean largely cancel each other.
However, one reason for the high relative deviations over
land could be that mainly desert-like regions are used in
the analysis due to the aforementioned filter criterion. Thus,
rather low TCWV values are used in the normalization,
which means that extreme relative deviations can occur even
with rather small, absolute deviations.

7 Data availability

The MPIC OMI total column water vapour
(TCWV) climate data record is available at
https://doi.org/10.5281/zenodo.7973889 (Borger et al.,
2023).

8 Summary

In this study, we present a long-term 16-year data record
of total column water vapour (TCWV) retrieved from mul-
tiple years of OMI observations in the visible blue spec-
tral range by means of differential optical absorption spec-
troscopy. To derive TCWV from OMI measurements, we ap-
plied the TCWV retrieval developed for TROPOMI (Borger
et al., 2020) and modified the spectral analysis to account for
the degradation of OMI’s daily solar irradiance. Thus, an-
nual earthshine reference spectra were calculated from radi-
ance measurements over Antarctica during December (aus-
tral summer).

The estimation of the sampling errors in the OMI TCWV
data set results in average errors of about −10 % (−6 % for
the median), and the largest deviations occur mainly in the
the mid-latitude storm tracks and polar regions. Further in-
vestigations show that the large deviations of the sampling
error correlate well with the deviations of the clear-sky bias.
However, the investigation of a seasonal effect of the clear-
sky bias did not show any seasonal dependence. Considering
the dominant role of the clear-sky bias in the sampling er-
ror, we conclude that the spatiotemporal sampling errors are
rather negligible.

Within an intercomparison study, the OMI TCWV data
set proves to be in good agreement with the reference data
sets of RSS SSM/I, ERA5, and the ESA WV_cci CDR-
2 COMBI, in particular over ocean surface. However, over
land surface, the OMI data set systematically overestimates
high TCWV values compared with ERA5 and COMBI by
more than 24 %, especially in the tropical regions affected
by frequent cloud cover. Similar results are found from in-
tercomparisons with in situ radiosonde measurements of the
IGRA2 data set. The reasons for these overestimations are
manifold, but they are likely due to an overestimation of the
OMI TCWV retrieval owing to uncertainties in the retrieval
input data (surface albedo, cloud information) and an under-
estimation of the reference data caused by missing or un-
certain observations. Nevertheless, the validation shows that
good agreement with the reference data can be obtained for
TCWV< 25 kg m−2 and also for the case when regions of
large uncertainty are filtered. Considering the temporal sta-
bility analysis, no significant deviation trends could be ob-
tained.

For the cases of ERA5 and RSS SSM/I, the temporal sta-
bilities of less than ±0.1 % per decade meet the “goal” re-
quirements of the latest GCOS report; furthermore, for the
case of COMBI, the “goal” requirement is still met. This
demonstrates that the OMI TCWV data set is well suited for
climate studies.

Overall, the OMI TCWV data set provides a promising ba-
sis for investigations of climate change: on the one hand, it
covers a long time series (more than 16 years and with mea-
surements still in operation); on the other hand, these mea-
surements are based on a single instrument, so that no bias
corrections between different sensors need to be taken into
account (e.g. in trend analysis studies). Although OMI is af-
fected by degradation effects, we were able to successfully
suppress these effects by using earthshine reference spectra.
Furthermore, the data set is based on a retrieval in the visible
blue spectral range, where a similar sensitivity for the near-
surface layers over ocean and land is given and, thus, a con-
sistent global data set can be obtained from measurements of
only one sensor.

In the future, we plan to complement the data set with
TCWV measurements from TROPOMI to ensure the con-
tinuation of the data set after the end of the OMI mission. As
the TCWV retrieval can be easily applied to other UV–Vis
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satellite instruments, additional data sets from other instru-
ments from past and present missions, such as GOME-1/2
and SCIAMACHY, and future instruments, such as Sentinel-
5 on MetOp-SG, can be created and eventually combined
with the OMI TCWV data set, thereby taking the different
instrumental properties (e.g. observation time) into account.
This would allow the construction of a data record that ex-
tends from 1995 to today. Similarly, a combination of data
from low-earth-orbit satellites and geostationary satellite in-
struments, such as GEMS, TEMPO, or Sentinel-4, could be
a promising option to fill temporal gaps in daily observations
as well as to investigate (semi-)diurnal cycles of the water
vapour distribution.

Appendix A: Irradiance-based vs. earthshine SCD

To reduce the across-track biases of the retrieved H2O SCDs
based on a solar reference spectrum, a destriping algorithm
can be performed during post-processing. For instance, one
way to destripe the swath of an OMI orbit is to

1. calculate the median SCD for each OMI row along-
track,

2. calculate the across-track median SCD from the along-
track median SCDs,

3. calculate the deviation of the along-track median SCDs
from this across-track median SCD,

4. subtract the deviation from the SCDs of the respective
OMI row.

For the case of an earthshine reference, this is already implic-
itly accounted for during the spectral analysis; however, one
still has to consider that the earthshine reference spectrum is
not perfectly pristine with respect to the trace gas of interest.
For example, in our case, although the water vapour concen-
trations in Antarctica are very low, the earthshine reference
might still be contaminated because of the long light path at
such high solar zenith angles.

Figure A1 illustrates the time series of the global monthly
mean H2O SCDs derived from the annual mean solar irra-
diance (and destriped following the aforementioned destrip-
ing process) and the earthshine reference for SZA< 80◦.
Until 2009, the offset between both SCDs remains constant
at values of around 0.2× 1023 molec. cm−2. Between 2009
and 2015, the irradiance-based SCDs first decrease and then
increase distinctively compared with the earthshine-based
SCDs, and a strong increase in the irradiance-based SCDs
can be observed from 2015 onwards. In contrast, the earth-
shine SCDs show no jumps or steps and remain at the same
magnitude after 2015 and over the complete time range in
general.

To get an overview of how the SCD difference (i.e. solar-
irradiance-based minus earthshine-based SCD) behaves with

time over the complete OMI swath, Fig. A2 depicts the
monthly mean SCD difference for each OMI row. Between
2005 and 2009, the SCD differences remain quite constant
for each row; however, after 2009, artefacts arise first at rows
55–60 and then start to expand to other rows and become
even stronger. This clearly illustrates that an OMI TCWV
product based on a solar irradiance fit cannot be used for
trend analyses.

Figure A1. Globally averaged monthly mean of the destriped H2O
SCDs derived from annual mean solar irradiance and H2O SCDs
derived using the annual earthshine reference from 2005 to 2020.

Figure A2. Global mean monthly averaged difference between
annual mean irradiance and earthshine H2O SCD for each OMI
row separately. Only snow- and ice-free observations with a solar
zenith angle< 80◦ are included. Rows affected by the row anomaly
(coloured in grey) are excluded for the complete time series.
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Appendix B: Intercomparisons considering masks
and flags

The intercomparison in Sect. 4 also considers regions for
which only a small number of measurements are available,
for example due to frequent cloud cover or seasonality of the
solar zenith angle. On the one hand, the small sample size of
measurements leads to a higher statistical uncertainty with
regard to the monthly mean; on the other hand, it also leads
to a non-continuous time series when data are missing for the
complete month. Moreover, the errors in the individual mea-
surements are also significantly larger in these regions. With
the help of the common mask of the COMBI data set (see
Fig. B1), these regions can be identified and filtered for addi-
tional intercomparisons. The common mask only considers
grid cells for which valid TCWV values are available over
all time steps in the COMBI data set in the time period from
July 2002 to March 2016 (Schröder et al., 2023).

In addition, two flags were created from the MPIC OMI
TCWV data set itself:

1. A static flag was created for filtering coastlines. For
each grid cell, it was checked whether all corners and
the centre of the grid cell were either over ocean or land.
If all coordinates were over land, the cell was declared
“land”; if all cells were over ocean, it was declared
“ocean”; and it was declared as coastline (“coast”) oth-
erwise. The resulting map is shown in Fig. B2.

2. A dynamic monthly flag was created based on the num-
ber of measurements to calculate the individual monthly
means per grid cell. We have chosen to consider a grid
cell as valid if the monthly mean was calculated from
more than 100 measurements. This represents a good
compromise between global coverage and a good statis-
tic for calculating the monthly mean. Figure B3 shows
the fractional coverage for the complete time range of
the data set using this mask. Compared to the COMBI
mask (see Fig. B1), similar regions are filtered. How-
ever, a major advantage of the MPIC mask is that it con-
siders temporal changes, so that the seasonal variability
in the atmosphere (e.g. cloud cover and solar zenith an-
gle) is also taken into account when flagging.

The results of the intercomparisons considering the
COMBI mask and the MPIC OMI flags, respectively, are
shown in Figs. B4 and B5 for data over ocean and in Figs. B6
and B7 for data over land. Overall, it can be seen that the
mask of COMBI and the flags of the OMI data set lead to
similar changes in the comparisons to the reference data.
For all comparisons, the coefficients of determination for the
ODR regression remain at approximately a similar level (i.e.
R2 above 0.90) as for the “non-filtered” comparisons. For the
comparisons over ocean, hardly any changes are obtained,
as the filter is mainly applied over land surfaces. The dif-
ferences between the comparisons with the different filters

Figure B1. The common mask of the COMBI data set. Yellow grid
cells indicate data points that are accounted for within a temporal
stability analysis. Invalid grid cells are coloured grey.

Figure B2. Global distribution of the coastline flag of the MPIC
OMI TCWV data set.

Figure B3. Global distribution of the fractional coverage consider-
ing the count flag of the MPIC OMI TCWV data set.

result mainly from the fact that the MPIC flags filter mea-
surements in the higher latitudes (especially during the win-
ter months).

However, there is a remarkable improvement for the com-
parison over land: although the fit results of the ODR change
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only slightly, the extreme overestimates at high TCWV val-
ues are now filtered out and the distributions are now closer
to the 1-to-1 diagonal. Overall, the results for the “filtered”
comparison over land also agree very well with the results of
the PWLR, for which similar slope regression results were
found for TCWV< 25 kg m−2.

Figure B4. Correlation analysis of the OMI TCWV data set and RSS SSM/I, ERA5, and COMBI for data over ocean considering only valid
grid cells according to the common mask in Fig. B1.

Figure B5. Same as Fig. B4 but only considering valid grid cells according to the coastline and count flag of the MPIC OMI TCWV data
set.

https://doi.org/10.5194/essd-15-3023-2023 Earth Syst. Sci. Data, 15, 3023–3049, 2023



3042 C. Borger et al.: TCWV from OMI observations

Figure B6. Same as Fig. B4 but for data over land. The solid red line represents the ODR results and the solid black line represents the
PWLR results.

Figure B7. Same as Fig. B6 but only considering valid grid cells according to the coastline and count flag of the MPIC OMI TCWV data
set.
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Appendix C: Representativeness of RA-filtered data
in comparison to the full swath

Due to the row-anomaly filter, approximately 50 % of the
complete satellite swath of OMI is not considered in the
TCWV data set. This raises the question of how much the
monthly mean values would differ if the data of the complete
swath were available. To investigate this, we follow the same
scheme as in Sect. 3 and use the same ERA5 data as a refer-
ence. We select the ERA5 data to match the OMI overpass,
once applying the row-anomaly filter and once not. However,
in both cases, the clear-sky filter based on the OMI cloud in-
formation is applied (effective cloud fraction< 20 %).

Figure C1. Global distributions of the mean differences between RA-filtered and full-swath ERA5 based on the OMI cloud information for
the time range from January 2005 to December 2020. Panel (a) depicts the absolute differences (i.e. RA-filtered minus full swath) and panel
(b) presents relative differences (i.e. (RA-filtered minus full swath)/full swath). Grid cells for which no data are available are coloured grey.

Figure C2. Distributions of the absolute differences (RA-filtered minus full swath; a) and relative differences ((RA-filtered minus full
swath)/full swath; b) of the monthly mean differences between RA-filtered and full-swath ERA5 data based on the OMI cloud information.
The solid and dashed orange lines indicate the mean and the median of the distributions, respectively.

Compared with the clear-sky bias, the deviations are much
weaker, and no particular spatial patterns are discernible in
the global distributions except in the deep Pacific tropics and
parts of Southeast Asia (see Fig. C1). Furthermore, the his-
tograms for the absolute and relative deviations in Fig. C2
show a normal distribution for both cases with mean values
of −0.30 kg m−2 and −2.1 % (median of −0.23 kg m−2 and
−1.1 %). Considering the much larger uncertainties of the
OMI TCWV retrievals of typically 20 % or more and that
the clear-sky bias is almost an order of magnitude larger, the
obtained deviations are negligible; thus, the monthly means
from the RA-filtered data are a good representation compared
to the monthly means from the data for a full swath, even
though only half of the satellite data are actually used.
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Appendix D: Temporal stability analysis with respect
to IGRA2

In addition to the global data sets, a stability analysis was
also carried out with the IGRA2 radiosonde data. Due to the
criterion of temporal coverage, only 62 of the more than 700
IGRA2 stations are left for the analysis. As almost all of these
are located in the northern mid-latitudes, the stability anal-
ysis is not globally representative, but the comparison can
provide further important independent information.

The course of the temporal stability and the results of the
analysis are depicted in Fig. D1. To calculate the temporal
stability, a PACF analysis was conducted which revealed that
an AR(2) model is most appropriate. Following the same pro-
cedure as in Sect. 6, the transformed GLS regression yielded
a stability of +1.33± 1.37 % per decade. Although this does
not fulfil any stability criterion, these results are consider-
ably better than the findings for the COMBI TCWV data
set over land (see Fig. 17). Furthermore, it is difficult to de-
termine whether the trend may come from the radiosondes
themselves, as it is not clear how regularly the radiosondes
are calibrated (e.g. according to the GRUAN standard; Dirk-
sen et al., 2014).

Figure D1. Stability analysis of the mean relative deviations of the OMI TCWV data set with respect to IGRA2 radiosonde data for the time
range from January 2005 to December 2020. The red line represents the global mean relative deviation, the blue line shows the results of the
transformed GLS regression, and the dotted black lines present the respective 25th and 75th percentiles. The bias and RMS values provided
in the legends correspond to the time series of the global mean deviation for the respective time range.
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Appendix E: Intercomparison with COMBI over the
full time period

Figure E1. Same as Fig. 11 but with COMBI data for data over ocean (a, b) and for data over land (c, d) for the complete time range.

Figure E2. Same as Fig. 12 but with COMBI data over the complete time range.
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